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Temporal Forward—Backward Consistency, Not
Residual Error, Measures the Prediction Accuracy
of Extended Dynamic Mode Decomposition

Masih Haseli

Abstract—Extended Dynamic Mode Decomposition
(EDMD) is a popular data-driven method to approximate
the action of the Koopman operator on a linear function
space spanned by a dictionary of functions. The accuracy
of EDMD model critically depends on the quality of the
particular dictionary span, specifically on how close it is to
being invariant under the Koopman operator. Motivated by
the observation that the residual error of EDMD, typically
used for dictionary learning, does not encode the quality of
the function space and is sensitive to the choice of basis,
we introduce the novel concept of consistency index. We
show that this measure, based on using EDMD forward and
backward in time, enjoys a number of desirable qualities
that make it suitable for data-driven modeling of dynamical
systems: it measures the quality of the function space, it
is invariant under the choice of basis, can be computed
in closed form from the data, and provides a tight upper-
bound for the relative root mean square error of all function
predictions on the entire span of the dictionary.

Index Terms—Dynamical systems, Koopman operator,
dynamic mode decomposition, prediction accuracy, data-
driven modeling.

[. INTRODUCTION

OOPMAN operator theory has gained widespread atten-
tion in recent years for the study of dynamical systems,
chiefly thanks to the linear structure of the operator despite
nonlinearities in the system. In fact, the linearity of the
Koopman operator leads to computationally efficient for-
mulations to work with data. This provides a theoretically
principled and explainable approach to the challenges posed by
incorporating data-driven methods in the modeling, analysis,
and control of dynamical systems. Given that the Koopman
operator is generally infinite-dimensional, finding accurate
finite-dimensional approximations for its action is of utmost
importance. The first step to do so is to have a proper way to
efficiently measure the quality of the subspace. This measure
in turn can be used for subspace identification in optimization
or neural network-based learning methods. Defining such a
measure is, in turn, the goal of this letter.
Literature Review: The Koopman operator [1] provides an
alternative representation of the evolution of dynamical systems
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in terms of observables rather than system trajectories. Despite
possible nonlinearities in the system, the eigenfunctions of the
Koopman operator evaluated on the system’s trajectories have
linear temporal evolution, and this leads to efficient numerical
methods used in complex system analysis [2], [3], estima-
tion [4], control [5], [6], [7], [8], and robotics [9], [10], to
name a few. Despite these appealing applications, the infinite-
dimensional nature of the operator makes its direct use on
digital computers challenging. Dynamic Mode Decomposition
(DMD) [11] and its generalization Extended Dynamic Mode
Decomposition (EDMD) [12] are popular data-driven meth-
ods to approximate the action of the Koopman operator on
finite-dimensional spaces. EDMD in particular uses a dictio-
nary of functions whose span specifies the finite-dimensional
space of choice. The work in [13] studies the prediction accu-
racy of DMD while [14] provides several convergence results
for EDMD as the number of data points and dimension of
the dictionary go to infinity. The dependence of the EDMD’s
prediction accuracy on the choice of the dictionary has led to
a search for dictionaries whose span is close to being invariant
under the Koopman operator [15]. The works in [16], [17] use
methods based on neural networks for this task, while [18]
directly learns the Koopman eigenfunctions spanning invariant
subspaces. Moreover, the works in [19], [20] approximate finite-
dimensional Koopman models relying on knowledge about the
system’s attractors and their stability. In our previous work, we
have provided efficient algebraic algorithms to identify exact
Koopman-invariant subspaces [21], [22] or approximate them
with tunable predefined accuracy [23].

