10998

IEEE .
Sensors Council

IEEE SENSORS JOURNAL, VOL. 23, NO. 10, 15 MAY 2023 \X‘

STRIDE: Systematic Radar Intelligence Analysis
for ADRD Risk Evaluation With Gait Signature

Simulation and

Fulin Cai*, Abhidnya Patharkar™, Teresa Wu
Harry Chen, and Victor C.

Deep Learning

, Senior Member, IEEE, Fleming Y. M. Lure,
Chen, Life Fellow, IEEE

Abstract—Abnormal gait is a significant noncognitive
biomarker for Alzheimer's disease (AD) and AD-related
dementia (ADRD). Micro-Doppler radar (MDR), a nonwearable
technology, can capture human gait movements for potential
early ADRD risk assessment. In this article, we propose to
design a systematic radar intelligence analysis for ARDR risk
evaluation (STRIDE) integrating MDR sensors with advanced
artificial intelligence (Al) technologies. STRIDE embeds a
new deep learning (DL) classification framework. As a proof
of concept, we develop a “digital twin” of STRIDE, consisting
of a human walking simulation model and an MDR simu-
lation model, to generate a gait signature dataset. Taking
established human walking parameters, the walking model
simulates individuals with ADRD under various conditions.
The radar model based on electromagnetic scattering and
the Doppler frequency shift model is employed to generate
micro-Doppler signatures from different moving body parts

<
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(e.g., foot, limb, joint, torso, and shoulder). A band-dependent DL framework is developed to predict ADRD risks. The
experimental results demonstrate the effectiveness and feasibility of STRIDE for evaluating ADRD risk.

Index Terms— Alzheimer’s disease and related dementia (ADRD), deep learning (DL), gait analysis, micro-Doppler radar

(MDR).

[. INTRODUCTION

N ESTIMATED 6.5 million elderly people in USA

currently have Alzheimer’s disease (AD), and the number
is expected to increase to 13.8 million in 2050 [1]. Neurolog-
ical changes of AD and AD-related dementia (ADRD) may
occur 10-20 years before clinical symptoms arise [2]. Thus,
there is a growing consensus that treatment should target the
disease in the early phases, ideally before clinical symptoms
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manifest. This relies on screening and early detection services
to recognize significant biomarkers.

Abnormal gait is prevalent in established dementia [3],
and human gaits shall be an effective biomarker associ-
ated with progression from normal cognition, cognitive com-
plaints, and mild cognitive impairment (MCI) to dementia
syndromes [4], [5], [6], [7], [8], [9]. In addition, gait vari-
ability can be observed ten years before clinical symptoms
of ADRD [10]. Referenced as the “sixth vital sign” [11], gait
parameters (e.g., speed, step/stride length, and step time/angle)
have been quantitatively investigated for their association with
cognitive performance [12]. Gait parameters have also been
employed as a marker to support diagnosis among healthy
elderly, MCI, and AD patients [13]. Given their importance,
gait-related sensors are becoming increasingly necessary to
capture motions and assist ADRD early diagnosis.

Radar, a nonwearable sensor (NWS) has been demon-
strated to be effective in capturing object movements
remotely [14], [15], [16], [17] and is also capable of detecting
micromotion (e.g., vital signs) [18]. Unlike wearable sensors,
NWS is not intrusive and does not require continuous wear
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Fig. 1. Overview of STRIDE.

by the elderly. Other NWS systems, based on optoelectronic
sensors or camera-based visual image sequences [3], are
subject to various issues. For example, it can be easily
affected by the distance of the human subject from the
sensor, variations in lighting, background complexity, defor-
mations caused by human clothing, or some coverings on
the human subject. In addition, privacy concerns are often
raised when camera-based sensors record plain images of the
subject or environment. In several studies, micro-Doppler radar
(MDR) is effective for capturing gait motion by utilizing the
Doppler effect to only reflect movements [18], [19], [20],
[21], [22], [23].

Gait motions during walking are monitored by MDR and
transformed into micro-Doppler signatures. These signatures
are then represented on a time—frequency image such as a
spectrogram. Gait features, then, are estimated for MCI recog-
nition [24], [25], [26] and dementia diagnosis [27]. Typically,
leg motions derived from upper and lower envelopes on a spec-
trogram are proven to be distinctive features [24], [25], [26].
Artificial intelligence (AI), mostly machine learning (ML),
plays a critical role in bridging the gap between estimated
gait parameters and cognitive impairment.

Admittedly, ML-based applications are effective in cor-
relating gait parameters with dementia, and their predic-
tion performances are promising. However, the potential
of deep learning (DL), a prevalent research branch of
Al, has yet to be fully explored for the evaluation of
ADRD risk. Unlike ML, DL models the relationship between
inputs and outputs and learns to identify effective fea-
tures through end-to-end training [28]. In addition, DL has
shown outperformance over ML in radar sensing applications
[23], [29], [30], [31].

In this study, we propose a systematic radar intelligence
analysis for ARDR risk evaluation (STRIDE) with gait signa-
ture simulation and DL. The STRIDE integrates MDR sensors
to capture human gait signatures and assess the level of
gait impairment associated with ADRD risk levels, with the
assistance of DL models. A large gait signature dataset is
essential for implementing DL models. However, there is no
publicly available gait dataset related to ARRD risk evaluation,
to the best of our knowledge. To conduct a pilot test of the
concept, we develop the “digital twin” of STRIDE, including
a human walking simulator and an MDR simulator to address
the absence of gait data about dementia. This article has three
contributions.

1) STRIDE, an integrated system for ADRD risk assess-
ment with potential clinical utility is proposed.

To validate the effectiveness and feasibility of the system
for ADRD studies, a “digital twin” is designed and
implemented for gait signature generation.

