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ABSTRACT Stability and safety are critical properties for successful deployment of automatic control
systems. As a motivating example, consider autonomous mobile robot navigation in a complex environment.
A control design that generalizes to different operational conditions requires a model of the system dynamics,
robustness to modeling errors, and satisfaction of safety constraints, such as collision avoidance. This paper
develops a neural ordinary differential equation network to learn the dynamics of a Hamiltonian system from
trajectory data. The learned Hamiltonian model is used to synthesize an energy-shaping passivity-based
controller and analyze its robustness to uncertainty in the learned model and its safety with respect to
constraints imposed by the environment. Given a desired reference path for the system, we extend our design
using a virtual reference governor to achieve tracking control. The governor state serves as a regulation point
that moves along the reference path adaptively, balancing the system energy level, model uncertainty bounds,
and distance to safety violation to guarantee robustness and safety. Our Hamiltonian dynamics learning and
tracking control techniques are demonstrated on simulated hexarotor and quadrotor robots navigating in
cluttered 3D environments.

INDEX TERMS Physics-constrained learning, safe learning for control, constrained control.

I. INTRODUCTION

Designing controllers that guarantee system stability and
handle safety constraints is an important problem in safety-
critical applications of automatic control systems, including
autonomous transportation [1], [2], robot locomotion [3], and
medical robotics [4]. Safety depends on the system states,
governed by the system dynamics, and the environment con-
straints. This leads to two requirements for designing provably
safe controllers: an accurate model of the system dynamics
and the satisfaction of safety constraints.

The first requirement has motivated data-driven dynamics
learning approaches, utilizing machine learning techniques,
such as Gaussian process (GP) regression [5], [6], [7] and neu-
ral networks [8], [9]. For physical systems, recent works [10],
[11], [12] design the model architecture to impose a La-
grangian or Hamiltonian formulation of the dynamics [13],
[14], which a black-box model might struggle to infer. For

Lagrangian dynamics, Lutter et al. [10] use neural networks to
represent the mass and potential energy in the Euler-Lagrange
equations of motion. Meanwhile, Zhong et al. [11] use a dif-
ferentiable neural ODE solver [15] to predict state trajectories
of a Hamiltonian dynamics model, encoding Hamilton’s equa-
tions of motion. A trajectory loss function is back-propagated
through the ODE solver to update the Hamiltonian model
parameters. Our prior work [12] extends the neural ODE
Hamiltonian formulation by imposing SE (3) constraints to
capture the kinematic evolution of rigid-body systems, such
as ground or aerial robots. A Hamiltonian-based model ar-
chitecture also allows the design of stable regulation or
tracking controllers by energy shaping [11], [12], [16]. Inter-
connection and damping assignment passivity-based control
(IDA-PBC) [17], one of the main approaches for energy
shaping, injects additional energy into the system via the
control input to achieve a desired total energy, which is
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minimized at a desired regulation point. Instead of learning
robot dynamics in continuous time, Saemundsson et al. [18]
design a variational integrator network to learn discrete-time
Lagrangian dynamics. Havens and Chowdhary [19] extend
it by including control input in the model and use model
predictive control for stabilization.

The second requirement, ensuring satisfaction of safety
constraints, has gained significant attention in planning and
control. Model predictive control (MPC) methods [20], [21],
[22], [23] include safety constraints in an optimization prob-
lem, which is typically solved by discretizing time and
linearizing the system dynamics. Reachability-based tech-
niques [24], [25], [26], [27] are directly applicable to
nonlinear systems and offer strong safety guarantees but
many require solving a Hamilton-Jacobi partial differential
equation (PDE) or sum-of-squares optimization program.
This is computationally challenging, especially for high-
dimensional systems, and may require system decomposition
techniques [28]. Control barrier functions (CBFs) [1], [29],
[30] offer an elegant approach to encode safety constraints.
For control-affine systems, a CBF constraint is affine in the
control input, allowing safe control synthesis with quadratic
programming (QP) [30]. However, constructing valid CBFs
that guarantee the feasibility of the QP problem is chal-
lenging [31], [32]. Given a stabilizing controller, reference
governor techniques [33], [34], [35] use a virtual governor
system to introduce safety constraints based on the Lya-
punov function of the closed-loop system. Recent work [36],
[37] achieves safe trajectory tracking in unknown envi-
ronments, but is limited to linear or feedback-linearizable
systems.

