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ABSTRACT

Anomaly detection is essential for preventing hazardous out-
comes for safety-critical applications like autonomous driving. Given
their safety-criticality, these applications benefit from provable
bounds on various errors in anomaly detection. To achieve this goal
in the semi-supervised setting, we propose to provide Probably
Approximately Correct (PAC) guarantees on the false negative and
false positive detection rates for anomaly detection algorithms. Our
method (PAC-Wrap) can wrap around virtually any existing semi-
supervised and unsupervised anomaly detection method, endowing
it with rigorous guarantees. Our experiments with various anomaly
detectors and datasets indicate that PAC-Wrap is broadly effective.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and
malware mitigation; « Theory of computation — Sample com-
plexity and generalization bounds; « Computing methodologies
— Semi-supervised learning settings.

KEYWORDS

Anomaly Detection, Semi-Supervised Learning, Statistical Machine
Learning, PAC Learning

ACM Reference Format:

Shuo Li, Xiayan Ji, Edgar Dobriban, Oleg Sokolsky, and Insup Lee. 2022.
PAC-Wrap: Semi-Supervised PAC Anomaly Detection. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3534678.3539408

1 INTRODUCTION

Anomaly detection aims to detect points that significantly devi-
ate from the regular pattern of data and may threaten system safety.
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Figure 1: An overview of PAC-Wrap, which wraps around
an arbitrary anomaly detector. In the calibration phase, we
derive false positive (FP) PAC sets and false negative (FN) PAC
sets, which guarantee the false positive (FPR) and negative
rates (FNR) respectively. We take an intersection to have both
guarantees. After eliminating ambiguity, it is later used at
the test phase to detect anomalies with a PAC guarantee.

In recent years, anomaly detectors based on machine learning al-
gorithms have started to outperform classical methods in many
tasks [5, 21, 37]. Some of these tasks are safety-critical and require
rigorous guarantees on the false negative and false positive rates.
However, machine learning-based anomaly detectors usually do
not guarantee these rates by default.

Some methods propose using standard conformal prediction
[1, 34], an uncertainty quantification technique, for rigorous guar-
antees. These methods are effective when sufficient data is given, i.e.,
the dataset is large enough to represent the whole data distribution.
Nevertheless, we cannot make this assumption in practical settings,
and hence we shall allow for some error margin incurred by the
data insufficiency. An alternative approach is to use training-set
conditional methods, such as inductive conformal prediction [23],
which satisfy a Probably Approximately Correct (PAC) property
[26, 30, 32]. As we will argue, this property offers more flexibility
than the marginal guarantees for conformal prediction. Further-
more, most anomaly detection methods with rigorous guarantees
only control the false positive rate (FPR). The lack of false negative
rate (FNR) guarantees could limit the usefulness of a system since
classifying anomalies as normal can be a consequential mistake.
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Hence, we propose an algorithm, named PAC-Wrap, to add a
layer ensuring a PAC guarantee on FPR and FNR to virtually any
anomaly detector. In other words, PAC-Wrap acts like a wrapper
that helps an anomaly detector attain a rigorous performance guar-
antee while keeping its internal structure intact. PAC-Wrap takes a
user-specified error level, denoted as ¢, and a user-specified confi-
dence level, denoted as §, to customize the guarantee. We perform
this in semi-supervised anomaly detection, where a small amount
of labeled data is available [20, 27, 31]. Our algorithm leverages the
limited labeled data and provides training-set conditional guaran-
tees, which we argue are more practical than the marginal guar-
antees provided by standard conformal prediction-based methods.
Since we leverage both labeled normal and anomalous data, we can
provide PAC guarantees not only on the FPR but also the FNR.

Given any trained anomaly detector that outputs the anomaly
score, our wrapper method constructs false positive and false nega-
tive PAC prediction sets on the calibration datasets. These two PAC
prediction sets provide PAC guarantees on FPR and FNR. Then, we
propose to take the intersection of the PAC prediction sets and adopt
the classification with rejection option idea [2, 11]. The resulting
anomaly detector guarantees FPR and FNR if it is confident about
its prediction. On the other hand, if the anomaly score falls into
the ambiguity region where it is not sufficiently confident about its
prediction, it abstains from predicting. In cases where the rejection
option is not allowed, we further propose an algorithm to eliminate
the ambiguity regions. Finally, we prove that the prediction sets
and the final anomaly detector are probably approximately correct.
An overview of our method is in Figure 1.

We conduct experiments to validate the correctness of our theo-
rems on both synthetic and benchmark datasets. Moreover, we also
demonstrate that our wrapper can ensure that the performance
of the underlying anomaly detector is rigorously guaranteed at a
user-specified error and confidence level. Furthermore, to demon-
strate the generalizability benefit of the PAC-based guarantee, we
compare the performance of our PAC anomaly detection method
to standard conformal prediction-based methods [18]. Finally, we
explore the relationship between the error level, the confidence
level, and the ambiguity region.

In summary, our contributions are as follows:

e We propose to wrap PAC prediction sets around general
anomaly detectors. We show rigorous guarantees on the
FNR and FPR in semi-supervised anomaly detection.

e We show that the training-set conditional PAC guarantee
has both practical and theoretical benefits in generalization
and flexibility compared to marginal guarantees provided
by the standard conformal prediction.

e We demonstrate empirically in simulations and on challeng-
ing benchmark datasets, using a variety of state-of-the-art
anomaly detectors, that PAC-Wrap is effective.

e We conduct an ablation study to evaluate the tradeoff be-
tween the error level, the confidence level, and the ambiguity
region.

2 RELATED WORK

Conformal prediction (CP), also referred to as conformal infer-
ence [33], is a general approach to uncertainty quantification. It can
provide finite dataset coverage guarantees under exchangeability
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of the data points and has been widely adopted, e.g., [1, 25], etc.
Closely related to our work, [18] also provides guarantees on false
negative and false positive rates for classification. However, [18] is
based on standard conformal prediction and provides a coverage
guarantee that holds marginally over the training set. Similarly, the
work [9] proposes a class-wise thresholding scheme for OOD detec-
tion algorithms to maintain a comparable true positive rate across
classes. Mondrian conformal prediction is a general approach to pro-
vide guarantees conditional on a general data clustering (of which
class-conditional guarantees are a special case). However, their
guarantees studied so far hold marginally over the training set [34].
The guarantees of conformal prediction, which hold marginally
over the training set [9, 18, 34] mean that the method works for
most collections of training data and one test data point. It implies
that the coverage holds for only one test data point. In contrast,
the PAC guarantee we use implies that the coverage holds for most
future test data points; this is more aligned with the practice setting
in which a prediction method is used for many test data points.

