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1  Introduction

Symbiotic relationships range from purely facultative to 
strictly obligate (Kearns et al. 1998; Delabie 2001; Fisher 
et al. 2017). Symbioses characterized by partners in persis-
tent contact are often relationships between multicellular 
hosts and their associated microbial symbionts (Bright and 
Bulgheresi 2010). Obligate symbionts often provide essen-
tial nutrients to their hosts (Douglas 2016; Skidmore and 
Hansen 2017). Such host-symbiont relationships are main-
tained through symbiont transmission (Bright and Bulgh-
eresi 2010). Conventionally, transmission is described as 
occurring either horizontally or vertically, although some 
hosts can acquire symbionts through both transmission 
modes, i.e., mixed-mode transmission (Ebert 2013; Russell 
2019).
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Abstract
Many host-symbiont relationships are maintained through vertical transmission. While maternal symbiont transmission 
is common, biparental transmission is relatively rare. Protist-dependent termites are eusocial insects that harbor obligate, 
cellulolytic protists in their hindguts. Protists are vertically transmitted by winged reproductives (alates), which disperse 
to biparentally establish new colonies. Vertical transmission in protist-dependent termites is imperfect, as the protist com-
munities of alates are often incomplete. Biparental transmission of protists may make it unnecessary for alates to harbor 
complete communities, as colonies would acquire symbionts from both founding kings and queens, which together may 
harbor sufficient inoculums. To investigate this hypothesis, the protist communities of Coptotermes gestroi and C. for-
mosanus alates and colonies were examined using 18S rRNA amplicon sequencing. The complete protist communities 
of these Coptotermes species are composed of five parabasalid species each. Whereas alates often harbored 1–3 protist 
species, nearly all colonies harbored 4–5 species, implying biparental transmission. The probability of each protist spe-
cies being present in at least one founding alate was used to determine expected protist occurrence in colonies. For most 
protists, expected and observed occurrence did not significantly differ, suggesting that each protist species only needs 
to be harbored by one founding alate to be acquired by colonies. Our results imply that biparental transmission allows 
founding reproductives to transmit adequate symbiont communities to colonies despite their individual communities being 
incomplete. We discuss biparental transmission in protist-dependent termites in the context of other biparentally transmit-
ted symbioses.
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Horizontal transmission usually refers to symbiont 
acquisition from an environmental source of free-living 
microbes (Bright and Bulgheresi 2010). This term is also 
used to describe both intraspecific and interspecific trans-
mission among hosts, i.e., host switching (Chrostek et al. 
2017; Bourguignon et al. 2018). In contrast, vertical trans-
mission refers to offspring acquiring symbionts from one 
or both parents (Bright and Bulgheresi 2010). For example, 
insect hosts vertically transmit symbionts through trans-
ovarial transmission (Douglas 1998; Dan et al. 2017; Rus-
sell et al. 2019) or other mechanisms, such as milk gland 
secretions in tsetse flies (Balmand et al. 2013) and symbi-
ont capsules in plataspid stinkbugs (Fukatsu and Hosokawa 
2002). Whereas maternal symbiont transmission is com-
mon, biparental transmission is comparatively rare. Nearly 
all described examples of biparental transmission are char-
acterized by offspring potentially acquiring both maternal 
and paternal lineages of facultative bacterial symbionts, 
which progeny usually sufficiently obtain through solely 
maternal symbiont transmission (Moran and Dunbar 2006; 
Damiani et al. 2008; Watanabe et al. 2014; De Vooght et 
al. 2015). Unlike these examples, biparental transmission in 
Aporrectodea tuberculata, a lumbricid earthworm species, 
is probably not facultative, as offspring likely often require 
Verminephrobacter lineages from both hermaphroditic par-
ents to acquire adequate inoculums (Paz et al. 2017). Like 
lumbricid earthworms, eusocial cockroaches, commonly 
known as termites, may also be an example of non-faculta-
tive biparental symbiont transmission.

Termites are ecologically dominant social insects (Engel 
et al. 2009), which are important decomposers of dead 
plant material in tropical (Griffiths et al. 2019), subtropical 
(Stoklosa et al. 2016), savanna (Collins 1981), and desert 
ecosystems (Whitford et al. 1982). Globally, their biomass 
is comparable to that of ants (Bar-On et al. 2018; Eggle-
ton 2020). Termites live in organized social units known 
as colonies, which are composed of three castes: workers, 
soldiers, and reproductives. All termites are eusocial, as 
they exhibit overlapping generations, cooperative brood 
care, and reproductive division of labor (Wilson 1971). The 
queen and king of a colony are generally the only individu-
als that reproduce (Eggleton 2011). Alates are winged repro-
ductives (i.e., potential queens and kings) that disperse from 
their natal colony to establish new ones (Nutting 1969). 
Workers perform essential colony tasks, including foraging, 
tending eggs and larvae, feeding soldiers and reproductives, 
and building and maintaining colony architecture (Krishna 
1969). Soldiers, in concert with colony architecture, defend 
against predators, such as insectivorous mammals and par-
ticularly ants (Noirot and Darlington 2000; Eggleton 2011).

Conventionally, termites are considered to belong to 
one of two groups depending upon their symbionts. The 

protist-dependent termites (historically called the lower ter-
mites) harbor both prokaryotic symbionts and cellulolytic 
protists. This group is comprised of all termite families 
except Termitidae. In contrast, termites that belong to Ter-
mitidae (historically called the higher termites) solely har-
bor symbiotic prokaryotes (Brune and Dietrich 2015). For 
this study, we focused on protist-dependent termites and 
their obligate, wood-digesting protist symbionts (Cleveland 
1923, 1924).