Safe control synthesis with a learned model of the system
dynamics needs to account for the model estimation error
between the learned and the ground-truth dynamics [38].
Model uncertainty may be viewed as a disturbance, applied
to the learned system, and handled using robust or adaptive
control techniques [39], [40], [41], [42], [43], [44]. Safety
constraint satisfaction in the presence of model uncertainty
can be achieved using robust MPC [7], [45], [46], [47], L-1
adaptive control [40], or model reference adaptive control [48]
that tracks the trajectory of a reference model and compen-
sates for model uncertainty. For example, Hewing et al. [7]
propose an MPC technique that trains a Gaussian Process
(GP) model of the system dynamics and use the GP uncer-
tainty to introduce probabilistic safety constraints in the MPC
optimization. Robust controllers for Hamiltonian systems may
also be developed using the IDA-PBC approach [43], [49],
[50]. Most techniques have considered systems with states
defined in Euclidean space and cannot handle manifold con-
straints, e.g., due to the orientation kinematics of a mobile
robot. For quadrotors, Lee et al. [41] estimate disturbances
from the tracking error and design a robust geometric con-
troller but do not consider safety constraints.

In this paper, we consider both dynamics model learn-
ing and safe control synthesis for rigid-body systems, whose

states include position, orientation, and generalized velocity.
We assume that system has an unknown dynamics model
but, as a physical system, it satisfies Hamilton’s equations of
motion over the SE (3) manifold of positions and orienta-
tions. Given state-control trajectories, from past experiments
or collected by a human operator, we seek to learn the sys-
tem dynamics and design a tracking control law that handles
safety constraints, e.g., obtained from distance measurements
to obstacles in the environment. In our preliminary work [51],
we learn a translation-equivariant Hamiltonian model of the
system dynamics using a physics-guided neural ODE net-
work [12]. We use the Hamiltonian model to synthesize an
energy-shaping geometric tracking controller. The total en-
ergy of the system serves as a Lyapunov function and enables
us to enforce safety constraints during trajectory tracking us-
ing a reference governor to regulate the difference between
the system energy and the distance to safety violation. How-
ever, our preliminary work [51] uses the learned Hamiltonian
model as the ground-truth dynamics and ignores the model
estimation error in the control design. In this paper, we cap-
ture the estimation error as a bounded disturbance applied to
the learned system and develop a robust safe tracking con-
troller that takes the disturbance into account in the design
of the reference governor. Our Hamiltonian dynamics learn-
ing and tracking control techniques are compared to a GP
MPC technique [7] and are demonstrated in a 3D environment
using a simulated hexarotor robot to achieve collision-free
autonomous navigation.

In summary, the contribution of this work is a tracking
control design for Hamiltonian systems with learned dynam-
ics, which achieves robustness to model estimation errors and
safety with respect to state constraints.

II. PROBLEM STATEMENT

Consider a rigid body with position p ∈ R
3, orientation R ∈

SO(3), body-frame linear velocity v ∈ R
3, and body-frame

angular velocity ω ∈ R
3. Let q = [p⊤ r⊤

1 r⊤
2 r⊤

3 ]⊤ ∈ SE (3)
denote the body’s generalized coordinates, where r1, r2, r3 ∈

R
3 are the rows of the rotation matrix R. Let ζ = [v⊤ ω⊤]⊤ ∈

R
6 denote the body’s generalized velocity. The generalized

momentum p of the body is defined as:

p = M(q)ζ ∈ R
6, (1)

where M(q) ≻ 0 is the positive-definite generalized mass ma-
trix. Let x = (q, p) ∈ T ∗SE (3) denote the state of the rigid
body system on the cotangent bundle T ∗SE (3) of the SE (3)
manifold. The Hamiltonian, H(q, p), captures the total energy
of the system as the sum of the kinetic energy T (q, p) =
1
2p

