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AbstractÐMinimally Invasive Surgeries can benefit from hav-
ing miniaturized sensors on surgical graspers to provide ad-
ditional information to the surgeons. In this work, a 6 mm
ultrasound transducer was added to a surgical grasper, intended
to measure acoustic properties of the tissue. However, the
ultrasound sensor has a ringing artifact arising from the decaying
oscillation of its piezo element, and at short travel distances,
the artifact blends with the acoustic echo. Without a method
to remove the artifact from the blended signal, this makes it
impossible to measure one of the main characteristics of an
ultrasound waveform ± Time of Flight. In this paper, six filtering
methods to clear the artifact from the ultrasound waveform were
compared: Bandpass filter, Adaptive Least Mean Squares (LMS)
filter, Spectrum Suppression (SPS), Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU). Following each filtering method, four time of flight
extraction methods were compared: Magnitude Threshold, En-
velope Peak Detection, Cross-correlation and Short-time Fourier
Transform (STFT). The RNN with Cross-correlation method pair
was shown to be optimal for this task, performing with the root
mean square error of 3.6 %.

Index TermsÐultrasound sensor, surgical grasper, noise re-
moval algorithms, signal processing, deep learning

I. INTRODUCTION

Minimally Invasive Surgery (MIS) is now standard in mod-

ern medicine and involves operating through small incisions

using laparoscopic graspers for manipulation, and endoscopic

cameras for visual feedback. Advantages of MIS include faster

recovery, less blood loss, and a lower risk of complications.

Alongside its benefits, MIS also brings new challenges, such

as the lack of tactile feedback for surgeons. In open surgery,

surgeons can palpate the tissue to gain information about its

non-visible structure, such as tumors and blood vessels [1].

Part of our approach to providing the tactile sensing and

diagnostic capability for surgical graspers is the addition of

a miniaturized Steminc SMD063T07R111 ultrasound trans-

ducer to the tip of a Surgical Babcock Grasper, intended to

mechanically interface with the tissue and measure its acoustic

properties.

This material is based upon work supported by the National Science
Foundation under Grant No. 2036255.

Fig. 1. Surgical grasper with an attached ultrasound sensor on the tip.
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(a) Long distance ultrasound signal with artifact.
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(b) Short distance ultrasound signal with artifact.

Fig. 2. Raw ultrasound signals with ringdown artifacts.

Ultrasound is widely used for diagnostic, prognostic and

treatment applications, such as abnormality detection, tissue

characterization, high-intensity ultrasound ablation therapy

and others. An ultrasound transducer is a piezo crystal that has

a resonant oscillation frequency. All piezo crystals can operate

in both directions: transmitting and receiving sound waves.

If a time-varying potential difference is applied across the

electrodes, the piezo element will start oscillating to produce
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a sound wave. Conversely, if a sound pressure is applied to a

piezo crystal, it will generate a voltage across its leads. When

an ultrasound pulse travels through the tissue, it undergoes

continuous modifications, which depend on the characteristics

of the sound waves as well as tissue properties. Several

characteristics of these sound waves are particularly important

for tissue characterization: time of flight (TOF), which depends

on the velocity of sound, and attenuation [2].

Miniaturized ultrasound transducers have not been widely

used in surgical graspers. In one application, a transmitter-

receiver transducer pair on Martin forceps was used to de-

tect soft tissue cancers, by evaluating the echo attenuation

[3]. Our use differs by using a 1D ultrasound transducer

in bidirectional A-mode, which switches between transmitter

and receiver functionalities. Operation in bidirectional mode

saves space and gives an opportunity to add other sensors

on the surgical grasper’s jaws by using only one transducer

instead of two. However, it is also a drawback: the system

records exponentially decaying ªringingº (aka, the ªringdown

artifactº) of the transducer after excitation. When a surgical

grasper’s jaws operate on a tissue, the distance between them

can be under 1 cm. As seen in Fig. 2, at these short distances,

the ringdown artifact blends with the received echo, making

it impossible to identify the TOF without a method to remove

the artifact.

