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Abstract: 

Different plant species within the grasses were parallel targets of domestication, giving 
rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish 
these species are mediated by specialized cell types2. Here, we compare the 
transcriptomes of root cells in three grass species—Zea mays (maize), Sorghum bicolor 
(sorghum), and Setaria viridis (Setaria). We first show that single-cell and single-nucleus 
RNA-seq provide complementary readouts of cell identity in both dicots and monocots, 
warranting a combined analysis. Cell types were mapped across species to identify robust, 
orthologous marker genes. The comparative cellular analysis shows that the 
transcriptomes of some cell types diverged more rapidly than others—driven, in part, by 
recruitment of gene modules from other cell types. The data also show that a recent whole 
genome duplication provides a rich source of new, highly localized gene expression 
domains that favor fast-evolving cell types. Together, the cell-by-cell comparative analysis 
shows how fine-scale cellular profiling can extract conserved modules from a pan 
transcriptome and shed light on the evolution of cells that mediate key functions in crops. 

Single-cell mRNA profiling has opened up new opportunities to study cellular evolution by 
comparing gene expression in specialized cells across species3,4. In plants, high-resolution 
cellular profiling also has the potential to associate cell-level transcriptional regulation to key 
agricultural traits, many of which are mediated by specialized cells5.  

Zea mays (maize) is a staple crop and Sorghum bicolor (sorghum) is an important dryland crop 
and biofuel candidate that is closely related to maize, separated by about 12 million years6,7. 
However, the two species differ substantially in key traits such as drought and chilling tolerance, 
and release of root exudates that shape soil interactions8–10. The importance of the two crops, 
their evolutionary proximity, and their functional differences present a novel opportunity for 
comparative analysis of cellular evolution in plants11,12. In addition, since sharing a common 
ancestor with sorghum, maize underwent a whole genome duplication (WGD) 5 to 12 million years 



ago, likely following a hybridization (allopolypoidy)7,13. Comparing patterns of gene expression at 
the cell level in maize, sorghum, and outgroup Setaria viridis (Setaria) provides an opportunity to 
examine cellular evolution and the role of gene duplications, including the paralogous genes 
generated by the WGD (homeologs)7,14.  

Cells Provide Depth, Nuclei Breadth  

Single-cell analyses in plants have relied on the generation of protoplasts by enzymatic digestion 
of cell walls15. However, certain tissues and even some species like sorghum are quite recalcitrant 
to digestion. There is also historic concern about the effects of protoplast generation on the 
cellular transcriptome, leading to growing interest in nuclear profiling16–18. To assess the fidelity of 
nuclear profiling in detail across dicots and monocots, we first compared single-cell vs single-
nucleus profiles in both Arabidopsis thaliana (Arabidopsis/At, a dicot model with plentiful 
resources, 15,967 cells and 17,373 nuclei) and maize (Zm, a monocot model, 4,235 cells19 and 
2,668 nuclei; Supplementary Table 1). 

The number of Unique Molecular Indices (UMIs) was 10 times (At) and 6 times (Zm) higher in 
cells compared to nuclei (Extended Data Fig. 1a), similar to animal studies20. Accordingly, the 
average number of genes detected was 2.7 times (At) and 1.4 times (Zm) higher in cells than in 
nuclei (Extended Data Fig.1b, Supplementary Table 1). However, despite the lower mRNA 
content, nuclear profiling detected 89% (At) and 88% (Zm) of total genes present in cells 
(Supplementary Table 1).  

The “pseudo-bulked” transcriptomes of both cells and nuclei displayed a high correlation to whole-
root transcriptomes (r ~ 0.7-0.8, Extended Data Fig. 1c), confirming that both sampling methods 
generally reflected expression patterns of intact tissue.  

In both Arabidopsis and maize, cells and nuclei generated UMAP clusters corresponding to all 
the major cell identities21 (Fig. 1a-c; Extended Data Fig. 2, 3). However, in both species, the 
nuclear dataset generated fewer distinct clusters, often failing to distinguish between closely 
related or subcellular identities (Extended Data Fig. 2, 3). For example, in maize, stele cells 
contained a subcluster that we identified as xylem cells, whereas no such subcluster was 
apparent in the nuclear cluster analysis (Extended Data Fig. 3). Using a down-sampling approach 
on each dataset, a general rule-of-thumb emerged that twice as many nuclei are needed to 
discover the same number of clusters as cells/protoplasts (Extended Data Fig. 4a,b). Thus, the 
shallower depth of nuclear profiles provides less resolution for classification of cell identity—a 
drawback that down-sampling showed we could rectify, at least in part, by increasing the number 
of nuclei.   

Either simultaneous or independent analysis of cells and nuclei generated clusters that reflected 
the same underlying biological patterns (Fig. 1a-c, Extended Data Fig. 4c,d). The highest-scoring 
markers extracted from nuclei generally matched the highest-scoring ones from cells (Fig. 1c,d 
Extended Data Fig. 4d). In addition, the assignment of cells to specific clusters was stable when 
cells or nuclei were clustered either alone or together (Supplementary Table 2). 

One advantage of nuclear profiles was their ability to capture cells from tissues that are 
recalcitrant to enzymatic digestion, giving a better representation of cell identities (Fig. 1e, 
Extended Data Fig. 3d). For example, in maize, we detected a unique cluster in single-nucleus 
profiling not present in single-cell profiling, which we confirmed as columella cells using previously 
published RNA-seq profiles of hand-sectioned root tissue19. 



In Arabidopsis, we found that 14% of total genes (3,218) were differentially expressed between 
cells and nuclei in a cluster-by-cluster analysis (Supplementary Table 3). Cells showed a higher 
proportion of stress related genes (Fig. 1f, Extended Data Fig. 5a,b). A similar analysis in maize, 
sorghum and Setaria also supported a lower stress response in nuclei than cells (Supplementary 
Table 3). However, most of the differences between cell and nuclear profiling appeared to be 
related to compartmental RNA stability. For example, mRNAs enriched in nuclei vs. cells 
significantly overlapped with transcripts shown to have higher decay rates in the cytoplasm22 
(p=1.98e-11; Extended Data Fig. 5c). We conclude that combining cell and nuclei profiles has the 
advantage of uncovering cell type-specific protoplast responsive genes, while also providing 
depth in transcriptional readouts. 

Conserved Cell-type Markers in Cereals  

Given the comprehensive coverage of a combined analysis, we generated both whole cell and 

nucleus profiling to investigate cellular evolution in the maize-sorghum-Setaria clade. Thus, we 
generated profiles for sorghum (3,510 cells and 7,620 nuclei) and Setaria (10,613 cells and 
12,192 nuclei, Supplementary Table 1). We took advantage of prior comparative genomic 
sequence analyses in maize, sorghum, and Setaria that mapped orthologs among the three 
species, including the homeologs created by WGD in maize11,14 (hereafter subgenome M1 and 
M2). We used a set of single-copy orthologs in the three species to cluster all cells and nuclei 
together in a single step and then predicted cell identity using known cell type-specific marker 
genes in maize19 (Fig. 2a, Supplementary Table 1, Methods).  

To validate the mapping, we: 1. performed an independent MetaNeighbor analysis, which uses 
neighbor voting to quantify the similarity of cell clusters across datasets using a given marker set 
of genes and their orthologs; 2. employed an additional machine learning-based clustering 
method, scGen, to confirm the cluster membership23 (Extended Data Fig. 6); 3. conducted whole 
mount in situ hybridizations in maize and sorghum (Fig. 2b, Extended Data Fig. 7, 8); 4. and 
performed spatial transcriptomics in maize (Fig. 2c, Extended Data Fig. 7), altogether confirming 
the maize-to-sorghum-to-Setaria mapping of cell identities. Thus, we could use the well-annotated 
maize cell type map for rapid generation of a high confidence cellular-resolution “pan-
transcriptome” of these key crop species, including hundreds of new cell type-specific marker 
genes (Supplementary Table 4). 

One potential use of cell type-specific pan-transcriptome data is to search for highly localized and 
conserved gene expression modules. We used MINI-EX to identify cell type-specific networks 
across the three grass species24. The analysis revealed 15 transcription factors (TFs) and putative 
targets (regulons) conserved in specific cell types across all three species (Extended Data Fig. 
9a, Supplementary Table 5). In five of the fifteen cases, mutants in predicted TFs or direct 
Arabidopsis orthologs have been shown to exhibit cell type-specific phenotypes corresponding to 
the conserved regulon localization25–29. These results highlight the ability of comparative cell type 
analyses to reveal conserved cellular mechanisms across species and connect specific genes to 
specific cellular functions. 

Impact of Maize WGD on Cellular Identity 

The cellular map across species also provided the opportunity to examine how homologous cell 
types have diverged over the millions of years since the three species split. We first focused on 
the effects of gene duplication, comparing homeologs from the WGD to several other duplicate 
classes not identified as within WGD segments: gene pairs that arose from tandem, transposon-



mediated, proximal (separated by ≤10 genes), and dispersed (separated by > 10 genes) duplicate 
pairs (Methods)11. 
 
We used concordance between sorghum and Setaria to infer ancestral expression domains for 
each duplicate gene pair. We then developed a simple metric to represent the degree of overlap 
vs. complementarity in cellular domains between duplicate pairs, ranging from consistently higher 
expression of one homeolog (dominance), to co-expression, to regulatory subfunctionalization of 
homeolog pair expression30,31 (Fig. 2d). We then determined duplicated genes that expanded their 
expression domain to new cell types in comparison to ancestral domains (regulatory 
neofunctionalization, blue bars in Fig. 2d, Methods)32,33. We note that we cannot determine if 
differences in gene expression between duplicated genes occurred in the parent genomes or, 
more likely, after WGD13,32,34. In addition, herein, we use the terms neo- and sub-functionalization 
to refer strictly to patterns in transcriptional domains at the cell-type level. 
 
Overall, WGD homeologs made a more prevalent contribution to expression domain expansion 
(neofunctionalization) than other classes of duplicates. This was because they had a relatively 
low proportion of the co-expressed category, which showed no neofunctionalization (Fig. 2e,f, 
Extended Data Fig. 9.b-d). Rather, WGD homeologs were enriched in both dominance and 
subfunctionalized categories, which both showed high levels of neofunctionalization in new cell 
types (Fig. 2e,f, Extended Data Fig 9.b-d). This trend did not appear to be driven by the age of 
the duplication as other duplicate classes had similar mean Ks values to WGD35 (Methods, 
Extended Data Fig. 9.b-h). 
 
In keeping with Genome Balance models, we observed that co-expressed WGD homeologs 
showed expression patterns indicative of dosage compensation36,37, while this pattern was weaker 
or non-existent in other duplicate classes (Fig. 3a, Extended Data Fig. 10a-c).  
 
In addition, 66% percent of all regulatory neofunctionalization cases in the WGD came from the 
dominance category, with a slightly higher proportion from the M1 subgenome14,38 
(Supplementary Table 6). Furthermore, dominant homeologs showed significantly higher cell 

type-specificity than co-expressed homeologs (, Methods, Fig.3b). Together, these trends meant 
that gene pairs that exhibited dominance patterns after WGD made the largest contribution to 
transcriptional divergence of cell types. 
 