Statement of Contributions: Our starting point! is the
observation that the residual error of EDMD, typically used for
dictionary learning, does not necessarily measure the quality
of the subspace spanned by the dictionary and, consequently,

I'We use the following notation. The symbols N, R, and C, represent the
sets of natural, real, and complex numbers resp. Given A € C"*"| we denote
its transpose, pseudo-inverse, conjugate transpose, Frobenius norm and range
space by AT, AT, AH ||A||lp, and R(A) resp. If A is square, we use Al
to denote its inverse. We denote by spec(A) the spectrum of A. Similarly,
spec((A) denotes the set of nonzero eigenvalues of A. Moreover, sprad(A) :=
max{|A| | A € spec(A)} is the spectral radius of A. If spec(A) C R, then
Amin(A) and Amax(A) denote the smallest and largest eigenvalues of A. We
use I, and 0y, to denote the m x m identity matrix and m x n zero matrix
(we drop the indices when appropriate). We denote the 2-norm of the vector
v € C" by ||v|]p. Given sets S; and S, their union and intersection are
represented by S; US> and S; N S;. Also, S1 € S and S1 € S resp. mean
that Sy is a subset and proper subset of S,. Given the vector space V defined
on the field C, dimV denotes its dimension. Moreover, given a set S € V,
span(S) is a vector space comprised of all linear combinations of elements
in S. If vectors v, w € R" and vector spaces V, W C R" are orthogonal, we
write v L w and V L W. Moreover, V- denotes the orthogonal complement
of V. Given functions f and g with appropriate domains and co-domains, fog
denotes their composition.
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the prediction accuracy of EDMD on the subspace. To illus-
trate this point, we provide an example showing that one can
choose a sequence of dictionaries spanning the same subspace
that make the residual error arbitrarily close to zero. This moti-
vates our goal of identifying better measures to assess the
EDMD’s prediction accuracy and its dictionary’s quality. We
define the notion of the consistency matrix and its spectral
radius, which we term consistency index, which measures the
deviation of the EDMD solutions forward and backward in
time from being the inverse of each other. This is justified by
the fact that if a subspace is Koopman invariant, the EDMD
solutions applied forward and backward in time are the inverse
of each other. We characterize various algebraic properties of
the consistency index and show that it only depends on the data
and the space spanned by the dictionary, and is hence invari-
ant under changes of basis. We also establish that the square
root of the consistency index provides a tight upper bound on
the relative root mean square EDMD prediction error of all
functions in the dictionary’s span.

[1. PRELIMINARIES

We briefly recall basic facts about the Koopman opera-
tor [24] and Extended Dynamic Mode Decomposition [12].

Koopman Operator: Consider a dynamical system with state
space M C R"

xT=Tkx), xe M. (1)

Let F be a vector space defined on C comprised of functions
from M to C whose composition with T also belong to F.
The Koopman operator associated with the dynamics is

Kf=foT. )

The operator is linear. Its eigenfunctions have linear evolu-
tion on the trajectories of the system, i.e., given eigenfunction
¢ with eigenvalue A, ¢(x7) = ¢ o T(x) = Kp(x) = Ap(x).
This results in a significant property of the Koopman eigen-
decomposition: given eigenpairs {(A;, qﬁ,-)}gvz’{l, the evolution of
f = Zivz"l ci¢; on a trajectory of the system starting from
X0 € M is f(x(k)) = YN, eirk ¢i(xo), for k € N. This lin-
ear property is useful for both prediction and identification,
as the linearity always holds even if the system is nonlinear.
However, to completely capture the dynamics, one might need
the space F to be infinite dimensional.

Extended Dynamic Mode Decomposition: The infinite-
dimensional property of the Koopman operator prevents its
direct use in practical data-driven settings. This leads naturally
to constructing finite-dimensional approximations, e.g., using
Extended Dynamic Mode Decomposition (EDMD). EDMD
uses a dictionary D : M — RNd containing N, functions,
D(x) = [d1(x), ..., dn,(x)]. To capture the dynamic behavior,
EDMD uses data X, Y € RV*" containing N data snapshots
gathered from system trajectories,

yi=T(x), Yie(l,...,N}, 3)

where xl.T and yl.T correspond to the ith rows of X and Y. For
convenience, we define the action of D on a data matrix as
DX) = [DaNT, DT, ..., D(xy)T]T, where x! is the ith
row of X. EDMD approximates the action of the Koopman
operator on span(D) by solving

minilgnizeHD(Y) — DX)K||F €]

which has the closed-form solution
Kepmp = EDMD(D, X, Y) = D(X)TD(Y). 5)

We rely on the following basic assumption.