A novel DL framework, named band-dependent learning
(BDL), is developed to automatically assess the ADRD
risk. Observing band-dependent patterns in radar spec-
trogram, BDL-ResNet is designed to capture the infor-
mation effectively by identifying the salient subbands
along frequency and time ranges.

2)

3)

This article is organized as follows. In Section II, the details
of “digital twin” and BDL of STRIDE are provided followed
by the experiments in Section III. The conclusion and future
work are discussed in Section IV.

1. AuTOMATIC ADRD RISK EVALUATION
SYSTEM—RADAR SCENARIO, GAIT SIMULATION, AND
LEARNING MODEL

An overview of STRIDE is shown in Fig. 1. STRIDE
consists of: 1) a human walking simulation model using the
parameters collected from the literature; 2) an MDR simulation
model to monitor animated human walking; and 3) a DL
framework for ADRD risk assessment.

A. Human Walking Simulation Model

Human gait, which reflects the manner of human walking,
has been studied for decades in biomedical engineering, sports
medicine, physiotherapy, medical diagnosis, and rehabilita-
tion [3], [32], [33], [34]. Human walk is a highly coordinated
periodic movement involving the brain, muscles, nerves, joints,
and bones [35], [36]. It has been observed that the gait features
of individuals with memory and cognitive dysfunctions are
different from those of healthy individuals [33], [37]. Also,
the severity of dementia may correlate with the presence of
gait abnormalities [38].

Clinical literature indicates that elderly individuals with
dementia may exhibit lower walking speed, shorter step length,
imbalanced steps, and longer stance phases compared to
healthy elderly people [38]. In addition, individuals with
severe abnormalities may walk with head and neck bent
over, with drag, drop, or shuffle feet, or with irregular or
jerky walking. Thus, analyzing gait features shall help cap-
ture and even predict possible cognitive decline. Despite the

Authorized licensed use limited to: ASU Library. Downloaded on October 02,2023 at 16:12:03 UTC from IEEE Xplore. Restrictions apply.



11000 IEEE SENSORS JOURNAL, VOL. 23, NO. 10, 15 MAY 2023
TABLE |
PARAMETERS OF WALKING WITH DIFFERENT ADRD RISK LEVELS
Parameters Normal Walk Subtle Abnormality Walk ~ Moderate Abnormality Walk Severe Abnormality Walk
Height (m) [1.6,1.8] [1.6,1.8] [1.6,1.8] [1.6,1.8]
Walking Speed (m/s) 0.6 0.6 0.6 0.5
Durations of Walk Cycle (s) [1.54, 1.63] [1.54, 1.63] [1.54,1.63] [1.69,1.79]
Duration of Support (s) [1.02, 1.09] [1.06, 1.12] [1.06, 1.12] [1.23, 1.30]
Duration of Balance(s) [0.52, 0.55] [0.48, 0.51] [0.48,0.51] [0.46, 0.49]
Duration of Double Support (s) [0.25, 0.27] [0.27,0.28] [0.27,0.28] [0.34,0.37]
Percentage of Support Duration 65.9% 68.8% 69.0% 72.9%

extensive literature on the use of gait features in supporting
the diagnosis of memory and cognitive dysfunctions [4],
[10], [39], [40], [41], [42], [43], [44], existing gait datasets
are limited to young, healthy individuals and collected in a
clinical/laboratory setting. A large, publicly available dataset
for gait abnormality analysis is currently lacking.

To address the challenge, we propose to develop a human
walking simulation model for various ADRD risk levels.
Human gait can be decomposed into periodic motions in a
gait cycle. One cycle consists of two phases: the stance (or
support) phase and the swing phase [35]. During the stance
phase, the foot is on the ground with a heel strike and a toe-
off. In the swing phase, the foot is lifted from the ground with
acceleration or deceleration. Key parameters used to describe
a complete walking gait include walking speed, step length,
and stance time, with associated variances. The walking cycle
is also divided into three durations: the duration of single
support, the duration of balance, and the duration of double
support characterized based on the contact of the feet with the
ground [35].

We develop a simulated walking model based on the well-
validated global walking model [45], [46]. Using the param-
eters collected from literature depicting elderly gait patterns
(see Table I), the human walking simulation model generates
a large number of experimental human gait data with various
spatial and temporal characteristics in the 3-D space. The
MATLAB source code is provided in [45].

The global walking model presents the gait motion by 3-D
trajectories of a walking human body over time. Specifically,
one cycle of gait motion is described by three translations
and 14 rotations (four body rotations and ten body parts
rotations). The translations and rotations depend on walking
speed, which can be derived from biomechanical experimental
data [45], [47]. Based on the translations and the rotations, 12
3-D translational trajectories are obtained. The positions of
the 17 joint points at each time frame are derived from the
3-D trajectories using the Euler angle rotation matrix [45].
The joint motions in the 3-D space are used to deduce
the movements of human body parts, such as head, torso,
shoulders, arms, hips, legs, and feet. It is worth noting that
the linear and angular kinematic parameters are further used
to calculate radar returns caused by the walking motions (see
Section II-B).

Table I summarizes the parameters used in the model under
four different ADRD conditions. As aforementioned, a walk-
ing cycle consists of the duration of support, balance, and

double support. These durations are related to the duration
of walking cycle, which is influenced by the height and the
walking speed. They are used to derive the motion of the
joints. In this study, we assume an elderly with height, from
H = 1.601.80 m, and walking speed, V = 0.6 m/s [38].
According to [45] and [47], we get the following parameters.
1) The relative speed is rescaled by the height of the leg,
Ry =V/(H/2) ~ 0.68-0.76.
2) For a normal walking cycle, the duration of a walk-
ing cycle is determined by D. = (1.346/(Rv)!/?) ~

1.541.63 s.

3) The duration of support is Dy = 0.762 x D, — 0.143 ~
1.021.09 s.

4) The duration of balance is Dy = 0.248 x D, +0.143 ~
0.52-0.55 s.