As found in previous studies34,39, dominant members of a homeolog pair showed greater purifying 
selection (Fig. 3c). In addition, we found that homeologs in the WGD class showed a dramatic 
decrease in the conservation of intronic cis-regulatory sites between the dominant and non-
dominant homeolog compared to homeologs in the co-expressed class—a feature not observed 
in other duplicate classes, nor in promotors (Fig. 3d; Extended Data Fig. 10d; Supplemental Table 
6). This could represent a possible loss of intron-mediated expression enhancement in the non-
dominant homeolog. These two genomic features are consistent with prior findings that suggest 
dominant homeologs may have retained ancestral gene function34,39, while non-dominant 
homeologs may adopt new functions or become pseudogenes. 
 
However, pseudogenization appears to be a less likely possibility. When we analyzed the same 
duplicate homeolog pairs in single-cell profiles of the maize inflorescence40, we found that a 
subset (32%) of non-dominant homeologs in the root were instead dominant in cells of the 
inflorescence (Supplementary Table 6). Together, the relaxed purifying selection and the switch 
in dominance suggests that non-dominant homeologs may specialize in a subset of 
developmental contexts outside the root.  
 



The dominance group showed an enrichment for GO-term annotations related to immunity and 
response to stimulus/stress, even after removal of all potential protoplast-induced genes (Fig. 3e, 
Supplementary Table 7, Methods). Thus, new cellular gene expression driven largely by WGD 
may contribute to tolerance to environmental stress, either constitutively or under our conditions.  
 
In addition, while subfunctionalization of cell-type domains between homeolog pairs was a minor 
outcome, this category of homeologs showed the highest rate of neofunctionalization (59%) 
compared to any other duplicate class (e.g., Fig. 2e,f, Extended data Fig. 9b-d). The trend is 
consistent with models in which subfunctionalization is a transitory state that facilitates 
neofunctionalization41. Ultimately, 34% percent of all the neofunctionalized homeologs (i.e., those 
with new cell-type expression after the WGD) came from the subfunctionalized category. Thus, 
while subfunctionalization via adopting complementary expression domains was relatively rare, it 
appeared to provide a high-probability route to cell-type domain expansion (neofunctionalization). 
This propensity for neofunctionalization made the subfunctionalized gene pair category a second 
major contributor to cellular divergence. 
 
Finally, certain cell types appeared to be more likely domain-expansion destinations than others 
(Fig. 3f). The trends were similar for all duplicate classes, with the specialized vascular cells and 
root cap cells most frequently comprising the new expression domains. Cortex was the least 
frequent sink for new domains, although one of the most frequent source domains (Fig. 3f, 
Extended data Fig. 10e-h). Overall, the data shows how gene duplication, particularly WGD, 
frequently provides genetic material for the transcriptional divergence of specific cell types.  

Root “Slime” Drives Cellular Divergence 

To ask about cellular divergence more broadly, we next examined the entire transcriptome of 
each cell cluster to determine which cell types changed most dramatically in maize and sorghum 
compared to the outgroup Setaria. For all comparative analysis, we combined cell and nuclei 
datasets, using MetaNeighbor to compare cell identities across species (Fig. 4a).  

The analysis showed that, in both maize and Setaria, the transcriptomes of columella, phloem, 
cortex subcluster 3, endodermis, pericycle, and stele cell types are the most divergent compared 
to Setaria (Fig. 4a). The shared divergence suggests that the function of these tissues diverged 
from Setaria before the maize-sorghum split. In addition, certain cell types—such as cortex 
subcluster 1 and 4, and several stele clusters—were significantly diverged between maize and 
sorghum, implying additional divergence after the maize-sorghum split. We note that the fast-
evolving cell types were largely consistent with the sink tissues favored for neofunctionalization 
by duplicate genes (compare Fig. 4a with 3f). Interestingly, in maize, columella was among the 
most divergent cell types relative to Setaria (Fig. 4a).  

To further investigate the potential functions involved in columella divergence, we used a measure 
of co-expression conservation to identify transcripts within clusters of interest that showed 
divergent patterns of expression across species in co-expression networks42 (Supplementary 
Table 8). We identified 443 genes displaying high expression divergence across species in 
columella cells. Many of these genes showed dramatic changes in cell type-localization between 
species, such as Downy Mildew Resistant 6 (DMR6), which is expressed in columella and 
epidermis in maize vs cortex and endodermis in sorghum (Extended Data Fig. 10i,j).  

GO term analysis of the cortex-to-columella orthologs in maize showed enrichment in enzymes 
leading to the synthesis of mannose, raffinose, and oligosaccharides (Supplementary Table 8). 
These sugars and carbohydrates are key components of mucilage, also called slime, which can 



be secreted from many different cell types of the root and has multiple roles, such as the shaping 
of the root-associated microbiome and lubricating the root-soil interface8,43–45.  

We then examined all genes implicated in mucilage synthesis8,9,46, finding the same general 
pattern of cortical expression in sorghum and Setaria and columella expression in maize (Fig. 
4b,c,d).  

Overall, these results suggest that maize underwent a relatively rapid cellular divergence in 
columella, in part, by recruiting a mucilage gene expression module from a putatively ancestral 
expression pattern in the cortex. The most parsimonious model is that the recruitment of the 
mucilage module occurred before the maize WGD, as both maize homeologs in the mucilage-
annotated genes tended to share expression in the columella. However, the set of mucilage genes 
showed a significant overlap with genes previously defined as under selection during 
domestication47 (Supplementary Table 8), suggesting they play a role in agricultural traits.  

Prior studies in animals have shown cooption of gene modules from one cell type to another as a 
mechanism of cellular diversification48. We asked how frequently gene expression modules, such 
as the mucilage group, switched cellular localization by focusing on regulons that have different 
cell type-specific expression patterns in maize compared to sorghum and/or Setaria (swapped 
regulons). Although annotated regulons comprise just a subset of all potential TF-downstream 
targets, we identified more than 50 swapped modules across cell types. The swapped modules 
are prime candidates for genes that could mediate differences in cellular traits between maize 
and related species (Supplementary Table 5).  

Overall, we identify two major trends in cellular divergence in a taxonomic span of 50 million 
years49. First, after WGD duplication, gene pairs that take on dominant/non-dominant patterns 
have the strongest role in cell type-specific divergence. However, the rare class of 
subfunctionalized genes have the most likely evolutionary route to neofunctionalization. Second, 
homologous cell types appear to diverge, in part, by swapping gene expression modules48, such 
as the mucilage genes found to be expressed in the maize columella. Finally, we illustrate here 
how single-cell techniques can rapidly generate a pan-transcriptome for insights into plant cell 
type evolution and open new methods to explore the connection between genetic modules and 
cellular traits in important crops. 
 
Data Availability 
All reference genomes were downloaded from Arabidopsis TAIR10.38, at 
https://www.arabidopsis.org/, for Maize B73 v4, Sorghum bicolor v3 and Setaria viridis v2 
reference genomes at https://plants.ensembl.org/. 
 
All raw scRNA-seq and snRNA-seq data, expression matrices and analyzed R-Seurat objects 
are available under GEO accession (GSE225118).  
 
All data used to generate figures is available at 
https://figshare.com/articles/dataset/Data_for_Guillotin_et_al_/22331002, except for the 
following figures, for which the data can be found under GEO accession GSE225118, in the 
following deposited files: Arabidopsis_Cells_Nuclei_Seurat_Obj.RData.gz (Fig. 1c; Extended 
Data Fig. 2c,d; Extended Data Fig. 4a,b), 
Maize_Sorghum_Setaria_Cells_Nuclei_Seurat_Obj.RData.gz (Extended Data Fig. 3d, Extended 
Data Fig. 5c,d). Extended Data Figs. 2c,d; 3d; and Fig. 5c,d are clustered separately. 
 

https://plants.ensembl.org/


In Supplementary Information, data on scRNA-seq quality control are provided in 
Supplementary Table 1. Analysis of sc- vs sn RNA-seq data is provided in Supplementary 
Tables 2 and 3. All cell specific marker genes for all species, including a shared pan library of 
marker genes, are provided in Supplementary Table 4. Data on regulon analysis is provided in 
Supplementary Table 5. All data on duplicate genes are provided in Supplementary Tables 6 
and 7. Cellular divergence analysis is provided in Supplementary Table 8 and in-situ probe 
information is provided in Supplementary Table 9. 
 
 
Material requests should be addressed to K.D.B. 
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Figure Legends 
 
Fig. 1: Cell and nucleus profiles identify the same markers but show different sensitivities 
and artifacts. a, b UMAP of combined Arabidopsis cells and nuclei with clusters colored 
according to assigned cell identity (a) or cell vs. nuclei origin (b). c Dot plots of Arabidopsis marker 
genes in cells (blue) or nuclei (red), showing all the cell types defined from clusters in this study. 
d Heatmaps of the 10 highest-scoring marker genes for each cell type found using Seurat. Upper 
row shows highest scoring markers found in the single-cell dataset (left) with their expression in 
the single nucleus dataset shown (right). Lower row shows highest-scoring markers found in 
single nucleus dataset (left) and their expression in the single cell dataset (right). e Proportion 
cells vs nuclei present in each cell type cluster. f Pie charts showing the difference in the 
prevalence of Gene Ontology (GO) terms among differentially expressed genes in each cluster 
between cells (top) vs. nuclei (bottom). 
 
Fig. 2: Mapping cell identities from maize to sorghum and gene duplicate analysis. a UMAP 
of combined maize cell and nucleus profiles. Clusters are colored and labeled according to cell 
identity. b In-situ hybridization in maize (top) and sorghum (bottom). The maize phloem marker is 
orthologous to the sorghum phloem marker. Cyan coloration in the lower panel corresponds to a 
sorghum endodermal marker that highlights the stele boundary. The minimum/maximum values 
for each channel in the fluorescence images have been adjusted to show the localization more 
clearly in the merged image. UMAPs next to images show the respective expression of each gene 
in the maize-sorghum co-clustered single-cell profiles, which were used initially to determine their 
expression pattern. c Molecular Cartography, which allows simultaneous hybridization of multiple 
probes to a tissue section, here showing markers used for the cell-cluster annotation of clusters 
in maize. d Conceptual schematic of hypothetical expression patterns between duplicate gene 
pairs following a metric with a scale ranging from full dominance (-1) to equal co-expression (0) 
to regulatory subfunctionalization (1). Example intermediate states are also shown. Blue shows 
regulatory neofunctionalization. e-f Distribution of duplicate gene expression patterns using the 
metric described in (d) for WGD homeologs (e) and dispersed duplicate (f) pairs having similar 
with median Ks. Number of genes: 10,104 (WGD homeologs); 7,552 (dispersed duplicates). 