Moving beyond standard conformal inference, [6] proposes a
block permutation method to account for temporal dependence.
EnbPI [36] proposes distribution-free prediction intervals for dy-
namic time series, extending CP to assume that only the residuals
of a fitted model are exchangeable instead of the complete data.
Our method differs, as we build upon the PAC framework, which—
as discussed above—provides different guarantees. Also, our time
series examples are different, as in some cases, our data points are
independent time series. Thus the guarantees apply directly, sim-
ilarly to previous examples such as [17]. In other cases, we take
sufficiently separated subsequences of the time series that we ex-
pect them to be nearly independent, which holds for certain types
of mixing conditions, as in [6].

Inductive Conformal Prediction (ICP) [24] was originally shown
to have marginal guarantees, but was later shown to satisfy training-
conditional, or PAC guarantees [26, 32]. As discussed in [32], the
mathematical structure of these methods is closely related to that of
tolerance regions [16, 35]. Inductive conformal anomaly detection
[14, 24] builds on ICP to guarantee a bounded false detection rate. In
different literature, there are different terminology for the two user-
specified inputs. For example, the f§ — content in [10] is equivalent
to 1—¢, where ¢ is the error parameter in [15]. The confidence level y
in [10] is equivalent to 1 — §, where § is called confidence parameter
in [15]. In our work, we follow the terminology in [15] and denote
¢ as the error parameter, and § as the confidence parameter. We
adopt the core ideas behind this general line of work and focus on
adapting it to semi-supervised anomaly detection, where both false
positive and false negative rates control are essential.

We focus on semi-supervised anomaly detection (SSAD) tasks,
which have been defined in slightly different ways. In these def-
initions, given a dataset S, we have m unlabeled data points and
n labeled data points, where m > n. SSAD definitions differ in
the setup of the training and testing sets. For example, some pa-
pers [22, 27] assume that the training set has labeled normal and
anomalous data points. This setting is also called weakly super-
vised anomaly detection. On the other hand, some papers [13, 28]
assume that the training set only contains normal data points and
the test set contains both normal and anomalous data points. We
adopt the first definition of SSAD. In both our problem formulation
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and experimental evaluation, we assume that the training set has
labeled normal and anomalous data points. Note that all the afore-
mentioned semi-supervised algorithms are orthogonal to our work
in that we emphasize providing a theoretical guarantee on false
negative and false positive rates, whereas they focus on detector
performance, like accuracy or F1-score.

3 PRELIMINARIES

3.1 PAC Prediction Sets

For independent and identically distributed (i.i.d.) training and
test data, training-set conditionally valid (or, PAC) prediction sets
[26, 32] are guaranteed to contain the true labels for test inputs
with low error level and high confidence level. While the algorithms
in [32] and [26] are identical, we follow the latter. To ensure the
prediction sets are small, [26] solves an optimization problem to
calculate the smallest prediction set (on average) while satisfying
the PAC property.

Let X be the input space and Y be the finite label space; let
D denote a distribution over X x Y; let C : X — 2¥ denote a
prediction set. The probability that C does not cover a test data
point (x,y) ~ D is defined as

Lp(C) = P(yy~ply ¢ C(x)]. (1

Let Z ~ D" be a held-out calibration set of i.i.d. data points from
D with size n, which we can use to tune or calibrate C, as described
below. The goal is to find a set of a small size satisfying the PAC
property, i.e., given ¢, 6 € (0, 1),

Py .pn[Lp(C) <e] 21-6,

where the P, pn refers to the chances of calibration succeeding.
In this case, we say C is (¢ d)-correct. To calculate such (¢, §)-
correct sets, [26] then proposes the following one-dimensional
parametrization of prediction sets:

C(x)={ye¥|flxy 21},

where 7 € Ryg and f : X XY — Ry is any given scoring function
(e.g., the label probabilities output by a deep neural network). The
parameter value 7 is identified by solving the following optimization
problem:

£ = argmax 7 subj. to Z 1(y ¢ Cr(x)) < k¥, (2)
T€R>o (x,y) ez

where

k* = argmax k subj. to F(k;n,e) < 6,

keNuU{o0}
where F(k;n, ¢) is the cumulative distribution function of the bino-
mial random variable Binomial(n, £) with n trials and success prob-
ability . Maximizing 7 corresponds to minimizing the prediction
set size. This is equivalent to inductive conformal prediction with
the non-conformity measure f(x,y), as explained in [32]. Lastly,
we have the following theorem:

THEOREM 1 ([26, 32]). C; is (&, 8)-correct for  as in (2).

REMARK. The optimization problem (2) returns the trivial solution
7 = 0 if the the optimization problem is infeasible.
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3.2 Semi-supervised Anomaly Detection

We assume each labeled data point consists of features and
a label, z; = (x;,y;), with y; = 1 indicating an anomaly (posi-
tive) and y; = 0 indicating a normal (negative) data point. In a
general semi-supervised anomaly detection setting, given an ob-
served labeled data set {z1,...,2zN,2ZN+1,- .-, ZN+K }>» W€ assume
that {zN41,...,2N+K} With K < N is a small set of anomalies. At
the same time, the rest of the data points are normal. We then use
the observed data set as the calibration set, which contains both
normal and anomalous data points. Finally, after getting the trained
anomaly detector from the original semi-supervised training pro-
cedure, we calculate the PAC thresholds on the calibration set to
identify anomalies.

4 METHOD

Suppose we are given a semi-supervised anomaly detector d :
X — R which maps input x € X to an anomaly score. We construct
PAC prediction sets wrapped around d(x) to control both false
positive rate (FPR) and false negative rate (FNR). With our previous
definition of positives, FPR is the rate of falsely classifying the
normal class as anomalous:

FPR=P(j=1]y=0).

Further, FNR is the rate of erroneously predicting the anomalous
class as normal:

FNR=P(j=0]y=1).

The control of the two rates is accomplished by replacing the origi-
nal prediction error loss (as in (1)) with one that considers either
FNR or FPR, which we use to construct a false negative PAC predic-
tion set and a false positive PAC prediction set. We then propose to
take the intersection of the two sets to provide a combined guar-
antee, which inevitably introduces ambiguity regions. Lastly, we
propose a strategy to remove such ambiguity by considering the
relative position of the two prediction sets.

4.1 Conditional Prediction Sets

In this section, we illustrate in detail our pipeline of loss modifica-
tion, threshold derivation and the PAC prediction sets construction.

