
Automatica 153 (2023) 111001

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Generalizing dynamicmode decomposition: Balancing accuracy and
expressiveness in Koopman approximations✩

Masih Haseli ∗, Jorge Cortés
Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America

a r t i c l e i n f o

Article history:

Received 7 August 2021

Received in revised form 31 January 2023

Accepted 22 February 2023

Available online 14 April 2023

Keywords:

Nonlinear system identification

Koopman operator

Dynamic mode decomposition

Accurate prediction

a b s t r a c t

This paper tackles the data-driven approximation of unknown dynamical systems using Koopman-
operator methods. Given a dictionary of functions, these methods approximate the projection of the
action of the operator on the finite-dimensional subspace spanned by the dictionary. We propose
the Tunable Symmetric Subspace Decomposition algorithm to refine the dictionary, balancing its
expressiveness and accuracy. Expressiveness corresponds to the ability of the dictionary to describe
the evolution of as many observables as possible and accuracy corresponds to the ability to correctly
predict their evolution. Based on the observation that Koopman-invariant subspaces give rise to
exact predictions, we reason that prediction accuracy is a function of the degree of invariance of
the subspace generated by the dictionary and provide a data-driven measure to measure invariance
proximity. The proposed algorithm iteratively prunes the initial function space to identify a refined
dictionary of functions that satisfies the desired level of accuracy while retaining as much of the
original expressiveness as possible. We provide a full characterization of the algorithm properties
and show that it generalizes both Extended Dynamic Mode Decomposition and Symmetric Subspace
Decomposition. Simulations on multiple systems show the effectiveness of the proposed methods in
producing Koopman approximations of tunable accuracy that capture relevant information about the
dynamical system.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Progress in data acquisition and labeling, along with

widespread access to high-performance computing capabilities

for storing, processing, and data analysis, has resulted in a surge

of activity in learning and modeling of dynamical phenomena

across multiple domains. In this context, the importance of iden-

tification techniques that yield tractable representations of non-

linear dynamics rooted at a solid theoretical framework cannot be

overemphasized. One such technique is Koopman operator theory

which, instead of prescribing the evolution of system trajectories

as state–space models do, describes the evolution of functions

defined over the state space (a.k.a. observables). The infinite-

dimensional nature of the operator has prevented its widespread

✩ This work was supported by ONR Award N00014-18-1-2828 and National

Science Foundation Award IIS-2007141. The material in this paper was partially

presented at the 2021 American Control Conference, May 25–28, 2021, New

Orleans, LA, USA, as Haseli and Cortés (2021a). This paper was recommended

for publication in revised form by Associate Editor Jun Liu under the direction

of Editor Sophie Tarbouriech.
∗ Corresponding author.

E-mail addresses: mhaseli@ucsd.edu (M. Haseli), cortes@ucsd.edu

(J. Cortés).

use due to the lack of computational methods to represent it. Ex-

tended dynamic mode decomposition (EDMD) addresses this by

employing data from the dynamics to approximate the projection

of the action of the Koopman operator on a finite-dimensional

subspace spanned by a predefined dictionary of functions.

Despite EDMD’s success, it is still not well understood how

to choose dictionaries that both capture relevant information

about the dynamics and are able to accurately predict its evo-

lution. Prediction accuracy is related to the degree of invariance,

with respect to the operator, of the subspace generated by the

dictionary and, in fact, can be improved by selectively prun-

ing its functions. Such process, however, impacts expressiveness,

understood as the ability of the dictionary to describe the evolu-

tion of as many observables as possible. This paper is motivated

by the need to address the accuracy-expressiveness trade-off in

dictionary selection.

Literature Review: Given a dynamical system, its associated

Koopman operator (Koopman, 1931; Koopman & Neumann, 1932)

is a linear operator characterizing the effect of the dynamics

on functions in a (generally infinite-dimensional) linear function

space. The values of its eigenfunctions also evolve linearly in time

on the trajectories of the system. These properties enable the

use of the spectral properties of the operator to process data

https://doi.org/10.1016/j.automatica.2023.111001

0005-1098/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

M. Haseli and J. Cortés Automatica 153 (2023) 111001

from dynamical systems using efficient linear algebraic meth-
ods fully compatible with the arithmetic operations of digital
computers (Budišić et al., 2012; Mezić, 2005). This has led to
many applications in fluid dynamics (Rowley et al., 2009), model
reduction (Mezić, 2005), and control, including controller synthe-
sis (Choi et al., 2020; Folkestad et al., 2020; Goswami & Paley,
2022), model predictive control (Korda & Mezić, 2018a; Son
et al., 2020), control of PDEs (Peitz & Klus, 2019), and robotic
applications (Mamakoukas et al., 2019; Zinage & Bakolas, 2022).

The infinite-dimensional nature of the Koopman operator is an
impediment to its direct implementation on digital computers.
A popular way to find finite-dimensional representations of the
operator is through Dynamic Mode Decomposition (DMD) and
its variants, initially developed to extract dynamical information
from data about fluid flows (Schmid, 2010; Tu et al., 2014).
Williams et al. (2015) developed the Extended Dynamic Mode
Decomposition (EDMD) algorithm, a variant of DMD capable of
approximating the projection of the action of the Koopman op-
erator from data on a finite-dimensional space spanned by a
chosen dictionary of functions. Korda and Mezić (2018b) for-
mally established the convergence of the EDMD approximation
to the projection of the action of the operator on the span of
the dictionary. Recently, Lu and Tartakovsky (2020) analyzed the
accuracy of long-term prediction by DMD and its variants. Ma-
makoukas et al. (2021) used a Taylor expansion method to enrich
the dictionary for EDMD to achieve lower errors in long-term
predictions. Zhang and Zuazua (2021) used finite element meth-
ods to learn Koopman approximations with accuracy bounds
quantifying their quality. This work also provided a variant of
EDMD to learn the Koopman generator combined with finite
element methods. Nüske et al. (2021) provided several proba-
bilistic bounds for approximation of the Koopman operator based
on the availability of only finitely many data points both for
deterministic and stochastic systems. It is worth mentioning that
(E)DMD captures valuable information about stochastic dynami-
cal systems (Klus et al., 2020; Williams et al., 2015); however, it is
sensitive to the existence of measurement noise in the available
data. Dawson et al. (2016) and Haseli and Cortés (2019) provide
methods to deal with measurement noise in data for DMD and
EDMD, respectively.

In general, given an arbitrary dictionary, there is no guarantee
that EDMD provides an accurate approximation for all the ob-
servables in the span of the dictionary. This has resulted in the
search for dictionaries that span invariant subspaces (Brunton,
Brunton et al., 2016) under the Koopman operator, on which
the EDMD approximation is exact. The work (Johnson & Yeung,
2018) introduces a class of logistic functions to approximate
Koopman-invariant subspaces for systems whose dynamics are
known. On the other hand, given unknown systems and using
data sampled from their trajectories, Koopman-invariant sub-
spaces are approximated using neural networks in Lusch et al.
(2018), Otto and Rowley (2019), Takeishi et al. (2017), Yeung
et al. (2019) and sparsity-promoting methods in Pan et al. (2021).
The works by Kaiser et al. (2021) and Korda and Mezic (2020)
directly approximate Koopman eigenfunctions, which naturally
span Koopman-invariant subspaces. These data-driven methods
do not provide theoretical guarantees for the resulting approxi-
mations. Given the importance of such guarantees, our previous
work (Haseli & Cortés, 2021b, 2022) has provided necessary and
almost surely sufficient conditions for the identification of the
maximal Koopman-invariant subspace and all Koopman eigen-
functions in an arbitrary finite-dimensional function space. We
have also provided approximations to identify subspaces that are
close to being invariant for cases when the maximal Koopman-
invariant subspace does not capture enough information about
the dynamics (Haseli & Cortés, 2021a).

Fig. 1. T-SSD generalizes SSD and EDMD. Given an arbitrary finite-dimensional

function space, by changing the design parameter ǫ ∈ [0, 1] in T-SSD, one can

strike a balance between the invariance proximity of the identified subspace

(i.e., the accuracy of the resulting model based on the available data) and its

expressiveness.

It is important to note that the existence of finite-dimensional
Koopman-invariant subspaces containing the states of the sys-
tem is not guaranteed (Brunton, Brunton et al., 2016). However,
invariant subspaces still contain Koopman eigenfunctions, and
can capture relevant information about the vector field, physical
constraints, conservation laws, stability, and even the construc-
tion of Lyapunov functions, see e.g., Mauroy and Mezić (2016).
Nonetheless, in some applications, one can tolerate a certain level
of inaccuracy in order to capture a more diverse function space
that is not necessarily Koopman invariant but captures important
variables such as the states of the system.

Statement of Contributions: We consider the problem of data-
driven identification of finite-dimensional spaces that are close,
with tunable accuracy, to being invariant under the action of
the Koopman operator. Our main result, illustrated in Fig. 1,
consists of the synthesis of a computational procedure, termed
Tunable Symmetric Subspace Decomposition (T-SSD), that given
an arbitrary finite-dimensional function space, balances the trade-
off between the expressiveness1 of its subspaces and the accuracy
of the Koopman approximations on them.

The roadmap of supporting contributions leading to the design
and full characterization of T-SSD is as follows. Our first contri-
bution builds on the observation that the proximity of a function
space to being invariant is a measure of its (and consequently its
members’) prediction accuracy under finite-dimensional Koop-
man approximations, as an exact invariant subspace leads to ex-
act predictions of the evolution of observables. We introduce the
novel notion of ǫ-apart spaces to measure invariance proximity
using data snapshots sampled from the trajectories of the un-
known dynamics. Using this notion, and given an arbitrary finite-
dimensional function space spanned by a dictionary of functions,
we formulate our objective as that of finding a parametric family
of subspaces whose value of the parameter determines the de-
sired level of invariance proximity. This parametric family can be
viewed as balancing invariance proximity (i.e., prediction accu-
racy) and the dimension of the subspace (i.e., expressiveness).

Given a desired accuracy parameter, our second contribution
is the design of T-SSD as an algorithmic procedure that finds
a function space satisfying the desired accuracy by iteratively
removing the functions in the span of the original dictionary
that violate the desired accuracy. We show that T-SSD terminates
in a finite number of iterations and characterize its computa-
tional complexity. Moreover, we show that its identified sub-
spaces contain the maximal Koopman-invariant subspace and all
Koopman eigenfunctions in the span of the original dictionary.

1 We note that notions of expressiveness different that the one adopted here

are also possible. For instance, and although out of the scope of the paper,

expressiveness could also be understood as the ability of the dictionary to

describe specific finitely many predefined observables of interest, such as state

variables, in a given set of coordinates.

2

M. Haseli and J. Cortés Automatica 153 (2023) 111001

We also show that the accuracy parameter bounds the relative
root mean square prediction error for all (uncountably many)
functions in the identified subspace. This advantage of the T-SSD
algorithm in deriving accuracy bounds on the prediction of indi-
vidual functions independently of linear changes of coordinates
stems from focusing on the subspaces instead of their bases. Our
next contribution establishes that both Extended Dynamic Mode
Decomposition (EDMD) and Symmetric Subspace Decomposition
(SSD) algorithms are particular cases of T-SSD, cf. Fig. 1.

Our final contribution is a computationally efficient version
of T-SSD with drastically lower computational complexity when
the number of data snapshots is significantly larger than the
dimension of the original dictionary. We illustrate in simulation
the effectiveness of T-SSD in identifying informative Koopman
approximations of tunable accuracy.

2. Preliminaries

Here, we introduce the notation used in the paper and pro-
vide a brief overview of Koopman operator theory, Extended
Dynamic Mode Decomposition (EDMD), and Symmetric Subspace
Decomposition (SSD).