Fig. 3: Detection of dosage compensation and cellular destination of regulatory 
neofunctionalized genes. a Dosage compensation analysis with expression ratios of maize over 
sorghum orthologous genes in the two duplication classes. The first two boxplots represent cases 
where a sorghum ortholog is expressed in the same cell type as a single maize homeolog (either 
M1 or M2). The third and fourth boxplots represent cases in which both homeologs are expressed 
in the same cells. The last boxplot shows the ratio when both of the co-expressed homeologs are 
added in the numerator over sorghum expression level in the denominator. Dosage compensation 
is inferred from a pattern in which lone expression of a homeolog is higher than co-expressed 

homeologs. b Tau () value reflecting degree of cell specificity in different expression categories 
within a cell, if M1 or M2 is dominant or if M1 and M2 are co-expressed. c Ka/Ks distribution of 
WGD homeologs, when either M1 or M2 is dominant in a cell type they display stronger purifying 
selection than the non-dominant homeolog. d Cis-regulatory element conservation rate between 
duplicate pairs in introns split into co-expressed and dominant categories. e GO-terms enriched 
within each category expression category. S, M1, M2 = unique expression of the sorghum 
ortholog or one maize homeolog. S-M1 or S-M2 = one maize homeolog expressed in the same 
cell type as the sorghum ortholog. S-M1-M2 = both homeologs expressed in the same cell type 
as the sorghum ortholog. f Regulatory neofunctionalized genes categorized by their new 
expression domains. Colors within a bar graph show their ancestral cell-type domain (Methods). 
In a-d, n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, n=7,552 Dispersed,n=1,448 
Tandem. In a,b, statistical analysis was performed using an one-way ANOVA followed by the 



Tukey test for all pairwise comparisons, Not sharing a letter represents statistical significance at 

p < 0.05, in c Wilcoxson test, two-sided, in d, Wilcoxon signed-rank test, two-sided, with pvalue 
adjusted with Benjamini & Hochberg (1995) (BH). In boxplots the middle line is the median, the 
lower and upper hinges correspond to the first and third quartiles (Q1,Q3), extreme line shows 
Q3+1.5xIQR to Q1-1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows 
potential outliers. 

Fig. 4: Differential divergence of cell types in maize compared to Setaria. a MetaNeighbor 
analysis showing a quantification of transcriptome divergence among cell types in maize and 
sorghum compared to the outgroup Setaria. Statistical significance between maize and sorghum 
was performed using the two-sided Hanley McNeil test (Methods, p *<0.05,**<0.01,***<0.001). 
Error bars, s.e. b, c Mucilage gene expression heatmaps for maize (b) and sorghum (c) and 
Setaria (d) in their respective columella cells and cortex layers. 

Methods 
Plant Growth Conditions 
Seeds of Arabidopsis thaliana Col-0, Zea maize B73, Sorghum bicolor Btx623, and Setaria viridis 
A10.1 and PI 669942 (U.S. National Plant Germplasm System) were used in this study. 
Arabidopsis seeds were imbibed for 48 h at 4°C before being surface-sterilized and placed on a 
nylon mesh (110 µm) within plates containing agar with 1/2 × Murashige and Skoog salts (Sigma 
M5524), 0.5% sucrose, and 0.8% Agar (Sigma A1296). Plants were transferred vertically in 
growth chambers set to 23°C and a 16 h light/8 h dark cycle (400 µmol m−2 s−1). Root tips were 
collected 7 days after transfer, cut with a feather scalpel at 150 µm from the tip, and directly 
transferred to either the protoplast solution at room temperature or the nuclei lysis buffer at 4°C. 
 
Maize and sorghum seeds were sterilized using bleach (1.5% active chloride) and 0.001% tween 
20 for 20 mins and then 4% chloramine T for 20 mins. Setaria seed germination was induced by 
incubation in 4% liquid smoke (Colgin, Authentic Natural Hickory) at 29°C for 24 h. Then, Setaria 
seeds were sterilized using bleach (1.5% active chloride) and 0.001% tween 20 for 20 mins. All 
seeds were placed between two layers of brown paper (Anchor Paper&Cie., 38# regular), rolled, 
and covered with aluminum foil to prevent roots from exposure to direct light. Rolls were placed 
in a bucket of tap water at 28/24°C and a 16 h light/8 h dark cycle (250 µmol m−2 s−1) for 7 days 
(15 days for Setaria) before harvesting the root tips. Primary and seminal root tips were cut using 
a fine scalpel at 0.5 cm from the tip for maize and sorghum, 0.2 cm from the tip for Setaria, and 
transferred either to the pre-incubation solution for single-cell processing or to the nuclei lysis 
buffer. 
 
Protoplast Generation 
Protoplasts were generated from primary and seminal roots as described previously50. For maize, 
sorghum and Setaria, roots were cut above the meristem as described above and placed in 
pretreatment solution containing L-cysteine for 40 mins (3% sorbitol, 2.5mM L‐cysteine, 20mM 
MES, and pH 5.8 with Tris) to improve enzyme efficiency and cell wall digestion. Cell walls were 
digested for 90 mins in an enzyme solution optimized for monocot roots (Mannitol 8%, 400mM, 
MES 20mM, KCl 20mM, CaCl2 40mM, pH 5.8 with Tris, BSA 100 µg/ml; 2% cellulase “Onozuka” 
RS, 1.2% cellulase “Onozuka” R10, 0.4% macerozyme R‐10 (all three Yakult Pharmaceutical 

Industry CO.); and 0.36% pectolyase Y‐23 (MP Biomedicals)). Protoplasts were then filtered 
through a 40-µm cell strainer and transferred to microcentrifuge tubes for centrifugation. 
 
For Arabidopsis, roots were cut above the meristem as described above and placed in an enzyme 
solution optimized for Arabidopsis (Mannitol 8%, 400mM, MES 20mM, KCl 20mM, CaCl2 40mM, 
pH 5.8 with Tris, BSA 100 µg/ml, 1.2% cellulase “Onozuka” R10, 0.4% macerozyme R‐10 (both 



Yakult Pharmaceutical Industry CO.). Protoplasts were then filtered through a 20-µm cell strainer 
and transferred to microcentrifuge tubes for centrifugation. 
 
Protoplasts were centrifuged for 3 mins at 500 x g and the pellets were washed and resuspended 
in washing solution twice (Mannitol 8%, MES 20mM, KCl 20mM, CaCl2 10mM, pH 5.8 with Tris, 
and BSA 100 µg/ml) and used immediately for single-cell RNAseq. An aliquot of protoplasts was 
stained with trypan blue (0.2% final) and checked on a hematocytometer under the microscope 
to determine cell viability and concentration before loading into the 10x Chromium. 
 
Nuclei Extraction 
For all species, root tips were directly transferred to pre-chilled lysis buffer (0.3M sucrose, 15mM 
Tris HCl at pH 8, 60mM KCl, 15mM NaCl, 2mM EDTA, 0.5mM Spermine, 0.5mM Spermidine, 
15mM MES, 0.1% Triton, 5mM DTT*, 1mM PMSF*, 1% Plant Protease Inhibitors* 1 ml (Sigma 
P9599), BSA 0.4%*, RNase inhibitor 0.2 µg/µl*, (* added at the last minute). Roots were chopped 
on ice with scalpel blades for 5-10 mins and transferred into a pre-chilled dounce homogenizer 
(Kimble, 885302). The pestle was moved up and down 10 times s back and forth, samples were 
then kept on ice for 10 mins before an additional 10 times of back and forth with the pestle. Root 

extracts were filtered at 20 m into a centrifuge tube and centrifuged for 10 mins at 500 x g (maize, 
sorghum, and Setaria) or at 1000 x g (Arabidopsis). Pellets were washed once with washing buffer 
(0.3M sucrose, 15mM Tris HCl at pH 8, 60mM KCl, 15mM NaCl, 0.5mM Spermine, 0.5mM 
Spermidine, 15mM MES, 5mM DTT*, 1mM PMSF*, 1% Plant Protease Inhibitors* 1ml(Sigma 
P9599), BSA 0.4%*, RNase inhibitor 0.2u/ul* (* added at the last minute). Finally, nuclei were 
resuspended into a final buffer (0.3M sucrose, 15mM Tris HCl at pH 8, 60mM KCl, 15mM NaCl, 
0.5mM Spermine, 0.5mM Spermidine, 15mM MES, 5mM DTT*, 1% Plant Protease Inhibitors* 1 
ml (Sigma P9599), BSA 0.4%*, RNase inhibitor 0.2 µ/µl*, (* added at the last minute) and filtered 

using a 10-m filter. An aliquot of nuclei was stained with DAPI for quality control and nuclei were 
counted under the microscope. Nuclei were used immediately for single-nucleus RNA-seq. 
 
Single-Cell RNA-seq  
Per replicate 16,000 cells or nuclei were loaded in a Single Cell B Chip (10x Genomics). Single-
cell libraries were then prepared using the Chromium Single Cell 3´ library kit, following 
manufacturer instructions. Libraries were sequenced with an Illumina NextSeq 550 platform using 
a 1x150 high-output chip (2 libraries per chip) or Novaseq 6000 chip SP V2.5 (4 libraries per chip). 
Raw scRNA-seq data was analyzed by Cell Ranger 5.0.1 (10x Genomics) to generate gene-cell 
matrices. Gene reads were aligned to the Arabidopsis TAIR10.38, Maize B73 v4, Sorghum bicolor 
v3 and Setaria viridis v2 reference genomes. 
 
UMAP and ICI analysis 
Replicates (see Supplementary Table 1) were integrated and cells mapped using the Seurat 
package v4.0 51 as follows: first, genes with counts in fewer than three cells were excluded from 
the analysis and their counts were removed. Second, low-quality cells were removed using 
threshold variable depending on the library quality (see supplementary Table 1). Clustering of 
cells or nuclei separately were done by log-normalized raw counts and the 2000 most variable 
genes were identified for each replicate using the “vst” method in Seurat. Next, we used the 
FindIntegrationAnchors function to identify anchors between the three datasets, using 20 
dimensions. A new profile with an integrated expression matrix containing cells from all replicates 
was produced with the IntegrateData function. For dimensionality reduction, the integrated 
expression matrix was scaled (linear transformed) using the ScaleData function, and Principal 
Component analysis (PCA) performed. The top 30 principal components were selected. Cells or 
nuclei were clustered using a K-nearest neighbor (KNN) graph, which is based on the Euclidean 
distance in PCA space. The FindNeighbors and FindClusters function with a resolution of 0.5. 



was applied. Next, non-linear dimensional reduction was performed using the UMAP algorithm 
with the top 30 PCs.  
 
For the co-clustering of cells and nuclei, either dataset were treated similarly, all replicates were 
integrated at once using the seurat 'SCT' approach52. First, raw reads were normalized using the 
SCTransform function, then SelectIntegrationFeatures was used to identify anchors between the 
datasets, using 3000 features.  
 
For multiple species clustering, all orthologous genes names from11 were replaced by their 
corresponding maize ID in sorghum and setaria raw features.tsv.gz files (Gene conversion in 
Supplementary Table 1). Anchors are combined using PrepSCTIntegration and selected using 
FindIntegrationAnchors. For clustering of maize, sorghum and setaria together, all species were 
considered equally using the FindIntegrationAnchors function. Finally, a Principal Component 
analysis (PCA) is performed using the first 100 principal components and a non-linear 
dimensional reduction was performed using the UMAP algorithm with the top 100 PCs. 
 
