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This paper considers output tracking with time-varying constraints, obtained from online sensor
measurements, relevant to autonomous system navigation in unknown environments. Inspired by
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violating the constraints. Our main contribution is a governor-parameterized barrier function (PBF) that
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distances are measured online.
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1. Introduction

Driven by safety-critical applications in robotics and cyber-
physical systems, handling safety constraints simultaneously with
system stability has become an important research direction in
control theory. Designing provably safe controllers subject to
time-varying constraints is a key challenge because often the con-
straints are only known at execution time. The safety constraints
may depend not only on the internal system state but also on the
environment and, hence, must be obtained online using sensor
measurements.

This paper considers output tracking for a dynamical sys-
tem with time-varying constraints obtained from online distance
measurements to an unsafe set. Our approach is inspired by
reference governor techniques (Bemporad, 1998; Kolmanovsky,
Garone, & Di Cairano, 2014; Nicotra & Garone, 2018), which
enforce safety constraints for a prestabilized system by convert-
ing them to constraints on the system’s Lyapunov function. The
state of a virtual low-order system, called a governor, serves as a
reference for the actual system and is controlled to ensure that
the Lyapunov function constraints remains valid during tracking.
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Most reference governor works, however, have not considered
output tracking and assume that the safety constraints are known
in advance. Our contribution is a governor-parameterized barrier
function (PBF), which changes as the governor state, the system
state, or the sensor measurements change. The PBF quantifies
the trade-off between safety (distance from constraint violation)
and system energy (measured by a Lyapunov function), and can
be used to regulate the joint governor-system motion to achieve
output-tracking with formal safety and stability guarantees.

Related Work. Model predictive control (MPC) (Borrelli, Bempo-
rad, & Morari, 2017; Bravo, Alamo, & Camacho, 2006; Griine
& Pannek, 2017; Mayne, Rawlings, Rao, & Scokaert, 2000) ap-
proximates an infinite-horizon optimal control problem with a
sequence of finite-horizon problems. With a suitable choice of
terminal cost and constraints for the finite-horizon problems,
MPC guarantees recursive feasibility and asymptotic stability
for linear systems subject to polytopic state and control con-
straints (Borrelli et al., 2017; Gao, Gray, Tseng, & Borrelli, 2014).
There are two main differences between our formulation and
MPC techniques. First, we consider an output reference signal
which is path-length — but not time-parameterized and track
it adaptively based on online sensor measurements. In contrast,
standard MPC formulations require a state or output reference
model with pre-specified temporal dynamics. Second, we con-
sider a general obstacle set O and rely on distance measurements
at runtime for control synthesis. In contrast, to synthesize a
tracking controller, MPC techniques need to approximate the free
space using convex regions (Gao, Wu, Lin, & Shen, 2018; Santillo &
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Jankovic, 2021). Our approach does not replace MPC but provides
another way to deal with non-convex obstacles and reference
signals without time parameterization. An MPC controller can be
integrated with our approach to synthesize a local output regula-
tion controller (see Section 3 for details) and extend our approach
to a broader class of nonlinear systems. We emphasize that in a
partially known environment, both our method and MPC-based
methods require online estimation of the safety constraints and
generation of a reference path in the interior of the safe space
and, hence, our method does not guarantee better performance.

Recently, control barrier function (CBF) methods (Ames et al.,
2019; Ames, Grizzle, & Tabuada, 2014; Ames, Xu, Grizzle, &
Tabuada, 2017) have attracted a lot of attention in safety-critical
applications (Ames, Galloway, Sreenath, & Grizzle, 2014; Ames,
Grizzle, & Tabuada, 2014; Borrmann, Wang, Ames, & Egerst-
edt, 2015; Nguyen & Sreenath, 2016; Wu & Sreenath, 2016).
Inspired by the seminal work on control Lyapunov functions
(CLFs) (Sontag, 1983, 1989), a CBF encodes a safe set implicitly
as a superlevel set of a barrier function and provides an ele-
gant way to enforce forward invariance based on the derivative
along the system evolution. A key observation (Ames, Grizzle,
& Tabuada, 2014) is that the CLF and CBF conditions become
linear in the control input for control-affine systems and can
be used as constraints in a quadratic programming formulation
for safe and stable control synthesis. In the past few years, re-
searchers have advanced this method further, considering robust
CBFs for modeling uncertainty and measurement noise (Cosner
et al,, 2021; Jankovic, 2018). Constructing valid CBFs, however,
is known to be challenging (Ames et al., 2019), especially for
systems with safety constraints expressed as high-order relative
degree CBFs (Nguyen & Sreenath, 2016; Xiao & Belta, 2019). Input
constraints, such as boundedness (Breeden & Panagou, 2021;
Xu, 2018), smoothness (Ong & Cortés, 2019) and delays (Abel,
Jankovi¢, & Krsti¢, 2020), are challenging to handle with CBF
techniques. Only a few papers use CBF for safe navigation (Barry,
Majumdar, & Tedrake, 2012; Long, Qian, Cortés, & Atanasov, 2021)
and often require obstacle information in advance. In contrast,
our approach uses local distance measurements and constructs a
time-varying barrier function at run time. Note that, to generate
a reference path in the interior of the safe set, our approach still
requires online obstacle estimation, which may be utilized by an
alternative CBF method to similarly guarantee safe control.