⊤M−1(q)p and the potential energy U (q):

H(q, p) = T (q, p) + U (q). (2)

The evolution of the state x is governed by Hamilton’s equa-
tions of motion [52]:

ẋ = f (x) + G(x)u, x(t0) = x0,
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=

[

0 q×

−q×⊤ p×

][

∇qH(q, p)

∇pH(q, p)

]

+

[

0

B(q)

]

u (3)

where u ∈ R
m is the control input, e.g., force and torque or

motor speeds for a UAV system, B(q) ∈ R
6×m is an input gain

matrix, and the operators q×, p× are defined as:

q
× =

[

R⊤ 0 0 0

0 r̂⊤
1 r̂⊤

2 r̂⊤
3

]⊤

, p
× =

[

pv

pω

]×

=

[

0 p̂v

p̂v p̂ω,

]

,

where the hat map ŵ for w ∈ R
3 is:

ŵ =







0 −w3 w2

w3 0 −w1

−w2 w1 0






.

The Hamiltonian dynamics model in (3) can be extended
to include energy dissipation in a port-Hamiltonian formula-
tion [17] such as friction or drag forces [53]. However, for
clarity of the control design, we leave this for future work.

We consider the case that the parameters of the Hamil-
tonian dynamics model in (3), including the mass M(q),
the potential energy U (q), and the input matrix B(q), are
unknown. Instead, we are given a trajectory dataset D =

{t
(i)
0:N , q

(i)
0:N , ζ

(i)
0:N , u

(i)
0:N−1}

D
i=1 consisting of D sequences of gen-

eralized coordinates and velocities (q(i)
0:N , ζ

(i)
0:N ) at times t

(i)
0 <

t
(i)
1 < . . . < t

(i)
N , collected by applying a constant control in-

put u
(i)
n to the system with initial condition (q(i)

n , ζ
(i)
n ) for

t ∈ [tn, tn+1) and n = 0, . . . , N − 1. Our objective is to learn
the system dynamics from the data set D and design a control
policy u = π(x) such that the system follows a desired ref-
erence path without violating safety constraints. Let O ⊂ R

3

and F := R
3 \ O denote the unsafe (obstacle) set and the

safe (obstacle-free) set, respectively. Denote the interior of F
as int(F ). We assume that O is not known a priori but the
distance d̄ (p,O) from the system’s position p to O can be
sensed with a limited sensing range dmax > 0:

d̄ (p,O) := min {d (p,O), dmax} , (4)

where d (p,O) := infa∈O ‖p − a‖ denotes the Euclidean dis-
tance from p to the set O. The safe tracking control problem
considered in this paper is summarized below.

Problem 1: Let D = {t
(i)
0:N , q

(i)
0:N , ζ

(i)
0:N , u

(i)
0:N−1}

D
i=1 be a

training dataset of state-control trajectories obtained from a
rigid-body system with unknown Hamiltonian dynamics in
(3). Let r : [0, 1] 	→ Int(F ) be a continuous function specify-
ing a desired position reference path for the system. Assume
that the reference path starts at the initial position at time t0,
i.e., r(0) = p(t0) ∈ Int(F ). Using local distance observations
d̄ (p(t ),O) of the unsafe set O, design a control policy π :
T ∗SE (3) 	→ R

6 so that the position p(t ) of the closed-loop
system with control law u = π(x) converges asymptotically
to r(1), while remaining safe, i.e., p(t ) ∈ F ,∀t ≥ t0.

FIGURE. 1. Architecture of SE (3) Hamiltonian neural ODE network.

III. LEARNING SE (3) HAMILTONIAN DYNAMICS FROM

DATA

In this section, we design a dynamics model that can be
learned from a previously collected trajectory dataset, e.g.,
obtained from manual control, and is sufficiently general to
represent different mobile robots, such as cars and drones. We
describe how to learn Hamiltonian dynamics from the dataset
D = {t

(i)
0:N , q

(i)
0:N , ζ

(i)
0:N , u

(i)
0:N−1}

D
i=1, described in Section II, us-

ing translation-equivariant Hamiltonian-based neural ODE
networks [12]. The mass M(q), the potential energy U (q) and
the input gain B(q) are approximated by neural networks. We
show that the model estimation errors caused by the trained
neural networks can be considered as a disturbance applied
on the learned system.