Identification of WGD and non-WGD One-To-One Gene Duplicate Pairs 
 
We used prior studies to obtain a list of WGD homeologs in the maize1 and maize2 genomes11,14. 
To identify the other types of duplicated genes, DIAMOND v2.0.6 was used to perform blastp for 
the target genome (Z mays) with itself, and the outgroup genome (Amborella trichopoda) retaining 
BLAST hits with e-value < 1e-5. These BLAST hits were filtered to remove hits from different 
orthogroups as described in Raju et al 202154. Duplicate gene pairs were called using 
DupGen_finder.pl and DupGen_finder-unique.pl  (https://github.com/qiao-xin/DupGen_finder) 
with the below parameters.  -s 5 (requiring ≥ 5 genes to call a collinear block) -d 10 (≤ 10 
intervening genes to call ‘proximal’ duplicates).  Duplicate pairs are derived from five types of 
gene duplication, including whole-genome and four types of single-gene duplication: tandem, 
proximal, translocated, and dispersed duplication.  A custom R script was used to retain duplicate 
pairs with the lowest e-value to avoid over-counting pairs within gene families. Further, to filter 
out pericentric paralogs that are unlikely to be expressed, duplicate pairs where one of the 
paralogs was missing methylation information was removed, retaining only those pairs where both 
paralogs had methylation data (Supplementary Table 6)This procedure identified duplicates that 
were either not a part of the WGD (e.g., in genome segments that were not retained) or duplicated 
after the WGD. It also filters out many ancient duplications whose one-to-one relationship 
becomes obscured over time.  
 
GO-Term Analysis 
All GO enrichment were performed using shinyGO V0.61 (http://bioinformatics.sdstate.edu/go/) 
with an FDA of 0.05. 
 
Cis-regulatory element prediction 
Cis-regulatory element were predicted using the Meme suite FIMO algorythm v5.5.1 
(https://meme-suite.org/meme/tools/fimo) on 500bp in the promoters or introns. Maize TF binding 
sites database used in FIMO was downloaded from http://plantregmap.gao-lab.org  
 
Gene Expression Analysis Across Species 
Whole-root transcriptomes were obtained from Ortiz-Ramírez et al., 202119 for maize 
and Hernández Coronado et al., 202153 for Arabidopsis. Gene expression was normalized for 
each species using the Normalizedata function from Seurat. Then the average expression per 
cluster was calculated using AverageExpression from Seurat. Ka and Ks values were taken from 
a previous report 54. Low, mid and high Ks values were calculated from WGD Ks distribution using 

https://github.com/qiao-xin/DupGen_finder


the 1/3 quartiles. Tau () was calculated as described in Yanai et al., 200555, Tau=sum of i=1 
through N (1-xi)/(N-1), where N is the total number of cell types and xi is the expression profile 
component normalized by the maximal component value. 
 
MetaNeighbor cell type validation across species 
 
To determine how well the cell clusters characterized the shared identities of cells in their own 
clusters and the overlaps with the identities of all other cells, we utilized the MetaNeighbor 
package in Python (https://github.com/gillislab/pyMN)56,57. MetaNeighbor measures the 
replicability of cell types by learning a model in one dataset (or subset) and testing for its ability 
to reconstruct cell type clusters in the other dataset.  First, we labeled all cells and nuclei by the 
technology used to sequence the transcriptome, by the cluster identity, and by the plant species 
to which they belonged. Then, we used the PyMN.variable_genes function from MetaNeighbor to 
subset the gene list to variable genes. This generates a list of genes that are variable across the 
technology and species. Next, we employed the PyMN.MetaNeighborUS function to measure 
how well the transcriptional profiles of cells from clusters in one division of the dataset (e.g., 
technology) predict the identities of cell clusters in the other fraction of the data. This generates 
pairwise AUROCs for each combination of clusters. To generate the heatmaps, the 
PyMN.plotMetaNeighborUS was used with a Brown Blue-green color map. This plots the pairwise 
AUROCs generated previously. 
 
For Fig. 4a, to generate p-values for evaluating the significance of the differences between each 
pair of AUROCs generated by MetaNeighbor, we utilized the two-sided Hanley McNeil test, which 
produces a Z-score for the difference60. As each MetaNeighbor AUROC is the averaged AUROC 
from two reciprocal tests between a pair of cell clusters, we chose the smaller of the two clusters 
as the number of true positives (NTP) to generate the most conservative p-value. The number of 
true negatives was the total number of cells, less the number of true positives. Following the 
calculation of Z-scores for each pairwise combination of AUROCs, we utilized the 
scipy.stats.norm.sf function in Python to convert the Z-scores into p-values for a two sided test. 
For error bars on the AUROC in Figure 4a, we calculated the standard deviation on the estimate 
of the AUROC, thus, a measure of the error in the mean standardized rank of the positives, so 
we term that measure of variability standard error. 
 
Validation of Integration using scGEN  
To evaluate the integration of nuclei and cells across three plant species, we repeated the 
integration using the supervised integration method scGEN23. We utilized scGEN version 2.1 to 
train a model using the scgen.train function, and utilized the scgen.model.batch_removal function 
to correct our data. Following correction, we utilized the ScanpyV1.958 calculate the nearest 
neighbors using scanpy.pp.neighbors, and generated a 2D projection using UMAP, via 
sc.tl.umap.  We then used sc.tl.leiden clustering algorithm at a 0.6 resolution to identify clusters, 
which we evaluated for mixing and accuracy of integration.  
 
Identification of Single Cell Regulatory Networks using MINI-EX 
 
We utilized MINI-EX, a pipeline specialized for inferring cell-type specific gene regulatory 
networks in plants24 to identify the gene regulatory networks in our samples. As gene regulatory 
network inference is dependent upon datasets containing transcription factors and binding sites 
not available in Sorghum and Setaria, we used maize transcription factors with 1-1 matches to 
Sorghum and Setaria genes for those species. This converted list of transcription factors was 
used as the TF_list parameter in the miniex.config file.  We ran the MINI-EX pipeline using the 
default parameters but modified it to run on 32 CPU cores. 



 
Co-Expression Conservation Between Maize Subgenomes and Sorghum 

To generate co-expression conservation scores between the two maize sub-genomes and the 
sorghum genome (Supplementary Table 8), we used our existing aggregated co-expression 
networks42. In brief, these networks are built by taking all publicly available data and calculating 
average correlations between gene pairs within experiments, standardizing within experiments, 
and then averaging to construct robust meta-analytic networks. We filtered these networks to a 
previously generated list of gene triplet pairs for the maize sub-genomes and the sorghum 
genome. Next, for each gene, we compare the top co-expression partners across species to 
determine the degree of functional conservation, as described in more detail in previous work 59. 
We calculated this by taking the ranks of a gene’s co-expression strength to all other genes in 
one species and using it to predict that gene’s top 10 co-expressed partners in the second 
species. This was then done again in the reverse direction, and the two scores were averaged 
(calculated as an AUROC). We then selected genes with the lowest co-expression scores (0.34 

< FC.Score) and highest cell specificity ( > 0.8) in the root cap (Supplementary Table 8; Extended 
Data Fig. 10i).  

Formulation of a Dominance-Co-Expression-Regulatory Subfunctionalization Metric 

To calculate the Dominance vs. regulatory subfunctionalization score, for each ortholog triplet (S, 
M1, M2) we calculated the number of cells in which M1 or M2 was dominant or co-expressed 
together in the same cells where the sorghum and Setaria ortholog was expressed. We defined 
dominance if the average expression of one of the two duplicate is two time superior as the 
average expression of the other duplicate in the same cell type. Co-expression was defined when 
both duplicates were expressed in the same cell type and their respective expression was below 
a 2-fold range difference. Regulatory subfunctionalization was defined when both duplicates are 
dominant in different cell types. Regulatory Neo-functionalization was defined when one or both 
duplicates are expressed in cell type in which the sorghum and Setaria ortholog were not 
expressed. In this dataset, a gene is defined as expressed if its expression is above the first 
quartile among genes detected in that cell type, this is necessary to normalize for cell type quality 
(certain cell types display more UMI and more gene detected per cells than others). The 
procedure also helps remove the background of very lowly expressed genes that results from 
noise generated by combining cells and nuclei together. 

Score = (number of cells in which M1 is dominant * number of cells in which M2 is dominant) - 
(number of cell of the dominant ortholog - number of cell of the non dominant ortholog) 

If the score is negative, the score is normalized by NormScore=Score/(# of cells in which M1 and 
M2 are expressed). If the score is positive, the score is normalized by the following, 
NormScore=Score/(# of cells in which M1 and M2 are expressed*0.5)^2. 

Cell Type Marker Identification 
 
Each species marker genes were identified using FindAllmarkers functions from Seurat, log.FC= 
0.25, pt.1 > 0.750 pt.2 < 0.250. Differential gene expression was done using the Findmarkers 
function from Seurat with default parameter function. For Fig2 e, Extended Data Fig. 4c, 10a, 
statistical analysis was performed on R using a pairwise Wilcoxon test with p.adjust method "BH" 
as data is not normally distributed.  
 



Correlation analysis on Extended Data Fig 1c was performed using Pearson correlation function 
on R between whole-root data coming from and single cell or single nuclei. Briefly averaged gene 
expression was calculated for each gene while combining every cell type using the 
AverageExpression function from Seurat. 
 
“Half Mount” in situ Hybridization 
 
Probes (Hairpin Chain Reaction (HCR) RNA-FISH) and reagents (including the Probe 
Hybridization Buffer, Probe Wash Buffer and Amplification buffer) are ordered from Molecular 
Instruments (https://www.molecularinstruments.com/shop)(Supplementary Table 9). 
   
For fixation, germination paper containing 7-day old maize or sorghum roots are unrolled and 
small volume of fixative FAA (4% formaldehyde, 5% glacial acetic acid, 50% ethanol in RNAse 
free water) is pipetted onto each root. Then longitudinal sectioning of root tips is performed using 
a 15° microscalpel. Roots are cut up to ~3cm from the tip, then immediately fixed by transferring 
to FAA in 5ml screw caps and put under vacuum several times until they no longer float. Roots 
are then agitated at RT for at least 1 hour in a tube revolver. (All washes in the protocol are 
performed in a tube revolver or stated otherwise.) 
 
Samples are dehydrated in a series of washes at RT: 70% ethanol for 15 min, 90% ethanol for 15 
min, 100% ethanol 2x for 15 min each, 100% methanol 2x for 15 min each. Samples can then be 
stored at -20°C for several weeks. Samples are washed 2x for 15 min in 100% ethanol at RT 
before being permeabilized for 30 min in 50% Histo-Clear II / 50% EtOH at RT. Then they are 
incubated 2x for 30 minutes in a solution of 100% Histo-Clear II at RT. Each time, vacuum is 
applied for the first 10 minutes. 
 