Reachability-based methods for safe control rely on precise
reachable set approximations. There are many ways to com-
pute reachable sets but funnels (Burridge, Rizzi, & Koditschek,
1999) and Hamilton-Jacobi reachability (Bansal, Chen, Herbert,
& Tomlin, 2017; Fisac, Chen, Tomlin, & Sastry, 2015) techniques
have been particularly effective in trajectory tracking applica-
tions (Herbert et al., 2017; Kousik, Vaskov, Bu, Johnson-Roberson,
& Vasudevan, 2020; Majumdar & Tedrake, 2017; Tedrake, Manch-
ester, Tobenkin, & Roberts, 2009). Reachability computations re-
quire solving Hamilton-Jacobi partial differential equations (PDE)
which is challenging for high-dimensional systems without de-
composition methods that split the system into several low-
order subsystems (Chen, Herbert, & Tomlin, 2017). A relationship
between CBF construction and the value function in Hamilton-
Jacobi PDE is established in Choi, Lee, Sreenath, Tomlin, and
Herbert (2021) and used to synthesize CBFs with feasibility guar-
antees under input constraints.

Reference governor techniques (Bemporad, 1998; Kolmanovsky
et al., 2014; Nicotra & Garone, 2018) assume that a control law,
stabilizing the system to an arbitrary equilibrium, is available
a priori and enforce constraints by having the system track an
adaptively changing virtual reference governor. A dynamic safety
margin (DSM) (Nicotra & Garone, 2018) obtained from a safe level
set of the prestabilized system’s Lyapunov function is used to
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regulate the governor motion. Recently, Arslan and Koditschek
(2017) demonstrated safe navigation field tracking with a double
integrator system, using the difference between the (squared)
distance to locally sensed obstacles and the Lyapunov function
to construct a DSM. Our prior work (Li, Arslan, & Atanasov, 2020)
shows that directional trajectory bounds for a linear system may
be used to construct a less conservative DSM, allowing fast and
safe state tracking control in unknown environments. In contrast
to prior reference governor works (Nicotra & Garone, 2018), this
paper considers output tracking and provides an explicit con-
struction of a governor-parameterized barrier function, which
serves as a dynamic safety margin by measuring distances to
the unsafe set. With the help of off-the-shelf simultaneous lo-
calization and mapping (Hornung, Wurm, Bennewitz, Stachniss,
& Burgard, 2013) and geometric motion planning (LaValle, 2006)
algorithms, our method can achieve safe navigation in unknown
environments without requiring an a priori known navigation.

Contributions. The main contribution of this paper is a reference
governor control design for safe output tracking subject to locally
sensed output constraints. We introduce a governor-parameterized
barrier function that compares the distance to constraint violation
with the value of an output-regulation Lyapunov function. In con-
trast to existing literature, we handle output constraints that are
known only at runtime. A PBF is constructed online using distance
measurements in the system output space without complex opti-
mization or preprocessing steps. We show that our PBF construc-
tion is a valid dynamic safety margin and prove safe and stable
output tracking using a reference governor controller. Our algo-
rithm achieves safe adaptive tracking for feedback-linearizable
dynamical systems operating in unknown environments.

2. Problem statement

Consider a linear time-invariant dynamical system:
X =Ax+Bu, X(tp) = Xo,

y=Cx (1)

where X € R" is the state, u € R™ is the control input, y € R™ is
the output.