Short-distance ultrasound, in which the echo can blend with

the ringdown, is applicable in many fields. These include the

estimation of the degenerative loss of skeletal muscles [4],

obstacle avoidance and mapping ultrasound sensors for under-

water robots [5], thickness and defect detection applications

in non-destructive testing [6], and other applications. All of

these applications fundamentally suffer from the ringdown

artifact when an A-mode bidirectional ultrasound transducer is

used. In spite of all the above-mentioned applications, limited

published literature exists on ringdown artifact removal from

ultrasound signals, and there does not appear to be applicable

work on AI-based noise removal algorithms for 1D ultrasound

waveforms.

One application of a ringdown artifact removal from an

ultrasound signal is a gastrointestinal capsule with a 1D ultra-

sound for microanatomical diagnostics [7]. The capsule uses a

ringdown-compensating filter by subtracting a moving average

of the ringdown portion of the signal from the combined

signal. This approach can help at longer TOFs, but not at

short ones: at short TOFs, the ringdown blends with the echo,

and the moving average starts including the echo as well.

Besides 1D applications like the surgical grasper or the diag-

nostic capsule above, ringdown artifact removal is also needed

for short-range ultrasound imaging, in which the ringdown

artifact adds a blind spot or dead space. A patent by Barlow,

et al. claims a method for such removal by obtaining multiple

ªreference scansº (scans taken in an echo-free space), aver-

aging them in a specific way, and subtracting them from the

combined scan [8]. This method could potentially be extended

to a single bidirectional transducer, but its main limitation

(specified by the inventors) comes from ªringdown driftº: the

changing of the ringdown of a sensor over time. Applying such

a method to a transducer of a surgical grasper would therefore

require frequent (and potentially lengthy, depending on the

number of reference scans required) recalibration, which is

not feasible during a surgery.

The need to remove ringdown from short-range ultra-

sound signals also arises in ultrasonic thickness measurement

systems with bidirectional transducers. Most such systems

use multiple transducers, but some, such as the Elcometer

Ultrasonic Precision Thickness Gauges, use single bidirec-

tional transducers. These systems are able to measure short-

range echoes by placing a ªdelay lineº material between the

transducer and the material being inspected, which artificially

elongates TOF, thus giving the ringdown time to decay prior

to receiving the echo. The signal is also filtered through

frequency selective filters, which further helps remove the

ringdown, and also Gaussian noise. However, this delay line

is also at least 9 mm thick, which makes it prohibitively bulky

for a surgical grasper.

The goal of this paper is to apply, evaluate and compare sev-

eral signal processing and AI-based methods for clearing the

corrupted ultrasound echo waveforms to accurately estimate

the TOF, using the algorithm illustrated in Fig. 3.

Fig. 3. Architecture for method comparison in two-stage TOF estimation.

II. MATERIALS AND METHODS

A. Denoising Algorithms Description

Fig. 3 illustrates the two-stage process with which the ring-

down artifact is removed from the ultrasound signal, and TOF

is then estimated from the filtered signal. Six noise removal

algorithms for the first stage are compared: three traditional,

and three deep learning ones for comparison. For traditional

algorithms, the Bandpass filter, the Adaptive LMS filter, and

the Spectrum Suppression method (SPS) were chosen. These

traditional algorithms were chosen because these algorithms

are used for denoising conventional audio signals, speech, and

Natural Language Processing.

The Bandpass filter was designed with passband frequencies

of 2.5 MHz to 3.5 MHz to bracket it over the 3 MHz resonant

frequency. The Adaptive LMS filter uses the target signal to

optimize the coefficients for the filter. From preliminary at-

tempts, the LMS filter order of 13 with a step size of 0.004 was

selected for use on all signals of interest. Initial coefficients

were based on the coefficients of the above Bandpass filter

with the Hamming window.