Samples are rehydrated through a series of washes: 50% Histo-Clear II / 50% EtOH for 15 min, 
100% EtOH for 15 min, 50% EtOH / 50% DPBS-T (0.1% Tween20, 1x DPBS) for 15 min (roots 
will float up then settle after a few minutes), 100% DPBS-T 2x for 15 min (roots will float up again). 
Samples are incubated with Proteinase K (0.1 M Tris-HCl (pH 8), 0.05 M EDTA (pH 8), Proteinase 
K 80 μg ml−1 final) at RT under vacuum for 5 min then digested with Proteinase K for 25 min in a 
37°C water bath with manual agitation every 5-10 minutes (roots should turn a little yellow after 
this step). Samples are washed 2x for 15 min in DPBS-T at RT then incubated with Fixative II (4% 
formaldehyde in DPBS-T) under gentle vacuum for 10 min then in a tube revolver for 30 mins at 
RT. They are then washed 2x for 15 min each in DPBS-T at RT. Roots are aliquoted into 2 mL 
Eppendorf tubes and incubated in 500 μL of HCR Probe Hybridization Buffer, vacuum is applied 
for 10 mins then roots are incubated for 1 hour at 37°C in a thermomixer with agitation (1000 
rpm). 
 
Samples can then be stored in Probe Hybridization Buffer at -20°C up to several weeks. 
Probe buffers are made by adding 0.8 pmol of each probe set (e.g. 2 μL of the 1 μM stock) to 500 
μL of HCR Probe Hybridization Buffer at 37°C. Pre-hybridization solution is removed and replaced 
with probe solution. Samples are hybridized by incubating overnight (~20h) at 37°C in a 
thermomixer with agitation (1000 rpm). The following day, excess probes are removed by washing 
4x for 15 min each with 1 mL of HCR Probe Wash Buffer at 37°C in a thermomixer with agitation. 
Samples are washed 2x for 5 min each with 1 mL of 5x SSC-T (25% 20x SSC, 0.1% Tween20) 
at RT in a thermomixer with agitation. SSC-T is replaced with 500 μL of amplification buffer, gentle 
vacuum is applied in a fume hood for 10 minutes and then samples are pre-amplified by incubating 
in a tube rotator at RT for 50 min. While samples pre-amplify, 6 pmol of hairpin h1 and 6 pmol of 
hairpin h2 (i.e. 5 μL of the 3 μM stocks) are prepared, each in its own separate tube. Hairpins are 
snap-cooled by heating at 95°C for 90 seconds then kept in a dark drawer at RT for 30 min. 



Amplification solution is prepared by combining snap-cooled h1 and h2 hairpins in 250 μL of HCR 
Amplification Buffer at RT. Pre-amplification solution is removed and and replaced with 
amplification buffer containing hairpin solution overnight (~20h) in the dark at RT in a thermomixer 
with agitation (1000 rpm). Excess hairpins are removed by washing with 1 mL of 5x SSC-T at RT 
in a thermomixer with agitation, 2x for 5 min each, then 2x for 30 min each, 1x for 5 min. Samples 
are transferred onto a glass slide (in 5x SSC-T) and cut using a 30° microscalpel and arranged 
so that the cut face of the roots is facing upwards. They are then covered with coverslip and 
imaged on confocal microscope. 
 
Statistics and Reproducibility 
HCR-RNA-FISH experiment were performed: 
 
All replicates are biological replicates. 
 
Figure 2b. 1 experiment: transverse, 2 strong, 1 weak; longitudinal, 2 strong, 4 weak. 
 
Extended Data Figure 7  
7a. 5 experiments: 7 outer cap, 11 transverse, 32 longitudinal - all consistent.  
7c. 1 experiment: transverse, 4 moderate signal; longitudinal, 5 moderate signal. 
7d. 1 experiment: transverse, 2 no signal, the rest moderate-to-strong; 
Longitudinal, 1 too high, 5 moderate-to-strong 
7e. 1 experiment: transverse, 4 weak, 11 none; longitudinal, 2 weak 
7f. 1 experiment: transverse, 2 strong, 1 weak; longitudinal 2 strong, 4 weak 
7g. 3 experiments: transverse, 2 weak, 1 very weak, 1 no signal; longitudinal, 2 weak, 8 no 
signal 
7h. 2 experiments: transverse, 1 weak; longitudinal, 4 weak, 5 no signal 
7i. 1 experiment: transverse, 4 moderate; longitudinal, 1 moderate, 1 no signal 
7j. 1 experiment: outer cap, 2 weak; transverse, 2 weak, 3 no signal; 
Longitudinal, 3 weak 
7k. 1 experiment: transverse, 4 weak; longitudinal, 5 weak 
7l. 1 experiment: outer cap, 1 weak; longitudinal, 3 weak, 1 imaged too low 
7m. 1 experiment: transverse, 5 moderate; longitudinal, 3 moderate, 1 no signal 
7n. 3 experiments: outer cap, 7 strong; transverse, 3 strong, 1 no signal; longitudinal, 25 strong 
 
 
Extended Data Figure 8 
8a. 4 experiments: 2 outer; 5 transverse; 20 longitudinal - all consistent 
8c. 2 experiments; transverse, 3 strong, 2 moderate, 1 weak, 1 no signal; 
Longitudinal, 6 strong, 2 moderate, 4 weak, 11 none   
8d. 3 experiments: transverse, 7 strong, 2 no signal; longitudinal, 7 strong, 1 moderate, 5 
imaged too low, 1 none 
8e. 1 experiment: transverse, 3 weak; longitudinal, 3 weak 
8f. 1 experiment: transverse, 3 no signal; longitudinal, 5 weak 
8g. 1 experiment: outer, 1 moderate; longitudinal, 4 moderate 
8h. 1 experiment: transverse, 1 very weak, 2 no signal; longitudinal: 2 weak, 2 no signal 
8i. 2 experiments: transverse, 4 strong; longitudinal, 8 strong, 7 imaged too low 

Spatial transcriptomics 

Tissue fixation and embedding was performed as described previously61. 



Sample slide preparation: Formaldehyde-fixed paraffin-embedded tissue sections (10 µm) were 
placed within capture areas on Resolve Bioscience slides and incubated on a hot plate for 10 min 
at 60 °C to attach the samples to the slides. Slides were treated to allow deparaffinization, 
permeabilization, acetylation, and refixation. After complete dehydration of the samples, a few 
drops of SlowFade-Gold Antifade reagent (Invitrogen) were added to the sections and covered 
with a thin glass coverslip to prevent damage during shipment to Resolve BioSciences (Germany).  
 
Sample pre-treatment and priming: In preparation for hybridization, the coverslip is removed 
and the mounting reagent is washed twice in 1x PBS for 30 min 4 °C, followed by one min washes 
in 50% Ethanol and 70% Ethanol at room temperature. Samples were primed, after the aspiration 
of ethanol, by the addition of buffer BST1 for optimal hybridization of probes during the Molecular 
CartographyTM procedure, which uses a combination of probes and single-molecule fluorescence 
in-situ hybridization to identify 100 separate transcripts. Tissues were hybridized overnight at a 
constant temperature with all probes specific to the target genes. Samples were washed the next 
day to remove excess probes and fluorescently labeled in a two-step procedure. Regions of 
interest were imaged as described below and fluorescent signals were removed after imaging via 
a decolorization procedure. Color development, imaging, and decolorization were repeated over 
several cycles to develop a unique combinatorial code for every target gene that was derived from 
raw images as described below. 
 
Probe design: The probes for 100 genes were designed based on full-length protein-coding 
transcript sequences (Supplementary Table 9). Probe design is based the manufacturer’s 
proprietary algorithm, with probes available from the Resolve. After screening to generate probe 
candidates and discard ambiguous ones, the probes were mapped to the background 
transcriptome using ThermonucleotideBLAST, and probes with stable off-target hits were 
discarded.  
 
Imaging: Samples were imaged by Resolve BioSciences on a Zeiss Celldiscoverer 7, using the 
50x Plan Apochromat water immersion objective with an NA of 1.2 and the 0.5x magnification 
changer, resulting in a 25x final magnification. Standard CD7 LED excitation light source, filters, 
and dichroic mirrors were used together with customized emission filters optimized for detecting 
specific signals. Excitation time per image was fixed at 1000 ms for each channel, 20 ms for DAPI, 
and 1 ms for Calcofluor White. A z-stack was taken at each region with a distance per z-slice 
according to the Nyquist-Shannon sampling theorem. A custom CD7 CMOS camera (Zeiss 
Axiocam Mono 712, 3.45 µm pixel size) was used. The imaging for the cell-wall specific stain, 
Calcofluor White, was done at the end of all primary imaging. Before the preprocessing of the 
images, all images were corrected for background fluorescence. Based on the raw data image, 
the 20% darkest local pixel values and positions were determined and copied to a new empty 
image (background image) having the same size as the image to be corrected. The remaining 
80% of pixels of the background image were generated based upon the surrounding existing pixel 
values using a distance-weighted average value. Finally, the background-corrected image (bc-
image) was created by subtracting the background image values from the raw data image values. 
 
Extraction of features: In the first step, a target value for the allowed number of maxima was 
calculated based on the area of the slice in µm² multiplied by an empirically optimized factor 
(0.5x). The resulting target value was used to adapt the threshold for the algorithm iteratively 
searching local 2D-maxima. The threshold leading to the closest number of maxima equal to or 
smaller than the target value was used for further steps and the respective maxima were stored 
in a reiterative process for every image slice independently. Maxima that did not have a 
neighboring maximum in an adjacent slice (termed as z-group) within a radius of one pixel were 
excluded. For the resulting list of maxima, the absolute brightness (Babs), the local background 



(Bback), and the average brightness of the pixels surrounding the local maximum (Bperi) were 
measured and stored. The resulting maxima list was further filtered in an iterative loop by adjusting 
the allowed thresholds for (Babs-Bback) and (Bperi-Bback) to reach a feature target value based 
on the total volume of the 3D image. Only maxima still in a z-group with a size of at least 2 passed 
this stringent filter step. Each z-group was counted as one hit and the members of the z-groups 
with the highest absolute brightness were used as features to resemble 3D point clouds. 
 