2.1. Notation

We let R, C, N0, and N represent the sets of real, complex,
nonnegative integer, and natural numbers respectively. Given a
matrix A ∈ Cm×n, we denote its transpose, conjugate transpose,
pseudo-inverse, range space, and Frobenius norm by AT , AH , A†,
R(A), and ‖A‖F respectively. In addition, cols(A), rows(A), ♯cols(A),
and ♯rows(A) represent its set of columns, set of rows, number of
columns, and number of rows. Also if A is a nonsingular square
matrix, A−1 denotes its inverse. Given A ∈ Cm×n and B ∈ Cm×p,
we use [A, B] to represent the matrix formed by their side by side
concatenation. We denote by 0m×n and In, the m× n zero matrix
and the identity matrix of size n respectively (we omit the indices

when the context is clear). Given a vector v ∈ Cn, ‖v‖2 :=
√

vHv

denotes its 2-norm.
We denote by span{v1, . . . , vk} the vector space over C

spanned by v1, . . . , vk ∈ Cn. Given functions f1, . . . , fk,
span{f1, . . . , fk} is the function space formed by all functions in
the form of c1f1 + · · · + ckfk with {ci}ki=1 ⊂ C. For a vector space
V ⊆ Rm, PV denotes the orthogonal projection operator on V . For
convenience, we denote the orthogonal projection operator on
the range space of a matrix A by PA, which takes the form PA w =
AA†w, for w ∈ Rm. For vectors v, w ∈ Rm, v ⊥ w indicates that v

and w are orthogonal. Given vector spaces V1,V2 ⊆ Rm, V1 ⊥ V2

denotes that the vector spaces are orthogonal, i.e., all vectors in
V1 are orthogonal to all vectors in V2. We define the sum of vector
spaces V1,V2 by V1 + V2 := {v1 + v2|v1 ∈ V1 ∧ v2 ∈ V2}. Given
sets S1, S2, we denote their union and intersection by S1 ∪ S2 and
S1 ∩ S2 respectively. Given functions f : S2 → S3, g : S1 → S2,
f ◦ g : S1 → S3 denotes their composition.

2.2. Koopman operator

Our exposition follows Budišić et al. (2012): given the discrete-
time dynamics

x+ = T (x), (1)

defined on the state space M ⊆ Rn and a linear space of functions
F defined over the field C and closed under composition with
T , the Koopman operator K : F → F associated with (1) is
defined as Kf = f ◦ T . The functions in F are called observables.

As a consequence of the linearity of F , the Koopman operator is
spatially linear, i.e.,

K(c1f1 + c2f2) = c1K(f1)+ c2K(f2), (2)

for any f1, f2 ∈ F and c1, c2 ∈ C. The linearity of the Koop-
man operator paves the way for defining its eigendecomposition.
Formally, a function φ ∈ F is an eigenfunction of the Koopman
operator with eigenvalue λ ∈ C if

Kφ = λφ. (3)

The eigenfunctions of the Koopman operator evolve linearly in
time on the trajectories of (1),

φ(x+) = φ ◦ T (x) = Kφ(x) = λφ(x). (4)

The linear temporal evolution of eigenfunctions combined
with (2) make the Koopman operator a powerful tool for linear
prediction of the functions’ values on the trajectories of the (gen-
erally nonlinear) dynamical system (1). Formally, given a function

f =
∑Nk

i=1 ciφi, where {ci}Nk
i=1 ⊂ C and {φi}Nk

i=1 are eigenfunctions

of K with eigenvalues {λi}Nk
i=1, one can predict the values of f on

the trajectory {x(j)}j∈N0
starting from initial condition x(0) ∈ M

as

f (x(j)) =
Nk

∑

i=1
ciλ

j
i φi(x(0)), ∀j ∈ N0. (5)

Finally, a subspace L ⊆ F is Koopman-invariant if for every f ∈ L,
we have Kf ∈ L. Trivially, any subspace spanned by Koopman
eigenfunctions is Koopman invariant.

2.3. Extended Dynamic Mode Decomposition

In general, the Koopman operator is infinite dimensional.
Moreover, in many practical data-driven applications, the dynam-
ical system is unknown and only data from some trajectories is
available. These issues motivate the use of data-driven methods
to approximate the effect of the Koopman operator on finite-
dimensional subspaces, as we discuss next. Here, we recall the
Extended Dynamic Mode Decomposition (EDMD) method follow-
ing Williams et al. (2015). EDMD uses data from the trajectories of
the system to approximate the action of the Koopman operator on
a predefined function space. The first ingredient of EDMD is the
data matrices X, Y ∈ RN×n containing N data snapshots, where
corresponding rows of X, Y characterize two consecutive points
on a trajectory of the system. Formally,

yi = T (xi), ∀i ∈ {1, . . . ,N}, (6)

where xTi and yTi are the ith rows of X and Y respectively. The

second ingredient of EDMD is a dictionary D :M→ R1×Nd of Nd

functions, denoted as

D(x) = [d1(x), . . . , dNd
(x)], (7)

where di : M → R for all i ∈ {1, . . . ,Nd}. The dictionary
spans a finite-dimensional space of functions over C, and its
elements can be complex-valued functions in general. However,
since the system is defined over the state spaceM ⊂ Rn, complex
Koopman eigenfunctions form complex conjugate pairs which
can be fully represented by a pair of real-valued functions. For
this reason, and without loss of generality, we use real-valued
functions as dictionary elements.

EDMD formulates a least-squares optimization to find the best
fit for the linear evolution of the dictionary functions on the data.
If we denote the effect of the dictionary on an arbitrary data
matrix Z ∈ RN×n by D(Z) = [D(z1)T , . . . ,D(zN)T]T , where zTi

3

M. Haseli and J. Cortés Automatica 153 (2023) 111001

corresponds to the ith row of Z , then one can write the EDMD’s
optimization problem in compact form as

minimize
K
‖D(Y)− D(X)K‖F , (8)

whose closed-form solution is

KEDMD = EDMD(D, X, Y) := D(X)†D(Y). (9)

KEDMD approximates the projection of the action of the Koopman
operator on span(D) as follows. Under the identification of CNd

with span(D) defined by v ↔ D(·)v, this approximation takes the
form

v 7→ KEDMDv. (10)

As a result, for the function f (·) = D(·)vf ∈ span(D), one can
define the EDMD’s approximation of Kf as

PKf = D(·)KEDMDvf . (11)

It is important to note that PKf can be viewed as the L2-
orthogonal projection of Kf on span(D) given an empirical mea-
sure defined based on the rows of X (Klus et al., 2016; Korda
& Mezić, 2018b). Moreover, the eigendecomposition of KEDMD

provides insight into the eigendecomposition of the Koopman op-
erator. Formally, given an eigenpair (λ, v) of KEDMD, one approxi-
mates an eigenfunction of the Koopman operator with eigenvalue
λ as

φ(·) := D(·)v. (12)

Note that the EDMD predictor in (11) applied to the eigenfunc-
tion φ in (12) leads to PKφ = λφ, which is in agreement
with the linear evolution (4) of Koopman eigenfunctions. Note
that EDMD provides Nd Koopman (generalized) eigenfunction
approximations even if the Koopman operator does not have Nd

eigenfunctions in the span of the dictionary. If the dictionary
D spans a Koopman-invariant subspace, then EDMD completely
captures the behavior of the Koopman operator (and all its eigen-
functions) on span(D). As a result, ‖D(Y) − D(X)KEDMD‖F = 0,
and (11) provides exact prediction, independently of the data
used for EDMD’s training.

We refer the reader to Korda and Mezić (2018b) for asymptotic
convergence results as Nd → ∞, concerning KEDMD capturing
the spectrum of the Koopman operator as well as the finite-
horizon prediction of EDMD for observables in span(D). It is
essential to keep in mind that the aforementioned asymptotic
convergence results do not imply that a larger dictionary is nec-
essarily closer to being invariant under the Koopman operator. In
general, asymptotic behavior requires a sufficiently large dictio-
nary; however, unless other properties (e.g., monotonicity) exist,
the dictionary’s quality (in terms of prediction accuracy) might
deteriorate by adding more functions. We illustrate this point in
the following example.

Example 2.1 (A Larger Dictionary is Not Necessarily Better). Con-
sider the linear system x+ = 0.5x with state space M = R.
Consider the dictionaries, D1(x) = [x] and D2(x) = [x, x3 − x2].
Clearly, span(D1) (span(D2). However, span(D1) is invariant
under the Koopman operator and EDMD’s prediction (which co-
incides with the dynamics) is exact. On the other hand, despite
being a larger dictionary (and containing D1), EDMD with dictio-
nary D2 does not lead to accurate predictions on span(D2). The
reason for this issue is that by adding the function d(x) = x3− x2

to dictionary D1, we break the invariance of its span, leading to a
larger space span(D2) which is not invariant. �

A final note regarding EDMD is that it is not designed to work
with data corrupted with measurement noise. Hence, data pre-
processing might be needed to take full advantage of the methods
proposed in the paper, which rely on EDMD.

2.4. Symmetric Subspace Decomposition

In general, since the true system dynamics is unknown, choos-
ing a dictionary that spans a Koopman-invariant subspace is chal-
lenging. This justifies the importance of developing data-driven
methods that aid in this task. Here, we recall the Symmetric
Subspace Decomposition (SSD) algorithm following Haseli and
Cortés (2022). Starting from a dictionary D and data snapshots
X, Y , the SSD algorithm, cf. Algorithm 1, finds a basis for the
maximal Koopman-invariant subspace in span(D). To achieve this
goal, SSD relies on the following.

Assumption 2.2 (Full Rank Dictionary Matrices). The matrices D(X)
and D(Y) have full column rank. �

Assumption 2.2 rules out the case of redundant dictionary
elements by making sure its functions are linearly independent.
Moreover, it requires the data snapshots to be sampled in a way
that reflects this fact.

Algorithm 1 Symmetric Subspace Decomposition

Inputs: D(X),D(Y) ∈ RN×Nd Output: CSSD

1: Procedure CSSD ← SSD(D(X),D(Y))
2: Initialization
3: i← 1, A1 ← D(X), B1 ← D(Y), CSSD ← INd

4: while 1 do

5:

[

ZA
i

ZB
i

]

← null([Ai, Bi]) ⊲ Basis for the null space

6: if null([Ai, Bi]) = ∅ then
7: return 0 ⊲ The basis does not exist
8: break
9: end if

10: if ♯rows(ZA
i) ≤ ♯cols(ZA

i) then
11: return CSSD ⊲ The procedure is complete
12: break
13: end if
14: CSSD ← CSSDZ

A
i ⊲ Reduce the subspace

15: Ai+1 ← AiZ
A
i , Bi+1 ← BiZ

A
i , i← i+ 1

16: end while

The SSD algorithm provides an iterative approach to prune
the span of the dictionary D at each iteration by removing the
functions that do not correspond to linear evolutions. The SSD
algorithm terminates after finite iterations and its output CSSD

satisfies the following properties.

Theorem 2.3 (SSD Output (Haseli & Cortés, 2022, Theorem 5.1)).
Suppose that Assumption 2.2 holds. Then,

(a) CSSD is either 0 or has full column rank;

(b) CSSD satisfies R(D(X)CSSD) = R(D(Y)CSSD);

(c) the subspace R(D(X)CSSD) is maximal, in the sense that,
for any matrix E with R(D(X)E) = R(D(Y)E), we have
R(D(X)E) ⊆ R(D(X)CSSD) and R(E) ⊆ R(CSSD). �

The dictionary identified by SSD is

DSSD(·) := D(·)CSSD. (13)

Based on Theorem 2.3, DSSD spans the largest subspace of span(D)
on which R(DSSD(X)) = R(DSSD(Y)). One can apply the EDMD al-
gorithm (Eqs. (8)–(9)) on DSSD(X) and DSSD(Y) to find the predictor
matrix

KSSD = EDMD(DSSD, X, Y) = DSSD(X)
†DSSD(Y). (14)

The residual error ‖DSSD(Y) − DSSD(X)KSSD‖F is equal to zero and
KSSD fully captures the behavior of the available data. Moreover,

4

M. Haseli and J. Cortés Automatica 153 (2023) 111001

one can replace D and KEDMD in (11)–(12) by DSSD and KSSD to

define approximated Koopman eigenfunctions and linear predic-

tors for the dynamics. Under reasonable assumptions on the data

sampling, span(DSSD) is the maximal Koopman-invariant subspace

in span(D) almost surely and consequently the aforementioned

eigenfunctions and predictors are exact for all points (not just on

the sampled data) in the state space M almost surely. We refer

the reader to Haseli and Cortés (2022) for additional information

about the SSD algorithm, its convergence, and its properties re-

garding the identification of the eigenfunctions of the Koopman

operator. We conclude this section by remarking that the SSD

algorithm is, in fact, an algebraic search.