Termite protists belong to either the phylum Parabasalia 
or the order Oxymonadida (phylum Preaxostyla). Protists 
harbored by termites reside primarily in an anterior, dilated 
region of the hindgut known as the hindgut paunch, but can 
occur throughout the hindgut, including the rectum (Brune 
2014). Most hindgut bacteria and archaea are either intra-
cellular endosymbionts or cell-surface ectosymbionts of 
protists (Ohkuma and Brune 2011). Hindgut prokaryotes 
are involved in a variety of metabolic processes, including 
acetogenesis and nitrogen metabolism (Brune and Ohkuma 
2011). In short, protist-dependent termites harbor symbiotic 
communities of prokaryotes and cellulolytic protists that are 
fundamental to their biology (Peterson and Scharf 2016).

Hindgut symbionts are transmitted through proctodeal 
trophallaxis (McMahan 1969; Nalepa 2015). During this 
behavior, symbiont-rich hindgut fluids voided from the rec-
tum of a donor termite are consumed by a recipient nestmate 
(McMahan 1969). Unlike many insect hosts, protist-depen-
dent termites must horizontally reacquire symbionts from 
nestmates after each molt, as termite protists die during 
this process (Honigberg 1970; Nalepa 2017). They do so 
by repeatedly consuming proctodeal fluids donated by inter-
molt nestmates (Nutting 1956; Nalepa 2015). This behavior 
is also the mechanism by which vertical transmission occurs 
in protist-dependent termites (Nalepa et al. 2001).

Vertical transmission in protist-dependent termites 
begins with newly emerged, last instar nymphs (i.e., the 
developmental stage that precedes the alate stage) reacquir-
ing symbionts from their nestmates (Cleveland 1925; May 
1941; Inagaki et al. 2022). Before dispersing, nymphs molt 
a final time to reach the alate stage. Unlike other molts, a 
small symbiont population is retained during the imaginal 
molt that recolonizes the hindgut after ecdysis (May 1941; 
Grassé and Noirot 1945; Nutting 1956; Honigberg 1970; 
Nalepa 2017). After maturation (Nutting 1969), alates dis-
perse to establish new colonies, harboring small inoculums 
(Cook and Gold 1998; Lewis and Forschler 2004; Shimada 
et al. 2013; Velenovsky et al. 2021). Before the emergence 
of their initial workers, the protist abundances of both kings 
and queens considerably increase from wood consumption 
(Cleveland 1925; Rosengaus and Traniello 1991; Shimada 
et al. 2013; Velenovsky et al. 2021). The first workers of 
colonies then vertically acquire symbionts from presumably 
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both reproductives through repeated proctodeal trophallaxis 
(Shellman-Reeve 1990; Nalepa 2015; Brossette et al. 2019).

With rare exception (Taerum et al. 2018), each protist-
dependent termite species harbors a host-specific com-
munity of cellulolytic protists that is generally consistent 
throughout its geographic range (Kirby 1937; Honigberg 
1970; De Martini et al. 2021). However, colonies sometimes 
lack one or more characteristic protist species (Kitade and 
Matsumoto 1993; Kitade et al. 2012; Taerum et al. 2018; 
Michaud et al. 2020; De Martini et al. 2021). This is likely 
attributable to some colonies being established by repro-
ductives with incomplete protist communities (Honigberg 
1970). In agreement with this notion, alates sometimes do 
not harbor all of their characteristic protists (Lewis and 
Forschler 2004; Michaud et al. 2020). In short, unlike many 
other hosts, vertical transmission in protist-dependent ter-
mites is imperfect (Michaud et al. 2020).

How protist-dependent termites and their obligate, cellu-
lolytic protists maintain their relationships through imperfect 
vertical transmission is largely unclear. Alates sometimes 
harboring incomplete communities implies that they have 
not evolved a mechanism that ensures they disperse with all 
of their characteristic protists. Biparental colony establish-
ment may make it unnecessary for alates to harbor complete 
protist communities, as the initial workers of colonies can 
potentially acquire symbionts from both founding reproduc-
tives, which collectively may harbor sufficient inoculums.

To test this hypothesis, we investigated the protist com-
munities of Coptotermes gestroi and C. formosanus alates 
and colonies through 18S rRNA amplicon sequencing. We 
determined if conspecific male and female Coptotermes 
alates harbor similar protist communities. In addition, we 
ascertained whether the protist communities of Coptotermes 
alates and colonies differ with regard to species richness. 
Finally, we calculated the probability of each protist species 
being harbored by at least one founding alate during colony 
establishment and compared these probabilities to data from 
Coptotermes colonies. Our results imply that biparental 
transmission allows newly established colonies to acquire 

sufficient inoculums despite founding reproductives often 
individually harboring incomplete protist communities.

2  Materials and methods

2.1  Alate collection and colony establishment

Coptotermes gestroi and C. formosanus alates were col-
lected at a single, private residence in Ft. Lauderdale, FL 
(26.105°N, 80.175°W) during their 2014–2019 dispersal 
flight seasons using a light trap (Chouvenc et al. 2015). Col-
lected alates were kept in a plastic box that contained moist 
corrugated cardboard until the following morning when 
they were used to establish colonies. The species and sex 
of dealates were determined using morphological charac-
ters (Weesner 1969; Su et al. 1997). Conspecific colonies 
were established by introducing dealate pairs into individual 
rearing-units. Each rearing-unit consisted of a transparent 
plastic cylindrical vial (8  cm × 2.5  cm diameter, internal 
volume = 37 mL, Fisher Scientific, Pittsburgh, PA) that con-
tained moistened organic soil, Picea sp. wooden blocks, 
and 3% agar solution to maintain moisture (Chouvenc et 
al. 2015). The lids of rearing-units were punctured with 
a safety pin to allow air exchange while still preventing 
escapees. As colonies grew, they were first transferred to 
17.15 cm × 12.22 cm × 6.03 cm transparent plastic contain-
ers (Pioneer Plastics, Dixon, KY). Later, colonies that grew 
beyond the capacity of their containers were transferred to 
larger 45.72 cm × 30.48 cm × 15.24 cm transparent plastic 
containers (Carlisle FoodService Products, Oklahoma City, 
OK). Colonies were sprayed with deionized water and pro-
visioned with appropriately sized Picea sp. wooden blocks 
as needed. All colonies were stored at 28 ± 1°C and approxi-
mately 80% humidity.