The goal of this paper is to design a controller such that
the output y of (1) tracks a reference path without violating
safety constraints or adhering to pre-defined time scaling. To
accommodate output constraints, we define an obstacle-free open
set #/ C R™ and a closed obstacle set © := R™ \ F. Motivated by
applications in autonomous system navigation, we assume that
the obstacle set O is not known a priori. Instead, the system can
sense the distance from its output y to O only locally with a
limited sensing range 8 > O:

—min{d(y, 00), 8} ify € int(O)
min {d(y, 00), B} ify ¢ int(©)’

where d(y, d0) := min,ey0 ||y — al|. We denote the interior of a
set A as int(.A) and its closure as cl(.A).

ay. 0) = { )

Problem 1. Letr : [0,1] — F be a continuous function
specifying an output reference path for the system in (1). Assume
that r(0) = y(t,) € F. Using local distance observations ds(y, O)
of the obstacle set O, design a control policy for (1) so that the
output y(t) of the closed-loop system converges asymptotically to
r(1), while remaining safe, i.e., y(t) € cl(F) for all t > t,.

Remark 1. In robot navigation applications, a reference path
r can be generated and updated online by continuously map-
ping the occupied space using distance observations (Hornung
et al, 2013; Oleynikova, Taylor, Fehr, Siegwart, & Nieto, 2017)
and replanning a path in free space using a motion planning
algorithm (LaValle, 2006).
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3. Setpoint control without constraints

We first discuss stabilizing the output of (1) to an arbitrary
fixed point g € R™ without constraints.

Problem 2. Design a sufficiently smooth function u = k(x, g)
such that for any constant g € R™, the closed-loop system:

X = AXx + BK(X, g),
y = Cx,

X(to) = Xo, 3)

admits a g-parameterized equilibrium x; = Xg for some constant
matrix X € R™™ and the output y converges to g exponentially.

Theorem 1 (Francis (1977)). Let K € R™*" be such that (A+BK) is
Hurwitz. If there exist matrices X € R™™ and U € R™" that satisfy
the regulator equations:
0 = AX+ BU,

_ (4)
0=CX—-1,

then there exists a static state-feedback controller that solves Prob-
lem 2:

K(x, g) = Kx + (U — KX)g. (5)

Proof. Let x := x — Xg. Since X and U satisfy (4), the closed-loop
system in (3) with k(x, g) in (5) becomes:
X = AX + B[Kx + (U — KX)g]
= (A + BK)(X + Xg) — (A + BK) Xg
= (A + BK)x,
y=C+g.

(6)

Since (A + BK) is Hurwitz by assumption, the closed-loop
system in (6) is exponentially stable with equilibrium x; = Xg
and steady-state outputy =g. O

Assumption 1. The pair (A, B) is stabilizable and

A B
rank [C 0] =n+m (7)

Under Assumption 1, the regulator equations (4) are guaran-
teed to have a solution (Huang, 2004, Theorem 1.9) and the static
feedback controller in (5) solves Problem 2.

4. Safe output regulation via parametric barrier functions

Section 3 showed how to regulate the output of (1) under
Assumption 1 to a desired reference point g. Next, we consider
Problem 2 in the presence of output constraints. We construct a
g-parameterized barrier function (PBF) that quantifies the trade-off
between safety (distance from g to the obstacle set © in (2)) and
the system energy. For controllable (A, B), following Theorem 1,
the energy of (3) can be measured by a g-parameterized quadratic
Lyapunov function (Khalil, 2002):

V(x;g) = (x—Xg)' P(x—Xg), (8)

where P is the unique solution of the Lyapunov equation (A +
BK)'P + P(A + BK) = —Q for any positive-definite symmetric
matrix Q € S?,. The Lyapunov function can be expressed as
Vix;g) = |Ix — Xg||f, using a quadratic norm ||X|p = VXTPx
on R" defined by P € S!,. The system output y = Cx is
Lipschitz continuous with respect to ||x||p, allowing us to relate
the distance to the obstacle set © with the distance to the desired
equilibrium x; = Xg.
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Lemma 1. For any P € S7 with Cholesky factorization P = LLT,

there exists a global Lipschitz constant L = Ay/2(L~1CTCL™T) such
that:

ICx1 — Cx |l < LIIXy — Xz llp, VX1, X, € R, (9)

Proof. The result follows from the generalized Rayleigh
quotient. O

Definition 1. Let V(X; g) be a g-parameterized Lyapunov func-
tion for output regulation to g € R™. Let ds(g, ©) be the trun-
cated signed distance function to the obstacle set O in (2). A
g-parameterized barrier function (PBF) is:

b(x; g) = d;(g, ©) — L*V(x; g) (10)

where L is the Lipschitz constant in (9).

Proposition 1. Let g € F. Consider the closed-loop system in (3)
with controller in (5). The set S(g) := {x | b(x; g) > 0} is positively
invariant and the output y(t) converges to g asymptotically without
violating the output constraints, i.e., y(t) € cl(F) for all t > t,.