The SPS method used here was adapted from a paper by

Boll [9]. The method relies on a separate noise signal (i.e.,

the ringdown artifact measured from a free transducer) and the
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blended signal. The signals are transformed to the frequency

domain via Fast Fourier Transform (FFT), and in the frequency

domain, the noise is subtracted from the blended signal. An

inverse FFT is then used to obtain the denoised signal in

the time domain. Boll followed this sequence with a lowpass

filter; in this paper, the above Bandpass filter was used on the

denoised signal instead.

For deep learning algorithms, Recurrent Neural Network

(RNN), Long Short-Term Memory (LSTM), and Gated Recur-

rent Units (GRU) were chosen for comparison, because these

algorithms work with time series data, and have previously

been used for denoising speech signals. Of the three, RNN

is the simplest and slowest to train one, LSTM has the most

representational power and is generally cheaper to train than

standard RNNs, and GRU is a streamlined, cheaper to train

version of LSTM. Chollet presents the theory of the three

methods [10]. In this work, the tanh activation function was

used for all three deep learning networks, with the Adam

optimizer with the learning rate of 5 × 10−4 and 330 training

epochs. The Euclidean norm of the error between the input

and target signals was used as the loss function. All trained

networks had two layers with 512 and 256 units. All three

networks used a bidirectional architecture.

B. Time of Flight Estimation Methods

In the second stage of the two-stage TOF estimation process

in Fig. 3 the actual TOF estimation algorithm is applied,

producing the TOF from the cleared signal. TOF is the time

required for a sound wave to travel through a medium. TOF

depends on the distance traveled, and the medium’s properties,

including density, compressibility, and rigidity, which are

temperature-dependent.

Four TOF estimation methods are utilized in this work.

Magnitude Threshold Method, used widely in hardware

setups for automatic detection of TOF. When the amplitude

of the received signal reaches a preset threshold, it records

the time. The threshold should bypass the maximum noise

level expected. This method is sensitive to noise fluctuations

and signal decay with distance traveled, but is the most

straightforward to implement [11].

Envelope Peak Detection consists of approximating the echo

signal as an analytical signal with complex components, from

which a Hilbert envelope is computed. Then, peaks are found

in the signal’s envelope. The TOF is then detected either by

locating the peak with the largest amplitude. Such envelope

signal is more robust to fluctuations of the echo’s peaks, as

well as a variable white noise level [12].

Cross-correlation Method (CC), in its simplest form, con-

sists of cross-correlating the transmitted and received signals,

and estimating the TOF as the maximum in the correlation

function [13].

Short-time Fourier Transform Method (STFT) for TOF es-

timation uses the time-frequency representation of ultrasound

signals. STFT is obtained with a sliding window over the

time domain signal, and taking the Fourier transform of the

Fig. 4. Acrylic container with an attached ultrasound transducer at the bottom.

window. Then, only windows with the frequency of interest

are considered for the estimation of TOF [14].

C. Data Collection and Preprocessing

Apart from the sensorized surgical grasper (Fig. 1), another

experimental setup (Fig. 4) was developed for ultrasound data

collection, consisting of an acrylic container with an attached

ruler to measure the level of liquid in the container ± the one-

way distance traveled. The bottom acrylic thickness of the

container is 2 mm. The same SMD063T07R111 transducer as

the one used on the surgical grasper was glued to the bottom

of the acrylic container. Similarly, the same data acquisition

setup was used: TI TDC1000 to drive the transducer at 3 MHz

with a pulsed square waveform with 6 impulses, Siglent

SDS 1104X-E oscilloscope to provide the external clock and

acquire the signal. The data was recorded by the oscilloscope

in csv format, combined and aligned in MATLAB. Then, the

dataset was downsampled by a factor of 26 to a new sampling

rate of 19.23 MHz, leading to 1279 samples per waveform.