False positive PAC prediction set. Let the false positive PAC
prediction set be Cig,- The loss of Cy, is calculated on the normal
data distribution Dy, and it is defined as:

LDnm (Cffp) = E(x’y)NDnmff(i)l (C'ffp’ X, y)’ (3)

where E(y, )~ p,,, (-) means taking the expectation over the normal
data distribution, and {’&1(-) = 1(y ¢ Ct, (x)). In other words,
[f(i) ! (C.[—fp, x,y) indicates whether the correct label 0 is not included
in Cf-fp (x).

Let Znm ~ D, be an independent calibration set of i.i.d. data
points from Dpm. Given a user-specified (eg, dg,), we construct
Cffp by identifying the optimal 7 in equation (2) via binary search
using Znm. We denote the identified 7 as ffp. Then, we construct
the C, (x) for § based on d(x) in the following way:

A o if d(x) > fg
Cay (x) = {{0, 1}, otherwise @)
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In other words, we predict the set {1} for x with anomaly scores
above 7f,, and {0, 1} otherwise. We have Corollary 1 on the false
positive PAC prediction. See Appendix B for a proof.

COROLLARY 1. Cf—fp is (4, Opp) -correct for i, identified from (2)
using loss function (3).
Given an input x and Ci,» we can make a class label prediction
as:
i = 1(0 ¢ Cy, (). 5)
In other words, we identify the current data point as anomalous
if label 0 is not included in Cf.fp, and as normal otherwise. Then,

we have Theorem 2 on the false positive PAC prediction set. See
Appendix C for a proof.

THEOREM 2. Cy, provides a PAC guarantee on the false positive
rate:

P 2,,~Df [P ()~ Do (U = 11y = 0) < ] > 16,

False negative PAC prediction set. We denote the false nega-

tive PAC set by Cz, . The loss of Cy,_ is calculated on the anomalous
data distribution D,p,, and it is defined as:
LD (Ciy) = B, y)~Dano fin (Citys %, 1), (6)

where l’gnl (+) = 1(y ¢ Cy, (x)). In other words, '{}211 (C#,» x, y) indi-
cates whether the correct label 1 is not included in Cz, (-).

Let Zano ~ DI, be an independent calibration set of i.i.d. data
points from Dgpo. Given a user-specified (g, 8¢,), we construct
C#, by identifying the optimal 7 in equation (2) via binary search
using Zyno. We denote the identified 7 as 7f,. We then construct the
false negative PAC prediction set by

) _ o1}, ifd(x) = 7y
C,fn (x) = {{O}, .

Then, we have the following Corollary for the false negative
PAC prediction set. See Appendix D for a proof.

7

otherwise

CoROLLARY 2. Cy, is (&fns On) -correct for ip, identified from (2)
using loss function (6).

Moreover, similarly to above, we can define
U = 1(1 € Cg, (x)). ®)

Finally, we have the associated PAC guarantee for the false negative
prediction set in Theorem 3. See Appendix E for a proof.

TueorEM 3. Cz, provides a PAC guarantee on false negative rate:
P Zun~ Dy [P (e ~Dno U =0 1y = 1) < ] 2 1= S

4.2 Anomaly detection with ambiguity region

We aim to use both false positive and false negative PAC predic-
tion sets so that both rates are controlled at the same time. Conse-
quently, we propose to combine false positive and false negative
PAC prediction sets via taking their intersection:

Cad(x) = Cffn (x) n Cf'fp (x)

Shuo Li et al.
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Figure 2: An illustration of ambiguity region cases. ¢, > 7g,
happens when the overlap between the normal and anoma-
lous class is zero or small, as in 2a and 2b; otherwise, 7g, > fgy
happens, as in 2c.

There are four possible values of the intersection, depending on
the relative position of the anomaly score d(x), 7, and 7g, listed
in Table 1.

dx) | <Tp | =T
<# | 0 |[{01}
> 0 1
Table 1: The four possible values for C,q(x).

Given an input x, if its anomaly score d(x) falls into the interval
[Ztps T, (of [Zgn, 7p]), Cag Will contain zero or two labels, which is
ambiguous. Therefore, the interval [#g,, 7] (or [Zgy, Tgp]) is defined
as the ambiguity region, denoted as U. Lemma 1 further explains
the setting when U occurs. See Appendix H for a proof. Intuitively,
when there is zero or a small overlap between the normal and
anomalous classes, the ambiguity region U is [Zg, 7f,]. This corre-
sponds to the case C,q = 0. A visualization of this case is in Figure
2a and Figure 2b, where there is no overlap (2a) or little overlap
(2b) between the normal and anomalous classes.

LEMMA 1. Let k%, and k}n be the solutions of (2) when identifying

false positive and false negative PAC prediction sets respectively. We
have that

T = Ty
—
Z 1(d(x) > t) <k}, o)
(x,Y) €Znm
and ) 1(d(x) < i) <k,
(%,Y) €Zano
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In this case, we predict a class label as

L Cu(x) = {1}
Jad =10, Caa(x) = {0}, (10)
*  Cad(x) =0

where * means abstaining from predicting. This classification with
rejection option idea is similar to [2, 11], where a classifier could
abstain from classifying an input if the classifier is not sufficiently
confident about its prediction.

Further, we define the error rate ERR(D) over the distribution
D as the probability that the prediction is not equal to the label:

ERR(D) = IP(x,y)~D(y # §lx).

Then, we have the following theorem about the resulting anomaly
detector. See Appendix F for a proof.

THEOREM 4. If Ci, is (s Ofn) -correct, Ci, is (s Opp) -correct,
and tf, > T, with probability at least 1 — 54, where 849 = Ofy + S,
the error rate ERR(D) is no greater than 4, where €49 = max (&g, £f),
ie.,

Pz.p, [ERR(D) < €4q)] 2 1= 64a-

In contrast, Coq = {0,1}, i.e, U = [, gp], happens when the
overlap between normal and anomalous class is large, see Figure
2c. According to Lemma 1, this arises when condition in (9) fails. In
this case, the anomaly detector cannot distinguish anomalies from
normal data points and therefore cannot satisfy the false positive
and false negative constraints at the same time.

Thus, we have to either find a better anomaly detector or relax
the constraint for the error or confidence. We propose Algorithm 1
to relax the error constraint. Intuitively, this algorithm first checks
whether 7, > g, or not. If not, this algorithm increases the ¢ and
recalculates 7y, and fg,. After 7y, > 7y, is satisfied, this algorithm
returns the resulting ff,n’ ff,p’ ¢ and §. Here, we use the linear search
strategy where we increase the ¢ by (say) 0.1 at each iteration.
Alternatively, we could also double ¢ at each iteration, which may
be faster to find a feasible ¢, but the result may be looser. The
confidence constraint can be relaxed similarly, but the effect is less
salient than that of the error constraint.