Proof. For fixed g, the time derivative of b(x; g) is strictly posi-
tive, g—ix = —I? %x > 0, because V(x; g) is a Lyapunov function.
Hence, S(g) is forward invariant. Theorem 1 guarantees that
y(t) — g and X(t) — Xz = Xg. Finally, we show that, if X, € S(g),
then y(t) € cl(F) for all t > t,. Since the time derivative of b(x; g)
is positive, b(x(t); g) > b(Xo; g) > 0 for all t > t,. From (4), (9)
and (10):

b(x(t); g) < d*(g, 30) — L*|IX(t) — Xg I
< d*(g, 90) — ||cx(t) — gl1*.

Hence, for all t > to, ||y(t) — gl < d(g, d0), and since g € F,
y(t)ecl(F)forallt >t,. O

(11)

Remark 2. Proposition 1 and the remaining results in the paper
hold when only a subspace of R™ is constrained. Assume, without
loss of generality, that only the first m; < m dimensions are
constrained so that © = O x #™ ™, F = R™ \ 04, and
F = Fi1 x R™™_ The results can be extended by defining
d(y, 00) = minpeyo, b — P1yll, where P; = [I,0] € R™>™ is a
projection matrix. For example, noting that ||P1y—P:g|| < |ly—gll,
Vy, g € R™, (11) implies that

min ||b—Pg| > [[P1y(t) — P1gll,

bedOq

i.e., P1y(t) € cl(F1), which means that y(t) € cl(F).

5. Safe adaptive output tracking using a reference governor

Section 4 discussed output regulation to a static reference
point g using a PBF to quantify safety. In this section, we de-
velop an approach to adaptively change the regulation point g(t)
so that the output of the closed-loop system in (3) tracks the
desired path r safely. Our control design consists of two parts:
a virtual reference governor system whose state g(t) adaptively
moves along the path r and the closed-loop system in (3), track-
ing the time-varying reference point Xg(t). The structure of the
reference-governor controller is visualized in Fig. 1.

Definition 2. A reference governor is a linear system:
g=—k; (8- 8 (12)
with gain k; > 0, state g € R™, and input g € R™.

We show that the slackness in the PBF safety metric in (10)
can be used to move g along the reference path r without endan-
gering safety or stability of the closed-loop system in (3).
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Fig. 1. Safe output tracking with a reference-governor controller: A virtual
governor system with state g adaptively tracks the desired reference path r
while ensuring that the output of a prestabilized system can track g. A local safe
zone L£S(X,g) is constructed to determine the set of possible governor states
that ensure safety and stability. A time-varying local goal g is computed by
projecting the reference path r onto the boundary of £S(x,g). The governor
system is controlled to track the local projected goal g while sending its state g
to the controller, which is responsible to drive the system output asymptotically
to g.

Definition 3 (Nicotra & Garone, 2018). A continuous function
AE(X,g) : R" x R™ — R is a dynamic safety margin (DSM) for
the closed-loop system in (3) if:

1. AE(x,8) > 0 = di(Cx, O) > 0,

2. AE(Xo,8) =0 = AE (x(t),8) > 0, Vt > t,

3. for all § > 0, there exists ¢ > 0 such that
dy(g, ©) > 8 = AE(Xg, 8) > €.

A DSM is a measure of system safety, i.e., larger AE means
that the system is safer with respect to the output constraints.
The first condition requires that non-negative AE implies that the
system is safe at the current moment, while the second condition
requires certification of safety forward in time for fixed g. The
last condition requires that the DSM captures the slackness in the
safety constraints.

Lemma 2. For g € F, the g-parameterized barrier function in
(10) is a dynamic safety margin for the closed-loop system in (3):
AE(X, g) = b(x; g).

Proof. From (10), (8), (9), and (2):

AE(x,8) > 0 = di(g, 0) = L*|x — Xgllp
= di(g,0) > |Cx — g (13)
= d(g,00) > [|ICx — gl

Since g € F the last inequality implies that y = Cx € cl(F)
and, hence, dy(Cx, ©) > 0. The second requirement of Defini-
tion 3 follows from Proposition 1. The last one holds with ¢ =
min {82, B2}: b(xg; g) = d2(g, ©) — 0 > min {82, B2} =€. D

In the rest of the paper, we study the case of a moving
governor g(t). We denote the Lyapunov function and PBF by
V(x, g) and b(x, g), instead of V(x; g) and b(x; g), to emphasize the
fact that g(t) is time-varying. To guarantee safe output tracking,
the input g of the governor system in (12) must be chosen by
jointly considering the geometry of the local safe space and the
activeness of the prestabilized system. This trade-off is captured
by the PBF b(x, g). We define a set of feasible governor inputs that
will not violate the safety or stability for the closed-loop system
in (3).