2.2  Sampling scheme

Table 1 contains the numbers of C. gestroi and C. formosa-
nus colonies that were sampled for each age. In total, 46 C. 
gestroi and 37 C. formosanus colonies were sampled. We 
investigated both C. gestroi and C. formosanus to confirm 
that our results were not species-specific. For 1–6-month-
old colonies, up to five workers, five soldiers, the king, 
and the queen were sampled from each colony, depend-
ing upon which individuals were present at the time. For 
1.5–3.5-year-old colonies, between three to eight work-
ers were sampled from each colony. The numbers of male 
and female C. gestroi and C. formosanus alates that were 
sampled are shown within Table 1. In sum, 24 C. gestroi 
and 47  C. formosanus alates were sampled. Differential 

Table 1  The numbers of C. gestroi and C. formosanus alates and colo-
nies sampled
Age C. gestroi C. formosanus
Male alates
Female alates

14
10

26
21

1-month-old 3 3
2-month-old 3 3
3-month-old 3 3
4-month-old 3 3
5-month-old 3 3
6-month-old 3 3
1.5-year-old 18 11
2.5-year-old 4 3
3.5-year-old 6 5
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Demultiplexed FASTQ files were submitted to NCBI 
Sequence Read Archive under BioProject accession number 
PRJNA611820. Amplicon data from C. gestroi and C. for-
mosanus workers from 1.5–3.5-year-old colonies were used 
previously (Jasso-Selles et al. 2020). For this study, those 
data were analyzed differently as described below.

2.4  Amplicon sequence analysis

The bioinformatics platform QIIME 2™ 2020.8 was used to 
analyze amplicon sequences (Bolyen et al. 2019). Demulti-
plexed FASTQ files (Casava 1.8 paired-end) were imported 
using ‘qiime tools import’. Data from each sequencing 
run were filtered, trimmed, denoised, and merged sepa-
rately using DADA2 (Callahan et al. 2016). DADA2 was 
also used to remove chimeric sequences. A Naive Bayes 
classifier was trained on a reference file that consisted of 
1,075 18S rRNA gene sequences from parabasalids and 
oxymonads using ‘qiime feature-classifier’ (Bokulich et 
al. 2018; Jasso-Selles et al. 2020; De Martini et al. 2021). 
Amplicon sequence variants from each sequencing run were 
taxonomically classified separately with this classifier using 
‘qiime feature-classifier’. Any C. gestroi samples with reads 
from more than one C. formosanus protist or that had less 
than 95% of their reads classified as C. gestroi protists were 
discarded. For C. formosanus, any samples that had less 
than 95% of their reads classified as C. formosanus protists 
or with reads from more than one C. gestroi protist were 
discarded. Samples with less than 70 total reads were also 
discarded. In sum, 488 samples (i.e., individual termites) 
comprised the final dataset, of which 242 were C. gestroi 
samples and 246 were C. formosanus samples. The mean 
read abundance of samples was ≈17,500 merged reads. In 
addition, 95% (463/488) of samples had at least 900 reads 
from the parabasalids of interest (Supplementary Tables 
S1–S4).

2.5  Protist presence/absence

The abundances of protists in samples varied widely (Sup-
plementary Tables S1–S4). Because 18S read abundances 
of C. gestroi and C. formosanus protists do not accurately 
reflect cellular abundances (Jasso-Selles et al. 2020), they 
were not investigated, except to assess the read depths of 
alate samples (see below for details). For all other analy-
ses, we coded each protist species as being either present 
in or absent from each sample. For Holomastigotoides and 
Cononympha, a protist species was considered present in a 
sample if the sample included one or more reads that were 
classified as that species. For Pseudotrichonympha, a protist 
species was considered present in a sample if 100 or more 
reads were classified as that species. This was an additional 

availability of biological material during sampling resulted 
in unequal sample sizes in some instances (Table 1).

2.3  18S rRNA amplicon sequencing

The complete protist community of C. gestroi consists of 
five parabasalid species: Pseudotrichonympha leei, Holo-
mastigotoides batututi, H. bigfooti, Cononympha skunka-
pei, and Con. monstrummogolloni (del Campo et al. 2017; 
Jasso-Selles et al. 2020). Similarly, the complete commu-
nity of C. formosanus is also comprised of five parabasa-
lids: P. grassii, H. hartmanni, H. minor, Con. leidyi, and 
Con. koidzumii (Koidzumi 1921; Jasso-Selles et al. 2020; 
Nishimura et al. 2020). Hindguts were removed from ter-
mites by grasping the thorax with forceps and pulling on 
the posterior abdominal segments with fine-tipped forceps 
(Lewis and Forschler 2004). The MasterPure Complete 
DNA and RNA Purification Kit (Lucigen, Middleton, WI) 
was used to extract DNA from dissected hindguts following 
the manufacturer’s protocol.