Assumption 1 (Full Rank Dictionary Matrices): D(X) and
D(Y) have full column rank. O

Assumption 1 implies that the functions in D are linearly
independent, i.e., they form a basis for span(D) and the data
are diverse enough to distinguish between the elements of
D. Assumption 1 ensures that Kgpymp is the unique solution
for (4). One can use Kgpmp to approximate the Koopman
eigenfunctions and, more importantly, the action of the opera-
tor on span(D). Given f € span(D) in the form of f(-) = D(-)vr
for vy € CM4, one defines the EDMD predictor function for
Kf as

PBrr() = D()KepmpVf- (6)

The predictor’s quality depends on the quality of the dictio-
nary. If span(D) is Koopman-invariant (i.e., g € span(D) for
all g € span(D)), the predictor (6) is exact (otherwise, the
prediction is inexact for some functions in the space).

IIl. MOTIVATION AND PROBLEM STATEMENT

We consider the prediction accuracy of EDMD for all
(uncountably) functions in the dictionary span, as opposed to
only finitely many functions. Since in general the dynamics is
unknown, it is important to use data to learn a proper dictio-
nary tailored to the dynamics. The residual error of EDMD,
ID(Y) —D(X)KepMmp || 7, is commonly used for this purpose as
an objective function in optimization and neural network-based
learning schemes. However, it is important to note that even
though a high quality subspace (close to Koopman-invariant)
leads to small residual error, the converse is not true: a dic-
tionary D with small residual error does not necessarily mean
that EDMD’s prediction is accurate on span(D).

Example 1 (Residual Error Is Not Invariant Under Linear
Transformation of Dictionary): Consider the linear system
xt = 0.5x and the vector space of functions S = span{x, x> —
x?}. To apply EDMD, we gather N = 1000 data snapshots
from trajectories of the system with length of two time steps
and initial conditions uniformly selected from [—2, 2], and
form data matrices X, Y € R¥*!. We consider a family of
dictionaries parameterized by o € R\{0},

Dy(x) =[x, x+ ot(x3 — xz)]. @)

Note that each D, is a basis for S, and all the dictionaries are
related by nonsingular linear transformations. We also define
two notions of prediction accuracy: the residual error E of
EDMD and its normalized version E¢,

E(x)

E =Do[Y_DaXKOt ,Ere = T~ o
(@) = 1Y) = DaOKalF, Era(e) = o=

where K, = EDMD(D,, X, Y).

Figure 1 shows the aforementioned notions of error versus
the value of o € [0.01, 100]. Figure 1 clearly demonstrates the
sensitivity of errors to the choice of basis for S despite the
invariance of spec(Kgpmp,o) under the choice of basis (see,
e.g., [23, Lemma 7.1]). By tuning «, one can make both errors
arbitrarily close to zero. As a result, using the residual error as
a measure to assess the quality of the space or as an objective
function in optimization or neural network-based dictionary
learning schemes can lead to erroneous results. ]
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Fig. 1. EDMD’s residual error (left) and relative residual error (right) as

a function of « in (7).

Remark 1 (Prediction Accuracy of Dictionary Elements
versus Dictionary’s Span): Some applications only require
short-term prediction of finitely many observables. In such
cases, the residual error of EDMD may be useful: the observ-
ables of choice are fixed as elements of the dictionary and
the rest of the functions composing the dictionary are learned
by minimizing the residual error (which measures the average
one time-step prediction error). However, such methods do not
necessarily lead to a dictionary which spans an approximate
Koopman-invariant subspace.

The observations in Example 1 prompts us to search for
a better measure of the dictionary’s quality and therefore the
EDMD’s prediction accuracy. We formalize this next.