5) The duration of double support is Dgg = 0.252 x D, —
0.143 ~ 0.250.27 s. Note that D, = Dy + Dp.

Compared to normal walking, the elderly abnormal walking
has a longer duration of stance, i.e., 60%—75% of the duration
of the walking cycle, leading to longer support duration.
According to [38], we summarize the percentage of support
duration Pgg for each category in Table I. Dy, Dp, and Dy
are given as follows:

Dy = Py (14 0.15 x rand) x D, (D
Db = DC — D_y (2)
Dgs = 0.25 x Dy 3)

where rand is a random number within [0, 1].

B. Doppler Radar Simulation Model

MBDR is effective in detecting micromotions—humans peri-
odically swing their arms and legs and move the body’s
center of gravity up and down [35], [45]. The global walking
speed can also be inferred from the motions captured by
MDR [19]. MDR devices have been utilized to observe the
walking process and produce the corresponding micro-Doppler
signatures for gait analysis [19], [21].

In our case, a Doppler radar simulation model is devel-
oped to detect walking motions on the virtual path [45].
The radar is located at the end of the path (e.g.,
X1=10m, Y1=0m, and Z;=1 m) and the starting point
of human walking is located at (Xo= 0, Y¢o=0, and Zo= 0).
Once the walking (Section II-A) starts, a frequency-modulated
continuous-wave (FMCW) radar is simulated to periodically
transmit and receive signals until the walking simulation ends.
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According to [45], the Doppler frequency shift fp,
induced by motions of human bodies during the walking
process, is calculated as

Spk = — 2fc/c) vicost )

where c is the wave propagation speed, f. is the radar carrier
frequency, vi is the velocity of the kth body part, and 6 is
the corresponding line-of-sight angle between the radar and the
kth body part. For the FMCW radar, the Doppler resolution
and the range resolution are computed, respectively, by

Afp = 1/(nTsw) )
AR =c/(2AB) (6)

where n is the number of group sweeps, Tsw is the sweep time,
and AB is the bandwidth of the signal [45].

In this study, the bandwidth of the radar is 1.5 GHz, the
sweep time is 1.0 ms, and the number of group sweeps is 512.
Therefore, the simulated MDR has 0.1 m range resolution
and 1.95 GHz Doppler resolution. The received signals are
transformed into micro-Doppler signatures on a spectrogram
through the short-time Fourier transform (STFT) [48].

C. Band-Dependent Deep Learning Model for ADRD
Risk Assessment

The spectrogram, which contains micro-Doppler signatures
of walking (see Fig. 1), is a one-channel time—frequency
image. Recently, DL has made great success in image studies,
including time—frequency images [23], [28], [49], [50]. Unlike
the natural image, the spectrogram represents a signal in a
view of both time and frequency. It shows the variation in the
frequency domain and does not satisfy the translation invari-
ance [51]. In addition, as frequency increases, the power of
the reflected signal decreases. Therefore, considering a certain
frequency range as a subband, time—frequency spectrogram
often has band-dependent patterns observed.

Several studies have adopted convolutional networks on
subbands by limiting the kernel sharing or customizing the
kernel scale [50], [51], [52], [53]. The issue with such an
approach is that it requires extensive computation and memory
to run multiple network models in parallel. To dedicate one
network model for each subband, Chang et al. [54] proposed
a shared network and developed a band-level normalization to
adjust the imbalanced scales between the subbands. However,
in our study, such normalization may face serious challenges
from the high-frequency band where the power of the noise
is similar to that of the signal reflecting from the body parts
such as feet and legs (see Fig. 2).

To address this issue, we propose a BDL framework to
divide the spectrogram and fuse the diverse representations of
subbands. The framework leverages the generalization capabil-
ities of vision models such as ResNet-18 [55] and separately
identifies representations in each subband. The obtained repre-
sentations (feature vectors) are then normalized to reduce the
scale difference between subbands and selectively combined
to balance the contribution of each subband using a learnable
weight vector.

The workflow of the BDL framework is shown in Fig. 3.
The input spectrogram is first equally partitioned into N
nonoverlapping subbands with the output feature vectors
depicting the characteristics of the subbands. This way ensures
that the features of each band are captured fairly. The feature
vectors are then normalized to be on the unit hypersphere so
that the scale difference between subbands can be mitigated.
Next, the feature vectors are concatenated and multiplied by a
learnable weight vector whose dimension corresponds to the
number of subbands. This vector is used to fuse the N feature
vectors to adjust the contributions from the subbands on the
final feature vector. Before the multiplication, the elements of
the weight vector are mapped to [0, 1] by the sigmoid function.
Hence, the elements of the weight vector are initialized to 0.
The weighted feature vector is used in a classifier for the final
prediction.

[1l. EXPERIMENTS

The human walking simulator generates four types of walks
for ADRD risks: normal, subtle abnormality, moderate abnor-
mality, and severe abnormality. The parameters are randomly
selected within the ranges specified in Table I. In this study,
2000 walks for each category are generated, resulting in a
total of 8000 samples. These walking animations are presented
on a simulated 10 m walking path under the detection of
the Doppler radar. —15 dBm adaptive weight Gaussian noise
(AWGN) is added to the channel to mimic the real-world
scenario. The radar records approximately a 4-s walking period
and transforms all collected signals into MDR signatures on
a spectrogram by STFT. For STFT, the number of discrete
Fourier transform (DFT) points is 512 and there are 256 over-
lapped samples for each window. The Kaiser window with 256
points is employed. Each spectrogram thus has a one-channel
time—frequency image with 512 and 776 dimensions for the
frequency and time domains, respectively.