Dual-indexed amplicon libraries were created via a two-
step PCR procedure (Kozich et al. 2013). Primers specific 
to 18S rRNA genes of parabasalids with Illumina adaptor 
sequences at their 5′ ends—nexF-ParaV45F 5′-TCG TCG 
GCA GCG TCA GAT GTG TAT AAG AGA CAG-3′ and 
nexF-ParaV45R 5′-GTC TCG TGG GCT CGG AGA TGT 
GTA TAA GAG ACA G-3′—were used for the first PCR 
(Jasso-Selles et al. 2020; De Martini et al. 2021). Indexing 
barcodes were attached to both ends of each amplicon dur-
ing the second PCR (Hamady et al. 2008). Conditions for 
the first PCR were as follows: 3 min denaturation at 95°C, 
30 cycles of 95°C for 30 s, 48°C for 30 s, and 72°C for 50 s, 
and a final 10  min extension at 72°C. Conditions for the 
second PCR were as follows: 3 min denaturation at 95°C, 
8 cycles of 95°C for 30 s, 50°C for 30 s, and 68°C for 50 s, 
and a final 10 min extension at 68°C. Reactions for the first 
PCR used 12.5 µL of EconoTaq PLUS GREEN 2X Mas-
ter Mix (Lucigen), 2.5 µL of 10 µM forward and reverse 
primers, and 2 µL of template DNA in 25 µL reactions. 
Reactions for the second PCR used 12.5 µL of EconoTaq 
PLUS GREEN 2X Master Mix, 2.5 µL of combined for-
ward and reverse primers (2 µM), and 2.5 µL of first PCR 
products in 25 µL reactions. AMPure XP beads in concert 
with a Biomek NXP Automated Workstation (Beckman 
Coulter Life Sciences, Indianapolis, IN) were used for PCR 
purification. PCR products were quantified using the Qubit 
1X dsDNA BR Assay Kit (Invitrogen, Waltham, MA) and 
a Synergy HT Microplate Reader (BioTek, Winooski, VT). 
An approximately equal quantity of DNA (ng) from each 
PCR reaction (i.e., each individually sampled termite) was 
used for pooling. Samples were sequenced using 2 × 300 bp 
paired-end sequencing on the Illumina MiSeq System. 
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C. gestroi results. Among C. formosanus alates, the lowest 
proportional-read-abundance of any protist species, when 
present, was 0.15% of reads, which was observed in Con. 
koidzumii. Thus, the expected number of reads needed to 
detect one read from Con. koidzumii was calculated as ‘667’ 
reads. In this case, nine C. formosanus alates fell below this 
threshold, so, in addition to performing the C. formosanus 
statistical analyses using the complete alate dataset, we also 
chose to perform them using a reduced dataset that did not 
include the nine alates with read depths below ‘667’ reads. 
With regard to statistical significance, the results from both 
datasets were identical. Therefore, only the results from the 
statistical analyses that used the complete C. formosanus 
alate dataset are presented.

2.6  Statistical analyses

For both Coptotermes species, data from differently aged 
colonies were pooled together for analyses. These poolings 
were justified because the protist communities of all sam-
pled colonies, regardless of age, originated from their found-
ing alate pairs (Nutting 1969; Honigberg 1970; Michaud et 
al. 2020). Additionally, the richness values of the protist 
communities (see below) of incipient (1–6-month-old) 
and juvenile (1.5–3.5-year-old) C. gestroi (Mann-Whitney 
U = 219.5; P = 0.4272) and C. formosanus (Mann-Whitney 
U = 119.5; P = 0.0710) colonies did not significantly differ, 
further justifying these poolings. Comparisons between 
Coptotermes species were not performed because they were 
not a focus of our study.

The protist community richness (i.e., the number of protist 
species harbored) was calculated for each colony and alate. 
To determine if the community richness values for male and 
female alates significantly differed, a Mann-Whitney U test 
was performed for each Coptotermes species through the 
‘wilcox.test’ function within the R package ‘stats’. Like-
wise, a Mann-Whitney U test was also separately performed 
for C. gestroi and C. formosanus to determine whether the 
richness values for colonies and alates (male and female 
alates combined) significantly differed. These values were 
also investigated using Fisher’s exact tests. For these tests, 
the community richness of each colony and alate was classi-
fied as either 1–3 or 4–5 protist species. To determine if the 
richness distributions for colonies and alates significantly 
differed, a Fisher’s exact test was performed for each Cop-
totermes species through the ‘fisher.test’ function of the R 
package ‘stats’.

A Mann-Whitney U test was also performed for each 
Coptotermes species to ascertain whether the protist com-
munity richness values for incipient and juvenile colonies 
significantly differed. The results of these tests (see above) 

means of quality control that was used to account for possi-
ble index hopping. For Pseudotrichonympha, we occasion-
ally observed (12.5% of samples) between-species index 
hopping, i.e., C. gestroi samples with P. grassii reads or C. 
formosanus samples with P. leei reads. Nearly all (90.2%) of 
these instances of between-species index hopping involved 
less than 100 misidentified reads. Therefore, we chose to 
account for the possibility of within-species index hop-
ping by using a 100-read-threshold for Pseudotrichonym-
pha species. In contrast, between-species index hopping 
for Holomastigotoides and Cononympha species was rarely 
observed (1.6% of samples).

Data from individual termites were used to infer the 
protist communities of colonies. If a protist species was 
deemed present in at least one individual from a colony, 
then that species was considered part of the protist com-
munity of the colony. Therefore, a protist species was only 
considered absent from a colony, if all individuals from the 
colony lacked that species. The protist communities of colo-
nies were frequently apparent, as nestmates often harbored 
similar communities (Supplementary Tables S1–S2).