Determination of transformation matrices, pixel evaluation, and decoding: To align the raw data 
images from different imaging rounds, these images had to be corrected for the 6 degrees of 
freedom in 3D-space The extracted feature point clouds were used to find the transformation 
matrices to align the raw data images. Based on the transformation matrices, the corresponding 
images were processed by a rigid transformation using trilinear interpolation. The aligned images 
were used to create a profile for each pixel, which were then filtered for a variance from zero 
normalized by the total brightness of all pixels in the profile. Matched pixel profiles with the highest 
score were assigned as an ID to the pixel to further group the neighboring pixel with the same ID. 
The local 3D-maxima of the groups were determined as potential final transcript locations, which 
were additionally evaluated by the number of maxima in the raw data images where a maximum 
was expected. The finalized maxima were decoded by the fit to the corresponding code to be 
written to the results file and considered to resemble transcripts of the corresponding gene. The 
ratio of signals matching to codes used in the experiment and signals matching to codes not used 
in the experiment were used as estimation for specificity (false positives). Final image analysis 
was performed in ImageJ using the Polylux tool plugin from Resolve BioSciences to examine 
specific Molecular Cartography signals. 
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Extended Data Figure Legends 

Extended Data Fig. 1: Quality control and fidelity analysis of RNA-seq profiles using violin 
plots. a Distribution of the number of UMI detected among cells vs. nuclei. b Distribution of the 
number of genes detected among cells vs. nuclei. c Pearson correlation distributions of gene 
expression from single-cell or single-nucleus compared to whole-root RNAseq data in Arabidopsis 

and maize. The distributions are derived by randomly sampling 2,000 genes for correlation 
analysis between cells and nuclei. The random sampling was repeated 250 times to 
generate the distribution of correlation values. Violin plots display show the kernel 
probability density of the data at different values, boxplot inside display as the middle black 
line is the median, exact media is displayed on the graphs, the lower and upper hinges correspond 
to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-1.5xIQR 
(interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. 
 



Extended Data Fig. 2: Evaluation of agreement in nuclear and cell type profiles. a, b UMAP 
clustering in Arabidopsis single-cells (a) and single-nuclei (b) clustered independently, showing 
clusters with the same diagnosed cell identities. c, d Dot plots showing expression levels per 
cluster and expression in percent of cells of the same set of cell-type specific markers in cells (c) 
or nuclei (d). The markers are in the same order in both plots. 
 
Extended Data Fig. 3: Analysis of sensitivity of nuclear and cell profiles in distinguishing 
clusters and identifying markers. a Arabidopsis down sampling analysis shows the number of 
cells needed to resolve different clusters. A branch signifies that a new cluster with a known cell 
type identity was distinguished at a given sample size. b A similar analysis using the single 
nucleus RNA-seq dataset, showing that more nuclei are needed to resolve the same number of 
clusters compared to cells in (a). Tracking the branches of graphs in (a) vs. (b) leads to a rule-of-
thumb that two-fold more nuclei than cells are needed to identify clusters. c UMAP of the 
combined maize single-cell and -nuclei datasets, clusters are colored by cell type identity. d 
Dotplot of maize marker genes in cells (blue) or in nuclei (red), showing overall concordance of 
marker gene expression in the two datasets. 
 
Extended Data Fig. 4: Analysis of differentially regulated genes and cell capture efficiency 
in nuclear vs. cellular profiles. a, b Heatmaps of genes known to be induced by protoplast 
generation (Birnbaum et al., 2003) showing their expression in cells (a) vs. nuclei (b). The analysis 
shows that stress-induced genes also have higher expression in cells vs. nuclei, with a bias in 
specific cell types. c Distribution of expression levels of genes annotated for mRNA decay in cells 
or in nuclei, decay values from Sorenson et al., 2018. A significant increase in expression of 
mRNA decay-related genes was detected in nuclei, (n=1965 genes, Wilcoxon rank sum test, two-
sided, p-value = 1.98e-11), the boxplots display the middle line is the median, the lower and upper 
hinges correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-
1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. d 
Proportion of cells vs nuclei present in each cell type cluster.Extended Data Fig. 5: Analysis of 
marker gene identification in maize single nucleus vs. cell profiles. a, b UMAPs of maize 
single-cell and single-nucleus RNA-seq data clustered independently. Only the single nucleus 
RNA-seq dataset displays a cluster annotated as columella, which is absent in the single-cell 
dataset. c, d Dotplot of maize marker genes for each cell type cluster, showing expression in cells 
(c) and in nuclei (d) datasets independently. Markers for columella outlined in the red box are 
only present in the single nucleus dataset. 
 
Extended Data Fig. 6: Analysis of overall expression similarity among all cellular and 
nuclear clusters in the three monocot species studied. a AUROC test comparing every cell 
type in all species for both cell and nuclei datasets, showing that clusters discovered in either cell 
or nuclei group by like cell type and not by either species or source of material (cells or nuclei). b-
c UMAPs generated by additional integration of the dataset using a Python supervised integration 
method scGen. This method uses a variational autoencoder to learn the underlying latent space 
for the cell types. b Different colors represent the clusters identified by the Seurat integration 
mapped onto the new scGen integration, showing Seurat classification was in relative agreement 
with the scGen classification. i.e., scGEN clusters have relatively homogenous coloration. c The 
same UMAP as in (b), this time showing the species distribution. Overall, each cluster has cells 
from each of the three species. 
 
Extended Data Fig. 7: In-situ hybridization corroborating evidence for marker localization 
in single cell/nuclei RNA-seq profiles in maize. a-n in situ hybridization using Hairpin Chain 
Reaction (HCR) probes labeling various transcripts. Cross sections are on the left and longitudinal 
sections are on the right. UMAPs showing each transcript’s cluster localization are displayed next 



to each probe’s fluorescent image. Additionally, spatial transcriptomics imaging data of the same 
probe is shown in the right column for (c-e). The minimum/maximum values for each fluorescence 
channel (grey: autofluorescence, magenta: HCR probes) have been adjusted to show the 
localization more clearly in the merged image. 
 
Extended Data Fig. 8: In-situ hybridization corroborates evidence for localization of marker 
gene expression from single-cell RNA-seq profiles in sorghum. a-i In situ hybridization using 
Hairpin Chain Reaction (HCR) probes labeling various transcripts. Cross sections are on the left 
and longitudinal sections on the right (a,c,d,e). Longitudinal sections are shown in (f,g,h,i). UMAPs 
showing each transcript’s cluster localization are shown next to each probe’s fluorescent image. 
The minimum/maximum values for each fluorescence channel (grey: autofluorescence, magenta: 
HCR probes) have been adjusted to show the localization more clearly in the merged image. 
 
Extended Data Fig. 9: Regulon conservation across species, and distribution of gene pair 
expression patterns. a Conserved regulons found using MINI-EX and their pattern of 
expression. The regulon is labeled by the transcription factor that putatively regulates it in each 
row.  b-d Distribution of genes pairs on the dominance vs. regulatory subfunctionalization scale 
for transposed, tandem and proximal duplicate pairs. In blue, neofunctionalized duplicates are 
shown as a percentage of the bar.  e-g Distribution on the dominance to regulatory 
subfunctionalization scale for dispersed gene duplicate pairs binned in thirds by their Ks value. 
The graphs suggest that duplicates tend to lose co-expressed patterns and gain dominance over 
time. h Boxplot of Ks values showing the distribution among all the duplicate classes used in the 
analysis. In h, statistical analysis was performed using a Kruskal-Wallis one-way ANOVA followed 
by the Tukey test for all pairwise comparisons. Not sharing a letter represents statistical 
significance at p < 0.05. In boxplots the middle line is the median, the lower and upper hinges 
correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-
1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. h. 
n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, n=7,552 Dispersed, n=1,448 Tandem. 
 
Extended Data Fig. 10: Overall analysis of expression conservation in duplicate classes 
and analysis of columella expression across species. a-c Dosage compensation analysis 
representing the expression ratios of maize over sorghum orthologous genes in tandem, 
transposed, and dispersed duplicate pairs. The first two boxplots represent cases in which a 
sorghum ortholog is expressed in the same homologous cell type as only a single maize duplicate 
(either M1 or M2). The third and fourth boxplots represent cases in which both homeologs are 
expressed in the same cell and a sorghum homolog is expressed in a homologous cell type. The 
last boxplot shows the ratio when both of the co-expressed homeologs are added together in the 
numerator, showing a mean ratio close to 1. The higher expression in the first two boxplots 
compared to the second two indicates dosage compensation. d Conservation rate of cis-
regulatory elements between WGD homeolog pairs in promoters. The plot shows no major 
differences between co-expressed and dominant gene pairs, and no major differences among the 
different classes of duplication. e-h Distribution of maize genes displaying regulatory 
neofunctionalization of expression into new cell types. Colors signify the cell type of origin. i 
Heatmap of maize columella markers, with the orthologous gene expression in the maize cluster 
of the other two species. j Example of the gene DMR6 switching its expression between columella 

in maize to epidermis / cortex in sorghum. a-c, statistical analysis was performed using 
ANOVA followed by the Tukey test for all pairwise comparisons, Not sharing a letter represents 
statistical significance at p < 0.05. In boxplots the middle line is the median, the lower and upper 
hinges correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-
1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. a-h: 
n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, n=7,552 Dispersed, n=1,448 Tandem. 



 
 
Fig. 1: Cell and nucleus profiles identify the same markers but show different sensitivities 
and artifacts. a, b UMAP of combined Arabidopsis cells and nuclei with clusters colored 
according to assigned cell identity (a) or cell vs. nuclei origin (b). c Dot plots of Arabidopsis marker 
genes in cells (blue) or nuclei (red), showing all the cell types defined from clusters in this study. 
d Heatmaps of the 10 highest-scoring marker genes for each cell type found using Seurat. Upper 



row shows highest scoring markers found in the single-cell dataset (left) with their expression in 
the single nucleus dataset shown (right). Lower row shows highest-scoring markers found in 
single nucleus dataset (left) and their expression in the single cell dataset (right). e Proportion 
cells vs nuclei present in each cell type cluster. f Pie charts showing the difference in the 
prevalence of Gene Ontology (GO) terms among differentially expressed genes in each cluster 
between cells (top) vs. nuclei (bottom). 

A Pan-Transcriptome Map Identifies Conserved Markers and Gene Modules 

Given the comprehensive coverage of a combined analysis, we pursued both whole cell and 

nucleus profiling to investigate cellular evolution in the maize-sorghum-Setaria clade. Thus, we 
generated profiles for sorghum (3,510 cells and 7,620 nuclei) and Setaria (10,613 cells and 
12,192 nuclei, Supplementary Table 1). We took advantage of prior comparative genomic 
sequence analyses in maize, sorghum, and Setaria that mapped orthologs among the three 
species, including the homeologs created by WGD in maize11,15 (hereafter subgenome M1 and 
M2). We used a set of single-copy orthologs in the three species to cluster all cells and nuclei 
together in a single step and then predicted cell identity using known cell type-specific marker 
genes in maize25,31 (Fig. 2a, Supplementary Table 1, Methods).  

To validate the mapping, we: 1. performed an independent MetaNeighbor analysis, which uses 
neighbor voting to quantify the similarity of cell clusters across datasets using a given marker set 
of genes and their orthologs32; 2. employed an additional machine learning-based clustering 
method, scGen, to confirm the cluster membership33 (Extended Data Fig. 6); 3. conducted whole 
mount in situ hybridizations in maize and sorghum (Fig. 2b, Extended Data Fig. 7, 8); 4. and 
performed spatial transcriptomics in maize (Fig. 2c, Extended Data Fig. 7), altogether confirming 
the maize-to-sorghum-to-Setaria mapping of cell identities. Thus, we could use the well-annotated 
maize cell type map for rapid generation of a high confidence cellular-resolution “pan-
transcriptome” of these key crop species, including hundreds of new cell type-specific marker 
genes (Supplementary Table 4). 