Definition 4. A local safe zone is a time-varying set, determined
by the joint system-governor state (X, g), a dynamic safety margin
AE(x, g), and a constant [ > 1:

£S(x,8) = {qeR" | |q—g|* < I"AE(x,8)} . (14)
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Remark 3. The constant ! > 1 in Definition 4 is needed to ensure
that £S(x,g) € F. When AE(x,g) = 0, £5(x,8) = {g} C F. If
AE(X,g) > 0, then for any q € £5(X,8), |lq — glI*> < AE(X, g)
< d?(g, ©), which implies that ||q — g|| < di(g, ©), i.e., q € F.

We show, in the proof of Theorem 2, that choosing g €
LS(x,g) C F ensures that system safety is guaranteed and the
governor trajectory g(t) lies in F and always eventually makes
AE(X, g) strictly positive until reaching r(1). To make the gover-
nor progress along the reference path r and lead the closed-loop
system, we choose the governor input g as the furthest point
along r that is contained in £S(Xx, g).

Definition 5. A local projected goal at system-governor state
(x, g) is a point g € £S(x, g) that is furthest along the reference
pathr:
g=r(0), o =argmax{o |r(o) € LS(X, g)}. (15)
0€[0,1]

We summarize the closed-loop dynamics for the joint
(x, g) system controlled by the output regulator in (5) and the
reference-governor control law in (15):

x = (A + BK)(x — Xg), (16a)
g§=—k; (8- 9, (16b)
y=C& (16¢)
Theorem 2. Given a reference path r, consider the closed-loop

system in (16). Suppose that the initial state (Xo, o) satisfies:
g0 =1(0) = y(to) € F, (17)

where AE(X, g) is the dynamic safety margin in (10). Then, the joint
state (X, g) converges to (Xr(1), r(1)) without violating the output
constraints, i.e., y(t) € cl(F), Vt > t.

AE(X()s gO) > Ov

Proof. The proof consists of three parts. First, we prove that the
dynamics in (16) are updated continuously. Second, we show that
the output constraints are not violated under (16). Last, we prove
that the joint system (16) has a unique stable equilibrium point
at (Xr(1), r(1)).

First, we show that the DSM AE(t) := b(x(t), g(t)) is contin-
uous. In Lemma 4, we prove that ||g(t)| is uniformly bounded
by kgﬂx/lj1 and therefore g(t) is continuous. Then, since the
truncated signed distance function ds(g(t), ©) is continuous
(Lemma 5) and V(x,g) is continuous in (x,g), we show in
Lemma 6 that AE(t) is also a continuous function in t. The state
X is regulated by a static feedback controller k(x, g) and is also
continuous. Hence, the system dynamics in (16) are updated
continuously.

Second, we prove that safety is ensured, i.e., for all t > ¢,
y(t) € cl(F), when g(t) is changing according to (16b). Lemma 8
shows that the set S = {(x,g) € R" x R™ | AE(x, g) > 0} is
positively invariant for the closed-loop system in (16). Hence,
AE(t) > 0 for all t > ty and, by the first property of a dynamic
safety margin in Definition 3, ds(y(t), ©) > 0 for all t > t;. In
detail, initially gg = yo = 1(0) € £LS(Xo, 80) and AE(ty) > 0. The
local projected goal g in (15) is well defined and moves along the
reference pathr,i.e, ¢ in (15) increases. As g tracks g using (16b),
the system state x tracks Xg using the controller in (5). During
this process, the DSM AE(t) = b(x(t), g(t)), as the difference of
d?(g, ©) and the scaled Lyapunov function V(t), is fluctuating and
regulating the rate of change of g (see Fig. 3). Lemma 7 shows that
for x = x — Xg:

V(t) < —x(0)"QX(t) + 2/IX PX(0)| ()],
D, AE(t) > —2kgM(t)y/ AE(t)/1 + I2X(t)T QX(t),
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©)

Fig. 2. A mobile robot with omnidirectional wheels.

where D, AE(t) is the lower-right Dini derivative and M(t) is
bounded pointwise in time. By continuity, AE(t) cannot become
negative instantaneously without crossing 0 at some time t = Ty.
Lemma 7 shows that AE(Ty + h) will bounce back from 0 to a
strictly positive number after any such time T.