In all likelihood, using amplicon data from all individu-
als from a colony to infer a protist species’ absence greatly 
reduced the chance of incorrectly inferring absence. In con-
trast, the chance of incorrectly inferring a protist species’ 
absence from an alate may have been somewhat higher, 
as protist species were deemed present in or absent from 
alates based solely upon amplicon data from each indi-
vidual alate hindgut, which varied in total read abundance. 
For this reason, we chose to assess the possibility that insuf-
ficient sequencing may have affected our alate results. To 
do so, we computed the proportional-read-abundance of 
each protist species in each alate sample using the follow-
ing formula: [total reads from protist species / total reads 
from all protists]. Using these values, we determined the 
minimum proportional-read-abundance for each protist 
species (Supplementary Tables S3–S4). We chose to use 
the minimum value, rather than the mean or median value, 
because we considered it to be a reasonably conservative, 
empirical threshold for assessing the sequencing depths of 
alate samples. From the observed minimum proportional-
read-abundance values, we computed the expected number 
of reads needed to detect one read from each protist species 
using the following formula: [1 / minimum proportional-
read-abundance] (Supplementary Tables S3–S4). Among 
C. gestroi alates, the lowest proportional-read-abundance 
of any protist species, when present, was 0.22% of reads, 
which was observed in H. batututi. Therefore, the expected 
number of reads needed to detect one read from H. batu-
tuti was calculated as ‘455’ reads. The read depth of only 
one C. gestroi alate fell below this threshold, so we con-
cluded that insufficient sequencing likely did not affect our 
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the probability that this species is harbored by at least 
one founding alate was calculated as ‘0.614’. Therefore, 
the expected distribution for H. batututi consisted of ‘28’ 
positive and ‘18’ negative responses, i.e., this species was 
expected to be present in ‘28’ and absent from ‘18’ colonies. 
The total number of responses for C. gestroi and C. for-
mosanus expected distributions was chosen to be ‘46’ and 
‘37’, respectively. These numbers were selected to match 
the numbers of observed colonies. Using these distribu-
tions, a summary table of expected and observed responses 
was constructed for each protist species (Koziol and Bilder 
2014). Tests for MMI were performed using the Bonfer-
roni approach described above (Agresti and Liu 1999; 
Koziol and Bilder 2014). The MMI test for C. formosanus 
used data from three protist species, while the test for C. 
gestroi analyzed data from four species. For C. gestroi, it 
was unnecessary to analyze data from Con. skunkapei, as all 
colonies harbored this species and its probability was cal-
culated as ‘1’. Similarly, it was unnecessary to analyze data 
from H. hartmanni and H. minor because all C. formosanus 
colonies harbored these species and their probabilities were 
calculated as ‘0.998’ and ‘0.994’, respectively. For both 
species, the expected number of positive responses after 
rounding (i.e., (0.998 × 37 = 36.93) and (0.994 × 37 = 36.78)) 
equaled ‘37’. Therefore, like Con. skunkapei, the expected 
and observed distributions for these species were identical. 
All analyses were performed using R version 4.0.5 (R Core 
Team 2021).

3  Results

3.1  C. gestroi male and female alates

The richness values of the protist communities of male 
alates ranged from 1 to 5 species, whereas female alates 
harbored 3–4 species (Fig.  1a). However, the values for 
male and female alates did not significantly differ (Mann-
Whitney U = 70; P = 1). For protist occurrence, the percent 
of female C. gestroi alates (n = 10) that harbored each protist 
species ranged from 30% for H. bigfooti to 100% for both 
Cononympha species (Fig.  1b). Similarly, between 35.7% 
(both Holomastigotoides species) and 100% (Con. skunka-
pei) of male C. gestroi alates (n = 14) harbored each pro-
tist species (Fig. 1b). The species composition distributions 
for male and female alates were not significantly different 
(MMI test; X2 = 0.59; df = 1; P = 1; Con. monstrummogolloni 
chi-square test). The results of the other three chi-square 
tests conducted for the MMI test were as follows: H. batu-
tuti (X2 = 0.05; df = 1; P = 1), H. bigfooti (X2 = 0.09; df = 1; 
P = 1), and P. leei (X2 = 0.14; df = 1; P = 1).

supported the decision to pool data from differently aged 
colonies together for analyses.

The protist communities of colonies and alates are exam-
ples of a multiple-response categorical variable (MRCV) 
(Bilder and Loughin 2004), as both colonies and alates 
can harbor more than one protist species. Therefore, it was 
inappropriate to use conventional chi-square tests to deter-
mine if the species composition distributions for male and 
female alates significantly differed, i.e., if male and female 
alates harbored protist species at different frequencies. 
Instead, a test for multiple marginal independence (MMI) 
was performed for each Coptotermes species (Agresti and 
Liu 1999; Bilder et al. 2000). To do so, the ‘item.response.
table’ function within the R package ‘MRCV’ was used to 
construct summary tables of positive (protist harbored) and 
negative (protist not harbored) responses observed for male 
and female alates (Koziol and Bilder 2014). In other words, 
a 2 × 2 marginal table (i.e., similar to a contingency table) 
with row labels ‘male’ and ‘female’ and column labels ‘posi-
tive’ and ‘negative’ was constructed for each protist species. 
Using these tables, the ‘MI.test’ function within ‘MRCV’ 
was used to perform tests for MMI through the Bonferroni 
approach (Agresti and Liu 1999; Koziol and Bilder 2014). 
This approach first performs a conventional chi-square 
test for each marginal table. Then, the P-values from these 
tests are adjusted based upon the total number of tests con-
ducted. If any of the adjusted P-values are significant, then 
the null hypothesis of MMI is rejected (Bilder et al. 2000). 
The overall P-value for a MMI test performed through this 
approach is equal to the minimum of the observed P-values 
(Agresti and Liu 1999). While the MMI test for C. formo-
sanus male and female alates used data from all five pro-
tist species, the test for C. gestroi only analyzed data from 
four species. It was unnecessary to analyze data from Con. 
skunkapei because this species was harbored by all male and 
female alates.

The probability of each protist species being harbored by 
at least one founding alate was calculated using the following 
formula: [1 – [P(species absent from male alate) × P(species 
absent from female alate)]]. For each protist species, the 
values of [P(species absent from male alate)] and [P(species 
absent from female alate)] were derived from the observed 
data. For example, for H. batututi, [P(species absent from 
male alate)] was calculated as (1– 0.357 = 0.643). The prob-
abilities of species being present in at least one founding 
alate were regarded as expected values for the occurrence of 
protist species in colonies.