Problem 1 (Characterization of EDMD’s Prediction
Accuracy and the Dictionary’s Quality): Given a dictionary
D and data matrices X and Y, under Assumption 1, we aim
to provide a data-driven measure of EDMD’s accuracy and
the dictionary’s quality that

(a) only depends on span(D), X, and Y, and hence is invari-

ant under the choice of basis for span(D), i.e., given
D’ as an alternative basis for span(D), the accuracy
measures calculated based on D and D’ are equal;

(b) provides a data-driven bound on the distance between

Kf and its EDMD prediction B for all functions f €

span(D);
(c) can be computed using a closed-form formula (for
implementation in optimization solvers). (]

IV. TEMPORAL FORWARD-BACKWARD CONSISTENCY

Here, we take the first step towards finding an appropri-
ate measure for EDMD’s prediction accuracy by comparin§
the solutions of EDMD forward and backward in time.
Throughout this letter, we use the following notation for
forward and backward EDMD matrices

Kr = EDMD(D, X, Y) = DX)'D(Y),
K = EDMD(D, Y, X) = D(Y) ' D(X).

(8a)
(8b)

We rely on the observation that if the dictionary spans a
Koopman-invariant subspace, then KpKp = I. Otherwise, the
forward and backward EDMD matrices will not be the inverse
of each other, which motivates the next definition.

Definition 1 (Consistency Matrix and Index): Given dictio-
nary D and data matrices X and Y, the consistency matrix
is Mc(D,X,Y) = I — KrKp and the consistency index is
Ic(D,X,Y) =spradMc(D, X, Y)). ([l

2The idea of looking forward and backward in time has been consid-
ered in the literature for different purposes, such as improving DMD to deal
with noisy data [25], [26] and identifying exact Koopman eigenfunctions in
our previous work [21] but, to the best of our knowledge, not for formally
characterizing EDMD’s prediction accuracy.

For convenience, we refer to Mc(D, X,Y) and Z¢(D, X, Y)
as M¢ and Z¢c when the context is clear. Next, we show that
the eigenvalues of the consistency matrix are invariant under
linear transformations of the dictionary.

Proposition 1 (Consistency Matrix’s Spectrum Is Invariant
under Linear Transformation of Dictionary): Let D and D
be two dictionaries such that D(-) = D(-)R, where R is an
invertible matrix. Moreover, given data matrices X and Y let
Assumptiog 1 hold. Then,

(a) Mc(D,X,Y) =R 'Mc(D, X, Y)R;

(b) spec(Mc(D, X,Y)) = spec(Mc(D, X, Y)).

Proof: Note that part (b) directly follows from part (a) and
the fact that similarity transformations preserve the eigenval-
ues. To show part (a), define for convenience,

Kr = DX)'D(Y),
Kr = DX)'D(Y),

K = DY) D(X),
Kg = D(Y)'D(X).

We start by showing that KrpKp and KpKp are similar. By
definition, one can write

KpKp = DX)'D(Y)D(Y)"D(X). 9)
Moreover, given Assumption 1 and the definition of D,
DX)" = (DX)"DX)) " Dx)”
= (RTD(X)TD(X)R)"RTD(X)T =R"'DX)". (10

Equations  (9)-(10), in conjunction with the fact that
D(Y)*DN(Y) = DY)'D(Y) (cf. Lemma A.1 in the appendix),
imply KrKp = R™'KpKpR directly leading to the required
identity following Definition 1. |

According to Proposition 1, the spectrum of the consistency
matrix is a property of the data and the vector space spanned
by the dictionary, as opposed to the dictionary itself. This
property is consistent with the requirement in Problem 1(a).
Next, we further investigate the eigendecomposition of the
consistency matrix.

Lemma 1 (Consistency  Matrix’s  Properties):  Given
Assumption 1, the consistency matrix Mc(D, X, Y) satisfies:

(a) it is similar to a symmetric matrix;

(b) it is diagonalizable with a complete set of eigenvectors;

(c) spec(Mc(D, X, Y)) C[O0,1].