Algorithm 1 Relaxing the error constraint

Input: g, Ty, &, &fp» Stns Spp, A (default A = 0.1).
LAr A
Output: T T & é.
while 7, < 7, and e, e, < 1 do
Efns Efp = &fn + A, £p + A
Re-calculate 7, 7y, using equation (2) with &g, dg, correspond-
ingly.
end while
&0 = maX(an, Efp), 5fn + afp'
) Al oA a
Ty Ty = Thins Thp-
~r

A7
Return (7 Tfp, & 0.
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4.3 Anomaly detection with certain prediction

If one is not allowed to abstain from making a prediction, the
ambiguity region U must be removed. In this case, after satisfying
ff/n > ff'p, we could pick an arbitrary threshold 7 € [ff’p, ff'n], eg.,
T = (ff’n + ff’p) /2, and the guarantees will still hold. We state this
claim in Theorem 5. See Appendix G for a proof.

THEOREM 5. After using Algorithm 1 and picking an arbitrary
threshold T € [fj',p, fjﬁn] for an anomaly detector, its error rate is at

most ¢, with probability at least 1 — 6.

5 EXPERIMENTAL RESULTS

We apply PAC-Wrap to several anomaly detectors, and on both
ii.d. and time series anomaly detection datasets. The experiments
support that PAC-Wrap enables PAC guarantees on the false posi-
tive rate (FPR) and false negative rate (FNR). In addition, we com-
pare with standard class-conditional conformal prediction [18].
These experiments empirically support that PAC-Wrap performs
well in a variety of scenarios, and compares favorably to standard
conformal prediction-based methods.

We address several questions to demonstrate the effectiveness
of PAC-Wrap:

¢ Q1 (Empirical Validation): Are Theorem 2 and 3, empiri-
cally supported by results on both synthetic and benchmark
datasets?

e Q2 (Wrapper Effect): How does our wrapper affect the
underlying anomaly detector’s error rates?

¢ Q3 (Baseline Comparison): How does our work compare
to standard class-conditional conformal prediction methods?

¢ Q4 (Ablation Study): How do different combinations of ¢
and ¢ affect the ambiguity region?

5.1 Datasets, Anomamly Detectors, and Metrics

5.1.1 Datasets. We first describe the synthetic and benchmark
datasets used in Q1. We generate a synthetic dataset by sampling
i.i.d. normal and anomalous data points from two clusters, each nor-
mally distributed in 6-dimensional space with the same covariance
matrix but with different means fiyormals Hanomalous € RS, which
are selected so that the two classes are separated by a margin of 5.
Let I, be the p-dimensional identity matrix with p = 6, and o’bea
uniformly random value drawn over [1, 100]. We have:

2
Xnormal ~ N (Hnormals & Ip)
2
Xanomalous ~ N(:uanomalous: o Ip)~

To simulate the semi-supervised problem, we generate 100, 000 nor-
mal data points as the training set, another 2, 000 normal and 2, 000
anomalous data points as the calibration set, and finally 50, 000 nor-
mal and 50, 000 anomalous data points as the test set. The bench-
mark dataset thyroid is a UCI Machine Learning Repository [8]
dataset that contains around 7,200 data points. It treats the hy-
pothyroid disease as an anomaly. We randomly sample 80% of the
normal data points from the thyroid dataset to form the training
set. We then take the remaining 20% of the normal data and the
anomalous data points to form the calibration and the test set, with
the calibration set taking up 30% and the test set taking up 70%.
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In Q2, we experiment on the benchmark semi-supervised anom-
aly detection datasets campaign, celeba, and census that are also
used in [22]. The campaign dataset contains direct marketing cam-
paigns (phone calls) and asks to predict whether a given client will
subscribe to a term deposit. Successful campaigning records ac-
count for approximately 10% records and are regarded as anomalies.
The celeba dataset is an image dataset of more than 200K celebrity
images. In this task, the anomaly detector detects bald celebrities as
anomalies, which account for less than 3% of celebrities. The census
dataset is extracted from the US census bureau database and aims to
detect the high-income people that comprise about 6% of the data
as "anomalies". In contrast to the typical supervised classification
setting, these datasets are highly imbalanced. In other words, only
a small portion of labeled data points are anomalous.

We also conduct experiments on two time series benchmark
datasets in Q2, the Server Machine Dataset (SMD) [29], and the
NASA Telemetry Anomaly Detection (NASA) dataset [12] to see
how PAC-Wrap affects the performance of time series anomaly
detectors. The detailed result is reported in Appendix L

In Q3, we use the same experimental setup on the MNIST dataset
[7] as in [18]: we regard the digits {0, 6,9} as class "0" and digit
{8} as class "1". The training dataset contains 3044 images, with
541 in class 1. The test dataset contains 872 images, with 166 in
class 1. As in [18], we train #;-penalized logistic regression on two-
thirds of the training data points and use the remaining one-third
as the calibration data to identify the Conformal/PAC prediction
sets. In the calibration dataset, we have 865 images in class 0 and
170 images in class 1.

Finally, we use the same synthetic dataset in Q4 as in Q1.

5.1.2  Anomaly Detectors. We consider the following anomaly de-
tectors:

e Isolation Forest (IF) [19] is an unsupervised model based
on decision trees.

e Local Outlier Factor (LOF) [4] is an unsupervised anomaly
detection method which compares an estimated density of a
data point to its neighbors.

e DevNet [22] is a semi-supervised anomaly detector that
uses a few labeled anomalies to separate the anomalies from
normal data points.

e LSTM-based anomaly detector [3, 12] is commonly used
for time series data. For SMD, we wrap around a standard
LSTM-encoder-decoder-based anomaly detector [3]. For the
NASA data, we use the proposed LSTM-based anomaly de-
tector in [12].

If an anomaly score threshold is not explicitly identified for the
above anomaly detectors, we use a threshold that maximizes the
F1 score, i.e., the harmonic mean of precision and recall. The F1
score is often used as an efficacy measure in the anomaly detection
literature.