To compare expected and observed protist occurrence, 
distributions of positive (protist harbored) and negative 
(protist not harbored) expected responses were produced. 
As described above, these distributions were based upon 
the calculated probabilities. For example, for H. batututi, 
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data from males and females combined) harbored 4–5 spe-
cies (Fig. 1a). The values for alates (mean rank = 21.96) and 
colonies (mean rank = 42.57) significantly differed (Mann-
Whitney U = 227; P < 0.0001). In line with this result, the 
richness distributions (two categories; 1–3 or 4–5 protist 
species) for alates and colonies also significantly differed 
(Fisher’s exact test; P = 0.0014). Compared to C. gestroi 
alates, a significantly greater proportion of C. gestroi colo-
nies harbored 4–5 protist species.

3.4  C. formosanus alates and colonies

Similar to C. gestroi, all colonies (n = 37) harbored 4–5 
protist species (Fig. 2a). Contrastingly, only 49% of alates 
(n = 47; data from males and females combined) harbored 
4–5 species (Fig. 2a). Like C. gestroi, the richness values for 
alates (mean rank = 29.53) and colonies (mean rank = 58.97) 
significantly differed (Mann-Whitney U = 260; P < 0.0001). 
In agreement with this result, the richness distributions (two 
categories; 1–3 or 4–5 protist species) for alates and colonies 
also significantly differed (Fisher’s exact test; P < 0.0001). 
Compared to C. formosanus alates, a significantly greater 
proportion of C. formosanus colonies harbored 4–5 protist 
species.

3.2  C. formosanus male and female alates

Male alates harbored 1–5 protist species, while the com-
munities of female alates were composed of 1–4 species 
(Fig.  2a). Like C. gestroi, there was no significant differ-
ence between the richness values for male and female alates 
(Mann-Whitney U = 244; P = 0.5081). For protist occur-
rence, between 0% (Con. leidyi) and 95.2% (both Holomas-
tigotoides species) of female C. formosanus alates (n = 21) 
harbored each protist species (Fig. 2b). Likewise, the per-
cent of male C. formosanus alates (n = 28) that harbored each 
protist species ranged from 3.8% for Con. leidyi to 96.2% 
for H. hartmanni (Fig.  2b). Like C. gestroi, the species 
composition distributions for male and female alates did not 
significantly differ (MMI test; X2 = 3.15; df = 1; P = 0.3793; 
P. grassii chi-square test). The results of the other four chi-
square tests performed for the MMI test were as follows: 
H. hartmanni (X2 = 0.02; df = 1; P = 1), H. minor (X2 = 0.69; 
df = 1; P = 1), Con. koidzumii (X2 = 0.20; df = 1; P = 1), and 
Con. leidyi (X2 = 0.09; df = 1; P = 1).

3.3  C. gestroi alates and colonies

The richness values for colonies (n = 46) ranged from 3 to 5 
protist species, although most colonies (87%) harbored 4–5 
species (Fig.  1a). Conversely, only 50% of alates (n = 24; 

Fig. 1  The results observed for 
C. gestroi alates and colonies. (a) 
The numbers of protist species 
harbored by male alates, female 
alates, and colonies. (b) The per-
cents of male and female alates 
that harbored each protist species. 
(c) The percent of colonies that 
harbored each protist species, and 
the probability of each species 
being harbored by at least one 
founding alate
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(MMI test; X2 = 17.18; df = 1; P = 0.0001). The proportion 
of colonies that harbored this species was significantly 
greater than the expected proportion, i.e., Con. leidyi was 
present in more colonies than expected. Contrastingly, 
the other two chi-square tests performed for the MMI test 
showed no significant differences between the expected and 
observed distributions for Con. koidzumii (X2 = 2.95; df = 1; 
P = 0.2580) and P. grassii (X2 = 0.95; df = 1; P = 0.9874).

4  Discussion

This study provides evidence for the importance of biparen-
tal symbiont transmission in protist-dependent termites. Our 
results indicate that the protist communities of conspecific 
male and female alates are similar with regard to species 
richness (Figs. 1a and 2a). Likewise, our results also show 
that conspecific male and female alates harbor their char-
acteristic protist symbionts at similar frequencies (Figs. 1b 
and 2b). Similar to Coptotermes alates, the protist commu-
nities of male and female Reticulitermes grassei alates are 
alike with respect to both richness and species composition 
(Michaud et al. 2020). Our results also revealed that Cop-
totermes alates rarely harbor complete protist communities. 
Of the 71 alates sampled, only two harbored complete pro-
tist communities, whereas one protist species was absent 

3.5  C. gestroi protist occurrence

The percent of colonies (n = 46) that harbored each protist 
species ranged from 56.5% for H. bigfooti to 100% for both 
P. leei and Con. skunkapei (Fig.  1c). For expected occur-
rence, the probabilities ranged from 55% for H. bigfooti to 
100% for both Cononympha species (Fig. 1c). The expected 
and observed distributions for H. batututi were significantly 
different (MMI test; X2 = 8.12; df = 1; P = 0.0175). The pro-
portion of colonies that harbored this species was signifi-
cantly greater than the expected proportion, i.e., H. batututi 
was harbored by more colonies than expected. In contrast, 
the other three chi-square tests performed for the MMI test 
indicated that there were no significant differences between 
the expected and observed distributions for Con. mon-
strummogolloni (X2 = 1.88; df = 1; P = 0.6794), H. bigfooti 
(X2 = 0.04; df = 1; P = 1), and P. leei (X2 = 0.17; df = 1; P = 1).

3.6  C. formosanus protist occurrence

The percent of colonies (n = 37) that harbored each pro-
tist species ranged from 43.2% for Con. leidyi to 100% 
for the other four species (Fig.  2c). For expected occur-
rence, the probabilities ranged from 3.8% for Con. leidyi 
to 99.8% for H. hartmanni (Fig.  2c). The expected and 
observed distributions for Con. leidyi significantly differed 

Fig. 2  The results observed for C. 
formosanus alates and colonies. 
(a) The numbers of protist spe-
cies harbored by male alates, 
female alates, and colonies. (b) 
The percents of male and female 
alates that harbored each protist 
species. (c) The percent of colo-
nies that harbored each protist 
species, and the probability of 
each species being harbored by at 
least one founding alate
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a reduced dataset that excluded these nine alates. Regarding 
statistical significance, the results from both datasets were 
identical, implying that insufficient sequencing also likely 
did not affect our C. formosanus results and conclusions.