Remark 2.4 (SSD is an Efficient Algebraic Subspace Search). One
can view the SSD algorithm as an algebraic method that searches

through all subspaces of a finite-dimensional vector space of

functions. In fact, in Algorithm 1, one can view span(D) as the

space we search through, and the space span(DSSD) (solution of

SSD) as the maximal Koopman-invariant subspace (almost surely)

in our search space span(D). For example, if use the SSD algo-

rithm on the system in Example 2.1 and set span(D2) as our

search space, we find the subspace span(D1), which is Koopman

invariant and leads to exact prediction. �

3. Problem statement

We start by noting that one can view the SSD and EDMD

methods described in Section 2 as the two extreme cases in the

trade-off between prediction accuracy and dictionary expressive-

ness. This is because, on the one hand, the SSD predictor provides

almost surely exact predictions for functions in span(DSSD) but,

due to the pruning of the original dictionary D, this might not be

sufficiently expressive to capture the system dynamics. EDMD, on

the other hand, provides predictions for all functions in span(D),

but there is no guarantee on the accuracy of this prediction.

Our goal is then to explore the accuracy-expressiveness spec-

trum in-between the extreme cases of SSD and EDMD. To do

this, we seek to provide a formal data-driven characterization of

how close a function space is to being invariant under the Koop-

man operator (something we refer to as invariance proximity).

Equipped with this notion, we also aim to develop fast algebraic

methods that can find finite-dimensional function spaces that

meet a desired level of invariance proximity. Throughout the

paper we do not assume any information about the dynamical

system except the existence of a finite data set of snapshots

gathered from its trajectories.

Formally, given the original dictionary D defined in (7), data

snapshots matrices X, Y gathered from the dynamical system (1)

defined in (6), and assuming that Assumption 2.2 holds, we seek

to:

(a) provide a measure to quantify the invariance proximity of
span of any dictionary D̃ with elements in span(D) solely

based on available data X, Y ;

(b) provide an algebraic algorithm that searches through the
subspaces of span(D) and finds a dictionary D̃, where
span(D̃) ⊆ span(D) meets a desired level of invariance

proximity;

(c) such that span(D̃) contains the maximal Koopman-invariant

subspace in span(D).

Requirement (c) ensures the correctness of the algorithmic solu-

tion by ensuring the maximal Koopman-invariant subspace and

all Koopman eigenfunctions in span(D) are captured.

4. ǫ-Apart spaces measure invariance proximity

In this section we provide a quantifiable measure for invari-
ance proximity of a subspace by studying the behavior of EDMD
with respect to its dictionary. Since the true system dynamics is
unknown, this measure must be based on the available data ma-
trices X and Y . To gain a deeper understanding about the behavior
of the data-dictionary pair, we offer the following interpretation
of the action of the solution KEDMD of the optimization (8) as
a projection from R(D(Y)) onto R(D(X)). To see this, let w ∈
R(D(Y)) be a vector of the form of D(Y)v. Using (9),

D(X)KEDMDv = D(X)D(X)†D(Y)v

= D(X)D(X)†w = PD(X)w,

where we have used that D(X)D(X)† is the projection operator
on R(D(X)). Using this projection viewpoint alongside (8) reveals
that the residual error ‖D(Y)−D(X)KEDMD‖F of EDMD, and conse-
quently its accuracy on the available data, depends of how close
the subspaces R(D(X)) and R(D(Y)) are. In fact, note that

• If D spans a Koopman-invariant subspace, we have
R(D(Y)) = R(D(X)) and the residual error of EDMD is equal
to zero independently of the data (as long as Assumption 2.2
holds). In this case, EDMD captures complete dynamical
information about the evolution of all functions in span(D)
and the predictor in (11) is exact;

• instead, if R(D(X)) ⊥ R(D(Y)), one can deduce that under
Assumption 2.2, KEDMD = 0Nd×Nd

and EDMD captures no
information about the dynamics. In particular, the residual
error ‖D(Y) − KEDMDD(X)‖F = ‖D(Y)‖F amounts to 100%
prediction error for D(Y).

We illustrate next the aforementioned cases.

Example 4.1 (Dependence of EDMD’s Prediction on Data and Dic-
tionary). Consider the discrete-time system x+ = 1 − x with
state space M = R. Suppose that we gather 2m data snapshots
(m ∈ N) from a single trajectory with length 2 m + 1 starting
from the initial condition x0 = 0. Hence, X = [0, 1, 0, . . . , 1]T
and Y = [1, 0, 1, . . . , 0]T . If we choose our dictionary as D(x) =
[1, x] (which spans a Koopman-invariant subspace), EDMD cap-
tures complete information about the dynamics. However, if we
remove the constant function from the dictionary, the new dic-
tionary snapshots matrices are equal to X and Y , and span or-
thogonal subspaces. In this case, KEDMD = 0 and EDMD does not
capture any information about the dynamics. �

These observations suggest that the proximity of the vector
spaces R(D(X)) and R(D(Y)) can be used as a quantifiable charac-
terization for invariance proximity of span(D) and consequently
the prediction accuracy of EDMD. This motivates the following
definition.

Definition 4.2 (ǫ-Apart Subspaces). Given ǫ ≥ 0, two vector
spaces S1, S2 ⊆ Rp are ǫ-apart if ‖PS1v − PS2v‖2 ≤ ǫ‖v‖2, for
all v ∈ S1 ∪ S2. �

According to this definition,2 the norm of the error induced
by projecting a vector v belonging to one of the subspaces onto
the other subspace is smaller than ǫ‖v‖2. Next, we show that this
notion fully characterizes equality of spaces with the case ǫ = 0.

Lemma 4.3 (0-apart Subspaces are Equal). Vector spaces S1, S2 ⊆
Rp are 0-apart if and only if S1 = S2.

2 Note that, unlike Grassmannians, e.g. Absil et al. (2009), there is no

restriction on the dimension of the subspaces in Definition 4.2.

5

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Proof. (⇒): Let v ∈ S1. By definition, ‖PS1v − PS2v‖2 = ‖v −
PS2v‖2 = 0, and hence v = PS2v. Consequently, v ∈ S2, showing
S1 ⊆ S2. The inclusion S2 ⊆ S1 can be proved analogously, and we
conclude S1 = S2.

(⇐): Since S1 = S2, for all v ∈ S1 = S2, we have PS1v = PS2v =
v. Hence, ‖PS1v − PS2v‖2 = 0, for all v ∈ S1 ∪ S2, and the result
follows. �

The next result shows that all subspaces are 1-apart.

Lemma 4.4 (Any Two Subspaces are 1-apart). Any two vector spaces
S1, S2 ⊆ Rp are 1-apart.

Proof. For any v ∈ S1, one can write

‖PS1v − PS2v‖2 = ‖v − PS2v‖2 = ‖(I − PS2)v‖2 ≤ ‖v‖2,
where in the last equality we have used the fact that (I − PS2)
is the projection operator on the orthogonal complement of S2.
One can write a similar argument for v ∈ S2, which completes
the proof. �

Lemmas 4.3–4.4 together imply that the range [0, 1] for the
parameter ǫ fully characterizes the proximity of any two sub-
spaces. This enables us to use the concept of ǫ-apart subspaces
on D(X) and D(Y) as a way to quantify the invariance proximity
of span(D) under the Koopman operator associated with the
system (1). Equipped with this, we reformulate next the problems
(b)–(c) in Section 3.

Problem 4.5 (Balancing Prediction Accuracy and Expressiveness).
Given the parameter ǫ ∈ [0, 1], find a dictionary D̃ with elements
in span(D) such that

(b) R(D̃(X)) and R(D̃(Y)) are ǫ-apart;

(c) span(D̃) contains the maximal Koopman-invariant subspace
in span(D). �

It is worth mentioning that

ǫ∗ = min{ǫ ∈ [0, 1] | R(D(X)),R(D(Y)) are ǫ-apart}
captures the invariance proximity, and consequently the predic-
tion accuracy, of D. As a result, if we choose ǫ < ǫ∗ in Problem 4.5,
the new dictionary would be smaller than D, leading to a de-
crease of the expressiveness of the resulting dictionary. Hence,
the choice of parameter ǫ strikes a balance between prediction
accuracy and expressiveness of the dictionary.

5. Tunable symmetric subspace decomposition

In this section, we design and analyze an algorithm, termed
Tunable Symmetric Subspace Decomposition (T-SSD), to address
Problem 4.5.

5.1. The T-SSD algorithm

Given the dictionary D and data snapshots X , Y , the problem
of finding a dictionary D̃ such that R(D̃(X)) and R(D̃(Y)) are ǫ-
apart can be tackled by pruning D. We next describe informally
the procedure and then formalize it in Algorithm 2.

[Informal description:] The pruning consists of identifying the
functions that violate the desired invariance proximity condition
and remove them from the span of the dictionary. To identify
such functions, we define the projection difference matrix (Step 6
in Algorithm 2)

G = PD(X) − PD(Y) = D(X)D(X)† − D(Y)D(Y)†,

which is a symmetric matrix with mutually orthogonal eigenvec-
tors spanning RN (with corresponding real-valued eigenvalues).

Interestingly, if all eigenvalues of G belong to [−ǫ, ǫ], then D(X)

and D(Y) are ǫ-apart. Otherwise, we focus our attention on the

smaller subspace of RN defined by

Wǫ := span{v ∈ RN | Gv = λv, |λ| ≤ ǫ},

corresponding to the span of eigenvectors of G with eigenvalues

in [−ǫ, ǫ]. For practical reasons, we work with a basis for Wǫ

(Step 7 in Algorithm 2). Next, we find the largest dictionary D̃
with elements in span(D) such that R(D̃(X)),R(D̃(Y)) ⊆ Wǫ

(Steps 8–9 in Algorithm 2). There are two possible outcomes:

(i) dim D̃ = dimD;

(ii) dim D̃ < dimD.

Scenario (i) indicates that the dictionary D does not need pruning

and R(D(X)),R(D(Y)) are ǫ-apart (Steps 15–17 in Algorithm 2).

On the other hand, scenario (ii) leads to a dictionary of lower di-
mension. However, it is not guaranteed that R(D̃(X)) and R(D̃(Y))
are ǫ-apart since D̃ is a different dictionary than D. Consequently,

we re-run the process, starting with the definition of G, for the
new dictionary D̃. This leads to an iterative implementation that

stops when the dictionary cannot be reduced anymore (yielding

the desired ǫ-apart subspaces).

The formalization of this procedure yields the Tunable Sym-

metric Subspace Decomposition (T-SSD)3 in Algorithm 2. We

make the following additional observations regarding the use of

notation to provide intuition about the algorithm pseudocode:

(i) we index the internal matrix variables based on the iteration

number (this facilitates later the in-depth algebraic analysis);

(ii) noting that, at each iteration, the dictionary elements are

linear combinations of the elements of the original dictionary, we

represent the dictionary at iteration i simply by a matrix Ci, which

corresponds to the dictionary D(·)Ci; (iii) using the representation

in (ii), we do not need to form the dictionary and apply it on

the data matrices X and Y . Instead, the effect of the dictionary

at iteration i on the data can be represented as Ai = D(X)Ci and

Bi = D(Y)Ci.

Algorithm 3 describes the Symmetric-Intersection function in

Step 8 of T-SSD: this strategy corresponds to the computation
described above of the largest dictionary D̃ such that R(D̃(X)) and
R(D̃(Y)) belong to the reduced subspace Wǫ . Similarly to Algo-

rithm 2, instead of actually forming the reduced dictionary, Algo-

rithm 3 uses the matrix-based representation of the dictionary.