5.1.3 Metrics. Let TP, TN, FP, FN be the number of true posi-
tives, true negatives, false positives, and false negatives, respec-
tively. We focus on the three most important error rates in anom-
aly detection: FNR = FN/(FN+TP) and FPR = FP/(FP+TN), ERR =
(FN+FP)/(FN+TP+FP+TN). We compare FPR, FNR and ERR to a
user-specified error constraint (e.g., ¢ = 0.05). We repeatedly run
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the experiments and check if the error constraint violation rate, de-
fined as the fraction of times the error rate is above ¢, is lower than
a user-specified confidence constraint (e.g., § = 0.05). To compare
PAC-Wrap with a conformal prediction-based baseline, we use the
definition of ambiguity from [18], estimated as the fraction of data
points falling into the ambiguity region in the test dataset:

Z(x’y) €Zest 1(d(x) € U)
|Ztest|

Ambiguity = (11)

5.2 Q1. Empirical Validation

We first empirically validate the theoretical guarantees of our
false negative and false positive PAC prediction sets. To study how
anomaly detector performance affects our guarantees, we experi-
ment with two kinds of anomaly detectors, the Local Outlier Factor
(LOF) and the Isolation Forest (IF). Additionally, to study how cal-
ibration set size affects our guarantees, we experiment with 50%,
75%, and 100% of the calibration set. In these experiments, we set
éfn = &fp = 0.05 and S, = Jg, = 0.05 as our constraints. Besides,
4000 independent Monte Carlo trials on both synthetic and bench-
mark datasets are performed. Out of these trials, we compute the
empirical error constraint violation rate, which is the fraction of
trials where the FPR or FNR is above 0.05.

Note that the PAC guarantee assumes an infinite population, but
we only have a finite dataset. To address this problem, we propose
the following method. First, we combine the calibration and test
datasets to form a known finite population O. We aim to validate
the PAC guarantee over the known finite population D, which
is convenient since we can enumerate the population. Next, we
train the LOF and IF on the training set. For each Monte Carlo trial,
we then sample with replacement a new calibration set from the
known finite population, of the same size and anomaly ratio as
the original calibration set. We construct false positive and false
negative PAC prediction sets on each newly sampled calibration
set. Finally, we compute the FPR and FNR of the constructed PAC
prediction sets over the known finite population D.

We report, in Table 2 (on synthetic data) and Table 3 (on the
thyroid dataset), a two-sided 95% Clopper—Pearson interval for
the error constraint violation rate. If the interval covers 0.05 (or
falls below that), the empirical results are consistent with the error
and confidence constraints being satisfied. In Table 2 and Table 3,
the PAC guarantee is corroborated by the results on the synthetic
and benchmark datasets since all the intervals fall below 0.05. The
guarantee holds regardless of calibration set size and anomaly de-
tectors. As a result, our results empirically validate Theorems 2 and
3. Another observation is that the constraint violation rates on the
benchmark dataset are much lower than 0.05, which means that
the constructed PAC prediction sets on the benchmark dataset are
conservative. We further discuss this observation in Appendix A.

5.3 Q2. Wrapper Effect

In this section, we conduct experiments to check how PAC-
Wrap affects the error rates of the underlying anomaly detector.
Specifically, we apply Algorithm 1 to remove the ambiguity region
and check if the final FPR, FNR and ERR are bounded by the error
constraint. For brevity, we omit repeatedly verifying the confidence
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Val Size IF LOF
50%  [0.034, 0.046] [0.033, 0.045]
Pr(FPR>0.05) 75% [0.024, 0.034 [0.020, 0.030]
100%  [0.031,0.043] [0.030, 0.042]
50%  [0.033,0.045] [0.034, 0.047]
Pr(FNR=0.05)  75%  [0.032,0.044] [0.035, 0.048]
100% [0.035, 0.047 [0.032, 0.044]

Table 2: The rate of error constraint violation on the synthetic
data.

Violation

(S S Rt R R

Val Size IF LOF
50%  [0.024, 0.035] [0.022,0.033
Pr(FPR > 0.05)  75%  [0.007,0.013] [0.006, 0.012
100%  [0.025,0.036] [0.026, 0.037
[
[

Violation

50% 0.006, 0.012]  [0.006, 0.012

Pr(FNR > 0.05)  75% 0.010, 0.018]  [0.014, 0.022

100% [0.012, 0.020] [0.016, 0.025

Table 3: The rate of error constraint violation on the bench-
mark dataset.

[t B O S

constraint, which is already tested in Q1. We report the following
values:

o FNRy;, FPRy,;: the original FNR and FPR of the anomaly
detector without our wrapper.

e FNRy, FPRy:: the FNR and FPR of our wrapper using two
thresholds 7y, ff,, given the initial error constraints.

o FNRy,, FNPy,: the FNR and FPR of our wrapper using one fi-
nal threshold z, given the (possibly relaxed) error constraint.

o ERR: the final error rate of our wrapper, which is defined in
5.1.3. It is a weighted combination of FNRy;, and FPRy,.

o ¢: the final error level our wrapper can guarantee.

For i.i.d. data, we take DevNet [22] as the baseline anomaly de-
tector. We first train DevNet on the campaign, celeba, and census
datasets respectively using default hyperparameters. Second, we
wrap the trained model with the constructed false negative and false
positive PAC prediction sets. Then, we find that DevNet may not
perform well enough to simultaneously satisfy the user-specified
errors constraints with the PAC prediction sets. Therefore, we use
Algorithm 1 to adaptively relax the error constraint to enable De-
vNet to fulfill a reasonable guarantee.

In Figure 3, we show how this works on the celeba dataset.
Specifically, 7, and 7y, are first chosen to satisfy the constraint
& = £fp = 0.05,8g = Ofp = 0.05. Although most anomalies have
higher anomaly scores than the normal data points, there is still
considerable overlap. As a result, 7y, is greater than 7, (the green
dashed line is above the red dashed line in Figure 3), which is an
inconclusive case as discussed in 4.2. In other words, the anomaly
detector cannot accurately distinguish the normal and the anoma-
lous classes under the current error constraint, and we have to relax
the constraint. After relaxing the error constraint by Algorithm 1,
we find ¢ = 0.15 and ff/n > ff/p (solid red line is above solid green
line in Figure 3). Then, we can readily remove the ambiguity region
by setting 7 = (77 + ff'p) /2 (dashed blue line in Figure 3) according
to Theorem 5. A similar process occurs on the campaign and census
datasets, resulting in the relaxed error constraints of ¢ = 0.35 and
& = 0.25 respectively.

We report the detailed results for DevNet in Table 4. Table 4 first
shows that the FNR;-s and FPR,;-s of DevNet violate the error

KDD ’22, August 14-18, 2022, Washington, DC, USA

FNR,y FPR,, FNR; FPR; FNR;, FPRy, ERR ¢

campaign 0.000 0998 0026 0043 0267 0259 0266 035
celeba 0.029 0456 0.026 0042 0121 0097 0120 0.15
census 0.055 0561 0.048 0047 0230 0202 0229 0.25

Table 4: Error rate with PAC-Wrap wrapped around DevNet
on i.i.d. data. Guarantees on FNR and FPR are met. After
removing the ambiguity region, the FPRy,, FPRy;,, and ERR
satisfy the error constraints.