Alternatively, it is also possible that, by chance, the C. 
gestroi and C. formosanus alates that were sampled har-
bored H. batututi and Con. leidyi, respectively, less often 
than usual. While the sampled alates were collected from 
the same location as those used to establish colonies, not all 
alates were collected at the same time, i.e., during the same 
dispersal flight. This may have impacted our protist occur-
rence results, as the alates that comprised these two groups 
possibly flew from different colonies. However, this may 
also not be the case, as it is probable that we collected from 
the same C. gestroi and C. formosanus populations (i.e., the 
same pool of colonies) throughout our single-location sam-
pling effort. Lastly, it is also conceivable that C. gestroi and 
C. formosanus colonies may be less likely to survive if H. 
batututi and Con. leidyi, respectively, are absent. This may 
also explain the greater-than-expected proportions of colo-
nies that harbored these protist species.

Our results imply that protist-dependent termite repro-
ductives perform biparental transmission during colony 
establishment. This notion is supported by previous stud-
ies regarding Reticulitermes and Coptotermes reproductives 
(Shimada et al. 2013; Brossette et al. 2019; Michaud et al. 
2020; Velenovsky et al. 2021). Biparental transmission has 
only been found to potentially occur in a handful of organ-
isms, including leafhoppers (Watanabe et al. 2014), earth-
worms (Paz et al. 2017), aphids (Moran and Dunbar 2006), 
mosquitos (Damiani et al. 2008), and tsetse flies (De Vooght 
et al. 2015). For most of these hosts, the symbionts that may 
be biparentally transmitted are facultative bacterial species, 
which are usually sufficiently acquired by offspring through 
maternal symbiont transmission (Moran and Dunbar 2006; 
Damiani et al. 2008; Watanabe et al. 2014; De Vooght et al. 
2015). In contrast, offspring of the lumbricid earthworm, A. 
tuberculata, probably often need both maternal and paternal 
lineages of Verminephrobacter to obtain sufficient inocu-
lums (Paz et al. 2017). Unlike Verminephrobacter, which 
may be a facultative symbiont (Lund et al. 2010; Viana et al. 
2018), the microbes that protist-dependent termites likely 
biparentally transmit are obligate symbionts (Cleveland 
1923, 1924). Like lumbricid earthworms, biparental trans-
mission is probably often necessary for protist-dependent 
termite colonies to acquire sufficient symbiont communi-
ties, as alates harbor small inoculums that are frequently 
incomplete during dispersal (Lewis and Forschler 2004; 
Shimada et al. 2013; Michaud et al. 2020; Velenovsky et 
al. 2021). In short, both lumbricid earthworms and protist-
dependent termites are unique among hosts because their 

from 33 alates, and two or more species were absent from 
36 alates (Supplementary Tables S3–S4). Likewise, Reticu-
litermes alates often do not harbor all of their characteristic 
protist species (Lewis and Forschler 2004; Michaud et al. 
2020). Together, these results imply that male and female 
protist-dependent termite alates disperse harboring simi-
larly rich protist communities that are often incomplete.

Our results also show that the protist communities of 
Coptotermes alates differ from those of colonies. Unlike 
alates, which frequently harbored 1–3 protist species, 
nearly all colonies harbored 4–5 species (Figs. 1a and 2a). 
Of the 83 colonies sampled, 39 harbored complete protist 
communities, while one protist species was absent from 38 
colonies, and only six colonies were missing two species 
(Supplementary Tables S5–S6). The dissimilar richness val-
ues of alates and colonies imply that the initial workers of 
colonies acquire symbionts from both founding alates, i.e., 
via biparental transmission. This notion is supported by our 
results regarding expected and observed protist occurrence 
in colonies. For eight of the ten protist species, the propor-
tions of colonies they were harbored by were either similar 
or identical to the expected proportions (Figs. 1c and 2c). 
These results imply that each protist species only needs to 
be present in one founding alate for colonies to acquire it. 
Because the protist communities of alates are frequently 
incomplete, it is likely that the communities of colonies are 
often the result of complementary contributions from both 
founding alates. Through biparental transmission, alate pairs 
that collectively harbor sufficiently rich protist communities 
that adequately digest wood are able to establish colonies 
despite the incompleteness of their individual communities.

Unlike most of the examined protists, the proportions 
of C. gestroi and C. formosanus colonies that harbored H. 
batututi and Con. leidyi, respectively, were greater than the 
expected proportions (Figs.  1c and 2c). Considering the 
above findings, it is plausible that H. batututi and Con. leidyi 
may actually be present in C. gestroi and C. formosanus 
alates, respectively, more often than our results indicate. In 
line with this notion, it is possible that these protist species 
were not molecularly detected in some alates because they 
were present in low abundances (Michaud et al. 2020). To 
assess the possibility that insufficient sequencing may have 
impacted our alate results, we performed a proportional-
read-abundance analysis for each Coptotermes species (see 
materials and methods). For C. gestroi alates, the read depth 
of only one alate was below the computed threshold of 455 
reads, which led us to conclude that insufficient sequencing 
likely did not impact our C. gestroi results and conclusions. 
For C. formosanus alates, the read depths of nine alates 
were below the calculated threshold of 667 reads, so, we 
performed the C. formosanus statistical analyses using the 
complete alate dataset and then repeated the analyses using 
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role in wood digestion. In line with this notion, Nishimura 
et al. (2020) found that each of the protists harbored by C. 
formosanus expresses a distinct profile of lignocellulolytic 
enzymes. However, the digestive role of each protist may 
be somewhat alike, as some of the enzymes have similar 
functions (Nishimura et al. 2020). In short, the roles of indi-
vidual protist species within termite communities are almost 
entirely undetermined, making it unclear if the success of 
colonies with incomplete communities is at all attributable 
to functional redundancy, i.e., protist species compensating 
for the absence of other symbionts.