In order to use the dataset for training in deep learning

models, it is required to have target signals to compare with

and to adjust weights accordingly. When generating target

signals, at distances of 2 cm and longer, the ringdown and

the echo were sufficiently far apart, which made it possible

to isolate the echo by zeroing the ringdown time segment.

The waveforms obtained at shorter distances were not used

as target signals for the training dataset, due to the difficulty

of extracting the echo from such signals. The training dataset

contains 993 waveform pairs (consisting of a raw signal, and a

target signal with only the echo), with an approximately equal

number of waveforms per distance. A separate test dataset was

collected at 9 distances from 0.5 cm to 4.0 cm, using liquid

water as the medium. This testing dataset has 270 waveforms,

30 waveforms per distance. Both datasets were saved in mat

format for further processing in Google Colaboratory. Both

the downsampled and original resolution datasets have been

published on IEEE DataPort [15].
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Fig. 5. Denoising results for the Bandpass filter, the Adaptive LMS filter, Spectrum Suppression, GRU, LSTM and RNN. Left: the results of the denoising
methods in time domain. Vertical pink line shows the true TOF with the travel distance of 1 cm. Right: the results of the denoising methods in the frequency
domain.

III. RESULTS

A. Noise Removal Qualitative Comparison

Each method’s results for artifact removal from a single

raw ultrasound signal at 1 cm flight distance (here and below,

this refers to the distance traveled until reflection and return

to the transducer) are presented on Fig. 5. At this distance,

the echo is capable of traveling back and forth multiple times,

without decaying enough to become immeasurable; this multi-

echo phenomenon can be observed in all filtered signal plots, at

approximately 13.5 µs, 27.0 µs and 40.5 µs. The training dataset

did not have any data with multi-echo.

The upper left plot of Fig. 5 shows the raw signal, corrupted

by the ringdown artifact; the echo’s amplitude is smaller than

the ringdown artifact’s by about a factor of 3. At a shorter

flight distance, this corruption would become more severe,

thus making it even harder to extract the time of flight from

the blended signal. Because both the ringdown and the echo

are physically generated by the oscillating transducer, part of

the ringdown’s frequency spectrum is similar to the echo’s,

and due to the short TOF, they blend with each other in time

domain as well. For this reason, the Bandpass filter still retains

a lot of noise, particularly in the first 5 µs of the waveform.

The adaptive LMS filter exhibits the same behavior. The

SPS method, however, despite its reliance on the frequency

domain, cleaned the signal much better, with only negligible

noise remaining in the first 5 µs. The performance of deep

learning methods was more varied. As Fig. 5 shows, at this

short distance, GRU significantly distorted the signal, although

the ringdown was removed completely. LSTM showed some
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(a) TOF errors with Magnitude Threshold estimation method
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(b) TOF Errors with Hilbert Envelope estimation method
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(c) TOF Errors with Cross-correlation estimation method
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(d) TOF Errors with STFT estimation method

Fig. 6. TOF mean percentage errors by different filtering and TOF estimation method. Errors over 100 % indicate method failure, and are cropped out.

distortion as well, although echoes remained visually recogniz-

able. RNN performed the best among the three deep learning

methods.

B. Time of Flight Comparison

Following the denoising via the six methods discussed

in Section II-A, TOF was estimated via the four methods

discussed in Section II-B. We evaluate the true TOFs based on

the velocity of sound in water and the known distance. Mean

relative errors in TOFs, as estimated by each method pair for

each distance measured, are presented on Fig. 6.

As we can see from Fig. 6, all pairs of methods fail at the

distance of 0.5 cm, which indicates the system’s limitation.

It’s observable that deep learning denoising methods LSTM

and GRU with all TOF estimation methods started to fail at

distances lower than 1.5 cm. Distances lower than 2 cm were

never shown during the training of deep learning denoising

methods, and LSTM and GRU fail to generalize the solution

for short-distance echo waveforms. It may be possible to use

them with additional training data on short distances. On the

other hand, standard RNN showed remarkably good results

in spite of not having short-distance echo waveforms shown

during the training.

The Bandpass and the Adaptive LMS filters had relative

errors of more than 75 % paired with three of the four

methods for TOF estimation at all distances. This is likely

because as Fig. 5 illustrates, after these filters are applied,

the remaining artifact is larger in amplitude than the echo,

which causes threshold-based methods to fail. However, the

Bandpass and the Adaptive LMS filters performed well with

the CC TOF estimation method, because it does not depend

on thresholding, but on signal correlation. CC method is also

immune to white noise more than other methods.

Root Mean Square Error (RMSE) over all valid distances

(i.e., 0.8 cm to 4.0 cm) was calculated for all 24 pairs of

methods. 6 pairs demonstrated an RMSE of less than 5 %:

1) SPS with Magnitude Threshold: RMSE of 4.31 %.

2) RNN with Magnitude Threshold: RMSE of 4.39 %.

3) Bandpass with CC: RMSE of 3.62 %.

4) Adaptive LMS with CC: RMSE of 4.40 %.

5) SPS with CC: RMSE of 3.70 %.

6) RNN with CC: RMSE of 3.60 %.

These methods’ RMSEs for each distance, and their stan-
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Fig. 7. Relative TOF errors for best method pairs across all distances.

dard deviations over all samples taken at each distance are

illustrated on Fig. 7. Based on their RMSEs, three pairs

performed particularly well: Bandpass with CC, SPS with CC

and RNN with CC. RNN with CC has the lowest RMSE error.

The error variances are also small, which confirms that because

the noise removal algorithms used in this work do not rely on

subtracting a particular ringdown signal to remove it, they are

not sensitive to ringdown drift.

All 24 method pairs compared are usable in real-time, each

providing a TOF result in under 15 ms. The bulk of this time

is taken by the denoising stage.

IV. DISCUSSION

The RNN denoising method, combined with the CC TOF

Estimation method, appear to be best suited for ringdown

artifact removal, followed by TOF extraction. In literature,

LSTM and GRU are typically considered superior methods to

RNN due to the vanishing and exploding gradient problems

[10]. At longer TOFs, with the echo and the ringdown artifact

completely separated, GRU did indeed outperform all other

methods. The poor performance of LSTM and GRU at shorter

distances may be explained by the limitations of the training

dataset, which, due to being generated by manually removing

the ringdown, did not have any examples of the multi-echo,

and may have lacked other features that the networks have

relied on.

RNN, on the other hand, showed optimal performance at

both long and short distances, with results comparable to the

traditional SPS and Bandpass methods. It is conventional to

compare neural network performance according to loss func-

tion values achieved on training sets, and their training time.

Training time-wise, the results were indeed as expected, with

RNN taking significantly longer than the other two, and GRU

being the fastest. For this problem, the significant difference

between the training and testing sets makes the loss function

evaluated on the training set irrelevant; instead, average errors

across the testing set, presented in the previous section, are

more illustrative about the methods’ relative performance.

V. CONCLUSIONS

Six artifact removing methods were compared for the

removal of ringdown artifacts from short distance A-mode

ultrasound signals in water: the Bandpass filter, the Adap-

tive LMS filter, Spectrum Suppression, RNN, LSTM and

GRU. Their performance was evaluated based on estimating

the TOFs from filtered signals. Four methods for extracting

TOFs were compared: Magnitude Threshold, Envelope Peak

Detection, CC and STFT. Of the 24 analyzed method pairs,

the three best were the RNN, Spectrum Suppression and

Bandpass artifact removing methods, with each followed by

the CC TOF estimation method. RNN with CC was the best

performing method pair, and we select it as the best method

for future work for preprocessing the surgical grasper’s data

in further classification algorithms. The RMSE of RNN with

CC method pair was 3.60 % across distances of 0.8 cm and

above. This proposed method pair makes it possible to use

a single transducer configuration on surgical grasper jaws,

which, beneficially, leaves room for additional sensors.
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