Proof: (a) Given Assumption 1, there exists an invertible
matrix R such that the columns of D(X)R are_orthonormal.
Define the dictionary D(-) = D(-)R. Note that D(X)TQ(X) =
Iy, and hence D(X)' = (DX)"DX)~'DX)T = DX)T.
Hence,

Mc(D,X,Y) =1—-DX) D)D) DX).

Noting that DY)D(Y)" is symmetric, we deduce that
Mc(D, X, Y) is symmetric. Then (a) directly follows by the
definition of R and Proposition 1(a).

(b) The proof directly follows from part (a) and the fact that
symmetric matrices are diagonalizable and have a complete set
of eigenvectors.

(c) From part (a), we deduce that Mc(D, X, Y) has real
eigenvalues. Since Mc(D, X, Y) = I—DX)'D(Y)D(Y) D(X),
we only need to show

spec(D(X)TD(Y)D(Y)TD(X)) c [0, 1]. 1)
Consider an eigenvector v € RM/\{0} with eigenvalue g,
ie, DX)'D(Y)D(Y)'D(X)v = uv. Multiplying both sides
from the left by D(X) and defining w = D(X)v leads
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to DX)DX)'D(Y)D(Y)'w =
equation from the left by w',

w' DXODX) DYDY 'w = plwl3.

pw. Next, multiplying this

12)

The fact that DX)D(X)T is symmetric and represents the
orthogonal projection operator on R(D(X)), in coniunction

with w € R(D(X)), allows us to write W:D(X)D(_g() =wl,
This, combined with (12), yields pu = % Hence,
2

Amin(D(Y)D(Y)T) < it < Amax(D(Y)D(Y)T). However, since
D(Y)D(Y)T is an orthogonal projection operator, we have
spec(D(Y)D(Y)") c [0, 1]. Hence, p € [0, 1], leading to(ll)
concluding the proof.

From Lemma 1, the consistency matrix is similar to a pos-
itive semidefinite matrix. The larger the eigenvalues of M,
the more inconsistent the forward and backward EDMD mod-
els get. Also, from Lemma 1, Z¢ = Amax(Mc) € [0, 1].
Intuitively, the consistency index determines the quality of
the subspace spanned by the dictionary and the prediction
accuracy of EDMD on it. This is formalized next.

V. CONSISTENCY INDEX DETERMINES EDMD’sS
PREDICTION ACCURACY ON DATA

Our main result states that the square root of the consistency
index is a tight upper bound for the relative root mean square
prediction error of EDMD.

Theorem 1 [/Ic Bounds the Relative Root Mean Square
Error (RRMSE) of EDMD]: For dictionary D and data matrices
X, Y, under Assumption 1,

max

A2 IKF () — Py e P
fespan(D)

V N IKf G2
= VoD, X.Y).

where x; is the ith row of X and By is defined in (6).

Note that the combination of Definition 1, Lemma 1, and
Theorem 1 mean that «/Zc(D, X, Y) satisfies all the require-
ments in Problem 1.3 Before proving the result, we first remark
its importance regarding function predictions.

Remark 2 (/Ic Determines the Relative Ly-Norm Error of
EDMD'’s Prediction Under Empirical Measure): Given that the
elements of span(D) and their composition with 7" are measur-
able and considering the empirical measure puy = % vazl Ox;s
where &, is the Dirac measure defined based on the ith row
of X, one can rewrite RRMSEax as

IKf — Bicr Lo (ux)
=JZo. O
1A N 2y )

To prove Theorem 1, we first provide the following alter-
native expression of the consistency index.

Theorem 2 (Consistency Index and  Difference  of
Projections): Given Assumption 1,

JIeD. X, Y) = sprad(D(Y)D(Y)T _ D(X)D(X)T).

Proof: From Lemma 1, we have Z¢ = Amax(Mc). We use
the following notation throughout the proof,

DX)DX)', Ppyy = DOV)DY).