One potential use of cell type-specific pan-transcriptome data is to search for highly localized and 
conserved gene expression modules. We used MINI-EX to identify cell type-specific networks 
across the three grass species34. The analysis revealed 15 transcription factors (TFs) and putative 
targets (regulons) conserved in specific cell types across all three species (Extended Data Fig. 
9a, Supplementary Table 5). In five of the fifteen cases, mutants in predicted TFs or direct 
Arabidopsis orthologs have been shown to exhibit cell type-specific phenotypes corresponding to 
the conserved regulon localization35–39. These results highlight the ability of comparative cell type 
analyses to reveal conserved cellular mechanisms across species and connect specific genes to 
specific cellular functions. 



 

Fig. 2: Mapping cell identities from maize to sorghum and gene duplicate analysis. a UMAP 
of combined maize cell and nucleus profiles. Clusters are colored and labeled according to cell 
identity. b In-situ hybridization in maize (top) and sorghum (bottom). The maize phloem marker is 
orthologous to the sorghum phloem marker. Cyan coloration in the lower panel corresponds to a 
sorghum endodermal marker that highlights the stele boundary. The minimum/maximum values 
for each channel in the fluorescence images have been adjusted to show the localization more 
clearly in the merged image. UMAPs next to images show the respective expression of each gene 
in the maize-sorghum co-clustered single-cell profiles, which were used initially to determine their 
expression pattern. c Molecular Cartography, which allows simultaneous hybridization of multiple 
probes to a tissue section, here showing markers used for the cell-cluster annotation of clusters 
in maize. d Conceptual schematic of hypothetical expression patterns between duplicate gene 



pairs following a metric with a scale ranging from full dominance (-1) to equal co-expression (0) 
to regulatory subfunctionalization (1). Example intermediate states are also shown. Blue shows 
regulatory neofunctionalization. e-f Distribution of duplicate gene expression patterns using the 
metric described in (d) for WGD homeologs (e) and dispersed duplicate (f) pairs having similar 
with median Ks. Number of genes: 5,052 (WGD homeologs); 4,140 (dispersed duplicates). 

The Maize WGD Has Made a Major Contribution to Cellular Divergence 

The cellular map across species also provided the opportunity to examine how homologous cell 
types have diverged over the millions of years since the three species split. We first focused on 
the effects of gene duplication, comparing homeologs from the WGD to several other duplicate 
classes not identified as within WGD segments (see Methods): gene pairs that arose from 
tandem, transposon-mediated, proximal (separated by ≤10 genes), and dispersed (separated by 
> 10 genes) duplicate pairs11,40,41. 
 
We used concordance between sorghum and Setaria to infer ancestral expression domains for 
each duplicate gene pair. We then developed a simple metric to represent the degree of overlap 
vs. complementarity in cellular domains between duplicate pairs, ranging from consistently higher 
expression of one homeolog (dominance), to co-expression, to regulatory subfunctionalization of 
homeolog pair expression42–44 (Fig. 2d). We then determined duplicated genes that expanded 
their expression domain to new cell types in comparison to ancestral domains (regulatory 
neofunctionalization, blue bars in Fig. 2d, Methods)45–47. We note that we cannot determine if 
differences in gene expression between duplicated genes occurred in the parent genomes or, 
more likely48, after WGD14,46,49.  
 
Overall, WGD homeologs made a more prevalent contribution to new expression domains 
(regulatory neofunctionalization) than other classes of duplicates. This was because duplicate 
classes other than the WGD homeologs were enriched in the co-expressed category, which 
showed no regulatory neofunctionalization (Fig. 2e,f, Extended Data Fig. 9.b-d). By contrast, 
compared to other classes of duplicates, WGD homeologs were enriched in both dominance and 
regulatory subfunctionalization categories, which also showed high levels of regulatory 
neofunctionalization (Fig. 2e,f, Extended Data Fig 9.b-d). This trend did not appear to be driven 
by the age of the duplication as other duplicate classes had similar mean Ks values to WGD50 
(Methods, Extended Data Fig. 9.b-h). 
 
In keeping with Genome Balance models, we observed that co-expressed WGD homeologs 
showed expression patterns indicative of dosage compensation51,52, while this pattern was weaker 
or non-existent in other duplicate classes (Fig. 3a, Extended Data Fig. 10a-c).  
 
In addition, dominance was tied to 66% percent of all regulatory neofunctionalization among 
homeologs, with a slightly higher proportion for the M1 subgenome15,53 (Supplementary Table 6). 
Furthermore, dominant homeologs showed significantly higher cell type-specificity than co-

expressed homeologs (, Methods, Fig.3b). Together, these trends show that dominance patterns 
after WGD strongly contribute to transcriptional divergence of cell types.  
 
As found in previous studies49,54, dominant members of a homeolog pair showed greater purifying 
selection (Fig. 3c). In addition, we found that homeologs in the WGD class showed a dramatic 
decrease in the conservation of intronic cis-regulatory sites between the dominant and non-
dominant homeolog compared to homeologs in the co-expressed class—a feature not observed 
in other duplicate classes, nor in promotors (Fig. 3d; Extended Data Fig. 10d; Supplemental Table 
6). This could represent a possible loss of intron-mediated expression enhancement in the non-



dominant homeolog. These two genomic features are consistent with prior findings that suggest 
dominant homeologs may have retained ancestral gene function49,54, while non-dominant 
homeologs may adopt new functions or become pseudogenes. 
 
However, pseudogenization appears to be a less likely possibility. When we analyzed the same 
duplicate homeolog pairs in single-cell profiles of the maize inflorescence55, we found that a 
subset (32%) of non-dominant homeologs in the root were instead dominant in cells of the 
inflorescence (Supplementary Table 6). Together, the relaxed purifying selection and the switch 
in dominance suggests that non-dominant homeologs may specialize in a subset of 
developmental contexts outside the root48.  
 
The dominance group showed an enrichment for GO-term annotations related to immunity and 
response to stimulus/stress, even after removal of all potential protoplast-induced genes (Fig. 3e, 
Supplementary Table 7, Methods). Thus, new cellular gene expression driven largely by WGD 
may contribute to tolerance to environmental stress, either constitutively or under our conditions.  
 
In addition, while regulatory subfunctionalization between homeologs was a minor outcome, this 
category of homeologs showed the highest rate of regulatory neofunctionalization (59%) 
compared to any other duplicate class (e.g., Fig. 2e,f, Extended data Fig. 9b-d). The trend is 
consistent with models in which regulatory subfunctionalization is a transitory state that facilitates 
regulatory neofunctionalization56. Ultimately, regulatory subfunctionalization constituted 34% 
percent of the regulatory neofunctionalized homeologs. Thus, while regulatory 
subfunctionalization was relatively rare, it appeared to provide a high probability route to 
regulatory neofunctionalization and another major contribution to cellular divergence. 
 
Finally, certain cell types appeared to be more likely domain expansion destinations than others 
(Fig. 3f). The trends were similar for all duplicate classes, with the specialized vascular cells and 
root cap cells most frequently comprising the new expression domains. Cortex was the least 
frequent sink for new domains, although one of the most frequent source domains (Fig. 3f, 
Extended data Fig. 10e-h). Overall, the data shows how gene duplication, particularly WGD, 
frequently provides genetic material for the transcriptional divergence of specific cell types.  

Root Cap “Slime” Drives a Case of Rapid Cell Type Divergence 

To ask about cellular divergence more broadly, we next examined the entire transcriptome of 
each cell cluster to determine which cell types changed most dramatically in maize and sorghum 
compared to the outgroup Setaria. For all comparative analysis, we used the combined cell and 
nuclei dataset. To compare cell identity across species, we used MetaNeighbor on our combined 
dataset (Fig. 4a).  

The analysis showed that, in both maize and Setaria, the transcriptomes of columella, phloem, 
cortex subcluster 3, endodermis, pericycle, and stele cell types are the most divergent compared 
to Setaria (Fig. 4a). The shared divergence suggests that the function of these tissues diverged 
from Setaria before the maize-sorghum split. In addition, certain cell types—such as cortex 
subcluster 1 and 4, and several stele clusters—were significantly diverged between maize and 
sorghum, implying additional divergence after the maize-sorghum split. We note that the fast-
evolving cell types were largely consistent with the sink tissues favored for regulatory 
neofunctionalization by duplicate genes (compare Fig. 4a with 3f). Interestingly, in maize, 
columella was among the most divergent cell type relative to Setaria (Fig. 4a).  



To further investigate the potential functions involved in columella divergence, we used a measure 
of co-expression conservation to identify transcripts within clusters of interest that showed 
divergent patterns of expression across species in co-expression networks57 (Supplementary 
Table 8). We identified 443 genes displaying high expression divergence across species in 
columella cells. Many of these genes showed dramatic changes in cell type-localization between 
species, such as Downy Mildew Resistant 6 (DMR6), which is expressed in columella and 
epidermis in maize vs cortex and endodermis in sorghum (Extended Data Fig. 10i,j).  

GO term analysis of the cortex-to-columella orthologs in maize showed enrichment in enzymes 
leading to the synthesis of mannose, raffinose, and oligosaccharides (Supplementary Table 8). 
These sugars and carbohydrates are key components of mucilage, also called slime, which can 
be secreted from many different cell types of the root and has multiple roles, such as the shaping 
of the root-associated microbiome and lubricating the root-soil interface6,8,58–60.  

We then examined all genes implicated in mucilage synthesis8,9,61, finding the same general 
pattern of cortical expression in sorghum and Setaria and columella expression in maize (Fig. 
4b,c,d).  

Overall, these results suggest that maize underwent a relatively rapid cellular divergence in 
columella, in part, by recruiting a mucilage gene expression module from a putatively ancestral 
expression pattern in the cortex. The most parsimonious model is that the recruitment of the 
mucilage module occurred before the maize WGD, as both maize homeologs in the mucilage-
annotated genes tended to share expression in the columella. However, the set of mucilage genes 
showed a significant overlap with genes previously defined as under selection during 
domestication62 (Supplementary Table 8), suggesting they play a role in agricultural traits.  

Prior studies in animals have identified cooption of gene modules from one cell type to another 
as a mechanism of cellular diversification63. We asked how frequently gene expression modules, 
such as the mucilage group, switched cellular localization by focusing on regulons that have 
different cell type-specific expression patterns in maize compared to sorghum and/or Setaria 
(swapped regulons). Although annotated regulons comprise just a subset of all potential TF-
downstream targets, we identified more than 50 swapped modules across cell types. The 
swapped modules are prime candidates for genes that could confer differences in cellular traits 
between maize and related species (Supplementary Table 5).  

Overall, we identify two major trends in cellular divergence in a taxonomic span of 50 million 
years64. First, after WGD duplication, gene pairs that take on dominant/non-dominant patterns 
have the strongest role in cell type-specific divergence. However, the rare class of regulatory 
subfunctionalized genes have the most likely evolutionary route to regulatory 
neofunctionalization. Second, homologous cell types appear to diverge, in part, by swapping gene 
expression modules63, such as the mucilage genes found to be expressed in the maize columella. 
Finally, we illustrate here how single-cell techniques can rapidly generate a pan-transcriptome for 
insights into plant cell type evolution and open new methods to explore the connection between 
genetic modules and cellular traits in important crops. 



 
 
Fig. 3: Detection of dosage compensation and cellular destination of regulatory 
neofunctionalized genes. a Dosage compensation analysis with expression ratios of maize over 
sorghum orthologous genes in the two duplication classes. The first two boxplots represent cases 
where a sorghum ortholog is expressed in the same cell type as a single maize homeolog (either 
M1 or M2). The third and fourth boxplots represent cases in which both homeologs are expressed 
in the same cells. The last boxplot shows the ratio when both of the co-expressed homeologs are 
added in the numerator over sorghum expression level in the denominator. Dosage compensation 
is inferred from a pattern in which lone expression of a homeolog is higher than co-expressed 

homeologs. b Tau () value reflecting degree of cell specificity in different expression categories 
within a cell, if M1 or M2 is dominant or if M1 and M2 are co-expressed. c Ka/Ks distribution of 
WGD homeologs, when either M1 or M2 is dominant in a cell type they display stronger purifying 
selection than the non-dominant homeolog. d Cis-regulatory element conservation rate between 
duplicate pairs in introns split into co-expressed and dominant categories. e GO-terms enriched 
within each category expression category. S, M1, M2 = unique expression of the sorghum 
ortholog or one maize homeolog. S-M1 or S-M2 = one maize homeolog expressed in the same 



cell type as the sorghum ortholog. S-M1-M2 = both homeologs expressed in the same cell type 
as the sorghum ortholog. f Regulatory neofunctionalized genes categorized by their new 
expression domains. Colors within a bar graph show their ancestral cell-type domain (Methods). 
In a,b, statistical analysis was performed using an ANOVA followed by the Tukey test for all 
pairwise comparisons, Not sharing a letter represents statistical significance at p < 0.05, in c 

Wilcoxson test p *** < 0.001, in d, Wilcoxon signed-rank test, with p *** < 0.001. 

 

 

Fig. 4: Differential divergence of cell types in maize compared to Setaria. a MetaNeighbor 
analysis showing a quantification of transcriptome divergence among cell types in maize and 
sorghum compared to the outgroup Setaria. Statistical significance between maize and sorghum 
was performed using the Hanley McNeil test (see method, p *<0.05,**<0.01,***<0.001). b, c 
Mucilage gene expression heatmaps for maize (b) and sorghum (c) and Setaria (d) in their 
respective columella cells and cortex layers. 

 



Extended Data 

 

Extended Data Fig. 1: Quality control and fidelity analysis of RNA-seq profiles using violin 
plots. a Distribution of the number of UMI detected among cells vs. nuclei. b Distribution of the 
number of genes detected among cells vs. nuclei. c Pearson correlation distributions of gene 
expression from single-cell or single-nucleus compared to whole-root RNAseq data in Arabidopsis 

and maize. The distributions are derived by randomly sampling 2,000 genes for correlation 
analysis between cells and nuclei. The random sampling was repeated 250 times to 
generate the distribution of correlation values. Violin plots display show the kernel 
probability density of the data at different values, boxplot inside display as the middle black 
line is the median, exact media is displayed on the graphs, the lower and upper hinges correspond 
to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-1.5xIQR 
(interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. 
 



  



 
 

Extended Data Fig. 2: Evaluation of agreement in nuclear and cell type profiles. a, b UMAP 
clustering in Arabidopsis single-cells (a) and single-nuclei (b) clustered independently, showing 
clusters with the same diagnosed cell identities. c, d Dot plots showing expression levels per 
cluster and expression in percent of cells of the same set of cell-type specific markers in cells (c) 
or nuclei (d). The markers are in the same order in both plots.  
 
  



 
 

Extended Data Fig. 3: Analysis of sensitivity of nuclear and cell profiles in distinguishing 
clusters and identifying markers. a Arabidopsis down sampling analysis shows the number of 
cells needed to resolve different clusters. A branch signifies that a new cluster with a known cell 
type identity was distinguished at a given sample size. b A similar analysis using the single 
nucleus RNA-seq dataset, showing that more nuclei are needed to resolve the same number of 
clusters compared to cells in (a). Tracking the branches of graphs in (a) vs. (b) leads to a rule-of-
thumb that two-fold more nuclei than cells are needed to identify clusters. c UMAP of the 
combined maize single-cell and -nuclei datasets, clusters are colored by cell type identity. d 
Dotplot of maize marker genes in cells (blue) or in nuclei (red), showing overall concordance of 
marker gene expression in the two datasets. 
  



 
 
Extended Data Fig. 4: Analysis of differentially regulated genes and cell capture efficiency 
in nuclear vs. cellular profiles. a, b Heatmaps of genes known to be induced by protoplast 
generation (Birnbaum et al., 2003) showing their expression in cells (a) vs. nuclei (b). The analysis 
shows that stress-induced genes also have higher expression in cells vs. nuclei, with a bias in 
specific cell types. c Distribution of expression levels of genes annotated for mRNA decay in cells 
or in nuclei, decay values from Sorenson et al., 2018. A significant increase in expression of 
mRNA decay-related genes was detected in nuclei, (n=1965 genes, Wilcoxon rank sum test, two-
sided, p-value = 1.98e-11), the boxplots display the middle line is the median, the lower and upper 
hinges correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-
1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. d 
Proportion of cells vs nuclei present in each cell type cluster.  

  



 

Extended Data Fig. 5: Analysis of marker gene identification in maize single nucleus vs. 
cell profiles. a, b UMAPs of maize single-cell and single-nucleus RNA-seq data clustered 
independently. Only the single nucleus RNA-seq dataset displays a cluster annotated as 
columella, which is absent in the single-cell dataset. c, d Dotplot of maize marker genes for each 
cell type cluster, showing expression in cells (c) and in nuclei (d) datasets independently. Markers 
for columella outlined in the red box are only present in the single nucleus dataset. 
  



 
 

Extended Data Fig. 6: Analysis of overall expression similarity among all cellular and 
nuclear clusters in the three monocot species studied. a AUROC test comparing every cell 
type in all species for both cell and nuclei datasets, showing that clusters discovered in either cell 
or nuclei group by like cell type and not by either species or source of material (cells or nuclei). b-
c UMAPs generated by additional integration of the dataset using a Python supervised integration 
method scGen. This method uses a variational autoencoder to learn the underlying latent space 
for the cell types. b Different colors represent the clusters identified by the Seurat integration 
mapped onto the new scGen integration, showing Seurat classification was in relative agreement 
with the scGen classification. i.e., scGEN clusters have relatively homogenous coloration. c The 
same UMAP as in (b), this time showing the species distribution. Overall, each cluster has cells 
from each of the three species. 

  



 

Extended Data Fig. 7: In-situ hybridization corroborating evidence for marker localization 
in single cell/nuclei RNA-seq profiles in maize. a-n in situ hybridization using Hairpin Chain 
Reaction (HCR) probes labeling various transcripts. Cross sections are on the left and longitudinal 
sections are on the right. UMAPs showing each transcript’s cluster localization are displayed next 
to each probe’s fluorescent image. Additionally, spatial transcriptomics imaging data of the same 
probe is shown in the right column for (c-e). The minimum/maximum values for each fluorescence 
channel (grey: autofluorescence, magenta: HCR probes) have been adjusted to show the 
localization more clearly in the merged image. 

  



 

Extended Data Fig. 8: In-situ hybridization corroborates evidence for localization of marker 
gene expression from single-cell RNA-seq profiles in sorghum. a-i In situ hybridization using 
Hairpin Chain Reaction (HCR) probes labeling various transcripts. Cross sections are on the left 
and longitudinal sections on the right (a,c,d,e). Longitudinal sections are shown in (f,g,h,i). UMAPs 
showing each transcript’s cluster localization are shown next to each probe’s fluorescent image. 
The minimum/maximum values for each fluorescence channel (grey: autofluorescence, magenta: 
HCR probes) have been adjusted to show the localization more clearly in the merged image. 
  



 
 

Extended Data Fig. 9: Regulon conservation across species, and distribution of gene pair 
expression patterns. a Conserved regulons found using MINI-EX and their pattern of 
expression. The regulon is labeled by the transcription factor that putatively regulates it in each 
row.  b-d Distribution of genes pairs on the dominance vs. regulatory subfunctionalization scale 
for transposed, tandem and proximal duplicate pairs. In blue, neofunctionalized duplicates are 
shown as a percentage of the bar.  e-g Distribution on the dominance to regulatory 
subfunctionalization scale for dispersed gene duplicate pairs binned in thirds by their Ks value. 
The graphs suggest that duplicates tend to lose co-expressed patterns and gain dominance over 
time. h Boxplot of Ks values showing the distribution among all the duplicate classes used in the 
analysis. In h, statistical analysis was performed using a Kruskal-Wallis one-way ANOVA followed 
by the Tukey test for all pairwise comparisons. Not sharing a letter represents statistical 
significance at p < 0.05. In boxplots the middle line is the median, the lower and upper hinges 
correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-



1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. h. 
n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, n=7,552 Dispersed, n=1,448 Tandem. 

 

 

 

Extended Data Fig. 10: Overall analysis of expression conservation in duplicate classes 
and analysis of columella expression across species. a-c Dosage compensation analysis 
representing the expression ratios of maize over sorghum orthologous genes in tandem, 
transposed, and dispersed duplicate pairs. The first two boxplots represent cases in which a 
sorghum ortholog is expressed in the same homologous cell type as only a single maize duplicate 
(either M1 or M2). The third and fourth boxplots represent cases in which both homeologs are 
expressed in the same cell and a sorghum homolog is expressed in a homologous cell type. The 
last boxplot shows the ratio when both of the co-expressed homeologs are added together in the 



numerator, showing a mean ratio close to 1. The higher expression in the first two boxplots 
compared to the second two indicates dosage compensation. d Conservation rate of cis-
regulatory elements between WGD homeolog pairs in promoters. The plot shows no major 
differences between co-expressed and dominant gene pairs, and no major differences among the 
different classes of duplication. e-h Distribution of maize genes displaying regulatory 
neofunctionalization of expression into new cell types. Colors signify the cell type of origin. i 
Heatmap of maize columella markers, with the orthologous gene expression in the maize cluster 
of the other two species. j Example of the gene DMR6 switching its expression between columella 

in maize to epidermis / cortex in sorghum. a-c, statistical analysis was performed using 
ANOVA followed by the Tukey test for all pairwise comparisons, Not sharing a letter represents 
statistical significance at p < 0.05. In boxplots the middle line is the median, the lower and upper 
hinges correspond to the first and third quartiles (Q1,Q3), extreme line shows Q3+1.5xIQR to Q1-
1.5xIQR (interquartile range-IQR). Dots beyond the extreme lines shows potential outliers. a-h: 
n=10,104 WGD, n=860 Proximal, n=3,154 Transposed, n=7,552 Dispersed, n=1,448 Tandem. 
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