€:0.150, T: 0.927, ERR: 0.125
1.0: O N

oo
5 : .
S I o
20.6' o
2
= ° rfn
1S by
— T
o fr
204 o
< ————T
0.2
normal anomalous

Figure 3: Box Plot and thresholds on the celeba dataset us-
ing the DevNet anomaly detector. 7g, > 7, holds under the
original error constraint (¢ < 0.05). By using Alg. 1, 7 > fép
under the relaxed error constraint (¢ < 0.15).

constraint e, = ef, = 0.05 on campaign, celeba, and census datasets.
Then, columns FNRy; and FPRy; indicate that PAC-Wrap satisfies
the original error constraints. After the constraint relaxation and
ambiguity removal, columns FPRy,, FPRy;,, and ERR are lower than
the last column ¢, indicating that they all satisfy the relaxed error
constraints. The underlying anomaly detectors determine the re-
laxed levels. Without our wrapper, the baselines can usually only
control one of the FNR/FPR. Our method provides a principled way

to balance the two rates and provides guarantees on their levels.
Time series data are beyond the independence assumptions re-

quired for the PAC property, but can be transformed to reduce the
dependence across time. We show the detailed result in the in Ap-
pendix I that, in certain cases, our wrapper is also effective for time
series anomaly detectors. Initially, we set eg = g, = 0.05,8p, =
8fp = 0.05 and find that the sample size is occasionally too small
to satisfy the error and confidence constraints. This is because,
given a user-specified ¢ and §, we have a minimum requirement
for the number of data points. According to Theorem 1 in [26],
the number of data points n should be at least log(1/5) /log(1 — ¢).
For instance, if ¢ = § = 0.05, the minimum required sample sizes
for labeled normal and anomalous data points are both 59. When
only limited labeled anomalies are available, we can relax the error
and confidence level to give PAC guarantees. In the time series
experiments where only 30 to 40 labeled anomalies are available,
we set ey = éf, = 0.10, Oy = I, = 0.10 to compute the thresholds.
After training the LSTM-based anomaly detectors on the training
set, we find that they have the same performance issue as DevNet.
Hence, we perform a similar constraint relaxation and ambiguity
removal procedure.

We show in Figure 4 some representative channels from the
NASA dataset. The LSTM-based anomaly detector violates the error
constraint, but PAC-Wrap controls both FPRy, and FNRy, to be
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---- desired ¢
B FPR,,
FNRo,

(a) The ¢ = 0.4 error constraint does not hold for
the original anomaly detector.

---- desired ¢
I FPR¢
FNR¢p

(b) With our wrapper, the ¢ = 0.4 error constraint

is met.
Figure 4: Results on the NASA data with ¢ = 0.4. For the NASA
anomaly detector, PAC-Wrap helps balance the FNR and FPR.

smaller than ¢. For example, for the S-1, F-7, and E-7 channels,
FPR,; is even greater than the relaxed error constraint ¢ = 0.4.
With a moderate increase in FNRyy,, our wrapper can ensure both
FPRyy, and FNRyy, are below ¢ = 0.4.

5.4 Q3. Baseline Comparison

We compare PAC-Wrap to the method in [18]—denoted as CPAD—
which also provides guarantees on the FNR and FPR by calculating
per-class thresholds. The error and confidence constraints are set
as ef = éfy = 0.05, 8y = Spp = 0.05. We use the same known finite
population method as in 5.2 for evaluation. Specifically, after con-
structing the training, calibration and test datasets as in [18], we
construct the known finite population by combining the calibration
dataset with the test dataset. Next, we perform 300 independent
Monte Carlo trials and compute the error constraint violation rates
on the known finite population. To identify the conformal/PAC pre-
diction sets, we sample with replacement a new calibration dataset
with the same size and anomaly ratio as the original calibration
dataset in each trial. After constructing the prediction sets, we
evaluate the FNR and FPR on the known finite population.

The average FPR and FNR over the 300 Monte Carlo trials are
reported in Table 5. The result shows that the average FNR-s and
FPR-s of CPAD and PAC-Wrap are basically below 0.05, therefore
satisfying the error constraints. This finding is consistent with the
class-conditional guarantees of PAC-Wrap and CPAD. To evaluate
the satisfaction of the confidence constraint, we report a two-sided
95% Clopper—Pearson interval for the error constraint violation
rate in Table 6. The result shows that CPAD’s violation rates are
approaching 50%, while that of PAC-Wrap are at the desired level
(below 0.05). That is because CPAD’s guarantee holds marginally
over the training dataset, which differs from the conditional guaran-
tee of PAC-Wrap. It is possible that an insufficiently representative
calibration set is drawn, and PAC-Wrap accounts for the scenario
via introducing the confidence parameter §. In contrast, standard
conformal prediction-based methods like CPAD do not consider
the data representativeness and cannot provide a training-set con-
ditional guarantee with high confidence. While satisfying the error
constraint with much higher probability, PAC-Wrap induces slightly
higher ambiguity than that of CPAD, as shown in Table 5. However,
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Figure 5: The average ambiguity as a function of ¢ and §. As
¢ and § grow, the ambiguity shrinks.

the increment in ambiguity is mostly tolerable, especially in safety-
critical applications where the violation of the error constraint
might lead to a catastrophe.

Dataset FPR  FNR  Ambiguity

Desired 0.050 0.050 0

CPAD 0.049 0.051 0.222

PAC-Wrap 0.038 0.020 0.345
Table 5: Average FNR and FPR for CPAD and PAC-Wrap. On
Average, both CPAD and PAC-Wrap satisfy the error con-
straint.

Method Pr(FPR > 0.05) Pr(FNR > 0.05)
CPAD [0.344, 0.458]  [0.498, 0.614]
PAC-Wrap [0.001,0.024]  [0.000, 0.018]

Table 6: Comparison of the error constraint violation rate of
the CPAD and PAC-Wrap. CPAD violates the error constraint
for nearly 50% of the time and hence fails the confidence
constraint. PAC-Wrap satisfies the 0.05 confidence constraint.

5.5 Q4. Ablation Study

In this experiment, we want to see how the ambiguity (defined
in Equation (11)) changes with respect to the error parameter ¢ and
confidence parameter 8. Specifically, we set gy = e, = € =
8y = 8. We then vary ¢ and 8, and construct false positive and
false negative PAC prediction sets on the synthetic dataset. For
every combination of error parameter and confidence parameter,
we do 100 Monte Carlo trials and compute the average ambiguity.
As shown in Figure 5, the ambiguity monotonically decreases with
respect to ¢ and J. It suggests that there is an empirical trade-off
between the constraints and ambiguity. We can relax constraints
to decrease the ambiguity or vice versa. Moreover, ¢ has a larger
effect on the ambiguity than §.