A. TRANSLATION-EQUIVARIANT SE (3) HAMILTONIAN

DYNAMICS LEARNING

Since the system dynamics does not change if we shift the
position p to any points in the world frame, we offset the
trajectories in the dataset D so that they start from the position
0 and learn the system dynamics well around the origin. This
is sufficient for stabilization task, e.g. using the controller
design in Section IV-A, because driving the system from state
x with position p to a desired state x∗ with position p∗ is the
same as driving the system from the state x with position 0 to
a desired state x∗ with offset position p∗ − p.

Since the momentum p is not directly available from the
dataset D, we use the time derivative of the generalized veloc-
ity, derived from (1):

ζ̇ =

(

d

dt
M−1(q)

)

p + M−1(q)ṗ. (5)

(3) and (5) describe the Hamiltonian dynamics of the gen-
eralized coordinates and velocities with unknown inverse
generalized mass matrix M−1(q), input matrix B(q), and po-
tential energy U (q), for which we aim to approximate by three
neural networks M−1

θ
(q), Bθ (q) and Uθ (q), respectively, with

parameters θ.
To optimize for the parameters θ, we use the Hamiltonian-

based neural ODE framework that encodes the Hamiltonian
dynamics (3) and (5) with Mθ (q), Bθ (q) and Uθ (q) in the
network structure (Fig. 1). The forward pass rolls out the
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dynamics f̄θ described by (3) and (5) with the neural net-
works Mθ (q), Bθ (q) and Uθ (q) using a neural ODE solver
([15]) with initial state (q(i)

n , ζ
(i)
n ). We obtain a predicted state

(q̄(i)
n+1, ζ̄

(i)
n+1) at times t

(i)
n+1 for each n = 0, . . . , N − 1 and

i = 1, . . . , D as:

(q̄(i)
n+1, ζ̄

(i)
n+1) = ODESolver

(

(q(i)
n , ζ(i)

n ), f̄, t
(i)
n+1 − t (i)

n ; θ
)

.

The loss function is defined as L =
∑D

i=1
∑N

n=1 c(q(i)
n , ζ

(i)
n , q̄

(i)
n , ζ̄

(i)
n ) where the distance metric

c is defined as the sum of position, orientation, and velocity
errors on the tangent bundle T SE (3):

c
(

q, ζ, q̄, ζ̄
)

= cp(p, p̄) + cR(R, R̄) + cζ (ζ, ζ̄), (6)

with the position error cp(p, p̄) = ‖p − p̄‖2
2, the velocity er-

ror cζ (ζ, ζ̄) = ‖ζ − ζ̄‖2
2, and the rotation error cR(R, R̄) =

‖(log(R̄R⊤))∨‖2
2. The log-map log(·) : SE (3) 	→ so(3) re-

turns a skew-symmetric matrix in so(3) from a rotation matrix
in SE (3), and the ∨-map (·)∨ : so(3) 	→ R

3 is the inverse of
the hat map ˆ(·) in Section II.

The network parameters θ are optimized using gradi-
ent descent by back-propagating the gradient ∇θL of the
loss through the neural ODE solver efficiently using adjoint
method [15]. Specifically, let a = ∇q,ζL be the adjoint state
and s = ((q, ζ), a,∇θL) be the augmented state. The aug-
mented state dynamics are [15]:

ṡ = f̄s =
(

f̄θ,−a⊤∇q,ζ f̄θ,−a⊤∇θ f̄θ
)

. (7)

We obtain the gradient ∇θL by a single call to a reverse-time
ODE solver starting from sn+1 = s(tn+1):

s0 = (x̄0, a0,∇θL) = ODESolver(sn+1, f̄s, tn+1 − tn), (8)

for n = 0, . . . , N − 1, and update the parameters θ using gra-
dient descent. Please refer to [15] for more details.