Spectrograms are preprocessed by applying x = 20 x
logio(x + le™) to each data point x. This function can
magnify the low-power data points, which might be the
signatures of the foot and the leg. Fig. 2 shows the example
micro-Doppler signatures of the four ADRD risk levels under
the noisy scenario. Most of the signatures appear in the
positive frequency and a few in the negative frequency because
human arms and hips periodically move forward and backward
while walking. In addition, most of the signatures of the joint
occur within [—100, 300] Hz. The signatures of feet and legs,
which have faster moving speeds, appear in the whole positive
frequency. However, the signals are shadowed by the noises
and become blurred in the high-frequency range.

To verify the performance of the ADRD risk assessment
model (BDL-ResNet), the 8000 samples are divided into a
training set (70%), a validation set (15%), and a test set
(15%). For comparison, two DL models (GoogleNet [56]
and ResNet-18 [55]) and two ML models [24], [27] are
implemented as benchmarks. The DL models are fine-tuned on
the training set and they tend to focus on the entire frequency
domain for representation learning. Please note that the one-
channel spectrogram is replicated three times to fit the input
requirement (three channels) of the DL vision models. The
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Fig. 2. Plots of samples of micro-Doppler signatures with different ADRD risk levels under noisy environment.
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Fig. 3. Overview of the BDL framework.

two ML models extract gait-related features and use support TABLE Il

vector machine (SVM) [24] and neural network (NN) [27] as
the classifier.

For the parameter settings, the output from ResNet-18 is a
512-D feature vector. The classifier of BDL-ResNet is a 512 by
four one-layer fully connected network using the rectified
linear unit (ReLu) activation and the batch normalization. All
experiments use the cross entropy as the loss function and
64 as the batch size. For the weight vector, 2¢~! is employed
for faster convergence. We set the learning rate to le > for all
DL models and train them up to five epochs using the Adam
optimizer [57]. The training process is early stopped based on
the validation results. For the ML models, all settings are as
specified in the original references.

To fully compare the performance of the algorithms, we use
accuracy for overall evaluation. Precision and sensitivity are
for class-wise evaluation. The metrics are defined as follows:

Accuracy = # of correct predictions/total # of samples

(7
Precision = TP/(TP + FP) ®)
Sensitivity = TP/(TP + FN) ©)]

where TP, FP, and FN are the true positive samples, false pos-
itive samples, and false negative samples, respectively. These
three variables are evaluated in a class-specific manner [58].

First, to determine the number of subbands, N, we conduct
experiments training the models using N from 2, 4, 8, to 16

VALIDATION RESULTS OF N

N Accuracy on Validation Set
2 0.906
4 0.913
8 0.922
16 0.922

and test them on the validation set for comparison. The
accuracy results are summarized in Table II. The validation
results indicate that the model performs well for N being
8 and 16. We decide to set N to 8 considering the computation
efficiency. The result that the accuracy increases with N also
demonstrates the advantages of subband-based studies.

Next, BDL-ResNet (N = 8) is compared with the other four
algorithms in overall and class-wise evaluations on the test set.
To evaluate the robustness of the method, the experiments are
repeated 30 times. Please note that the dataset is resplit and the
models are reinitialized in each run. The means and standard
deviations of the four metrics are calculated. We conduct the
one-sided z-test using the results of the 30 runs. It can be
concluded that BDL-ResNet is statistically greater than the
competitor when the p-value is less than 0.05.

As summarized in Table III, BDL-ResNet significantly out-
performs the other algorithms in terms of overall accuracy with
at least 95% confidence. Both DL vision models provide com-
petitive performance for ADRD risk evaluation, while ML_NN
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TABLE IlI
OVERALL PERFORMANCE STATISTICS ON THE TEST SET
Accuracy
Algorithm p-value
Mean £ Std (BDL-ResNet vs.)

ML SVM [24] 0.898 +0.007 0.000
ML NN [27] 0.740 + 0.007 0.000
GoogleNet 0.905+0.013 0.000
ResNet-18 0.884 +£0.078 0.012
BDL-ResNet 0.923 +0.018 ~

only achieves 74% overall accuracy. The BDL framework
significantly improves the performance of ResNet according
to the result (0.923 £ 0.018 versus 0.884 £ 0.078 and p =
0.012). This improvement indicates the advantage of BDL,
which reduces the impact of variability among frequencies and
emphasizes the salient subbands.

The class-wise performance results are presented in
Table IV. For the normal and subtle abnormality groups, our
method performs the best with at least 95% confidence in
terms of precision and is comparable to the best candidates
for sensitivity. Specifically, for the normal group, BDL-ResNet
outperforms ResNet-18 in precision (0.977 £ 0.028 versus
0.877 £ 0.294 and p = 0.037) and sensitivity (0.996 =+
0.009 versus 0.861 & 0.307 and p = 0.011). For the subtle
abnormal walking group, BDL-ResNet outperforms ResNet-18
in terms of precision (0.822 £ 0.035 versus 0.77 & 0.134 and
p = 0.023) and obtains a comparable sensitivity result. This
group is the most challenging to investigate and has the worst
overall prediction performance among all four groups, but our
method still outperforms ResNet-18 in categorizing subjects
with subtle abnormalities, due to the benefits of the BDL
framework. In addition, BDL-ResNet is statistically better than
two ML models (0.750 £ 0.002 and 0.577 £ 0.027) in terms
of precision to a large extent to detect the subtle abnormality.
These results are desirable showing that our method can better
categorize normal walking with fewer “false alarms” and more
accurately detect subtle abnormality (early stage).

For the severe abnormality groups, all algorithms have
excellent performance. This indicates the power of DL in gen-
eral to support the study. For the moderate abnormality group,
it is interesting to observe that our method exhibits compa-
rable performance to other candidates. However, our method
marginally underperforms in precision (0.920 £ 0.072 versus
0.942 £ 0.013 and p = 0.945) and sensitivity (0.794 =+
0.071 versus 0.805 4 0.072 and p = 0.705) though no statis-
tical conclusion can be drawn. It is our intention to improve
our framework focusing on this group as the immediate next
step.