6 CONCLUSION AND DISCUSSION

We have developed a general framework called PAC-Wrap for
guarantees in semi-supervised anomaly detection. Given many nor-
mal data points and a small number of anomalous data points, we
use PAC-Wrap to control the false negative rate (FNR) and false pos-
itive rate (FPR). We conduct experiments on synthetic and bench-
mark datasets with various anomaly detectors to showcase the
effectiveness of PAC-Wrap. Our method can readily wrap around
virtually any existing anomaly detection algorithm, making our
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framework an off-the-shelf tool to provide rigorous PAC guarantees
for these algorithms. Our method can be applied to safety-critical
applications such as autonomous vehicles, surveillance video, and
tumor diagnosis. By leveraging a limited number of labeled dat-
apoints, PAC-Wrap can guarantee the FPR and FNR of anomaly
detectors, which is highly important.

PAC-Wrap can be directly extended to a multi-class framework
to provide conditional guarantees for each class for an immediate
next step. One limitation of PAC-Wrap is that if the normal and
anomalous distributions in the testing stage are significantly differ-
ent from those in the calibration stage, the false negative and false
positive guarantees might not hold, since PAC-Wrap cannot auto-
matically adapt to the distribution shift. To see how distribution
shifts affect the guarantees, we show an additional experiment in
Appendix J. In future work, it is important to enable PAC-Wrap to
adapt to distribution shift during the testing stage.
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construct a possibly over-conservative prediction set to satisfy the
confidence constraint, which leads to the violation rate being much
lower than the confidence constraint. Moreover, a small calibration
set, which is unrepresentative of the true distribution, could also
contribute to a high violation rate. The fact that the calibration set is
small could have the opposite effects on the violation rates. On the
thyroid dataset, the effect of Equation (2) is dominant. As a result,
the constructed PAC prediction sets are relatively conservative.

B PROOF OF COROLLARY 1

We replace the original prediction set Ly (C) with Lo, (Cy ),
setting ¢ = &g, § = ., and construct the false positive PAC predic-
tion set via solving (2). By Theorem 1, wehave Pz . [Lo,,, (Cz) <
efp] > 1 — &gy Therefore, Cf—fp is (egp, Ofp)-correct. O

C PROOF OF THEOREM 2
We have

Pr(g=1]y=0)=Ey|y=[1(7 =1)]
= Ey|y=0[1(0 & Cs, (x))] = Ex|y=0[1(y & Cz, (x)]
= Exjyol £} (0)] = Lp,,, (Cs, ).

By Corollary 1, we have

Pz pn, [LD,, (Cs,) < ep] 2 1= .
Since Pr(j=1|y=0)=Lp,, (Cffp), we find

Propp, [P(=11y=0) < 5] 2 1- 50

D PROOF OF COROLLARY 2

We replace the original prediction set Ly (C) with Ly, (Cs, ),
setting € = &g, 0 = Oy, and construct the false positive PAC predic-
tion set via solving (2). By Theorem 1, we have Pz pr [Lp,  (Cz ) <
&fn] = 1 — Of,. Therefore, C; is (&g, Opy)-correct. O

E PROOF OF THEOREM 3
We have
Pr(g=0]y=1)=Eyy=[1(§ = 0)]
= Eyjy=1[1(1 ¢ Cg, (x))] = By |y=1[1(y ¢ C;, (x)]
= Byjy=1[£f, (0] = LD, (Ca,)-
By Corollary 2, we have

Pz.pr_[Lp,,,(Cz,) < em] 21— g

ano

Since Pr(§=0|y=1) =Lp,, (Cz ), we find
Pz.pn [P(G=0]y=1) <em] >1-5p.0

ano

F PROOF OF THEOREM 4

When d(x) > 7, and d(x) > ?g,, by Equation (10), § = 1. In this
case, the error rate ¢,4 equals to the FPR. (The anomaly detector’s
prediction is correct when y = 1.) By Theorem 2, we have

Pyopn [PH=1]y=0)<eg|>1- 5.

In other words, the error rate when d(x) > 7, and d(x) > T
satisfies

P 7, ~Dgy [£ad < 2] 21— 5.
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Similarly, when d(x) < #p, and d(x) < 7g,, by Equation 10, § = 0.
In this case, the error rate ¢,q4 equals to the FNR. (The anomaly
detector’s prediction is correct when y = 0.) By Theorem 3, we
have

Pz.pn [P(G=0]y=1) <ep] =1~ 6.

Thus, the error rate when f(x) > 7 and f(x) > 7y, satisfies

IPZan0~Dfm [ead < ] = 1= Opy.

Therefore, if we make a certain prediction by Equation (10), we
can bound the error rate as

€ad = &fp - Pr(y =0) +e¢p - Pr(y=1)
< max (g, &) - Pr(y = 0) + max (eg,, ef) - Pr(y = 1)
= max (gfps &fn)-

The inequality holds with probability at least 1 — (g, + 5g,) due to
the union bound. Thus, the claim follows. O

G PROOF OF THEOREM 5

ff{p’ ff’n and ¢ only when ff,n > ff/p’ we
first prove that the error rate of the anomaly detector is bounded
by e. Following the proof for Theorem 4, we have the guarantee
that the FNR and FPR of the anomaly detector is bounded by the

updated g, and ef, in Algorithm 1, using 7; and ff/p respectively.

Since Algorithm 1 returns

If we use a threshold 7/ < ffln’ the corresponding FNR, denoted as
&', obeys
e <ep <e. (12)

This is because using a lower threshold corresponds to a lower
quantile of the lower tail part for § = 1 distribution, and we have a
smaller chance of making false negative prediction, i.e., classifying
an anomaly as a normal point.

Similarly, if 7’ > ff'P, for the FPR, denoted as ¢’, we will have:

e <ep e (13)

The same logic follows here; a higher threshold corresponds to a
higher quantile of the upper tail of the distribution x|ij = 0. Hence
we have a smaller chance of making false positive prediction.