B. MODEL ESTIMATION ERROR AS A DISTURBANCE

Via the training process described in Section A, we
approximate the ground truth mass M̃(q), potential en-
ergy Ũ (q) and input gain matrix B̃(q) with the learned
mass Mθ (q) = M̃(q) + �Mθ (q), potential energy U (q) =

Ũ (q) + �Uθ (q), and input gain B(q) = B̃(q) + �Bθ (q) where
�Mθ (q),�Uθ (q), and �Bθ (q) are the estimation errors. We
drop the subscript θ to simplify the notations. The generalized
coordinates q and the ground-truth momentum p̃ := M̃(q)ζ,
satisfy the Hamiltonian dynamics (3):

q̇ = q
×∇p̃H̃(q, p̃) = q

×ζ

˙̃p = −q
×⊤∇qH̃(q, p̃) + p̃

×∇pH̃(q, p̃) + B̃(q)u

= −q
×⊤∇qH̃(q, p̃) + p̃

×ζ + B̃(q)u, (9)

with the ground-truth Hamiltonian

H̃(q, p̃) =
1

2
p̃

⊤M̃−1(q)p̃ + Ũ (q) =
1

2
ζ⊤M̃(q)ζ + Ũ (q).

(10)
Meanwhile, for the generalized coordinates q and the momen-
tum p := M(q)ζ, the Hamiltonian dynamics is learned from

data and of the form:

q̇ = q
×∇pH(q, p) = q

×ζ

ṗ = −q
×⊤∇qH(q, p) + p

×∇pH(q, p) + B(q)u

= −q
×⊤∇qH(q, p) + p

×ζ + B(q)u, (11)

with the learned Hamiltonian

H(q, p) =
1

2
ζ⊤M(q)ζ + U (q) = H̃(q, p̃) + �H(q, p),

and its estimation error �H(q, p) = 1
2ζ⊤�M(q)ζ + �U (q).

However, the learned dynamics (11) is only an approximation
of the actual dynamics for (q, p). While the dynamics of q

does not change, the actual dynamics of the learned momen-
tum, p = M(q)ζ = p̃ + �p, where �p = �M(q)ζ, is derived
from (9) as follows:

ṗ = ˙̃p + �̇p

= −q
×⊤∇qH(q, p) + p

×ζ + B(q)u

+ q
×⊤∇q (�H(q, p)) − �p

×ζ − �B(q)u + �̇p.

= −q
×⊤∇qH(q, p) + p

×ζ + B(q)u + d1, (12)

where the force

d1 : = q
×⊤∇q (�H(q, p)) − �p

×ζ − �B(q)u + �̇p (13)

represents the effect of the model errors �M(q),�U (q), and
�B(q) and is considered as a disturbance applied to the
learned system (11). To improve the error d1 with respect
to the position p, we enforce translation-equivariance in the
neural ODE model, as described in Section III.A, and learn
the model well around the origin. This allows us to offset any
position p to the well-learned region around the origin. To
reduce the model error with respect to orientation, we collect
a training dataset that covers different regions of roll, pitch,
and yaw angles, e.g. by manually driving a UAV to different
desired positions and yaw angles. A promising approach to
estimate the disturbance magnitude is to employ a Bayesian
formulation of the neural ODE network used to learn the
dynamics model. A Bayesian model will provide a poste-
rior distribution, rather than point estimates, for the model
parameters (i.e. M−1(q), B(q), and U (q)), whose variance
can be used to obtain parameter error bounds and, in turn,
a disturbance bound. Bayesian neural network models that
can be used for dynamics learning include Bayesian neural
ODE networks [54], [55], neural stochastic differential equa-
tion (SDE) networks [56], or Gaussian-process ODEs [57].
This motivates analyzing the robustness of our control design
in Section IV-A to the disturbance d1 caused by the model
errors.

IV. STABILIZATION OF HAMILTONIAN DYNAMICS WITH

MATCHED DISTURBANCES

As discussed in Section III-B, due to estimation errors in the
dynamics learning process, the learned system model satisfies
Hamilton’s equations of motion in (3) subject to a matched
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disturbance signal d1 : R 	→ R
6:

[

q̇

ṗ

]

=

[

0 q×

−q×⊤ p×

][

∇qH(q, p)

∇pH(q, p)

]

+

[

0

B(q)

]

u +

[

0

d1

]

.