Next, we explain the steps of the algorithm and the reason behind

its naming. Given input matrices V , A, and B, Step 6 in Algorithm 3

identifies WA such that R(AWA) = R(V)∩R(A) (see Lemma A.1).

Then, again in Step 11, the algorithm (by virtue of Lemma A.1)

finds the matrix ZB such that R(BWAZB) = R(V) ∩ R(BWA). The

output matrix E := basis(WAZB) (cf. Step 13) then specifies the

largest subspaces R(AE), R(BE) both belonging to R(V). Note the

symmetry in this specification: if a linear combination of the

columns of A is in R(V), then the same linear combination of

columns of B belongs to R(V). Moreover, Algorithm 3 breaks and

returns 0 if any of the aforementioned intersections only contain

the zero vector (Steps 2–4 and Steps 7–9).

Remark 5.1 (Implementation of Algorithm 3 on Finite-Precision

Computers). The accuracy of the implementation of Algorithm 3

depends on the calculation of the null space of several matri-

ces, which might be sensitive to round-off errors. To circumvent

this issue, one can set sufficiently small (according to a desired

accuracy level) singular values of the matrices to zero. �

3 In Algorithms 2–3, the outputs of null(A) and basis(A) are matrices whose

columns form orthonormal bases for the null space of A and R(A), respectively.

6

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Algorithm 2 Tunable Symmetric Subspace Decomposition

Inputs: D(X),D(Y) ∈ RN×Nd , ǫ ∈ [0, 1]
1: Procedure T-SSD(D(X),D(Y), ǫ)
2: Initialization
3: i← 0, A0 ← D(X), B0 ← D(Y), C0 ← INd

4: while 1 do
5: i← i+ 1
6: Gi ← Ai−1A

†

i−1 − Bi−1B
†

i−1
⊲ projection difference

7: Vi ← basis(span{v ∈ RN | Giv = λv, |λ| ≤ ǫ})
⊲ eigenpairs corresponding to small eigenvalues

8: Ei ← Symmetric-Intersection(Vi, Ai−1, Bi−1)
⊲ Find largest dictionary matrices in Vi (Algorithm 3)

9: Ci ← Ci−1Ei ⊲ reduce subspace
10: Ai ← Ai−1Ei, Bi ← Bi−1Ei

⊲ calculate new dictionary matrices

11: if Ei = 0 then
12: return 0

⊲ subspace does not exist, returning scalar 0

13: break
14: end if
15: if ♯rows(Ei) ≤ ♯cols(Ei) then
16: return Ci ⊲ procedure is complete
17: break
18: end if
19: end while

Algorithm 3 Symmetric Intersection

Inputs: V ∈ Rn×m and A, B ∈ Rn×p

1: Procedure Symmetric-Intersection(V , A, B)
2: if null([V , A]) = ∅ then
3: return 0
4: break
5: else

6:

[

WV

WA

]

← null([V , A])

⊲ ♯cols(V) = ♯rows(WV), ♯cols(A) = ♯rows(WA)
7: if null([V , BWA]) = ∅ then
8: return 0
9: break

10: end if

11:

[

ZV
ZB

]

← null([V , BWA])

⊲ ♯cols(V) = ♯rows(ZV), ♯cols(BWA) = ♯rows(ZB)
12: end if
13: return basis(WAZB) ⊲ Returning an orthogonal basis

5.2. Basic properties of T-SSD

Our end goal now is to show that the T-SSD algorithm solves

Problem 4.5 and unveil its relationship with the EDMD and SSD

methods. In order to do so, we establish here several basic algo-

rithm properties.

Proposition 5.2 (Properties of Symmetric-Intersection). Let matri-

ces V , A, B have full column rank and E = Symmetric-Intersection

(V , A, B). Then,

(a) E = 0 or ETE = I;

(b) R(AE),R(BE) ⊆ R(V);

(c) E is maximal, i.e., any nonzero matrix F such that R(AF),
R(BF) ⊆ R(V) satisfies R(F) ⊆ R(E).

Proof (a). There are three ways for Algorithm 3 to terminate. If
the algorithm executes Steps 2–4 or Steps 7–9, we have E = 0
by definition. Otherwise, the algorithm executes Step 13. Hence,
noting that WA and ZB exist and the basis function returns an
orthonormal basis for WAZB, one can conclude ETE = I .

(b) The case E = 0 is trivial. Suppose that E 6= 0 and hence
has full column rank according to part (a). By definition, R(E) =
R(WAZB). Consequently, based on Step 11 of the algorithm and
using Lemma A.1, we deduce

R(BE) = R(BWAZB)

= R(BWA) ∩R(V) ⊆ R(V), (15)

where in the first equality, we used Lemma A.2. Moreover, from
the definition of E, one can deduce that R(E) ⊆ R(WA). In
addition, based on Lemma A.2, we have R(AE) ⊆ R(AWA). Using
the previous inequality in conjunction with Lemma A.1 applied
to Step 6 of the algorithm, one can write

R(AE) ⊆ R(AWA) = R(A) ∩R(V) ⊆ R(V), (16)

which in conjunction with (15) concludes the proof of (b).
(c) Without loss of generality, we assume that F has full

column rank (if that is not the case, one can consider another
matrix F̄ with full column rank such that R(F) = R(F̄)). Since
R(AF) ⊆ R(V), we have R(AF) ⊆ R(A) ∩ R(V), which leads to
R(AF) ⊆ R(AWA) based on the equality in (16). Moreover, one
can use Lemma A.2 to deduce that R(F) ⊆ R(WA). Since F and
WA both have full column rank, there exists FW with full column
rank such that

F = WAFW . (17)

Considering that R(BF) ⊆ R(V) and R(BWAFW) ⊆ R(BWA)
in combination with (17), we deduce R(BF) = R(BWAFW) ⊆
R(BWA) ∩ R(V) = R(BWAZB), where the last equality follows
from the second equality in (15). Based on Lemma A.2, we deduce
R(F) ⊆ R(WAZB) = R(E). �

Next, we show that T-SSD terminates after a finite number of
iterations.

Proposition 5.3 (Finite-time Termination of T-SSD Algorithm). The
T-SSD algorithm terminates after at most Nd iterations.

Proof. We reason by contradiction. Suppose that the algorithm
does not terminate before iteration Nd + 1. Hence, the algorithm
does not execute Steps 12–13 or Steps 16–17 in the first Nd

iterations. Therefore, the conditions in Steps 11 and 15 do not
hold. Using Proposition 5.2(a), one can write

♯rows(Ei) > ♯rows(Ei)− 1 ≥ ♯cols(Ei), (18)

for all i ∈ {1, . . . ,Nd}. In addition, based on the definition
of the Ei’s, one can deduce ♯cols(Ei) = ♯rows(Ei+1), for all
i ∈ {1, . . . ,Nd}. Combining this with (18) leads to ♯rows(E1) ≥
♯cols(ENd

) + Nd. This fact together with ♯rows(E1) = Nd and
♯cols(ENd

) = ♯cols(CNd
) (cf. Step 9) implies that ♯cols(CNd

) ≤ 0,
contradicting ♯cols(CNd

) ≥ 1. �

Next, we study basic properties of the internal matrices of the
T-SSD algorithm.

Lemma 5.4 (Properties of T-SSD Matrices). Let the T-SSD algorithm
terminate in L time steps. Then,

(a) ∀i ∈ {0, . . . , L− 1}, R(Ci+1) ⊆ R(Ci);

7

M. Haseli and J. Cortés Automatica 153 (2023) 111001

(b) ∀i ∈ {0, . . . , L− 1}, CT
i Ci = I;

(c) CL = 0 or CT
L CL = I ,

where Ci denotes T-SSD’s ith internal matrix, cf. Algorithm 2.

Proof (a). According to Step 9 of the algorithm, Ci+1 = CiEi+1.
Hence, R(Ci+1) = R(CiEi+1) ⊆ R(Ci).

(b) For i = 0, the result holds by definition. Moreover, since

the algorithm does not terminate until iteration L, it does not

execute Steps 12–13 in iterations {1, . . . , L − 1}. Hence, Ei 6= 0

and based on Proposition 5.2(a), we have

ET
i Ei = I, ∀i ∈ {1, . . . , L− 1}. (19)

Moreover, from Step 9, Ci = C0E1E2 · · · Ei, ∀i ∈ {1, . . . , L − 1}.
This in conjunction with (19) and C0 = INd

, implies CT
i Ci = I for

all i ∈ {1, . . . , L− 1}, as claimed.

(c) Note that CL = CL−1EL. Based on Proposition 5.2(a), either

EL = 0 or ET
L EL = I . In the former case, we have CL = 0. In the

latter case, CT
L CL = ET

L C
T
L−1CL−1EL = ET

L EL = I , where in the first

equality we used (b). �

For convenience, let

CT-SSD := T-SSD(D(X),D(Y), ǫ), (20)

denote the output of the T-SSD algorithm. This leads to the

definition of the T-SSD dictionary

DT-SSD(·) := D(·)CT-SSD. (21)

To extract the dynamical information associated with the Koop-

man operator on span(DT-SSD), we use EDMD. According to (9), we

find the T-SSD prediction matrix as

KT-SSD := EDMD(DT-SSD, X, Y) = DT-SSD(X)
†DT-SSD(Y). (22)

We can also define approximated Koopman eigenfunctions ac-

cording to (12) using the eigendecomposition of KT-SSD and the

dictionary DT-SSD. In addition, following (11), given any function

f ∈ span(DT-SSD) described by f (·) = DT-SSD(·)w, we can define the

T-SSD predictor of Kf on span(DT-SSD) as

PT-SSD
Kf (·) = DT-SSD(·)KT-SSDw. (23)

Remark 5.5 (Computational Complexity of T-SSD). Given N data

snapshots and Nd dictionary functions, and considering the com-

plexity of scalar operations as O(1), the most time-consuming

step of Algorithm 2 is Step 7, which requires the eigendecom-

position of an N × N matrix and takes O(N3) operations. Based

on Proposition 5.3, the algorithm terminates after at most Nd

iterations, resulting in a total complexity of O(N3Nd). �

6. T-SSD balances accuracy and expressiveness

In this section we show that the output of T-SSD balances pre-

diction accuracy and expressiveness as prescribed by the design

parameter ǫ ∈ [0, 1].

6.1. T-SSD identifies ǫ-apart subspaces

Here, we show that T-SSD solves Problem 4.5(b).

Theorem 6.1 (T-SSD Output Subspaces are ǫ-Apart). R(DT-SSD(X))

and R(DT-SSD(Y)) are ǫ-apart.

Proof. Let L ≤ Nd be the number of iterations for conver-

gence of the T-SSD algorithm (cf. Proposition 5.3). Based on

Proposition 5.2(a), we have EL = 0 or ET
L EL = I . With the no-

tation of Algorithm 2, in the former case, the algorithm executes

Steps 12–13 at iteration L and consequently CT-SSD = 0. Therefore,

R(DT-SSD(X)) = R(DT-SSD(Y)) = {0N×1},

and the result holds trivially. Now, suppose that ET
L EL = I . Hence,

EL has full column rank and consequently ♯rows(EL) ≥ ♯cols(EL).

However, since the algorithm executes Steps 16–17, the condition

in Step 15 holds and one can write ♯rows(EL) = ♯cols(EL).

Therefore, since EL has full column rank, it is a nonsingular square

matrix and

R(CL) = R(CL−1EL) = R(CL−1), (24a)

R(AL) = R(AL−1EL) = R(AL−1), (24b)

R(BL) = R(BL−1EL) = R(BL−1). (24c)

At iteration L, one can use Steps 6 and 7 in conjunction with the

fact that the eigenvectors of GL are mutually orthogonal to write

‖GLv‖2 = ‖AL−1A
†

L−1v − BL−1B
†

L−1v‖2
= ‖PAL−1v − PBL−1v‖2 ≤ ǫ‖v‖2, (25)

for all v ∈ R(VL). Moreover, based on definition of EL and

Proposition 5.2(b),

R(AL−1EL),R(BL−1EL) ⊆ R(VL). (26)

Consequently, using AL = D(X)CL and BL = D(Y)CL, and Eqs. (24)–

(26), we deduce

‖PD(X)CLv − PD(Y)CLv‖2 = ‖PALv − PBLv‖2
= ‖PAL−1v − PBL−1v‖2 ≤ ǫ‖v‖2,

for all v ∈ R(D(X)CL) ∪ R(D(Y)CL). Since CL = CT-SSD, and

given the definition (21) of the T-SSD dictionary, this can be

rewritten as ‖PDT-SSD(X)v − PDT-SSD(Y)v‖2 ≤ ǫ‖v‖2, for all v ∈
R(DT-SSD(X))∪R(DT-SSD(Y)). Hence, R(DT-SSD(X)) and R(DT-SSD(Y))

are ǫ-apart. �

We next build on Theorem 6.1 to characterize the accuracy of

predictor (23) for any function in span(DT-SSD) on the available

data.

Theorem 6.2 (Relative Root Mean Square Error (RRMSE) of Koop-

man Predictions by T-SSD is Bounded by ǫ). For any nonzero function

f ∈ span(DT-SSD),
√

1
N

∑N
i=1 |Kf (xi)−PT-SSD

Kf (xi)|2
√

1
N

∑N
i=1 |Kf (xi)|2

≤ ǫ (27)

where xTi is the ith row of X and PT-SSD
Kf is defined in (23).

Proof. For convenience, we use the compact notation D̃ to refer

to DT-SSD throughout the proof. We first prove the statement
for real-valued functions in span(D̃). Let f (·) = D̃(·)w with

w ∈ R♯cols(CT-SSD). From Theorem 6.1, one can write ‖(PD̃(Y) −
PD̃(X))v‖2 ≤ ǫ‖v‖2, for all v ∈ R(D̃(X))∪R(D̃(Y)). One can rewrite

this equation as

‖(D̃(Y)D̃(Y)† − D̃(X)D̃(X)†)v‖2 ≤ ǫ‖v‖2, (28)

for all v ∈ R(D̃(X))∪R(D̃(Y)). In addition, using Eqs. (22) and (23),

and the fact that Kf (xi) = f ◦ T (xi) = f (yi) for all i ∈ {1, . . . ,N},
8

M. Haseli and J. Cortés Automatica 153 (2023) 111001

one can write
√

√

√

√

N
∑

i=1

∣

∣Kf (xi)−PT-SSD
Kf (xi)

∣

∣

2 = ‖(D̃(Y)− D̃(X)KT-SSD)w‖2

= ‖(D̃(Y)− D̃(X)D̃(X)†D̃(Y))w‖2
= ‖

(

D̃(Y)D̃(Y)† − D̃(X)D̃(X)†
)

D̃(Y)w‖2,

where we have used D̃(Y) = D̃(Y)D̃(Y)†D̃(Y) in the last equality.
Moreover, since D̃(Y)w ∈ R(D̃(X)) ∪ R(D̃(Y)), one can use this
equation in conjunction with (28) to write
√

√

√

√

N
∑

i=1

∣

∣Kf (xi)−PT-SSD
Kf (xi)

∣

∣

2 ≤ ǫ‖D̃(Y)w‖2

= ǫ

√

√

√

√

N
∑

i=1
|Kf (xi)|2.

Scaling both sides by N−
1
2 yields (27) for nonzero real-valued

functions in span(D̃).
For the complex-valued case, let f (·) = D̃(·)w with w =

wre + jwim, wre, wim ∈ R♯cols(CT-SSD) and wim 6= 0.
Consider the decompositions of f and PT-SSD

Kf as f (·) = fre(·)+
jfim(·) and PT-SSD

Kf (·) = PT-SSD
Kfre

(·)+ jPT-SSD
Kfim

(·), where

fre(·) = D̃(·)wre, fim(·) = D̃(·)wim, (29)

PT-SSD
Kfre

(·) = D̃(·)KT-SSDwre, PT-SSD
Kfim

(·) = D̃(·)KT-SSDwim.

Using (27) for the real-valued functions in (29),

N
∑

i=1
|Kfre(xi)−PT-SSD

Kfre
(xi)|2 ≤ ǫ2

N
∑

i=1
|Kfre(xi)|2,

N
∑

i=1
|Kfim(xi)−PT-SSD

Kfim
(xi)|2 ≤ ǫ2

N
∑

i=1
|Kfim(xi)|2.

By adding these two inequalities, using (29), and noting that
|g|2 = |gre|2 + |gim|2 for g = gre + jgim, one can write

N
∑

i=1
|Kf (xi)−PT-SSD

Kf (xi)|2 ≤ ǫ2

N
∑

i=1
|Kf (xi)|2,

and (27) follows. �

Theorem 6.2 ensures that each member of the vector space of
functions identified by T-SSD has prediction error bounded by the
accuracy parameter ǫ.

Remark 6.3 (T-SSD Bounds the Relative L2-norm Error of Koopman
Predictions under Empirical Measure by ǫ). Given the functions in
span(D) and their composition with T are measurable, consider

the empirical measure µ = 1
N

∑N
k=1 δxk , where δxk denotes the

Dirac delta function at xk, the kth row of X . Then Theorem 6.2
can be rewritten as

‖Kf −PT-SSD
Kf ‖L2

‖Kf ‖L2
≤ ǫ, ∀f ∈ span(DT-SSD) \ {0},

where the L2-norm is calculated with respect to the empirical
measure µ. �

6.2. T-SSD captures maximal Koopman-invariant subspace

Here, we show that T-SSD also solves Problem 4.5(c). To do
this, we study the relationship of the algorithm with Koopman
eigenfunctions and invariant subspaces. We first show that the T-
SSD matrices capture the maximal Koopman-invariant subspace
in the span of the original dictionary D.

Theorem 6.4 (T-SSD Matrices Capture the Maximal Koopman-
Invariant Subspace). Let Imax denote the maximal Koopman-
invariant subspace in span(D) and let Cmax be a full-column rank
matrix such that D(·)Cmax spans Imax (if Imax = {0}, we set Cmax =
0). Then, for any ǫ ∈ [0, 1],
R(Cmax) ⊆ R(Ci), ∀i ∈ {0, . . . , L},
where L and Ci denote, respectively, the termination step and the ith
internal matrix of T-SSD.

Proof. The result holds trivially if Imax = {0}. For the case Imax 6=
{0}, we reason by induction. For i = 0, columns of C0 span the
whole space. Hence, R(Cmax) ⊆ R(C0). Next, assume R(Cmax) ⊆
R(Ci) for i ∈ {0, 1, . . . , L−1} and let us prove R(Cmax) ⊆ R(Ci+1).
The invariance of Imax implies that R(D(X)Cmax) = R(D(Y)Cmax).
Using the definition of matrices A0, B0 in Algorithm 2, this can be
equivalently written as R(A0Cmax) = R(B0Cmax). Since R(Cmax) ⊆
R(Ci), using Lemma A.2, we deduce

R(A0Cmax) ⊆ R(A0Ci), R(B0Cmax) ⊆ R(B0Ci).

Hence, PA0Ciw = w = PB0Ciw, for all w ∈ R(A0Cmax) = R(B0Cmax),
or equivalently,

‖PA0Ciw − PB0Ciw‖2 = 0,

∀w ∈ R(A0Cmax) = R(B0Cmax). (30)

Now, noting that Ai = A0Ci and Bi = B0Ci, one can use Step 6 of
Algorithm 2 and write Gi+1v = PA0Civ−PB0Civ, for all v ∈ RN . This,
combined with (30), yields R(A0Cmax) = R(B0Cmax) ⊆ null(Gi+1).
Therefore, since the eigenvectors of Gi+1 with zero eigenvalue
span null(Gi+1), we deduce from Step 7,

R(A0Cmax) = R(B0Cmax) ⊆ R(Vi+1). (31)

Based on the induction hypothesis R(Cmax) ⊂ R(Ci), and noting
that Cmax and Ci have full column rank (Cmax by definition and
Ci from Lemma 5.4(b)), there exists a full-column rank matrix Fi
such that

Cmax = CiFi. (32)

Now, using (31)–(32), in conjunction with Proposition 5.2(c), we
deduce R(Fi) ⊆ R(Ei+1). Consequently, one can use Lemma A.2
and write R(Cmax) = R(CiFi) ⊆ R(CiEi+1) = R(Ci+1), concluding
the proof. �

Theorem 6.4 implies that the subspace identified by T-SSD
contains the maximal Koopman-invariant subspace in span(D).

Corollary 6.5 (T-SSD Subspace Contains the Maximal Koopman-
Invariant Subspace). Let Imax be the maximal Koopman-invariant
subspace in span(D). Given ǫ ∈ [0, 1], let CT-SSD and DT-SSD be the
output and dictionary identified by T-SSD according to (20)–(21).
Then, Imax ⊆ span(DT-SSD).

The next result shows that the eigendecomposition of KT-SSD

captures all Koopman eigenfunctions (and corresponding eigen-
values) in the span of the original dictionary.

Proposition 6.6 (KT-SSD Captures All Koopman Eigenfunctions in
span(D)). Let φ be a Koopman eigenfunction in span(D) with eigen-
value λ. For ǫ ∈ [0, 1], let KT-SSD in (22) be the T-SSD predictor
matrix. Then, φ ∈ span(DT-SSD) and there exists w with KT-SSDw =
λw such that φ(·) = DT-SSD(·)w.

Proof. Note that φ must belong to the maximal Koopman-
invariant subspace Imax in span(D) which, from Corollary 6.5,
is included in span(DT-SSD) = span(D(·)CT-SSD). Therefore, there
exists a complex vector w of appropriate size such that φ(·) =

9

M. Haseli and J. Cortés Automatica 153 (2023) 111001

DT-SSD(·)w. Using now the interpretation of KT-SSD as the EDMD so-
lution with dictionary DT-SSD and data X , Y , it follows from Haseli
and Cortés (2022, Lemma 4.1(b)) that KT-SSDw = λw, as
claimed. �

Proposition 6.6 states that all eigenfunctions in the span of the
original dictionary D belong to the set of approximated eigenfunc-
tions calculated with the dictionary DT-SSD defined by T-SSD.

Remark 6.7 (Monotonicity of T-SSD Subspaces). In general, the out-
put of the T-SSD algorithm is not monotonic as a function of the
design parameter ǫ, i.e., it might be the case that span(D

ǫ1
T-SSD) 6⊂

span(D
ǫ2
T-SSD) for ǫ1 < ǫ2. In case monotonicity is desirable for

a specific application, one can modify Step 7 of Algorithm 2 to
remove only the eigenvector with the largest eigenvalue (in mag-
nitude) that exceeds the desired accuracy level. This modification
ensures monotonicity in ǫ at the cost of requiring the modified
algorithm more iterations to terminate. All the results remain
valid for the modified version of the algorithm. �

7. EDMD and SSD are special cases of T-SSD

Consistent with our assertion that T-SSD balances accuracy
and expressiveness, here we show that EDMD on the original
dictionary (maximum expressiveness) corresponds to T-SSD with
ǫ = 1 and that SSD (maximum accuracy) corresponds to T-SSD
with ǫ = 0.4 We start by showing an important property of
EDMD.

Lemma 7.1 (Linear Transformations Do not Change the Information
Extracted by EDMD). Let D1 and D2 be two dictionaries such that
D1(·) = D2(·)R, with R invertible. Let Assumption 2.2 hold for both
dictionaries given data matrices X and Y . Define

K 1
EDMD = EDMD(D1, X, Y) = D1(X)

†D1(Y),

K 2
EDMD = EDMD(D2, X, Y) = D2(X)

†D2(Y).

Then, K 1
EDMD = R−1K 2

EDMDR. Therefore, (λ, v) is an eigenpair of K 1
EDMD

if and only if (λ, Rv) is an eigenpair of K 2
EDMD.