Finally, we show that the joint state (x,g) converges to
(Xr(1),r(1)) under the dynamics in (16). Note that
g(t) € £LS(x(t), g(t)) and, from Remark 3, g(t) € F for all t > t,.
If g = r(1), then r(1) € £S(x,8), 0 = 1, and g = r(1) in
(15). Then, ¢ = 0 and the output regulator in (5) drives X to
Xr(1). Hence, (Xr(1), r(1)) is an equilibrium point for (16). From
Lemma 7, whenever AE(t) = 0 at an arbitrary time t = T, it
becomes strictly positive after some time h;. Then, at t; = T; + h;,
the joint state (x(t;), g(t;)) satisfies:

AE(t;) > 0, g(t) e F, (18)

and we are back to the case from the beginning. The local pro-
jected goal g gets closer to r(1) and guides the joint system. It is
not possible to have another equilibrium point because g(t) € F
for all t > ty and, by the third DSM property in Definition 3,
AE(Xg, g) > e. From Definition 5, g(t) can only stop moving at
r(1) when AE(Xg, g) > 0. Hence, the joint system in (16) has a
unique stable equilibrium point at (Xr(1), r(1)). O

In summary, Theorem 2 shows that the control law:

n(x, g) = k(x. g), (19)
g=—ky(g—8&(x.8), g =y(to)=r(0),

combining the controller k(x, g) in (5) and the reference governor
n (12), (15) solves Problem 1 as long as the dynamic safety
margin is strictly positive initially, AE(Xo, 80) = b(Xo, go) > O.

6. Evaluation

This section evaluates our safe output-tracking controller on
a simulated mobile robot, measuring distances to obstacles in an
unknown environment.

System Model. Consider a mobile robot equipped three iden-
tical Swedish omnidirectional wheels (d’Andrea-Novel, Bastin,
& Campion, 1992), shown in Fig. 2. Let m be the mass and I
be the inertia around the Z, axis (perpendicular to the X;, Y,
plane in the body frame). The robot’s motion is described by
the position and orientation, (x, y, 8), of the body frame and the
positions of ¢1, ¢, ¢3 of the three wheels. The robot’s dynamics
can be obtained using Euler-Lagrange equations subject to pure-
rolling non-holonomic constraints for the three wheels (Campion

Automatica 152 (2023) 110996

—e- nav path . .
ol o rpah nr"" oot Time: 12.50 sec %
207 @~ gvn path 1 dist(g, 0) = 20.16
100 100
0 )
Finish Time: 30.60 sec
o 0
0 % 100 0 B 300 0 5 00 =) 0 Ee 300
600 A =
p— 2
d*(g,0)
AE
400 v

Fig. 3. Output-tracking control of an omnidirectional mobile robot navigating
in an unknown environment with circular obstacles (gray). Top left shows the
projection of the reference path r and the paths followed by the system and the
governor. Top right shows a snapshot at time t = 15 of the positions of system
output y (green), governor state g (blue), local projected goal g (purple), obstacle
distance d(g, ©) (gray ball), and local safe zone £S (yellow ball). The bottom
plot shows the PBF AE(x,g) = b(x, g) (blue) and its safety dsz(g, ©) (green)
and stability V(x, g) (orange) components. The PBF never crosses the zero line,
indicating that safe navigation is achieved. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

& Bastin, 1990; d’Andrea-Novel et al., 1992). When the non-
holonomic constraints are considered, the wheel positions ¢; may
be eliminated, leading to the following dynamics model:

p
MiR'(9) |V | = -0 )5, (20)
0
with:
cos(d) —sin(@) 0 _§ 1o
R(9) = |:sm(9) cos(6) 0:| . h= 0 -1 dl,
0 0 1 § % d

M, = diag (m, m,I), Js=diag(r,r, 1),

where d is the distance from the robot center to the wheels and
r is the wheel radius. The input g € R? contains the generalized
forces and torque.

We consider obstacles ©®; c R? with no constraints on orien-
tation, i.e., © = 07 x {@}, as shown in Figs. 3 and 4. As mentioned
in Remark 2, the distance d(y, 00) is defined as:

d(y, 90) = min [Py — bi, (21)
1

where P; = [I, 0]. An output reference pathr : [0, 1] — F C R3
is provided as shown in Figs. 3 and 4 with desired orientation
fixed at 0.