(14)
We consider a passivity-based stabilizing controller for (14),
and analyze its robustness with respect to the disturbance
signal d1 and its safety with respect to the obstacle set O.

A. PASSIVITY-BASED CONTROL

Consider a desired regulation point x∗ = (q∗, p∗) for the
system in (14) with generalized coordinates q∗ = (p∗, R∗)
and momentum p∗ = 0. Since the Hamiltonian H(x) may
not have a minimum at x∗, the control signal u in (14)
should be designed to inject additional energy Ha(x, x∗)
into system and achieve a desired Hamiltonian Hd (x, x∗) =

H(x) + Ha(x, x∗), which is minimized at x∗. This is the ap-
proach followed by interconnection and damping assignment
passivity-based control (IDA-PBC) [58]. Let xe = (qe, pe) de-
note the error in generalized coordinates and momentum:

Re = R∗⊤R =
[

re1 re2 re3

]⊤

pe = p − p∗

qe =
[

p⊤
e r⊤

e1 r⊤
e2 r⊤

e3

]⊤

pe = p − p
∗. (15)

A possible choice of Hd (x, x∗), minimized at x = x∗, is:

Hd (x, x∗) = T (qe, pe) + Ud (qe)

=
1

2
p

⊤
e M−1(qe)pe +

kp

2
‖pe‖

2 +
kR

2
tr(I − Re),

(16)

where kp and kR are positive scalars.
The IDA-PBC method [12], [58] designs a controller u =

π(x, x∗) such that the closed-loop dynamics of the system in
(14) are governed by the desired Hamiltonian in (16) as:

[

q̇e

ṗe

]

=

[

0 J(x, x∗)

−J(x, x∗)⊤ −Kd

][

∇qeHd (x, x∗)

∇peHd (x, x∗)

]

+

[

0

d

]

,

(17)
where the terms J(x, x∗), Kd , and d in the transformed dy-
namics depend on the control design. To obtain the controller,
one uses the relationship between x and xe in (15) to equate
the dynamics in (14) and (17), leading to:

u = π(x, x∗) = B†(q)b(x, x∗), (18)

where B†(q) = (B⊤(q)B(q))−1B⊤(q) is the pseudo-inverse of
the input gain B(q) and:

b(x, x∗) =
(

q
×⊤∇qH(x) − p

×∇pH(x)

−J(x, x∗)⊤∇qeHd (x, x∗) − Kd∇peHd (x, x∗)
)

(19)

with J(x, x∗) :=

[

R⊤ 0 0 0

0 r̂⊤
e1 r̂⊤

e2 r̂⊤
e3

]⊤

. If the IDA-PBC

matching equations [59],

B⊥(q)b(x, x∗) = 0, (20)

are satisfied, where B⊥(q) is a maximal-rank left annihila-
tor of B(q), i.e., B⊥(q)B(q) = 0, then the controller in (18)
achieves the desired closed-loop dynamics in (17) with d =

d1, i.e., without introducing any extra disturbance.
If the matching equations (20) cannot be satisfied glob-

ally, i.e., the IDA-PBC controller does not solve the system
B(q)u = b(x, x∗) exactly, then π(x∗, x) = B†(q)b(x, x∗) is a
least-squares solution. In this case, the residual,

d2 :=
(

B(q)B†(q) − I
)

b(x, x∗), (21)

is introduced as an additional matched disturbance:

d = d1 + d2 (22)

in the closed-loop dynamics in (17). Since the magnitude of
d2 is proportional to that of b(x, x∗), it depends on the de-
sired regulation point x∗. An underactuated quadrotor system
example is provided in Section VII.VII-D.

In general, the matching equations (20) are nonlinear PDEs
and can be solved explicitly only for certain cases [59]. If B(q)
is invertible, i.e., the system in (14) is fully-actuated, then
the solution in (18) exists and is unique. For systems with
underactuation degree 1, the matching equations may be re-
duced to ODEs with closed-form solution [60] or solved with
certain desired kinetic energy [61]. Yuksel et al. [62] solve
the matching equations specifically for stabilizing a quadrotor
system, using Euler angles instead of a rotation matrix. A
survey on this topic is available in [59].

B. ROBUSTNESS ANALYSIS

In this section, we analyze the stability and robustness with
respect to the disturbance signal d in (22) of the IDA-PBC
controller in (18). Although the techniques we developed for
dynamics learning in Section III and control synthesis in
Section IV-A.IV-A did not make any assumptions about the
Hamiltonian system in (14), our robustness and safety analysis
that follows is developed under two assumptions.

Assumption 1: The disturbance signal (22) is uniformly
bounded, i.e., ‖d‖ ≤ δd for some δd > 0.

Assumption 2: The generalized mass matrix is constant,
i.e., M(q) ≡ M.

Without Assumption 1, it is not possible to provide any
performance guarantees for the control design because the
disturbance d can have an arbitrary effect on the evolution
of the closed-loop system dynamics. The disturbance magni-
tude bound δd exists if we assume bounded estimation errors,
bounded velocity and acceleration, bounded ∇q(�H(q, p)),
and bounded control input u from the controller (18).

Our robustness analysis in Thm. 1 below constructs an
ISS-Lyapunov function [63] to handle the disturbance d.
Assumption 2 simplifies the proof that we have a valid
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ISS-Lyapunov function. Extending the analysis to handle a
state-dependent mass M(q) is left for future work.

We simplify the error dynamics (17) by noting that:

e(x, x∗) := J(x, x∗)⊤∇qeHd (x, x∗) =

[

kpR⊤pe

1
2 kR

(

Re − R⊤
e

)∨

]

,

which leads to:

q̇e = J(x, x∗)M−1
pe,

ṗe = −e(x, x∗) − Kd M−1
pe + d. (23)

Theorem 1: Consider the Hamiltonian system in (14) with
desired regulation point x∗ = (q∗, 0) and control law specified
in (18) with parameters kp, kR, Kd. Assume that the initial
state x(t0) lies in the domain A = {x | tr(I − R∗⊤R) ≤ α <

4, ‖p‖ ≤ β} for some positive constants α and β. Then, the
function:

V (x, x∗) = Hd (x, x∗) + ρ
d

dt
Ud (qe) (24)

is an ISS-Lyapunov function [63] with respect to d in (22) and
satisfies:

k1‖z‖2 ≤ V (x, x∗) ≤ k2‖z‖2,

V̇ (x, x∗) ≤ −k3‖z‖2 + kγ δ2
d, (25)

where z := [‖e(x, x∗)‖ ‖pe‖]⊤ ∈ R
2, kγ = 1

2λmin (Kd ) +
ρλ2

2
2λ1

,

λ1 := λmin(M−1), λ2 := λmax(M−1), k1 = 1
2λmin(Q1), k2 =

1
2λmax(Q2), k3 = 1

2λmin(Q3), and the associated matrices Q1,
Q2, Q3 are defined as:

Q1 =

[

min
{

k−1
p , k−1

R

}

−ρλ2

−ρλ2 λ1

]

,

Q2 =





max

{

k−1
p ,

4k−1
R

4−α

}

ρλ2

ρλ2 λ2



 , Q3 =

[

q1 q2

q2 q3

]

, (26)

where the elements of Q3 are:

q1 = ρλ1,

q2 = −ρ
[

λmax(M−1KdM−1) + βλ2
2

]

,

q3 = λmin(Kd)λ2
1 − 2ρλ2

2 max
{

kp, kR

}

. (27)

Denote the sub-level set of V (x, x∗) with respect to positive
scalar c as: Sc := {x | V (x, x∗) ≤ c}. Given constants c1, c2

defined as:

c1 :=
k2kγ

k3
δ2

d, c2 := k1 min
{

k2
Rα(4 − α)/4, β2} , (28)

Sc2 ⊆ A is an estimate of the region of attraction of the con-
trol law in (18). Any state x starting within Sc2 will converge
exponentially to Sc1 and remain within it. The position error
trajectory pe(t ) is uniformly ultimately bounded as:

lim
t→∞

‖pe(t )‖2 ≤
c1

k1k2
p

=
k2kγ

k1k3k2
p

δ2
d. (29)

To ensure that c1 < c2, the disturbance bound δd should sat-

isfy δd <
√

c2k3
k2kγ

.

Proof: See Appendix A. �

The estimates of the region of attraction and the uniform
ultimate bound on the position error provided by Thm. 1 for
the IDA-PBC controller are conservative because our analysis
considers the mass and inertia jointly as a generalized mass M

and does not differentiate the force and torque disturbances.
Besides considering separate disturbance bounds for the force
and torque inputs, less conservative bounds can be achieved
by introducing disturbance compensation [41].

C. SAFETY ANALYSIS

Section IV-A.IV-B analyzed the stability and robustness prop-
erties of the IDA-PBC controller for a given regulation point
x∗. Next, we use the Lyapunov function V (x, x∗) in (24) to
derive conditions under which the trajectory of the closed-
loop system remains outside the unsafe set O. We introduce a
barrier function, which takes the region of attraction Sc2 of the
controller and the invariant set Sc1 associated with the ultimate
bound in Thm. 1 as well as the distance d̄ (p∗,O) to O into
account to quantify the margin to safety violation:

�E (x, x∗) := min
{

c2, k1k2
pd̄ 2 (p∗,O

)

}

− V (x, x∗)

+ max
{

c1 − V (x, x∗), 0
}

, (30)

where k1, kp, c1, c2 are the constants specified in Thm. 1. If,
for a given regulation point x∗, the safety margin �E (x, x∗) is
positive initially, then any trajectory of the closed-loop system
remains safe as it converges to the invariant set Sc1 .

Proposition 1: Consider the system in (14) with regulation
point x∗ = (q∗, 0) and control law in (18). Suppose that the
desired position p∗ has sufficient clearance from the unsafe
set O and the disturbance d is bounded as follows:

d̄ 2(p∗,O) ≥
k2kγ

k1k3k2
p

δ2
d, ‖d‖2 ≤ δ2

d <
c2k3

k2kγ

. (31)

If the initial state x(t0) = x0 satisfies:

�E (x0, x∗) ≥ 0, (32)

then the position error trajectory is uniformly ultimately
bounded as in (29) and the system remains safe, i.e.,
d (p(t ),O) ≥ 0 for all t ≥ t0.

Proof: By the definition in (30), �E (x, x∗) ≥ 0 implies
that the Lyapunov function V (x, x∗) satisfies one of three
cases:

1) c1 < V , V ≤ min{c2, k1k2
pd̄ 2(p∗,O)},

2) c1 ≥ V , V ≤ min{c2, k1k2
pd̄ 2(p∗,O)},

3) c1 ≥ V , V > min{c2, k1k2
pd̄ 2(p∗,O)}.

Case 3) can never happen because (31) implies that c1 ≤

k1k2
pd̄ 2(p∗,O) and c1 < c2.
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For Case 1), when c1 < V ≤ c2, we know from Thm. 1 that
V̇ < 0 and every trajectory starting in Sc2 converges exponen-
tially to Sc1 . In this case, from (25):

k1k2
pd̄ 2 (p∗,O

)

≥ V (x(t0), x∗) > V (x(t ), x∗)

≥ k1‖z(t )‖2 ≥ k1k2
p‖p(t ) − p∗‖2. (33)

Therefore, ‖p(t ) − p∗‖2 ≤ d̄ 2(p∗,O) ≤ d2(p∗,O) and
d (p(t ),O) ≥ 0 for all t ∈ [t0, t1], where t1 is the time when
the trajectory enters Sc1 , corresponding to Case 2) above.

For Case 2), we have V (x, x∗) ≤ c1 since (31) implies that
c1 < c2. From Thm. 1, Sc1 is forward invariant and:

‖p(t ) − p∗‖2 ≤
V (x(t ), x∗)

k1k2
p

≤
c1

k1k2
p

=
k2kγ

k1k3k2
p

δ2
d. (34)

Hence, (31) implies that d (p(t ),O) ