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Abstract—Minimally Invasive Surgeries can benefit from hav-
ing miniaturized sensors on surgical graspers to provide ad-
ditional information to the surgeons. In this work, a 6 mm
ultrasound transducer was added to a surgical grasper, intended
to measure acoustic properties of the tissue. However, the
ultrasound sensor has a ringing artifact arising from the decaying
oscillation of its piezo element, and at short travel distances,
the artifact blends with the acoustic echo. Without a method
to remove the artifact from the blended signal, this makes it
impossible to measure one of the main characteristics of an
ultrasound waveform — Time of Flight. In this paper, six filtering
methods to clear the artifact from the ultrasound waveform were
compared: Bandpass filter, Adaptive Least Mean Squares (LMS)
filter, Spectrum Suppression (SPS), Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU). Following each filtering method, four time of flight
extraction methods were compared: Magnitude Threshold, En-
velope Peak Detection, Cross-correlation and Short-time Fourier
Transform (STFT). The RNN with Cross-correlation method pair
was shown to be optimal for this task, performing with the root
mean square error of 3.6 %.

Index Terms—ultrasound sensor, surgical grasper, noise re-
moval algorithms, signal processing, deep learning

I. INTRODUCTION

Minimally Invasive Surgery (MIS) is now standard in mod-
ern medicine and involves operating through small incisions
using laparoscopic graspers for manipulation, and endoscopic
cameras for visual feedback. Advantages of MIS include faster
recovery, less blood loss, and a lower risk of complications.
Alongside its benefits, MIS also brings new challenges, such
as the lack of tactile feedback for surgeons. In open surgery,
surgeons can palpate the tissue to gain information about its
non-visible structure, such as tumors and blood vessels [1].

Part of our approach to providing the tactile sensing and
diagnostic capability for surgical graspers is the addition of
a miniaturized Steminc SMDO063T07R111 ultrasound trans-
ducer to the tip of a Surgical Babcock Grasper, intended to
mechanically interface with the tissue and measure its acoustic
properties.
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Fig. 1. Surgical grasper with an attached ultrasound sensor on the tip.
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Fig. 2. Raw ultrasound signals with ringdown artifacts.

Ultrasound is widely used for diagnostic, prognostic and
treatment applications, such as abnormality detection, tissue
characterization, high-intensity ultrasound ablation therapy
and others. An ultrasound transducer is a piezo crystal that has
a resonant oscillation frequency. All piezo crystals can operate
in both directions: transmitting and receiving sound waves.
If a time-varying potential difference is applied across the
electrodes, the piezo element will start oscillating to produce
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a sound wave. Conversely, if a sound pressure is applied to a
piezo crystal, it will generate a voltage across its leads. When
an ultrasound pulse travels through the tissue, it undergoes
continuous modifications, which depend on the characteristics
of the sound waves as well as tissue properties. Several
characteristics of these sound waves are particularly important
for tissue characterization: time of flight (TOF), which depends
on the velocity of sound, and attenuation [2].

Miniaturized ultrasound transducers have not been widely
used in surgical graspers. In one application, a transmitter-
receiver transducer pair on Martin forceps was used to de-
tect soft tissue cancers, by evaluating the echo attenuation
[3]. Our use differs by using a 1D ultrasound transducer
in bidirectional A-mode, which switches between transmitter
and receiver functionalities. Operation in bidirectional mode
saves space and gives an opportunity to add other sensors
on the surgical grasper’s jaws by using only one transducer
instead of two. However, it is also a drawback: the system
records exponentially decaying “ringing” (aka, the “ringdown
artifact”) of the transducer after excitation. When a surgical
grasper’s jaws operate on a tissue, the distance between them
can be under 1cm. As seen in Fig. 2, at these short distances,
the ringdown artifact blends with the received echo, making
it impossible to identify the TOF without a method to remove
the artifact.

Short-distance ultrasound, in which the echo can blend with
the ringdown, is applicable in many fields. These include the
estimation of the degenerative loss of skeletal muscles [4],
obstacle avoidance and mapping ultrasound sensors for under-
water robots [5], thickness and defect detection applications
in non-destructive testing [6], and other applications. All of
these applications fundamentally suffer from the ringdown
artifact when an A-mode bidirectional ultrasound transducer is
used. In spite of all the above-mentioned applications, limited
published literature exists on ringdown artifact removal from
ultrasound signals, and there does not appear to be applicable
work on Al-based noise removal algorithms for 1D ultrasound
waveforms.

One application of a ringdown artifact removal from an
ultrasound signal is a gastrointestinal capsule with a 1D ultra-
sound for microanatomical diagnostics [7]. The capsule uses a
ringdown-compensating filter by subtracting a moving average
of the ringdown portion of the signal from the combined
signal. This approach can help at longer TOFs, but not at
short ones: at short TOFs, the ringdown blends with the echo,
and the moving average starts including the echo as well.

Besides 1D applications like the surgical grasper or the diag-
nostic capsule above, ringdown artifact removal is also needed
for short-range ultrasound imaging, in which the ringdown
artifact adds a blind spot or dead space. A patent by Barlow,
et al. claims a method for such removal by obtaining multiple
“reference scans” (scans taken in an echo-free space), aver-
aging them in a specific way, and subtracting them from the
combined scan [8]. This method could potentially be extended
to a single bidirectional transducer, but its main limitation
(specified by the inventors) comes from “ringdown drift”: the

changing of the ringdown of a sensor over time. Applying such
a method to a transducer of a surgical grasper would therefore
require frequent (and potentially lengthy, depending on the
number of reference scans required) recalibration, which is
not feasible during a surgery.

The need to remove ringdown from short-range ultra-
sound signals also arises in ultrasonic thickness measurement
systems with bidirectional transducers. Most such systems
use multiple transducers, but some, such as the Elcometer
Ultrasonic Precision Thickness Gauges, use single bidirec-
tional transducers. These systems are able to measure short-
range echoes by placing a “delay line” material between the
transducer and the material being inspected, which artificially
elongates TOF, thus giving the ringdown time to decay prior
to receiving the echo. The signal is also filtered through
frequency selective filters, which further helps remove the
ringdown, and also Gaussian noise. However, this delay line
is also at least 9 mm thick, which makes it prohibitively bulky
for a surgical grasper.

The goal of this paper is to apply, evaluate and compare sev-
eral signal processing and Al-based methods for clearing the
corrupted ultrasound echo waveforms to accurately estimate
the TOF, using the algorithm illustrated in Fig. 3.
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Fig. 3. Architecture for method comparison in two-stage TOF estimation.

II. MATERIALS AND METHODS
A. Denoising Algorithms Description

Fig. 3 illustrates the two-stage process with which the ring-
down artifact is removed from the ultrasound signal, and TOF
is then estimated from the filtered signal. Six noise removal
algorithms for the first stage are compared: three traditional,
and three deep learning ones for comparison. For traditional
algorithms, the Bandpass filter, the Adaptive LMS filter, and
the Spectrum Suppression method (SPS) were chosen. These
traditional algorithms were chosen because these algorithms
are used for denoising conventional audio signals, speech, and
Natural Language Processing.

The Bandpass filter was designed with passband frequencies
of 2.5 MHz to 3.5 MHz to bracket it over the 3 MHz resonant
frequency. The Adaptive LMS filter uses the target signal to
optimize the coefficients for the filter. From preliminary at-
tempts, the LMS filter order of 13 with a step size of 0.004 was
selected for use on all signals of interest. Initial coefficients
were based on the coefficients of the above Bandpass filter
with the Hamming window.

The SPS method used here was adapted from a paper by
Boll [9]. The method relies on a separate noise signal (i.e.,
the ringdown artifact measured from a free transducer) and the

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 02,2023 at 16:15:38 UTC from IEEE Xplore. Restrictions apply.



blended signal. The signals are transformed to the frequency
domain via Fast Fourier Transform (FFT), and in the frequency
domain, the noise is subtracted from the blended signal. An
inverse FFT is then used to obtain the denoised signal in
the time domain. Boll followed this sequence with a lowpass
filter; in this paper, the above Bandpass filter was used on the
denoised signal instead.

For deep learning algorithms, Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), and Gated Recur-
rent Units (GRU) were chosen for comparison, because these
algorithms work with time series data, and have previously
been used for denoising speech signals. Of the three, RNN
is the simplest and slowest to train one, LSTM has the most
representational power and is generally cheaper to train than
standard RNNs, and GRU is a streamlined, cheaper to train
version of LSTM. Chollet presents the theory of the three
methods [10]. In this work, the tanh activation function was
used for all three deep learning networks, with the Adam
optimizer with the learning rate of 5x 10~ and 330 training
epochs. The Euclidean norm of the error between the input
and target signals was used as the loss function. All trained
networks had two layers with 512 and 256 units. All three
networks used a bidirectional architecture.

B. Time of Flight Estimation Methods

In the second stage of the two-stage TOF estimation process
in Fig. 3 the actual TOF estimation algorithm is applied,
producing the TOF from the cleared signal. TOF is the time
required for a sound wave to travel through a medium. TOF
depends on the distance traveled, and the medium’s properties,
including density, compressibility, and rigidity, which are
temperature-dependent.

Four TOF estimation methods are utilized in this work.

Magnitude Threshold Method, used widely in hardware
setups for automatic detection of TOF. When the amplitude
of the received signal reaches a preset threshold, it records
the time. The threshold should bypass the maximum noise
level expected. This method is sensitive to noise fluctuations
and signal decay with distance traveled, but is the most
straightforward to implement [11].

Envelope Peak Detection consists of approximating the echo
signal as an analytical signal with complex components, from
which a Hilbert envelope is computed. Then, peaks are found
in the signal’s envelope. The TOF is then detected either by
locating the peak with the largest amplitude. Such envelope
signal is more robust to fluctuations of the echo’s peaks, as
well as a variable white noise level [12].

Cross-correlation Method (CC), in its simplest form, con-
sists of cross-correlating the transmitted and received signals,
and estimating the TOF as the maximum in the correlation
function [13].

Short-time Fourier Transform Method (STFT) for TOF es-
timation uses the time-frequency representation of ultrasound
signals. STFT is obtained with a sliding window over the
time domain signal, and taking the Fourier transform of the

Fig. 4. Acrylic container with an attached ultrasound transducer at the bottom.

window. Then, only windows with the frequency of interest
are considered for the estimation of TOF [14].

C. Data Collection and Preprocessing

Apart from the sensorized surgical grasper (Fig. 1), another
experimental setup (Fig. 4) was developed for ultrasound data
collection, consisting of an acrylic container with an attached
ruler to measure the level of liquid in the container — the one-
way distance traveled. The bottom acrylic thickness of the
container is 2 mm. The same SMDO063T07R111 transducer as
the one used on the surgical grasper was glued to the bottom
of the acrylic container. Similarly, the same data acquisition
setup was used: TI TDC1000 to drive the transducer at 3 MHz
with a pulsed square waveform with 6 impulses, Siglent
SDS 1104X-E oscilloscope to provide the external clock and
acquire the signal. The data was recorded by the oscilloscope
in csv format, combined and aligned in MATLAB. Then, the
dataset was downsampled by a factor of 26 to a new sampling
rate of 19.23 MHz, leading to 1279 samples per waveform.

In order to use the dataset for training in deep learning
models, it is required to have target signals to compare with
and to adjust weights accordingly. When generating target
signals, at distances of 2cm and longer, the ringdown and
the echo were sufficiently far apart, which made it possible
to isolate the echo by zeroing the ringdown time segment.
The waveforms obtained at shorter distances were not used
as target signals for the training dataset, due to the difficulty
of extracting the echo from such signals. The training dataset
contains 993 waveform pairs (consisting of a raw signal, and a
target signal with only the echo), with an approximately equal
number of waveforms per distance. A separate test dataset was
collected at 9 distances from 0.5cm to 4.0cm, using liquid
water as the medium. This testing dataset has 270 waveforms,
30 waveforms per distance. Both datasets were saved in mat
format for further processing in Google Colaboratory. Both
the downsampled and original resolution datasets have been
published on IEEE DataPort [15].
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methods in time domain. Vertical pink line shows the true TOF with the travel distance of 1 cm. Right: the results of the denoising methods in the frequency

domain.

III. RESULTS

A. Noise Removal Qualitative Comparison

Each method’s results for artifact removal from a single
raw ultrasound signal at 1 cm flight distance (here and below,
this refers to the distance traveled until reflection and return
to the transducer) are presented on Fig. 5. At this distance,
the echo is capable of traveling back and forth multiple times,
without decaying enough to become immeasurable; this multi-
echo phenomenon can be observed in all filtered signal plots, at
approximately 13.5 s, 27.0 us and 40.5 ps. The training dataset
did not have any data with multi-echo.

The upper left plot of Fig. 5 shows the raw signal, corrupted
by the ringdown artifact; the echo’s amplitude is smaller than
the ringdown artifact’s by about a factor of 3. At a shorter

flight distance, this corruption would become more severe,
thus making it even harder to extract the time of flight from
the blended signal. Because both the ringdown and the echo
are physically generated by the oscillating transducer, part of
the ringdown’s frequency spectrum is similar to the echo’s,
and due to the short TOF, they blend with each other in time
domain as well. For this reason, the Bandpass filter still retains
a lot of noise, particularly in the first 5pus of the waveform.
The adaptive LMS filter exhibits the same behavior. The
SPS method, however, despite its reliance on the frequency
domain, cleaned the signal much better, with only negligible
noise remaining in the first 5us. The performance of deep
learning methods was more varied. As Fig. 5 shows, at this
short distance, GRU significantly distorted the signal, although
the ringdown was removed completely. LSTM showed some
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Fig. 6. TOF mean percentage errors by different filtering and TOF estimation method. Errors over 100 % indicate method failure, and are cropped out.

distortion as well, although echoes remained visually recogniz-
able. RNN performed the best among the three deep learning
methods.

B. Time of Flight Comparison

Following the denoising via the six methods discussed
in Section II-A, TOF was estimated via the four methods
discussed in Section II-B. We evaluate the true TOFs based on
the velocity of sound in water and the known distance. Mean
relative errors in TOFs, as estimated by each method pair for
each distance measured, are presented on Fig. 6.

As we can see from Fig. 6, all pairs of methods fail at the
distance of 0.5cm, which indicates the system’s limitation.
It’s observable that deep learning denoising methods LSTM
and GRU with all TOF estimation methods started to fail at
distances lower than 1.5 cm. Distances lower than 2cm were
never shown during the training of deep learning denoising
methods, and LSTM and GRU fail to generalize the solution
for short-distance echo waveforms. It may be possible to use
them with additional training data on short distances. On the
other hand, standard RNN showed remarkably good results

in spite of not having short-distance echo waveforms shown
during the training.

The Bandpass and the Adaptive LMS filters had relative
errors of more than 75 % paired with three of the four
methods for TOF estimation at all distances. This is likely
because as Fig. 5 illustrates, after these filters are applied,
the remaining artifact is larger in amplitude than the echo,
which causes threshold-based methods to fail. However, the
Bandpass and the Adaptive LMS filters performed well with
the CC TOF estimation method, because it does not depend
on thresholding, but on signal correlation. CC method is also
immune to white noise more than other methods.

Root Mean Square Error (RMSE) over all valid distances
(i.e., 0.8cm to 4.0cm) was calculated for all 24 pairs of
methods. 6 pairs demonstrated an RMSE of less than 5 %:

1) SPS with Magnitude Threshold: RMSE of 4.31 %.

2) RNN with Magnitude Threshold: RMSE of 4.39 %.

3) Bandpass with CC: RMSE of 3.62 %.

4) Adaptive LMS with CC: RMSE of 4.40 %.

5) SPS with CC: RMSE of 3.70 %.

6) RNN with CC: RMSE of 3.60 %.

These methods’ RMSEs for each distance, and their stan-
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dard deviations over all samples taken at each distance are
illustrated on Fig. 7. Based on their RMSEs, three pairs
performed particularly well: Bandpass with CC, SPS with CC
and RNN with CC. RNN with CC has the lowest RMSE error.
The error variances are also small, which confirms that because
the noise removal algorithms used in this work do not rely on
subtracting a particular ringdown signal to remove it, they are
not sensitive to ringdown drift.

All 24 method pairs compared are usable in real-time, each
providing a TOF result in under 15 ms. The bulk of this time
is taken by the denoising stage.

IV. DISCUSSION

The RNN denoising method, combined with the CC TOF
Estimation method, appear to be best suited for ringdown
artifact removal, followed by TOF extraction. In literature,
LSTM and GRU are typically considered superior methods to
RNN due to the vanishing and exploding gradient problems
[10]. At longer TOFs, with the echo and the ringdown artifact
completely separated, GRU did indeed outperform all other
methods. The poor performance of LSTM and GRU at shorter
distances may be explained by the limitations of the training
dataset, which, due to being generated by manually removing
the ringdown, did not have any examples of the multi-echo,
and may have lacked other features that the networks have
relied on.

RNN, on the other hand, showed optimal performance at
both long and short distances, with results comparable to the
traditional SPS and Bandpass methods. It is conventional to
compare neural network performance according to loss func-
tion values achieved on training sets, and their training time.
Training time-wise, the results were indeed as expected, with
RNN taking significantly longer than the other two, and GRU
being the fastest. For this problem, the significant difference
between the training and testing sets makes the loss function
evaluated on the training set irrelevant; instead, average errors
across the testing set, presented in the previous section, are
more illustrative about the methods’ relative performance.

V. CONCLUSIONS

Six artifact removing methods were compared for the
removal of ringdown artifacts from short distance A-mode
ultrasound signals in water: the Bandpass filter, the Adap-
tive LMS filter, Spectrum Suppression, RNN, LSTM and
GRU. Their performance was evaluated based on estimating
the TOFs from filtered signals. Four methods for extracting
TOFs were compared: Magnitude Threshold, Envelope Peak
Detection, CC and STFT. Of the 24 analyzed method pairs,
the three best were the RNN, Spectrum Suppression and
Bandpass artifact removing methods, with each followed by
the CC TOF estimation method. RNN with CC was the best
performing method pair, and we select it as the best method
for future work for preprocessing the surgical grasper’s data
in further classification algorithms. The RMSE of RNN with
CC method pair was 3.60 % across distances of 0.8 cm and
above. This proposed method pair makes it possible to use
a single transducer configuration on surgical grasper jaws,
which, beneficially, leaves room for additional sensors.
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