Environment Sensing and Path Generation. In an unknown en-
vironment, the obstacle set ©; is not known. In our simulations, a
simulated Lidar sensor provides a set of points P(t) := {p;(t)}; on
the surface of the obstacle set ©q, depending on the (position)
output y(t), with a maximum sensing range of § = 25. The
distance from the governor to the obstacle set is approximated
as,

d(g(t), 900) ~ min |P1g(t) — pll. (22)
PeP(t)

Note that, the same Lidar hit points P(t) from output depth
measurement are used in above expression. To obtain a feasible
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Fig. 4. Output-tracking control of an omnidirectional robot in an unknown
environment with complex obstacles, sensed by a simulated Lidar. The Lidar
provides distance measurements (red dots) from the robot position (green dot)
to the obstacle set ©; (black surfaces). The reference path (blue curve) is
recomputed online from the governor position (blue dot) to a goal location
(green star). The local projected goal g (purple dot) is computed based on the
obstacle distance (gray ball) and the local safe zone (yellow ball). The bottom
plot is the corresponding occupancy grid map at resolution 0.5 m/cell, where
gray cells represent inflated obstacles (0.5 m inflation) and white cells represent
free space. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

reference path r, an occupancy grid (Hornung et al., 2013) is
created and updated using the Lidar measurements (see Fig. 4).
The grid map is discretized at resolution 0.5 m with a 0.5 m
inflation around the obstacles. The unknown obstacle set Oy is
over-approximated by the union O;(t) of all occupied cells up to
time t. Using the latest map, the reference path r is recomputed
periodically using the A* motion planner (LaValle, 2006). Since
O4(t) is an over-approximation of Oy, the replanned reference
paths lie within the free space F. A snapshot of the occupancy
grid map and one of the (re)planned paths (blue curves at top)
are shown in Fig. 4.

Control Design. Observe that in Eq. (20), My, R(9), J;, J; ' are all
invertible matrices. Hence, this model is feedback linearizable. Let
X:=[x%Yy,76,0]" eRCandy :=[x,y,60]" € R3 be the new
state and output vector. Applying control input:

n=J3J; 'M{R"(0)u, (23)

transforms system (20) into a linear time-invariant form as in (1).
Specifically, we have block-diagonal matrices A = diag(Aq, Az,
A3), B = diag(by, by, b3), C = diag(c], c;,c;) with elements
Ai (S szz, bi (S Rz, C € Rzl

A= |:g (1)] ; b; = |:(1)] ) ¢ = [é} ) (24)

for i = 1,2, 3. It can be verified that Assumption 1 is satisfied,
and the regulator equation (4) is solved by X = CT and U = 0.
With X = (x—C'g), the state-feedback controller k(x, g) = KX,
with K = —I ® [2.553, 1.9478], can drive the system output to
an arbitrary reference g. To define the PBF AE(X, g) = b(x, g) in
(10), we choose a quadratic Lyapunov function V(x, g) = X' PX

with:
1.7508, 0.7769] c st (25)

P=I1® [0.7769,

Lipschitz constant L ~ 0.9403, computed using Lemma 1, and
sensing range 8 = 25. The governor control law in (12), (14),
(15) is defined with I = 1.001 and k; = 1.0.

Simulation results. Fig. 3 shows the behavior of the closed-
loop joint system in a constrained output tracking simulation.

0.9739 >0

Automatica 152 (2023) 110996

Our control policy (19) successfully enforces the locally sensed
obstacle avoidance constraints and drives the system to the goal
configuration r(1). During this process, AE(t) is determined by
the difference in the size of the local free space and the value
of the Lyapunov function V(t) as shown in the bottom plot. The
governor is controlled adaptively based on AE(t), slowing down
when AE(t) is small and speeding up when it is large. In Fig. 4, we
test our controller in a more challenging environment with non-
convex obstacles. With the same controller parameters described
above, the system reaches the goal without collisions.

7. Conclusion

This paper developed an output-tracking controller that pro-
vides formal safety and stability guarantees for feedback-
linearizable control-affine nonlinear systems. We showed that
reference-governor techniques can be extended to output track-
ing with distance measurements to an unsafe set. A key compo-
nent of our design was a governor-parameterized barrier
function, which uses the trade-off between the safe distance
and the system Lyapunov function to define a local safe set for
the system and governor states. The slackness in the safe set
allows the governor to track the reference and the system to
track the governor without endangering safety or stability. Our
approach allows safe autonomous navigation in a priori unknown
unstructured environments. The simple structure of the safety
conditions in our design offers a promising research avenue for
safe control with learned and approximate system dynamics and
constraints.

Appendix

Lemma 3 (Fitzpatrick, 1980). Let (X, u) be a metric space and let
A C X be nonempty. The point-to-set distance function d(-, A) :
X +— R defined by d(-, A) = inf{u(x, a) | a € A} is 1-Lipschitz:

|d(x7 A) - d(y7 A)' = N’(xv y)!

and, hence, uniformly continuous.

VX,V € X,

Lemma 4. The rate of change of the governor state in (12) is
uniformly bounded by a constant, ||g(t)|| < kgB+/1"1, and g(t) is
continuous.

Proof. Considering (12), Definition 5, and 4:

I8N = kellg(t) — &I < kgy/ AE(t)/L. (A.1)

With AE(X, g) = b(x, g), from Definition 1 and (2), we know that
AE(x, 8) < di(g(t), 0) < p* Hence, ||§(t)] < kgf+/1~" and g(t)
is continuous (Filippov, 1988). O

Lemma 5. The function dy(g(t), O) is continuous when g(t) € F.

Proof. When g(t) € F, from definition (2), we have ds(g(t), O) =
min {d(g(t), 00), 8}. The min operation is continuous, d(g(t),
is continuous because g(t) is continuous by Lemma 4 and d(-,
is continuous by Lemma 3. O

Lemma 6. The Lyapunov function V(t) = V(x(t), g(t)) in (8)
and the dynamic safety margin AE(t) = b(x(t), g(t)) in (10) are
continuous functions in time.

Proof. From Lemma 4, we know that g(t) is continuous. Because
V(x, g) is continuous in X, g, we have V(t) = V(x(t), g(t)) contin-
uous in time. By Lemma 5, ds(g(t), ©) is continuous in time and,
hence, AE(t) = d?(g(t), ©) — [2V(t) is continuous in time. O
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b(x(t), g(t)) defined in (10), let Ty > to

Lemma 7. For AE(t) =
= 0. Then, the lower-right Dini derivative of

be such that AE(Ty)
AE(t):

AE — AE
D, AE(t) := liminf Catl) ©)

A2
h—0t h ( )

satisfies D, AE(Ty) > 0 and there exists h > 0, such that AE(Ty +
h) > 0.

Proof. Note that AE(t) is not differentiable everywhere due to
the truncated signed distance function dy(g(t), ©) in its definition.
We use the lower-right Dini derivative D AE(t) instead. Let
d(t, h) := max {ds(g(t), ©), ds(g(t + h), ©)}. From Lemma 3:

ds(g(t + h), 0) — dy(g(t), 0) = —||g(t) — gt + h)l.

Hence, AE(t +h)— AE(t) > —2||g(t) — g(t +h)||d(¢, h)+L2(V(t)—
V(t 4+ h)) and

D AE(t) > —2|g(t)lds(g(t), ©) — L*V(t) (A3)
From (8), with X = x — Xg:

V(t)

2% P ((A + BK)X — Xg)
—X'Qx — 2X' PXg
—x'Qx + 2[IX"PX||g].

IA

From Lemma 4, [|g(t)|| < kg+/AE(t)/], and therefore:
—2M(0)lIg(6)]| + L*X(t)" QX(t)
—2kgM(t)y/ AE(t)/1 + L*X(t) T QX(t)

where M(t) = d(g(t), ©) + L*IX"PX(t)| < B + L*|X]|[|P[[[IX(t)]]
< oo for bounded ||x(t)||. From (10),

B> — AE(t)

12 ’
which implies ||X|| and M(t) are bounded, for t = Ty such that
AE(Tp) = 0.

Note that g(t) € £S(x(t), g(t)) C F, so AE(t) > 0 when
V(t) = X(t)TPX(t) = 0. Therefore, AE(t) = 0 and X(t) = 0 cannot
happen simultaneously. Plugging t = Ty such that AE(Ty) = 0
into (A.5),

D, AE(t)

\

(A5)

%

Amin(P)IX(OI* < V(t) < (A.6)

D, AE(To) > L*X(To)" QX(To) > 0 (A7)

since X(Tp) # 0, Q € S7,, and L > 0. Let y = 0 with initial
condition y(Tp) = 0. By the Comparison Lemma (Khalil, 2002),
AE(To + h) > y(To + h) =0 for some h > 0. O

Lemma 8. Consider the closed-loop system in (16). Then, the set
S = {(x,8) € R" x R™ | AE(x, g) > 0} is positively invariant.

Proof. By inequality (A.7), S is forward invariant if and only if
the vector field defining the joint (x, g) system in (16) belongs
to the Bouligand tangent cone of S for all (X, g) € S. The tangent
cone is trivial except on the boundary of S (see Blanchini & Miani,
2008) so the condition needs to be checked only for (x, g) € 9S.
Since S is defined implicitly by the function AE(x, g), the tangent
cone is equal to the hypograph of the lower-right derivative of
AE(x, g) (Aubin, 1999, Prop. 3.3.2). In other words, S is forward
invariant if and only if for all t such that AE(t) := AE(x(t), g(t))
= 0, we have D, AE(t) > 0, where D, AE(t) is the lower-right
Dini derivative of AE(t) evaluated along the flow of (16). This is
concluded in Lemma 7. O
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