Since £, < 7 < fpy, let 7’ = . Based on Theorem 4, equation
(12) and equation (13), the error rate of the anomaly detector ¢,4 is
bounded by e:

€ad = max (g, &) < max (g,¢) = ¢

Since we use gy, S, to re-calculate ff/p’
taken as d, + Of, according to Theorem 4. Therefore, the claim

follows. O

%4 » the resulting 6 can be
n

H PROOF OF LEMMA 1

We first prove thatif g, > g, then 3y y) ez, 1(d(x) > 7py) <
kf’fp and 3 (x y) ez, L(d(x) < 7gp) < ki . To see this, we construct
a false positive PAC prediction set using (2) and make a prediction
using (7). Therefore, we have

Z 1(d(x) > ) < k.
(%,y) €Znm
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FNRor FPR, FNRy FPRyy FNRy, FPRy, ERR O ¢ FNRoy FPR,r FNRy FPRy FNRy, FPRy, ERR ¢
S-1 0.000 0.615 0.059 0.088 0.340 0.293  0.337 0.40 15-60 0.036 0.937 0.074 0.087 0.487 0474  0.487 0.60
F-7 0.132 0.503 0.060 0.071 0.292 0.304 0.293 0.40 15-120 0.368 0.563  0.052 0.000 0.598 0.359  0.587 0.60
E-7 0.000 0.714 0.076 0.081 0.306 0.246 0304 0.40 15-240 0.011 0.918 0.086 0.088 0.538 0.399  0.532  0.60
T-1 0.001 0.653 0.103 0.099 0.367 0.448 0.382 0.50 30-60 0.077 1.000 0.077 0.000 0.780 0.201  0.748 0.80
T-2 0.011 0.738  0.063 0.084 0.384 0.428  0.393  0.50 30-120 0.818 0.127  0.057 0.000 0.781 0.174  0.746  0.80
P-3 0.013 0.724  0.053 0.065 0.363 0379 0366 0.50 30-240 0.379 0.467  0.058 0.000 0.738 0.158  0.706 0.80

Table 7: Error rate with PAC-Wrap applied to the LSTM-based
anomaly detector on the NASA data. First column is the cor-
responding channels. FNRy: and FPRy; satisfy the ¢ = 0.1
guarantees. After removing the ambiguity region, the FNRy,,
FPRyy,, and ERR satisfy the relaxed error constraints.

Since 7, > ff,, we find

> 1) > i) <

(x%,y) €Znm

Z 1(d(x) > ) < kp,.
(x,Y) €Zum

Similarly, for the false negative PAC prediction set, we have

Do) <)< Y LX) < i) < k-
(3.Y) €Zano (%,Y) €Zano

Next, we prove that if }(y,,)ez,, 1(d(x) > ) < k;‘p and
2(xy) € Zmo L(d(x) < Tg) < ki, then 7 > 7p. We argue by
contradiction. Suppose that ¥ (. y)ez,, L(d(x) > ) < kfp, and
2 (1) €Zuno 1(d(x) < Tgy) < ki , but 7, < 7py. Then, for the false
negative PAC prediction set, we should choose 7, instead of g,
since the identified 7g, should be the largest threshold satisfying
éfy and 7g, > 7. This contradicts that 7y, is the chosen threshold.
As a result, our assumption does not hold, and we have 7, > 7.

In summary, f, > ff, if and only if 3 (x y) ez, L(d(x) > ffy) <
k;‘p and 3 (x, y) ez, L(d(x) < 7pp) < k. O

I TIME-SERIES EXPERIMENTS

We also experiment with two challenging time series anomaly
detection datasets, the Server Machine Dataset [29], and NASA
Telemetry Anomaly Detection [12], to illustrate the effectiveness of
PAC-Wrap on sequential data. The NASA dataset consists of space-
craft telemetry data like radiation, temperature, and power from
the Soil Moisture Active Passive satellite (SMAP), and the Curiosity
Rover on Mars (MSL). In addition, it contains 193500 records for
training and 501346 records for testing, of which around 10% are
anomalies. SMD is a dataset collected from a large Internet company
over five weeks, with 38 features such as CPU load, network usage,
and memory usage. It contains a training set of 708405 records and
a test set of 708420 records, among them 4.16% are anomalies. We
split the original test set into a calibration set (20%) and a final test
set (80%) for both SMD and NASA.

The detailed result for the NASA data is reported in Table 7. In the
T-1, T-2, and P-3 channels, both FPRy, and FNRyy, are guaranteed to
be smaller than the relaxed error constraint, and the final error rate
ERR is also below the required error constraint ¢ = 0.5. Wrapped
around the original NASA anomaly detector, PAC-Wrap can reduce
the gap between the FNR and FPR and thus has a more balanced
performance.

Since there are more datapoints in the SMD dataset than in
the NASA one, to approach the independence condition formally

Table 8: Error rate with PAC-Wrap wrapped around the LSTM-
based anomaly detector on the SMD data. First column is the
corresponding combinations. FNR¢ and FPRy; satisfy the
& = 0.1 guarantees. After removing the ambiguity region, the
FNRyy,, FPRyy,, and ERR satisfy the relaxed error constraints.

required by our guarantees, we consider the windows of the first
15 and 30 contiguous timesteps as data points for every 60, 120, and
240 timesteps. As shown in Table 8, ¢ = 0.6, 0.8 is the relaxed error
constraint given the anomaly score distribution. For the baseline
anomaly detector, FPRy;-s sometimes fail the ¢ = 0.6 guarantee
for the 15-timestep settings. For all the 30-timestep settings, the
original anomaly detectors violate the ¢ = 0.8 guarantee on either
FPR,; or FNRy,. However, using PAC-Wrap as a wrapper, we ensure
that both FNRy;, and FPRy;, fall below 0.6 and 0.8. The final error
rates (ERR) are smaller than the maximum of FNRy, and FPRy,,
which also empirically supports Theorem 4.

J DISTRIBUTION SHIFT

To see how shifts in the anomaly distribution affect our guar-
antees, we generate data from three distributions in the following
way:

2
Xnormal ~ N (ftnormal © Ip)
2
Xanomalous ~ N(Ilanomalous’ o Ip)
2
Xmixture ~ N (¥ * Hnormal + (1 = ¥) * Hanomalouss & Ip)’

where y € [0,1] is a mixing ratio. We set jinormal = [0,0,0,0,0]7,
Hanomalous = [3:3,3,3,3]7, and ¢ = 2.0. Then, we construct the
training set by sampling 98,000 data points from N (ytnormal. 02Ip);
we construct the calibration set by sampling 1,000 anomalies from
N (Hanomalouss O'ZIP); we construct the testing set by sampling 1,000
data points from N(y - pinormal + (1 = ¥) * Hanomalouss O'ZIP) with
different y-s. We set y to {0,0.02,0.04, 0.06,0.08, 0.1,0.2} and ¢ =
& = 0.05. We run PAC-Wrap on the training, calibration, and testing
sets. As shown in Figure 6, guarantees nearly hold when y equals
to 0.02, 0.04, and 0.06. However, when the mixing rate is too large,
the guarantees might fail to hold.

0.10 w

0.08 u

0.06 m | | —-- desirede
—————————————————————— B FPR,

Error rate

~NUARRRE

0.0 0.02 0.04 0.06 0.08 0.1 0.2
Gamma

Figure 6: FPR and FNR after mixing different anomaly distri-
butions
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