To further shed light on the behavior of the model, we visu-
alize the weights that the model places on each subband.
Please note that the model uniformly splits the spectrogram
into eight subbands. Fig. 4 shows the weight values and the
corresponding body parts whose signatures appear in each
subband. The trained model gives high importance, 0.96 and
0.86, to the third subband and the fourth subband, respectively.
The results indicate that the model underscores these two

Body Parts

Sample under Noisy Environment

i Feet
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Head; Torso; Shoulders; Upper Arms; Lower
Arms ; Hips; Upper Legs; Lower Legs; Feet
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i Lower Legs; Feet (5)1 ‘
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: (8)i: 0.0

" Time(s)

Fig. 4. Plots of weights on eight subbands. Left: body parts whose
signatures occur in the subband. Right: spectrogram sample with band
division (N = 8).

subbands, which contain the signatures of all body parts.
The third band contains the clear signatures of the legs’
movements, whereas the fourth band contains the overlapping
signatures of all body parts. The legs’ signatures strongly
correlate to the walking dysfunction caused by ADRD [§].
The signatures in the fifth band have a lower importance rate
(0.41), despite being related to movements of the feet and the
legs. These signatures correspond to the duration of double
support when both feet are in contact with the ground and the
legs are together. Hence, the differences between categories
are less discriminative in this subband. Although the first two
subbands have the signatures of the feet and the legs, the power
of the signatures is relatively low. Their shapes become blurred
as they are shadowed by the noise. In addition, the last three
bands are uninformative ranges (the last three bands), which
have no micro-Doppler signature. The model can recognize
these facts and pays nearly zero attention to those subbands.
These results verify our proposed model and motivate our
future work to interrogate the clinical implications focusing
on the signatures from important subbands.

IV. DIScUSSION

Referring to dementia-related gait parameters, the “digital
twin” can produce adequate gait signatures for four different
ADRD risk levels to validate the concept of STRIDE. The
ADRD risk assessment model is built upon the novel BDL
framework, where the scale difference among subbands is
normalized in a high-level feature space and the significant
subband is augmented in the decision-making of the classifier.
Benefiting from this advantage, BDL-ResNet demonstrates its
superiority compared to the four state-of-the-art (SOTA) mod-
els according to the results of the overall evaluation (accuracy),
as well as the class-wise evaluations (precision and sensitivity).
In addition, since the competitive performances on the normal
and subtle abnormality groups, we conclude that our method
has great potential to be an early detection tool for ADRD
assessment.

In future work, we plan to address the following limi-
tations. First, it can be challenging to classify subjects of
the subtle and moderate abnormality groups. We thus plan
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TABLE IV
CLASS-WISE PERFORMANCE STATISTICS ON THE TEST SET
Precision Sensitivity
Class-wise Evaluation Algorithm p-value p-value
Mean + Std (BDL-ResNet vs.) Mean + Std (BDL- ResNet vs.)

ML _SVM [24] 0.942+0.010 0.000 0.989 + 0.005 0.000
ML NN [27] 0.673 +£0.024 0.000 0.823 +0.055 0.000
Normal GoogleNet 0.966 + 0.024 0.006 0.996 = 0.001 0.484
ResNet-18 0.877+0.294 0.037 0.861 +£0.307 0.011

BDL-ResNet 0.977 £ 0.028 ~ 0.996 + 0.009 ~
ML SVM [24] 0.750 + 0.002 0.000 0.908 = 0.016 0.632
ML NN [27] 0.577 +0.027 0.000 0.578 = 0.057 0.000
Subtle Abnormality GoogleNet 0.769 + 0.028 0.000 0.899 +0.080 0.435
ResNet-18 0.770 +£0.134 0.023 0.876 = 0.135 0.191

BDL-ResNet 0.822 £0.035 ~ 0.902 = 0.087 ~
ML SVM [24] 0.942 +0.013 0.945 0.696 £ 0.030 0.000
ML_NN [27] 0.775 £ 0.040 0.000 0.586 = 0.045 0.000
Moderate Abnormality GoogleNet 0.920 + 0.064 0.502 0.723 + 0.059 0.000
ResNet 0.899 £0.101 0.176 0.805 £0.072 0.705

BDL-ResNet 0.920 = 0.072 ~ 0.794 £ 0.071 ~
ML_SVM [24] 1.000 £ 0.000 0.962 1.000 £ 0.000 0.893
ML_NN [27] 0.966 +0.018 0.000 0.971+0.013 0.000
Severe Abnormality GoogleNet 0.998 + 0.005 0.892 0.999 +0.002 0.856
ResNet 0.997 +0.013 0.723 0.996 + 0.015 0.398

BDL-ResNet 0.995 +0.014 ~ 0.997 £0.014 ~

to include focal loss or sampling methods, so the model ACKNOWLEDGMENT

would concentrate more on these easily misclassified samples.
In addition, the number of subbands used in the framework is
currently determined by the validation. We plan to develop a
trainable band division model to adaptively divide the original
spectrogram into several high inter- and low intra-difference
subbands. It is also important to note that the simulation
scenario of STRIDE is close to an empty experiment room
with channel noise, which is not a realistic case. Interference
from clutter and multisubjects should be further included in
the simulation to mimic a daily living scenario. Other than
these factors, an elderly specific human model is expected to
analyze the characteristics of elderly people, such as humpback
and tremors. In addition, MDR sensors have been used in-bed
monitoring for vital signs in the hospital. It is our intention to
explore the applicability of STRIDE in a real living context
and clinics for field testing. We plan to explore transfer
learning techniques to adapt the trained DL model of STRIDE
to real-world data.

V. CONCLUSION

In this article, we proposed STRIDE, systematic radar intel-
ligence analysis for ADRD risk evaluation, as a potential clini-
cal tool. To validate the concept, we developed a “digital twin”
of STRIDE and a novel DL framework focusing on frequency
BDL ability. We generated a valid gait signature dataset cate-
gorized according to the ADRD risk level and then conducted
comprehensive experiments to evaluate the effectiveness of the
proposed DL model for ADRD risk assessment. Experimen-
tal results supported the effectiveness and feasibility of the
system in terms of the quality of the ADRD risk assessment.
In addition, we leveraged the learned weight vector for clinical
interpretation.

The U.S. Government is authorized to reproduce and
distribute for governmental purposes notwithstanding any
copyright annotation of the work by the author(s). The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of NIH, Bethesda, MD, USA, or the U.S. Government.

REFERENCES

[1]1 Alzheimer’s Association, “2022 Alzheimer’s disease facts and figures,”
Alzheimer’s Dement., vol. 18, no. 4, pp. 700-789, 2022. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/35289055/

[2] R.J. Bateman, R. J. Bateman, and C. Xiong, “Clinical and biomarker
changes in dominantly inherited Alzheimer’s disease,” New England J.
Med., vol. 367, pp. 795-804, Sep. 2012.

[3] A. Muro-De-La-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla,
“Gait analysis methods: An overview of wearable and non-wearable
systems, highlighting clinical applications,” Sensors, vol. 14, no. 2,
pp- 3362-3394, 2014.

[4] J. Verghese, R. B. Lipton, C. B. Hall, G. Kuslansky, M. J. Katz, and
H. Buschke, “Abnormality of gait as a predictor of non-Alzheimer’s
dementia,” New Eng. J. Med., vol. 347, no. 22, pp. 1761-1768, 2002.

[51 J. K. Kueper, M. Speechley, N. R. Lingum, and M. Montero-Odasso,
“Motor function and incident dementia: A systematic review and meta-
analysis,” Age Ageing, vol. 46, no. 5, pp. 729-738, Sep. 2017.

[6] J. Verghese et al., “Motoric cognitive risk syndrome: Multicountry
prevalence and dementia risk,” Neurology, vol. 83, no. 8, pp. 718-726,
Aug. 2014.

[7]1 R. Savica et al., “Comparison of gait parameters for predicting cognitive
decline: The mayo clinic study of aging,” J. Aizheimer’s Disease, vol. 55,
no. 2, pp. 559-567, Nov. 2016.

[8] M. Montero-Odasso et al., “CCCDTDS5 recommendations on early non
cognitive markers of dementia: A Canadian consensus,” Alzheimer’s
Dementia, Transl. Res. Clin. Intervent., vol. 6, no. 1, Jan. 2020,
Art. no. e12068.

[91 M. M. Montero-Odasso et al., “Association of dual-task gait with
incident dementia in mild cognitive impairment: Results from the gait
and brain study,” JAMA Neurol., vol. 74, no. 7, pp. 857-865, 2017.

Authorized licensed use limited to: ASU Library. Downloaded on October 02,2023 at 16:12:03 UTC from IEEE Xplore. Restrictions apply.



CAl et al.: STRIDE: SYSTEMATIC RADAR INTELLIGENCE ANALYSIS FOR ADRD RISK EVALUATION

11005

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

P. Mahlknecht et al., “Prevalence and burden of gait disorders in elderly
men and women aged 60-97 years: A population-based study,” PLoS
ONE, vol. 8, no. 7, Jul. 2013, Art. no. €69627.

S. Fritz and M. Lusardi, “White paper: ‘Walking speed: The sixth vital
sign,”” J. Geriatric Phys. Therapy, vol. 32, no. 2, pp. 2-5, 2009.

J. Verghese, C. Wang, R. B. Lipton, R. Holtzer, and X. Xue, “Quan-
titative gait dysfunction and risk of cognitive decline and dementia,”
J. Neurol. Neurosurg. Psychiatry, vol. 78, no. 9, pp. 929-935, Sep. 2007.
F. D. O. Silva et al., “Gait analysis with videogrammetry can differentiate
healthy elderly, mild cognitive impairment, and Alzheimer’s disease:
A cross-sectional study,” Experim. Gerontology, vol. 131, Mar. 2020,
Art. no. 110816.

X. Xu, X. Zhang, T. Zhang, Z. Yang, J. Shi, and X. Zhan, “Shadow-
background-noise 3D spatial decomposition using sparse low-rank Gaus-
sian properties for video-SAR moving target shadow enhancement,”
IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2022.

T. Zhang and X. Zhang, “A mask attention interaction and scale enhance-
ment network for SAR ship instance segmentation,” IEEE Geosci.
Remote Sens. Lett., vol. 19, pp. 1-5, 2022.

X. Xu et al.,, “A group-wise feature enhancement-and-fusion network
with dual-polarization feature enrichment for SAR ship detection,”
Remote Sens., vol. 14, no. 20, p. 5276, 2022, doi: 10.3390/rs14205276.
T. Zhang, X. Zhang, J. Shi, and S. Wei, “Depthwise separable convolu-
tion neural network for high-speed SAR ship detection,” Remote Sens.,
vol. 11, no. 21, p. 2483, 2019, doi: 10.3390/rs11212483.

D. E Fioranelli, D. S. A. Shah, H. Li, A. Shrestha, D. S. Yang, and
D. J. Le Kernec, “Radar sensing for healthcare,” Electron. Lett., vol.
55, no. 19, pp. 1022-1024, 2019.

S. L. Mancini, W. Troy, K. A. Hall, X. Wu, and H. Wang, “Radar
technology as a mechanism for clinical gait analysis: A review,” J. Ann.
Bioeng., vol. 2021, no. 1, pp. 151-158, Jan. 2021.

H. Abedi, J. Boger, P. P. Morita, A. Wong, and G. Shaker, “Hall-
way gait monitoring using novel radar signal processing and unsuper-
vised learning,” IEEE Sensors J., vol. 22, no. 15, pp. 15133-15145,
Aug. 2022.

A.-K. Seifert, M. Grimmer, and A. M. Zoubir, “Doppler radar for
the extraction of biomechanical parameters in gait analysis,” IEEE J.
Biomed. Health Informat., vol. 25, no. 2, pp. 547-558, Feb. 2021.

J. E. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke, “Dual-frequency
technique for assessment of cardiopulmonary effective RCS and dis-
placement,” IEEE Sensors J., vol. 12, no. 3, pp. 574-582, Mar. 2012.
S. Z. Gurbuz and M. G. Amin, “Radar-based human-motion recognition
with deep learning: Promising applications for indoor monitoring,” IEEE
Signal Process. Mag., vol. 36, no. 4, pp. 16-28, Jul. 2019.

K. Saho, K. Uemura, K. Sugano, and M. Matsumoto, “Using micro-
Doppler radar to measure gait features associated with cognitive
functions in elderly adults,” IEEE Access, vol. 7, pp. 24122-24131,
2019.

K. Saho, K. Uemura, and M. Matsumoto, “Screening of mild cognitive
impairment in elderly via Doppler radar gait measurement,” /EICE
Commun. Exp., vol. 9, no. 1, pp. 19-24, 2020.

K. Saho, K. Sugano, M. Kita, K. Uemura, and M. Matsumoto, “Classi-
fication of health literacy and cognitive impairments using higher-order
kinematic parameters of the sit-to-stand movement from a monostatic
Doppler radar,” IEEE Sensors J., vol. 21, no. 8, pp. 10183-10192,
Apr. 2021.

R. Ishibashi, N. Nojiri, K. Saho, and L. Meng, “Dementia diagnose
based on machine learning using Doppler radar image for the elderly
person,” in Proc. 4th Int. Symp. Adv. Technol. Appl. Internet Things
(ATAIT), vol. 3198, 2022, pp. 17-24.

Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436444, Dec. 2015.

V. S. Papanastasiou, R. P. Trommel, R. I. A. Harmanny, and A. Yarovoy,
“Deep learning-based identification of human gait by radar micro-
Doppler measurements,” in Proc. 17th Eur. Radar Conf. (EuRAD),
Jan. 2021, pp. 49-52.

X. Li, Y. He, and X. Jing, “A survey of deep learning-based human
activity recognition in radar,” Remote Sens., vol. 11, no. 9, p. 1068,
May 2019.

X. Li, Y. He, F. Fioranelli, and X. Jing, “Semisupervised human activity
recognition with radar micro-Doppler signatures,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5103112.

C. Wan, L. Wang, and V. V. Phoha, “A survey on gait recognition,” ACM
Comput. Surv., vol. 51, no. 5, pp. 1-35, Aug. 2018.

[33]

[34]

(35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

C. Buckley et al., “The role of movement analysis in diagnosing
and monitoring neurodegenerative conditions: Insights from gait and
postural control,” Brain Sci., vol. 9, no. 2, p. 34, Feb. 2019, doi:
10.3390/brainsci9020034.

A. Middleton, S. L. Fritz, and M. Lusardi, “Walking speed: The func-
tional vital sign,” J. Aging Phys. Activity, vol. 23, no. 2, pp. 314-322,
Apr. 2015.

C. L. Vaughan, B. L. Davis, and J. C. O’Connor, Dynamics of Human
Gait. Champaign, IL, USA: Human Kinetics Publishers, 1999.

J. E. Cutting and L. T. Kozlowski, “Recognizing friends by their walk:
Gait perception without familiarity cues,” Bull. Psychonomic Soc., vol. 9,
no. 5, pp. 353-356, May 1977.

R. Mc Ardle, S. Del Din, P. Donaghy, B. Galna, A. J. Thomas,
and L. Rochester, “The impact of environment on gait assessment:
Considerations from real-world gait analysis in dementia subtypes,”
Sensors, vol. 21, no. 3, p. 813, Jan. 2021.

G. Allali et al., “Gait phenotype from mild cognitive impairment to
moderate dementia: Results from the GOOD initiative,” Eur. J. Neurol.,
vol. 23, no. 3, pp. 527-541, Mar. 2016.

M. S. Nixon and J. N. Carter, “Automatic recognition by gait,” Proc.
IEEE, vol. 94, no. 11, pp. 2013-2024, Nov. 2006.

L. Z. Gras, S. F. Kanaan, J. M. McDowd, Y. M. Colgrove, J. Burns,
and P. S. Pohl, “Balance and gait of adults with very mild Alzheimer
disease,” J. Geriatric Phys. Therapy, vol. 38, no. 1, pp. 1-7, 2015.

S. Studenski et al., “Gait speed and survival in older adults,” J. Amer.
Med. Assoc., vol. 305, no. 1, pp. 50-58, 2011.

V. Valkanova and K. P. Ebmeier, “What can gait tell us about dementia?
Review of epidemiological and neuropsychological evidence,” Gait
Posture, vol. 53, pp. 215-223, Mar. 2017.

F. Pieruccini-Faria et al., “Gait variability across neurodegenerative
and cognitive disorders: Results from the Canadian consortium of
neurodegeneration in aging (CCNA) and the gait and brain study,”
Alzheimer’s Dementia, vol. 17, no. 8, pp. 1317-1328, Feb. 2021.
A.-M. De Cock et al., “Comprehensive quantitative spatiotemporal gait
analysis identifies gait characteristics for early dementia subtyping in
community dwelling older adults,” Frontiers Neurol., vol. 10, p. 313,
Apr. 2019.

V. Chen, The Micro-Doppler Effect in Radar. Norwood, MA, USA:
Artech House, 2011.

V. C. Chen, “Analysis of radar micro-Doppler with time-frequency
transform,” in Proc. 10th IEEE Workshop Stat. Signal Array Process.,
Aug. 2000, pp. 463—466, doi: 10.1109/SSAP.2000.870167.