Our observations confirm that protist-dependent termite 
alates have not evolved a mechanism that ensures they dis-
perse with complete symbiont communities. Why such a 
mechanism has not been selected for may be explained by 
the dispersal strategies of termites, which involve hundreds 
or thousands of simultaneously flying alates (Weesner 1960, 
1970; Nutting 1969; Chouvenc et al. 2017). Most alates 
(> 99%) that disperse actually fail to establish new colonies, 
primarily due to either predation or adverse meteorologi-
cal conditions during flight or courtship behaviors (Nutting 
1969; Chouvenc et al. 2017; Chouvenc 2019). Alates fortu-
nate to form pairs and produce copulariums may also fail 
to establish colonies if they succumb to bacterial or fungal 
pathogens (Rosengaus and Traniello 1993; Rosengaus et al. 
2011). Furthermore, alates may fail to establish colonies if 
their morphological and physiological characteristics are 
not conducive to successful foundation (Shellman-Reeve 
1996; Mullins and Su 2018; Chouvenc 2019; Inagaki et al. 
2020).

This study reveals an important aspect of protist-depen-
dent termite biology. Because only a minute fraction of the 
alates that disperse establish colonies, it is inconsequential 
if most leave their natal colonies harboring incomplete sym-
biont communities (Chouvenc 2022). As long as a sufficient 
number of alates are involved in a dispersal event, there 
will be a few lucky alate pairs that survive dispersal, harbor 
complementary, adequate protist communities, and estab-
lish colonies. Compared to predation and adverse weather 
(Nutting 1969), alates harboring incomplete protist com-
munities in all likelihood only marginally affects colony 
foundation success. Although vertical transmission in pro-
tist-dependent termites is imperfect, it is also adequate, as 
biparental transmission allows founding kings and queens 
to jointly transmit sufficiently rich symbiont communities 
to their initial workers.

In conclusion, our study provides evidence that protist-
dependent termite reproductives perform biparental sym-
biont transmission during colony establishment. Biparental 
transmission of cellulolytic protists probably initially arose 
in the subsocial woodroach-like ancestor of termites and 
Cryptocercus (Nalepa 1984, 2015), and this mechanism 

offspring likely often require biparental transmission to 
obtain adequate inoculums (Paz et al. 2017).

Protist-dependent termites also differ from other hosts 
of biparentally transmitted symbionts in additional aspects. 
In most of the aforementioned hosts, paternal symbiont 
lineages are initially acquired by females through mating 
before they are transmitted to offspring, i.e., males do not 
directly transmit symbionts to progeny (Moran and Dunbar 
2006; Damiani et al. 2008; De Vooght et al. 2015). Like-
wise, hermaphroditic lumbricid earthworms acquire sym-
bionts during mating that are subsequently transmitted to 
offspring (Paz et al. 2017). Unlike these hosts, progeny of 
the leafhopper Nephotettix cincticeps can directly acquire 
paternal symbiont lineages through intrasperm transmis-
sion (Watanabe et al. 2014). Protist-dependent termite kings 
likely also directly transmit their symbionts, as both queens 
and kings donate proctodeal fluids to their initial workers 
during colony foundation (Shellman-Reeve 1990; Brossette 
et al. 2019; Velenovsky et al. 2021). Therefore, unlike the 
above symbioses, biparental transmission in protist-depen-
dent termites does not involve mating, but instead occurs 
through post-embryonic offspring consuming hindgut fluid 
donations (Nalepa 2011), highlighting once again the impor-
tance of gut fluid exchanges in social insects (LeBoeuf et 
al. 2016). While kings and queens may exclusively transmit 
their own symbionts, it is also possible that each reproduc-
tive transmits both maternal and paternal symbiont lineages, 
as kings and queens also provide proctodeal fluids to one 
another during colony establishment (Shellman-Reeve 
1990; Rosengaus and Traniello 1991; Brossette et al. 2019). 
These donations could cause the symbiont communities 
of reproductives to homogenize before their initial work-
ers emerge. It remains to be determined if queens and kings 
transmit symbionts to each other during colony foundation.

In agreement with our results regarding Coptotermes 
colonies, Reticulitermes (Kitade and Matsumoto 1993; 
Michaud et al. 2020), Hodotermopsis (Kitade et al. 2012), 
Zootermopsis (Taerum et al. 2018), and Heterotermes 
(Jasso-Selles et al. 2017; De Martini et al. 2021) colonies 
also sometimes harbor incomplete protist communities. 
Together, these results suggest that colonies can poten-
tially survive even if they are established by alate pairs with 
incomplete communities. The constitutions of termite protist 
communities possibly allow colonies that harbor incomplete 
communities to still be successful, as multiple protists may 
produce lignocellulolytic enzymes with similar functions. 
Whether this hypothesis has substance is unclear, as the 
functional roles of individual protist species within commu-
nities have not been investigated, except in C. formosanus. 
Both Lai et al. (1983) and Yoshimura (1995) observed that 
C. formosanus protists are differentially distributed within 
the hindgut, suggesting that each protist may have a specific 
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may be conserved in Termitidae, even though protists were 
lost in this family (Chouvenc et al. 2021; Sinotte et al. 
2022). Here, we argue that biparental colony foundation has 
allowed termite-protist symbioses to be maintained despite 
imperfect vertical transmission. While beneficial in this 
regard, biparental transmission may also be problematic, as 
there is the potential for conflict to occur among symbiont 
lineages of different parental origins. In a future study, we 
will investigate this and other aspects of symbiosis in pro-
tist-dependent termites using hybrid Coptotermes colonies 
established by C. gestroi and C. formosanus alates (Chou-
venc et al. 2015).
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