RRMSE i« =

RRMSE nx = X
fespan(D)

Amax = Zc, Ppxy =

3In fact, if one were to plot it as a function of & € R\{0} in Example 1, one
would obtain a constant value (unlike the residual error plotted in Figure 1),
showing it correctly encodes the quality of the vector space.

Note that Ppr) and Ppy) are projection operators on
R(D(X)) and R(D(Y)), resp. By Definition 1, given an
eigenvalue A € [0, 1] of M¢ with eigenvector v # 0,

Mcv=Av & KpKpy = (1 — M)v. (13)

We consider the cases (i) Amax = 0, (i1) Amax = 1, and (i)
Amax € (0, 1) separately.

Case (i) (Amax = 0): In this case, from Lemma 1, we
deduce M¢c = 0. Consequently, KrKp = I. By multiplying
both sides from the left by D(X) and collecting the terms, we
have Ppx)Pp)D(X) = D(X). Hence, one can write

Pox)Ppyz =z, ¥z € R(D(X)). (14)
Based on [27, summary table in p. 298], we deduce
PoxyPoiryw =w & w € R(D(X)) NR(D(Y)). (15)

Using (14)-(15), one can write R(D(X)) € RDX)) N
R(D(Y)) and consequently R(D(X)) € R(D(Y)). By a sim-
ilar argument as above and swapping Kr with Kp and D(X)
with D(Y), one can also deduce R(D(Y)) C R(D(X)). Hence,
R(D(X)) = R(D(Y)). Moreover, since the orthogonal projec-
tion on a subspace is unique, we have Ppyy — Ppxy = 0,
concluding the proof for this part.

Case (ii) (Amax = 1): By setting A = Apax in (13), multi-
plying both sides from the left by D(X), defining w := D(X)v,
we have

PoxyPpryw = 0. (16)

Hence, noting that w # 0 (based on Assumption 1 and
the fact that v # 0), we can deduce it is an eigenvec-
tor of Ppx)Ppy) with eigenvalue 0. We show next that
w € R(D(X)) N R(D(Y))L. One can write R(D(X)) as the
direct sum of the orthogonal subspaces R(D(X)) N R(D(Y))
and R(D(X)) N R(D(Y))*. Hence, we uniquely decompose
w € R(DX)) as w = wpy) + Wpy)Ls where wpy) €
R(D(X)) N R(D(Y)) and wpyyr € R(DX)) N R(D(Y))™.
Noting that PD(Y)WD(Y)J- = 0 and PD(Y)WD(Y) = Wp(y), W€
get from (16) that Ppx)Ppiryw = Ppxywpr) = 0. Since
wp(y) € R(D(X)), we deduce wp(yy = 0 and consequently,

w=wpy)L € R(IDX)) NRD(Y))*.

Therefore, (Ppyy — Ppx))w = —w and, given that w # 0,
we deduce that Ppyy — Pp(x) has an eigenvalue equal to —1.
Since spec(Ppyy — Ppx)) C [—1, 1], cf. [27, Lemma 1], we
conclude sprad(Ppyy — Ppx)) = 1. The proof concludes by
noting that Z¢ = Apax = 1.

Case (iii) [Amax € (0, 1)]: Using Lemma A.2 and the closed-
form expressions of Kr, Kp, Ppx), and Pp(y),

speco(KrKp) = spec_.o(Ppx) Ppr))- 17)

Given u© € (0,1), from [27, Ths. 1-2], u € Spec_,
(Ppx)Pp(y)) if and only if {£+1 —pu} C speco(Pp) —
Ppxy). Setting p = 1 — A, L € (0, 1), one can use this in
conjunction with (13) and (17) to write

A € speco(Mc) & (V1) C spec_o(Pper) — Pow))-

This, in conjunction with [27, Th. 1] and the fact that
sprad(Ppy) — Ppix)) < 1 (cf. [27, Lemma 1]), shows that if
sprad(Pp(yy — Pp(x)) < 1, then the result holds. To conclude
the proof, we need to show that sprad(Ppyy — Ppx)) = 1
is not true. By contradiction, suppose this is the case, then at
least one of the following holds:
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(@) Iw; € RM\{0}; (Ppy) — Ppeo)wi = —wi,
(b) 3w € RM\{0}; (Ppyy — Poao)wa = wa.
For case (a), based on [27, summary table in p. 298],

wi € R(D(X)) N R(D(Y))™.