Proof. Based on Assumption 2.2, we have K 1
EDMD =

(

D1(X)
T

D1(X)
)−1

D1(X)
TD1(Y). Using D1(·) = D2(·)R,

K 1
EDMD =

(

RTD2(X)
TD2(X)R

)−1
RTD2(X)

TD2(Y)R

= R−1
(

D2(X)
TD2(X)

)−1
D2(X)

TD2(Y)R

= R−1D2(X)
†D2(Y)R = R−1K 2

EDMDR.

The rest follows from the properties of similarity transformat -
ions. �

Lemma 7.1 states that the dynamical information captured by
the EDMD algorithm remains the same under linear transforma-
tion of the dictionary. Note that the result does not require the
dictionaries to span a Koopman-invariant subspace. We are ready
to show that EDMD applied to the original dictionary is a special
case of T-SSD.

Theorem 7.2 (EDMD is a Special Case of T-SSD with ǫ = 1). For
ǫ = 1, let DT-SSD be the dictionary identified by T-SSD, cf. (21).
Then, span(DT-SSD) = span(D), and KT-SSD = EDMD(DT-SSD, X, Y)
and KEDMD = EDMD(D, X, Y) are similar and capture the same
dynamical information.

4 We refer to KSSD and KT-SSD as SSD and T-SSD Koopman approximations,

which can be calculated by applying EDMD on dictionaries identified by SSD

and T-SSD respectively.

Proof. In the first iteration of Algorithm 2, one can use Step 6

and the definition of A0 and B0 to write

G1 = A0A
†

0 − B0B
†

0 = PD(X) − PD(Y).

Since G1 is symmetric, its eigenvalues are real. Moreover, they

belong to [−1, 1], see e.g. Anderson et al. (1985, Lemma 1).

Therefore, since ǫ = 1, using Step 7, one can deduce that the

columns of V1 span RN . As a result,

R(D(X)) = R(A0) = R(A0INd
) ⊆ R(V1) = RN ,

R(D(Y)) = R(B0) = R(B0INd
) ⊆ R(V1) = RN .

This, combined with the maximality of E1 defined in Step 8, cf.

Proposition 5.2(c), implies R(INd
) ⊆ R(E1). Hence, E1 is nonzero

and has full column rank (cf. Proposition 5.2(a)). As a result,

nothing that ♯rows(E1) = Nd, we deduce that E1 is a nonsingular

square matrix. Therefore, R(C1) = R(C0E1) = RNd . This and

the fact that E1 is square mean that the condition in Step 15

is met and the algorithm executes Steps 16–17. Consequently,

CT-SSD = C1 is a nonsingular square matrix and span(DT-SSD(·)) =
span(D(·)CT-SSD) = span(D(·)), so DT-SSD is a (potentially different)

basis for the space spanned by D. The rest of the statement

follows from Lemma 7.1. �

The SSD algorithm is also a special case of T-SSD.

Theorem 7.3 (SSD is a Special Case of T-SSD with ǫ = 0). Let
DSSD(·) be the dictionary identified by SSD, cf. (13), and, for ǫ =
0, let DT-SSD be the dictionary identified by T-SSD, cf. (21). Then,

span(DT-SSD) = span(DSSD), and KT-SSD = EDMD(DT-SSD, X, Y)

and KSSD = EDMD(DSSD, X, Y) are similar and capture the same

dynamical information.

Proof. Since ǫ = 0, Theorem 6.1 implies that R(D(X)CT-SSD) and

R(D(Y)CT-SSD) are 0-apart. Therefore, from Lemma 4.3,

R(D(X)CT-SSD) = R(D(X)CT-SSD). This, together with

Theorem 2.3(c), implies

R(CT-SSD) ⊆ R(CSSD). (33)

If CSSD = 0, then CT-SSD = 0, and the proof is complete. Suppose

instead that CSSD 6= 0, with full column rank, cf. Theorem 2.3(a).

We use induction to prove that R(CSSD) ⊆ R(Ci), where Ci is the

internal matrix of the T-SSD algorithm for i ∈ {0, . . . , L} and L is

the iteration at which it terminates. When i = 0, the columns of

C0 = INd
span RNd and, therefore, R(CSSD) ⊆ R(C0). Assume then

that R(CSSD) ⊆ R(Ci) for i ∈ {0, . . . , L− 1}, and let us prove that

R(CSSD) ⊆ R(Ci+1).
Based on Theorem 2.3(b), we haveR(D(X)CSSD) = R(D(Y)CSSD).

This, together the definition of matrices A0, B0 in Algorithm 2 and

the fact that R(CSSD) ⊆ R(Ci), yields

PA0Ciw = PB0Ciw = w, (34)

for all w ∈ R(A0CSSD) = R(B0CSSD). Now, since Ai = A0Ci and

Bi = B0Ci at iteration i + 1 of the T-SSD algorithm, Gi+1v =
PA0Civ − PB0Civ, for all v ∈ RN . This, together with (34), implies

thatR(A0CSSD) = R(B0CSSD) ⊆ null(Gi+1). Since ǫ = 0, from Step 7

we know that Vi+1 is a basis for null(Gi+1), and therefore

R(A0CSSD) = R(B0CSSD) ⊆ R(Vi+1). (35)

By the induction hypothesis R(CSSD) ⊆ R(Ci). This, together with

the fact that CSSD and Ci have full column rank (the latter because

of Lemma 5.4(b)), implies that there exists a matrix Fi with full

column rank such that

CSSD = CiFi. (36)

10

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Using now (35)–(36) together with the fact that Ai = A0Ci, Bi =
B0Ci, one can invoke Proposition 5.2(c) to deduce that R(Fi) ⊆
R(Ei+1). Consequently,

R(CSSD) = R(CiFi) ⊆ R(CiEi+1) = R(Ci+1).

Hence, the induction is complete and

R(CSSD) ⊆ R(Ci), ∀i ∈ {1, . . . , L}. (37)

Since CSSD is nonzero and has full column rank, one can de-
duce that CL is nonzero and has full column rank as a result of
Lemma 5.4(c). Consequently, the T-SSD algorithm terminates by
executing Steps 16–17. Therefore, CT-SSD = CL and using (33) and
(37), we have R(CT-SSD) = R(CSSD) and consequently span(DT-SSD)
= span(DSSD). The rest of the statement follows from
Lemma 7.1. �

It is worth mentioning that, when implementing T-SSD for
ǫ = 0, we have found it useful to set ǫ to be a small positive
number (instead of zero) to avoid complications by round-off
errors.

Remark 7.4 (Dynamical Properties of T-SSD Subspace with ǫ =
0). Given Theorem 7.3, the subspace identified by T-SSD for
ǫ = 0 enjoys important dynamical properties, cf. Section 2.4:
under reasonable conditions on the density of data sampling,
cf. Haseli and Cortés (2022, Theorems 5.7-5.8), the identified
subspace is the maximal Koopman-invariant subspace in the span
of the dictionary almost surely. Moreover, the eigenfunctions and
predictors identified by T-SSD are almost surely exact. �

8. Efficient implementation of T-SSD

Here, we propose a modification to the implementation of
the T-SSD algorithm on digital computers to increase efficiency.
This is based on the following observation: a close look at the
form of the matrix Gi ∈ RN×N in Step 6 of Algorithm 2 as a
difference of projections reveals that its eigenvectors are either
in or orthogonal to the subspace R(Ai−1) + R(Bi−1), see e.g., An-
derson et al. (1985). However, in Step 8, the matrix Ei satisfies
R(Ai−1Ei),R(Bi−1Ei) ⊆ R(Vi). Hence, the Symmetric-Intersection
function filters out all eigenvectors of Gi that are orthogonal to
R(Ai−1)+R(Bi−1), i.e., these eigenvectors are never used. This is
despite the fact that, since generally N ≫ Nd, such eigenvectors
form a majority of eigenvectors of Gi (at least N − 2Nd out of N).

This motivates us to seek a method that bypasses the calcula-
tion of the unused eigenvectors of Gi. To achieve this goal, let Hi

be a matrix such that

R(Hi) := R([Ai−1, Bi−1]), HT
i Hi = I♯cols(Hi). (38)

The columns of Hi form an orthonormal basis of R(Ai−1)+R(Bi−1).
One can calculate Hi by applying the Gram–Schmidt process, or
other closely related orthogonal factorization method such as QR
decomposition (see e.g. Trefethen and Bau (1997)), on [Ai−1, Bi−1].
The next result shows that the eigendecomposition of the matrix
HT

i GiHi completely captures the eigendecomposition of Gi on
R(Ai−1)+R(Bi−1).

Proposition 8.1 (Eigenvectors of HT
i GiHi Characterize All Eigenvec-

tors of Gi in R(Ai−1) + R(Bi−1)). Let Gi as defined in Step 6 of
Algorithm 2, and let Hi satisfy (38). Then, w ∈ CNd \ {0} is an
eigenvector of HT

i GiHi with eigenvalue λ if and only if v = Hiw is
an eigenvector of Gi with eigenvalue λ.

Proof. (⇐) By hypothesis, GiHiw = λHiw. Hence, HT
i GiHiw =

λHT
i Hiw = λw (where we have used (38)).

(⇒) By hypothesis, HT
i GiHiw = λw. Using (38), this can be

rewritten as

HT
i (GiHiw − λHiw) = 0. (39)

By definition of Gi, we can write GiHiw = PAi−1 (Hiw)−PBi−1 (Hiw).
From (38), we have R(Ai−1),R(Bi−1) ⊆ R(Hi). Since PAi−1 (Hiw) ∈
R(Ai−1) and PBi−1 (Hiw) ∈ R(Bi−1), we deduce that GiHiw ∈ R(Hi),
and consequently, GiHiw − λHiw ∈ R(Hi). However, from (39),
(GiHiw−λHiw) ∈ null(HT

i). Therefore, since R(Hi) ⊥ null(HT
i), we

conclude GiHiw − λHiw = 0, as claimed. �

Based on Proposition 8.1, we modify T-SSD to achieve higher
computational efficiency. Formally, the Efficient T-SSD algorithm
replaces Steps 6 and 8 of Algorithm 2 by

6.a: Hi ← basis([Ai, Bi])
6.b: Gi ← HT

i (Ai−1A
†

i−1 − Bi−1B
†

i−1)Hi

8: Ei ← Symmetric-Intersection(HiVi, Ai−1, Bi−1)

These steps bypass the computation of the (unused) eigenvectors
of Gi that are orthogonal to R(Ai−1)+R(Bi−1) in the original T-SSD
implementation.

Remark 8.2 (Computational Complexity of Efficient T-SSD). Given N
data snapshots and Nd dictionary functions, and considering the
complexity of scalar operations as O(1), the most time-consuming
steps of Efficient T-SSD are calculating Hi in (38) and the null
space calculations in the function Symmetric-Intersection, which
can be done in O(NN2

d) operations. Since the algorithm terminates
after at most Nd iterations, cf. Proposition 5.3, the overall com-
plexity is O(NN3

d). Compared to T-SSD, cf. Remark 5.5, the efficient

T-SSD algorithm provides a reduction of O(N2N−2d), leading to a
drastic reduction in run time for typical situations, where N ≫
Nd. �

9. Simulation results

Here, we illustrate the effectiveness of our proposed methods
using three examples.

9.1. Hopf normal form

Consider the system (Brunton, Proctor et al., 2016; Marsden &
McCracken, 2012) on M = [−2, 2]2,
ẋ1 = x1 + 2x2 − x1(x

2
1 + x22),

ẋ2 = −2x1 + x2 − x2(x
2
1 + x22), (40)

with state x = [x1, x2]T , which admits an attractive periodic
orbit. We consider the discretized version of (40) with time step
∆t = 0.01 s and gather N = 104 data snapshots in matrices
X and Y , with initial conditions uniformly selected from M. We
consider the space of all polynomials up to degree 10 spanned by

all the Nd = 66 distinct monomials in the form of
∏10

i=1 αi, with
αi ∈ {1, x1, x2} for i ∈ {1, . . . , 10}. To ensure resilience against
machine precision errors and providing informative representa-
tions, we choose a dictionary D with Nd = 66 functions such that
the columns of D(X) are orthonormal.5

We implement the Efficient T-SSD algorithm, cf. Section 8,
with ǫ ∈ {0.02, 0.05, 0.1, 0.15, 0.2}. Table 1 shows the dimension
of the identified dictionary, DT-SSD, versus the value of the design
parameter ǫ. For ǫ = 0.2, T-SSD identifies the original dictionary,

5 This dictionary can be found by first forming a dictionary comprised of the

monomials and then performing a linear transformation on the dictionary to

make the columns orthonormal. The linear transformation does not impact the

captured dynamical information (cf. Lemma 7.1).

11

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Table 1
Dimension of subspace identified by Efficient T-SSD vs. ǫ for (40).

ǫ 0.02 0.05 0.10 0.15 0.20

dimDT-SSD 1 6 8 16 66

Fig. 2. Vector field and periodic orbit of system (40) (left) and the absolute

value of eigenfunction with eigenvalue λ = 0.9066 (right).

Fig. 3. Absolute value (left) and phase (right) of the eigenfunction with

eigenvalue λ = 0.9938+ 0.0195j for (40).

certifying that the range spaces of D(X) and D(Y) are 0.2-apart.

On the other hand, the one-dimensional subspace identified by

ǫ = 0.02 is in fact the maximal Koopman-invariant subspace

of span(D), spanned by the trivial eigenfunction φ(x) ≡ 1 with

eigenvalue λ = 1.

To demonstrate the effectiveness of the T-SSD algorithm in

approximating Koopman eigenfunctions and invariant subspaces,

we focus on the subspace identified with ǫ = 0.05. In accordance

with Proposition 6.6, T-SSD identifies the trivial eigenfunction

φ(x) ≡ 1 spanning the maximal Koopman-invariant subspace

of span(D). T-SSD also approximates another real-valued eigen-

function with eigenvalue λ = 0.9066, whose absolute value is

illustrated in Fig. 2(right). Given that |0.9066| < 1, this eigenfunc-

tion predicts the existence of a forward invariant set (the periodic

orbit in Fig. 2(left)) at its zero-level set.

In addition, T-SSD also identifies two pairs of complex eigen-

functions. For space reasons, we only show in Fig. 3 one eigen-

function with eigenvalue λ = 0.9938 + 0.0195j (the one closest

to the unit circle). Its phase characterizes the oscillation of the

trajectories in the state space.

To illustrate the efficacy of our algorithm regarding the pre-

diction accuracy of the dictionary, we consider the relative linear

prediction error associated with a dictionary D at point x given

data snapshot matrices X and Y defined by

Erelative(x) :=
‖D ◦ T (x)− D(x)K‖2
‖D ◦ T (x)‖2

× 100, (41)

where K = EDMD(D, X, Y). Fig. 4 compares this error on the

state space M for the dictionary DT-SSD identified by T-SSD with

ǫ = 0.05 and for the original dictionary D. This error is evaluated

at points other than the training data X and clearly shows the

advantage of DT-SSD over the original dictionary both in prediction

errors and capturing the radial symmetry of the vector field.

Fig. 4. Relative linear prediction error for dictionary identified by T-SSD (ǫ =
0.05) (left) and the original dictionary (right) for (40).

Table 2
Maximum relative root mean square error vs. ǫ for (40).

ǫ 0.02 0.05 0.10 0.15 0.20

RRMSEmax ∼0 0.037 0.100 0.115 0.185

Noting that the error in (41) depends on the dictionary and
does not provide information about the subspace it spans (or the
individual members of the subspace), we also consider the latter.
For this reason, we use the data sampling strategy used earlier
to build a test data set denoted by snapshot matrices Xtest and
Ytest with Ntest = 104 samples. Given a dictionary D, we evaluate
the invariance proximity of span(D) as the smallest ǫ such that
R(D(Xtest)) and R(D(Ytest)) are ǫ-apart. This data-driven measure
is equivalent to the maximum relative root mean square error
for a function in the span of a given dictionary D on the test data
defined as

RRMSEmax(D, Xtest, Ytest)

= max
f∈span(D)\{0}

√

1
Nt

∑Nt
i=1 |Kf (xi)−PT-SSD

Kf |2
√

1
Nt

∑Nt
i=1 |Kf (xi)|2

, (42)

where xTi and yTi correspond to the ith rows of Xtest and Ytest

respectively, yi = T (xi), and T is the map defining the dynam-
ics (40). The predictor PT-SSD

Kf is defined in (23) and calculated
based on the test data. It is important to note that the evaluation
of the error in (42) goes beyond the assumptions of Theorem 6.2,
since the dictionary is identified with the original data X, Y ,
but the error is evaluated on the test data Xtest, Ytest (instead,
the guarantee of Theorem 6.2 is only valid when the error is
evaluated on the original data). Following the reasoning in the
proof of Theorem 6.2 and Definition 4.2, one can analytically show
that

RRMSEmax(D, Xtest, Ytest) = λmax(PD(Xtest) − PD(Ytest)),

where λmax denotes the largest eigenvalue of the argument. Ta-
ble 2 shows the maximum relative root mean square error for
the subspaces identified by T-SSD given different values of ǫ.
According to Table 2, despite the fact that we have used different
data for identification and evaluation, the error on the test data
satisfies the upper bound accuracy requirement enforced by the
accuracy parameter ǫ.

9.2. Duffing system

Consider the Duffing system (Williams et al., 2015) on M =
[−2, 2]2,
ẋ1 = x2,

ẋ2 = −0.5x2 + x1(1− x21), (43)

12

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Table 3
Dimension of subspace identified by Efficient T-SSD vs. ǫ for (43).

ǫ 0.01 0.02 0.08 0.14 0.20 0.26

dimDT-SSD 1 2 20 44 58 66

Fig. 5. Vector field (left) and eigenfunction with eigenvalue λ = 0.9839 (right)

for (43).

with state x = [x1, x2]T , which has an unstable equilibrium at

the origin and two asymptotically stable equilibria at (−1, 0) and
(1, 0). We consider the discretized version of (43) with time step

∆t = 0.02 s and gather N = 104 data snapshots in matrices X

and Y from 5000 trajectories with length equal to two time steps

and initial conditions uniformly selected from M. Similarly to the

previous example, we use a dictionary D with Nd = 66 elements

spanning the space of all polynomials up to degree 10 such that

the columns of D(X) are orthonormal.

We apply the Efficient T-SSD algorithm, cf. Section 8, with ǫ ∈
{0.01, 0.02, 0.08, 0.14, 0.2, 0.26}. Table 3 shows the dimension of

the identified dictionary, DT-SSD, versus the value of the design pa-

rameter ǫ. For ǫ = 0.26, T-SSD identifies the original dictionary,

certifying that the range spaces of D(X) and D(Y) are 0.26-apart.

On the other hand, the one-dimensional subspace identified by

ǫ = 0.01 is in fact the maximal Koopman-invariant subspace

of span(D), spanned by the trivial eigenfunction φ(x) ≡ 1 with

eigenvalue λ = 1.

To demonstrate the effectiveness of the T-SSD algorithm in

approximating Koopman eigenfunctions and invariant subspaces,

we focus on the subspace identified with ǫ = 0.02. Consistent

with Proposition 6.6, T-SSD identifies the trivial eigenfunction

φ(x) ≡ 1 spanning the maximal Koopman-invariant subspace of

span(D). T-SSD also approximates another real-valued eigenfunc-

tion with eigenvalue λ = 0.9839 depicted in Fig. 5(right), which

clearly captures the attractiveness of the asymptotically stable

equilibria and the general behavior of the vector field depicted

in Fig. 5(left).

To illustrate the efficacy of our algorithm regarding the predic-

tion accuracy of the dictionary, Fig. 6 compares the relative linear

prediction error (41) on the state space M for the dictionary

DT-SSD identified by T-SSD with ǫ = 0.02 and for the original

dictionary D evaluated at out-of-sample points other than X .

Fig. 6 clearly shows the effectiveness of the T-SSD algorithm in

improving the prediction accuracy.

To analyze the error for individual functions in the identified

subspaces by T-SSD, we form a random test data set Xtest, Ytest

gathered with the same number of elements and sampling strat-

egy used for X and Y . Table 4 shows the maximum relative root

mean square error defined in (42) for the subspaces identified by

T-SSD given different values of ǫ. Despite the fact that we use

different data for identification and evaluation, Table 4 shows the

effectiveness of the T-SSD algorithm for identifying subspaces on

which all functions have prediction errors characterized by the

accuracy parameter ǫ.

Fig. 6. Relative linear prediction error for dictionary identified by T-SSD (ǫ =
0.02) (left) and the original dictionary (right) for (43).

Table 4
Maximum relative root mean square error vs. ǫ for (43).

ǫ 0.01 0.02 0.08 0.14 0.20 0.26

RRMSEmax ∼0 0.004 0.054 0.123 0.190 0.236

Table 5
Dimension of subspace identified by Efficient T-SSD vs. ǫ for (44).

ǫ 0.05 0.15 0.30 0.55 0.80

dimDT-SSD 1 14 64 272 462

9.3. Consensus on harmonic mean

Given Na agents with state x = [x1, . . . , xNa]T communicating
through a graph with adjacency matrix A, consider the dynamics

ẋi = Na x
2
i Υ (x)−2

Na
∑

j=1
aij(xj − xi), i ∈ {1, . . . ,Na}, (44)

where aij is the element of A on row i and column j and Υ (x) is
the harmonic mean of the state elements defined as

Υ (x) = Na

(

Na
∑

k=1
x−1k

)−1
.

For any initial condition x0, all the state elements converge to
the harmonic mean of the initial condition Υ (x0) (Cortés, 2008,
Proposition 10), i.e., the agents achieve consensus on Υ (x0). For
the purpose of this example, we consider Na = 5 agents commu-
nicating through an undirected ring graph and states belonging to
the state space M = [1, 5]5. We consider the discretized version
of (44) with time step ∆t = 0.01 s and gather N = 4× 104 data
snapshots in matrices X and Y from 2 × 104 trajectories with
length equal to two time steps and initial conditions uniformly
selected from M. For our dictionary, we consider the space of
all polynomials up to degree 6 and choose a dictionary D with
Nd = 462 functions spanning the space such that the columns of
D(X) are orthonormal.

We apply the Efficient T-SSD algorithm, cf. Section 8, with
ǫ ∈ {0.05, 0.15, 0.3, 0.55, 0.8}. Table 5 shows the dimension of
the identified dictionary, DT-SSD, versus the value of the design
parameter ǫ. For ǫ = 0.8, T-SSD identifies the original subspace,
certifying that the range spaces of D(X) and D(Y) are 0.8-apart.
On the other hand, the one-dimensional subspace identified by
ǫ = 0.05 is in fact the maximal Koopman-invariant subspace
of span(D), spanned by the trivial eigenfunction φ(x) ≡ 1 with
eigenvalue λ = 1.

To illustrate the efficacy of T-SSD algorithm regarding predic-
tion accuracy, we first form a test data set comprised of snapshots
matrices Xtest and Ytest sampled with the same sampling strategy
and number of samples as X and Y . Fig. 7 provides histogram

13

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Fig. 7. Relative linear prediction error on test data for the dictionary identified

with T-SSD (ǫ = 0.15) and the original dictionary.

Table 6
Maximum relative root mean square error vs. ǫ for (44).

ǫ 0.05 0.15 0.30 0.55 0.8

RRMSEmax ∼0 0.144 0.295 0.549 0.769

plots comparing the relative prediction error defined in (41) of
the dictionary identified by T-SSD with ǫ = 0.15 and the original
dictionary applied on the test data. In Fig. 7 the horizontal axis
denotes the prediction error while the vertical axis shows the
percentage of test data per interval. Fig. 7 clearly shows the
effectiveness of the T-SSD algorithm in improving the prediction
accuracy.

We also consider the prediction accuracy for the individual
functions. Table 6 shows the maximum relative root mean square
error defined in (42) for the subspaces identified by T-SSD given
different values of ǫ. According to Table 6, despite using different
data for identification and evaluation, the error on the test data
satisfies the upper bound accuracy requirement enforced by the
accuracy parameter ǫ.

10. Conclusions

We have presented the T-SSD algorithm, a data-driven strat-
egy that employs data snapshots from an unknown dynamical
system to refine a given dictionary of functions, yielding a sub-
space close to being invariant under the Koopman operator. A de-
sign parameter allows to balance the prediction accuracy and ex-
pressiveness of the algorithms’ output, which always contains the
maximal Koopman-invariant subspace and all Koopman eigen-
functions in the span of the original dictionary. The proposed
algorithm generalizes both Extended Dynamic Mode Decompo-
sition and Symmetric Subspace Decomposition. Future work will
investigate noise-resilient strategies to approximate Koopman-
invariant subspaces and methods to construct expressive dictio-
naries with high accuracy by alternating between growing the set
of functions (using specific basic functions or neural networks)
and pruning the dictionary to enhance accuracy while providing
accuracy bounds for all members of the identified vector space
of functions. Moreover, we aim to explore the application of the
proposed method in stability analysis, data-driven construction
of Lyapunov functions6, and designing control schemes with for-
mal performance and stability guarantees by using the Koopman

6 The recent work (Mamakoukas et al., 2022, Section V.C) provides an

interesting example of using the T-SSD algorithm as a subroutine precisely for

this purpose.

operator to model control systems as bilinear or switched-linear
systems.

Appendix. Basic algebraic results

Here we collect two algebraic results from Haseli and Cortés
(2022) that are used in our technical treatment.

Lemma A.1 (Haseli & Cortés, 2022, Lemma A.1). Let A, B ∈ Rm×n

be matrices with full column rank. Suppose that the columns of
Z = [(ZA)T , (ZB)T]T ∈ R2n×l form a basis for the null space of [A, B],
where ZA, ZB ∈ Rn×l. Then,

1. R(AZA) = R(A) ∩R(B);

2. ZA and ZB have full column rank.

Lemma A.2 (Haseli & Cortés, 2022, Lemma A.2). Let A, C,D be
matrices of appropriate sizes, with A having full column rank. Then
R(AC) ⊆ R(AD) if and only if R(C) ⊆ R(D).

References

Absil, P. A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix

manifolds. Princeton University Press.
Anderson, W. N., Jr., Harner, E. J., & Trapp, G. E. (1985). Eigenvalues of the

difference and product of projections. Linear and Multilinear Algebra, 17(3–4),

295–299.
Brunton, S. L., Brunton, B. W., Proctor, J. L., & Kutz, J. N. (2016). Koopman

invariant subspaces and finite linear representations of nonlinear dynamical

systems for control. PLoS One, 11(2), 1–19.
Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equa-

tions from data by sparse identification of nonlinear dynamical systems.

Proceedings of the National Academy of Sciences, 113(15), 3932–3937.
Budišić, M., Mohr, R., & Mezić, I. (2012). Applied Koopmanism. Chaos, 22(4),

Article 047510.
Choi, H., Vaidya, U., & Chen, Y. (2020). A convex data-driven approach for

nonlinear control synthesis. arXiv preprint arXiv:2006.15477.
Cortés, J. (2008). Distributed algorithms for reaching consensus on general

functions. Automatica, 44(3), 726–737.
Dawson, S. T. M., Hemati, M. S., Williams, M. O., & Rowley, C. W. (2016).

Characterizing and correcting for the effect of sensor noise in the dynamic

mode decomposition. Experiments in Fluids, 57(3), 42.
Folkestad, C., Chen, Y., Ames, A. D., & Burdick, J. W. (2020). Data-driven

safety-critical control: Synthesizing control barrier functions with Koopman

operators. IEEE Control Systems Letters, 5(6), 2012–2017.
Goswami, D., & Paley, D. A. (2022). Bilinearization, reachability, and optimal

control of control-affine nonlinear systems: A Koopman spectral approach.

IEEE Transactions on Automatic Control, 67(6), 2715–2728.
Haseli, M., & Cortés, J. (2019). Approximating the Koopman operator using noisy

data: noise-resilient extended dynamic mode decomposition. In American

control conference (pp. 5499–5504). Philadelphia, PA.
Haseli, M., & Cortés, J. (2021a). Data-driven approximation of Koopman-

invariant subspaces with tunable accuracy. In American control conference

(pp. 469–474). New Orleans, LA.
Haseli, M., & Cortés, J. (2021b). Parallel learning of Koopman eigenfunctions and

invariant subspaces for accurate long-term prediction. IEEE Transactions on

Control of Network Systems, 8(4), 1833–1845.
Haseli, M., & Cortés, J. (2022). Learning Koopman eigenfunctions and invariant

subspaces from data: Symmetric subspace decomposition. IEEE Transactions

on Automatic Control, 67(7), 3442–3457.
Johnson, C. A., & Yeung, E. (2018). A class of logistic functions for approx-

imating state-inclusive Koopman operators. In American control conference

(pp. 4803–4810). Milwaukee, WI: IEEE.
Kaiser, E., Kutz, J. N., & Brunton, S. L. (2021). Data-driven discovery of Koopman

eigenfunctions for control. Machine Learning: Science and Technology, 2(3),

Article 035023.
Klus, S., Koltai, P., & Schütte, C. (2016). On the numerical approximation of the

Perron-Frobenius and Koopman operator. Journal of Computational Dynamics,

3(1), 51–79.
Klus, S., Nüske, F., Peitz, S., Niemann, J. H., Clementi, C., & Schütte, C. (2020).

Data-driven approximation of the Koopman generator: Model reduction,

system identification, and control. Physica D: Nonlinear Phenomena, 406,

Article 132416.
Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert space.

Proceedings of the National Academy of Sciences, 17(5), 315–318.
Koopman, B. O., & Neumann, J. V. (1932). Dynamical systems of continuous

spectra. Proceedings of the National Academy of Sciences, 18(3), 255–263.

14

M. Haseli and J. Cortés Automatica 153 (2023) 111001

Korda, M., & Mezić, I. (2018a). Linear predictors for nonlinear dynamical systems:

Koopman operator meets model predictive control. Automatica, 93, 149–160.

Korda, M., & Mezić, I. (2018b). On convergence of extended dynamic mode

decomposition to the Koopman operator. Journal of Nonlinear Science, 28(2),

687–710.

Korda, M., & Mezic, I. (2020). Optimal construction of Koopman eigenfunctions

for prediction and control. IEEE Transactions on Automatic Control, 65(12),

5114–5129.

Lu, H., & Tartakovsky, D. M. (2020). Prediction accuracy of dynamic mode

decomposition. SIAM Journal on Scientific Computing, 42(3), A1639–A1662.

Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Deep learning for universal linear

embeddings of nonlinear dynamics. Nature Communications, 9(1), 1–10.

Mamakoukas, G., Abraham, I., & Murphey, T. D. (2022). Learning stable models

for prediction and control. https://arxiv.org/abs/2005.04291v2.

Mamakoukas, G., Castano, M., Tan, X., & Murphey, T. (2019). Local Koopman

operators for data-driven control of robotic systems. In Robotics: science and

systems, Freiburg, Germany.

Mamakoukas, G., Castano, M. L., Tan, X., & Murphey, T. D. (2021). Derivative-

based Koopman operators for real-time control of robotic systems. IEEE

Transactions on Robotics.

Marsden, J. E., & McCracken, M. (2012). The hopf bifurcation and its applications,

Vol. 19. Springer Science & Business Media.

Mauroy, A., & Mezić, I. (2016). Global stability analysis using the eigenfunctions

of the Koopman operator. IEEE Transactions on Automatic Control, 61(11),

3356–3369.

Mezić, I. (2005). Spectral properties of dynamical systems, model reduction and

decompositions. Nonlinear Dynamics, 41(1–3), 309–325.

Nüske, F., Peitz, S., Philipp, F., Schaller, M., & Worthmann, K. (2021). Finite-

data error bounds for Koopman-based prediction and control. arXiv preprint

arXiv:2108.07102.

Otto, S. E., & Rowley, C. W. (2019). Linearly recurrent autoencoder networks

for learning dynamics. SIAM Journal on Applied Dynamical Systems, 18(1),

558–593.

Pan, S., Arnold-Medabalimi, N., & Duraisamy, K. (2021). Sparsity-promoting

algorithms for the discovery of informative Koopman-invariant subspaces.

Journal of Fluid Mechanics, 917.

Peitz, S., & Klus, S. (2019). Koopman operator-based model reduction for

switched-system control of PDEs. Automatica, 106, 184–191.

Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., & Henningson, D. S. (2009).

Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641, 115–127.

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and

experimental data. Journal of Fluid Mechanics, 656, 5–28.

Son, S. H., Narasingam, A., & Kwon, J. S. (2020). Handling plant-model mismatch

in Koopman Lyapunov-based model predictive control via offset-free control

framework. arXiv preprint arXiv:2010.07239.

Takeishi, N., Kawahara, Y., & Yairi, T. (2017). Learning Koopman invariant sub-

spaces for dynamic mode decomposition. In Conference on neural information

processing systems (pp. 1130–1140).

Trefethen, L. N., & Bau, D. (1997). Numerical linear algebra. Philadelphia, PA:

SIAM.

Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., & Kutz, J. N.

(2014). On dynamic mode decomposition: theory and applications. Journal

of Computational Dynamics, 1(2), 391–421.

Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data-driven approx-

imation of the Koopman operator: Extending dynamic mode decomposition.

Journal of Nonlinear Science, 25(6), 1307–1346.

Yeung, E., Kundu, S., & Hodas, N. (2019). Learning deep neural network represen-

tations for Koopman operators of nonlinear dynamical systems. In American

control conference (pp. 4832–4839). Philadelphia, PA.

Zhang, C., & Zuazua, E. (2021). A quantitative analysis of Koopman opera-

tor methods for system identification and predictions. https://hal.archives-

ouvertes.fr/hal-03278445.

Zinage, V., & Bakolas, E. (2022). Koopman operator based modeling for quadrotor

control on SE(3). IEEE Control Systems Letters, 6, 752–757.

Masih Haseli received the B.Sc. and M.Sc. degrees in

electrical engineering from the Amirkabir University of

Technology (Tehran Polytechnic), Tehran, Iran, in 2013

and 2015, respectively. He also received the Ph.D. de-

gree in Engineering Sciences (Mechanical Engineering)

from the University of California San Diego, CA, USA, in

2022. He is currently a postdoctoral researcher with the

Department of Mechanical and Aerospace Engineering,

University of California, San Diego, CA, USA. His re-

search interests include system identification, nonlinear

systems, network systems, data-driven modeling and

control, and distributed and parallel computing. Dr. Haseli is the recipient of

the Bronze Medal of the 2014 Iran National Mathematics Competition and the

Best Student Paper Award of the 2021 American Control Conference.

Jorge Cortés received the Licenciatura degree in math-

ematics from Universidad de Zaragoza, Zaragoza, Spain,

in 1997, and the Ph.D. degree in engineering mathe-

matics from Universidad Carlos III de Madrid, Madrid,

Spain, in 2001. He held postdoctoral positions with the

University of Twente, Twente, The Netherlands, and the

University of Illinois at Urbana-Champaign, Urbana, IL,

USA. He was an Assistant Professor with the Depart-

ment of Applied Mathematics and Statistics, University

of California, Santa Cruz, CA, USA, from 2004 to 2007.

He is a Professor in the Department of Mechanical and

Aerospace Engineering, University of California, San Diego, CA, USA. He is a

Fellow of IEEE, SIAM, and IFAC. His research interests include distributed control

and optimization, network science, nonsmooth analysis, reasoning and decision

making under uncertainty, network neuroscience, and multi-agent coordination

in robotic, power, and transportation networks.

15