R. Boulic, N. M. Thalmann, and D. Thalmann, “A global human walking
model with real-time kinematic personification,” Vis. Comput., vol. 6,
no. 6, pp. 344-358, Nov. 1990.

S. K. Mitra, Digital Signal Processing: A Computer Based Approach,
1st ed. New York, NY, USA: McGraw-Hill, 1997.

G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60-88, Dec. 2017.

O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Trans. Audio, Speech Language Process., vol. 22, no. 10,
pp. 1533-1545, Oct. 2015.

S. S. R. Phaye, E. Benetos, and Y. Wang, “SubSpectralNet—Using
sub-spectrogram based convolutional neural networks for acoustic scene
classification,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 825-829.

C.-C. Kao, M. Sun, Y. Gao, S. Vitaladevuni, and C. Wang, “Sub-
band convolutional neural networks for small-footprint spoken term
classification,” in Proc. Interspeech, Sep. 2019, pp. 2195-2199.

N. Takahashi and Y. Mitsufuji, “Multi-scale multi-band densenets for
audio source separation,” in Proc. IEEE Workshop Appl. Signal Process.
Audio Acoust. (WASPAA), Oct. 2017, pp. 21-25.

S. Chang, H. Park, J. Cho, H. Park, S. Yun, and K. Hwang, “Subspectral
normalization for neural audio data processing,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 850-854.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

C. Szegedy et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1-9, doi:
10.1109/CVPR.2015.7298594.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-15.

Z.-H. Zhou, Machine Learning. Berlin, Germany: Springer, 2021.

Authorized licensed use limited to: ASU Library. Downloaded on October 02,2023 at 16:12:03 UTC from IEEE Xplore. Restrictions apply.



11006

IEEE SENSORS JOURNAL, VOL. 23, NO. 10, 15 MAY 2023

Fulin Cai received the bachelor's and master’s
degrees from Shenzhen University, Shenzhen,
China, in 2016 and 2019, respectively. He is
currently pursuing the Ph.D. degree in com-
puter engineering with Arizona State University,
Tempe, AZ, USA.

He was a Research Assistant with the
ASU-Mayo Center for Innovative Imaging, Ari-
zona State University, under the supervision of
Prof. Teresa Wu. He is particularly interested in
leveraging advanced deep learning techniques
to enhance medical applications and improve healthcare outcomes. His
current research interests include machine learning, health informatics,
and medical sensors.

Abhidnya Patharkar received the bachelor's
degree in mechanical engineering and the mas-
ter's degree in mechanical engineering with a
focus on biomechanics from the University of
Pune, Pune, India, in 2013 and 2017, respec-
tively. She is pursuing the Ph.D. degree in infor-
mation management and systems with Arizona
State University, Tempe, AZ, USA.
: Her focus is on building machine learning
&b 0, models for healthcare applications. Her current
’ research interests include machine learning,
deep learning, and time-series analysis for clinical temporal datasets.

Teresa Wu (Senior Member, IEEE) received the
Ph.D. degree in industrial engineering from the
University of lowa, lowa City, IA, USA, in 2001.

She is a Professor of Industrial Engineering
with the School of Computing and Augmented
Intelligence, Arizona State University, Tempe,
AZ, USA. She has authored more than 140 jour-
nal articles, such as IEEE TRANSACTIONS ON
BIOMEDICAL ENGINEERING, |IEEE JOURNAL OF
BIOMEDICAL AND HEALTH INFORMATICS, and Infor-
mation Science. Her current research interests
include deep learning on heterogenous data, health informatics, and
distributed decision support.

Fleming Y. M. Lure received the Ph.D. degree in
electrical engineering from Pennsylvania State
University, State College, PA, USA, in 1990.

He is a Chief Product Officer with MS
Technologies Corporation, Rockville, MD, USA.
His research interests include computer-aided
detection (CAD), machine learning, and deep
learning for disease detection, diagnosis, and
prognosis.

Dr. Lure has led a team to receive the first
FDA pre-market approved (PMA) early stage
lung cancer detection system on radiograph. He is a member of
the Radiological Society of North America (RSNA). He has received
more than ten SBIR/STTR Phase I/Il awards from NIH and DoD to
develop and commercialize computer-aided diagnosis (CAD) systems
on lung cancer, tuberculosis, and Alzheimer’s diseases on radiological
and pathological images deployed worldwide. He also led a team with
interdisciplinary backgrounds to annotate large amount of COVID and
tuberculosis radiographs to support various government and consortium
to provide as high-quality training dataset for artificial intelligence (Al)
and clinical researchers worldwide. He is a member of the Radiological
Society of North America (RSNA).

Harry Chen received the bachelor's degree in computer science from
Oklahoma City University, Oklahoma City, OK, USA, in 1997.

He is currently the Manager of System Development with MS
Technologies Corporation, Rockville, MD, USA. He has authored or
coauthored five books and more than 180 publications in book chap-
ters, journals, and proceedings. His specialty is integration of large
complicated systems involving telephone technology, computer, com-
munication systems for customer relationship management (CRM) with
application to automobile vehicle administration, healthcare technology
for elderly, and healthcare payment management.

Victor C. Chen (Life Fellow, IEEE) received the Ph.D. degree in electri-
cal engineering from Case Western Reserve University, Cleveland, OH,
USA, in 1989.

He was with the Radar Division, U.S. Naval Research Laboratory,
Washington, DC, USA, on radar imaging and micro-Doppler effect in
radar and retired in 2009.

Dr. Chen is internationally recognized for his work on the micro-
Doppler effect in radar and time—frequency-based radar image forma-
tion. He often served as a technical program committee member and
the session chair for IEEE and other conferences and served as a
guest editor for journals. He also served as an Associate Editor for IEEE
TRANSACTIONS ON AES from 2004 to 2009.

Authorized licensed use limited to: ASU Library. Downloaded on October 02,2023 at 16:12:03 UTC from IEEE Xplore. Restrictions apply.