Now, consider the vector p; # 0 with wy = DX)p;.
Consequently, one can write KpKpp = D(X)TPD(y)wl =0,
where in the last equality we have used w; L R(D(Y)).
However, this implies that Mcp; = p1, contradicting the fact
that Amax € (0, 1).

For case (b), note that w, € R(D(Y)) N R(DX))*
(see, e.g., [27, summary table in p. 298]). Consider the
vector space S = R(D(Y)) N R(wy)*. Clearly dimS <
dimR(D(Y)) = dimR(D(X)). Consequently, there exists a
non-zero vector w* € R(D(X)) such that w* L S. Also,
w* 1 R(wp) since wp L R(D(X)). Hence, by noting that
R(D(Y)) is the direct sum of & and R(w;), one can con-
clude w* € R(D(X)) N R(D(Y))L and, as a result, we have

(Ppyy — Ppooy)w* = —w*. Since w* satisfies the identity in
case (a), the proof follows by replacing w; with w* in the
proof of case (a). [ |

Remark 3 (Geometric Connections to Grassmannians):
Theorem 2 establishes a link between the consistency index
and the spectral radius of the difference of projection matrices.
Given proper confinement of subspaces with fixed dimension
to a Grassmannian, see, e.g., [28], the consistency index can
be viewed as a metric measuring the distance (by encoding
angles) between vector spaces of fixed dimension. Similar
ideas based on the difference of projections have been used
in the context of dynamic mode decomposition [29]. Even
if the dimension of the vector spaces is not fixed, the con-
sistency index and difference of projections still can be used
through results similar to Theorem 1. This is especially rel-
evant if the dimension of the Koopman-invariant subspace is
unknown, see, e.g., [23]. O

We are finally ready to prove Theorem 1.

Proof (Theorem 1):: We use the following notation through-
out the proof: Ppx) = DX)D(X)T, Poy = D(Y)D(Y)T, and
s = sprad(Pp(y) — Pp(x)). Note that, from Theorem 2, s =
vZc(D,X,Y). Given an arbitrary function f(-) = D(-)vy €
span(D), with vy € CNe, one can use (2), the predictor (6)
with Kr = Kgpmp = EDMD(D, X, Y), and the relationship
between the rows of X and Y in (3) to write

XX DGV — D) Kevy 2

VL, DGVl
_ID(Y)vr — DX)KFvrll2
B IDY)vll2

Noting that D(Y) = Ppy)D(Y), one can write
I1D(Y)ve — DX)Krvrll2 = I(Ppeyy — Pp)D(XY)vrll2
< slID(X)vll2, (19)
where the last inequality holds since the matrix Ppyy — Pp(x)
is symmetric and therefore its spectral radius is equal to its
induced 2-norm. Based on (18)-(19), we have RRMSE; < s.

Hence, by definition of RRMSE 5« in the statement of the
result, we have

RRMSEnay =

RRMSE; =

(18)

max RRMSEy < s
fespan(D)

(20)

Now, we prove that the equality in (20) holds. We consider
three cases: (i) s = 0 (ii)) s = 1 or (iii) s € (0, 1).

Case (i): Since RRMSE,5x > 0 by definition, in this case
RRMSE1ax = 0 follows directly.

Case (ii): In this case, there exists a nonzero vector*
p* € R(ID(Y)) NR(D(X))™. Let v* be such that p* = D(Y)v*.
Using (19) for v* instead of vy, and the properties of p*,
one can write [|[D(Y)v* — D(X)Kpv*|l2 = PpiryD(Y)WV 2 =
ID(Y)v*||2. Hence, for the function f*(-) = D(-)v* € span(D),
one can use (18) to see that RRMSEs+ = 1 = s. Hence,
equality holds in (20).

Case (iii): In this case s € (0, 1) and based on [27, Th. 1],
the matrix Ppy) — Ppx) has two eigenvalues +s with corre-
sponding orthogonal eigenvectors v, v_; € RV, Moreover,
based on [27, Th. 1(a)l, Ppy)v4s € span{vy,, v_s}. Hence,
for some «, B € R, we have

q* = ,PD(Y)V-H = aVigt+ ,BV_S.

Let r* be such that g* = D(Y)r*. Now, based on the first part
of (19) for r* instead of vy, we have

ID(Y)r* — DX)Kpr*|l2 = [1(Ppyy — Ppax)) DY) r* |2
= |(Ppy) — Ppooy)(@vis + Byv—s)ll2 = sllavis — Bv_sll2
= sllavys + Bv_slla = sIDX)r* |2, (21)

where in the third and fourth equalities we have used the def-
inition of vy and v_g; and their orthogonality. Now, for the
function g*(-) = D(-)r* € span(D), one can use (18) to see
that RRMSE,+ = s. Hence, the equality in (20) holds, and this
concludes the proof. |

Remark 4 (Working With Consistency Matrix Is More
Efficient Than the Difference of Projections): According to
Theorems 1 and 2, one can use the consistency matrix
Mc € RN".XN" or the difference of projections D(Y)D(Y)T —
DX)D(X)" € RV*V interchangeably to compute the relative
root mean square error. However, the size Ny of the consis-
tency matrix depends on the dictionary, while the size of the
difference of projections depends on the size N of data. In
practical settings N > Ny, and hence, working with the con-
sistency matrix is more efficient. In fact, given moderate to
large data sets, even saving the difference of projections matrix
in the memory may be infeasible. The calculation of the con-
sistency matrix requires solving two least-squares problems,
which can be done recursively for large data sets. |

Remark 5 (Efficient Computation of the Consistency Index):
The consistency index is defined as the spectral radius of the
consistency matrix and can be computed as such. One can
also use the following to compute it more efficiently: (i) the
consistency index is the maximum eigenvalue of a matrix with
nonnegative real eigenvalues (cf. Lemma 1(c)); (ii) given an
appropriate change of coordinates making D(X)'D(X) = I
(see proof of Lemma 1(a)), the consistency matrix becomes
positive semi-definite. Hence, in optimization-based dictionary
learning, one can add a constraint D(X)"D(X) = I and min-
imize the 2-norm of the consistency matrix (which is the
maximum eigenvalue for positive semi-definite matrices). [

VI. CONCLUSION

We introduced the concept of consistency index, a data-
driven measure that quantifies the accuracy of the EDMD
method on a finite-dimensional functional space generated by
a dictionary of functions. This measure is invariant under the

4The argument for the existence of p* is similar (by swapping D(X) and
D(Y)) to the argument used for the existence of vectors wy and w* in the
proof of Theorem 2 (Case (iii)). We omit it for space reasons.
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choice of basis of the functional space, is computable in closed
form, and corresponds to the relative root mean squared error.
Future work will build on the consistency index to design alge-
braic algorithms that find dictionaries with EDMD predictions
of a predetermined level of accuracy and use it as an objective
for optimization and neural network-based methods to identify
dictionaries including the system state that span spaces close
to being Koopman-invariant.

APPENDIX
BASIC ALGEBRAIC RESULTS
Here, we recall two results that are used in the proofs.
Lemma A.1: Let B;,B, € R™ " be matrices such that
R(B1) = R(B>). Then BB = B1B].
This follows from the uniqueness of the orthogonal projec-
tion operator on a subspace.

Lemma A.2: Let A € R™" and B € R"™™ Then,
spec.. (AB) = Spec_o (BA).
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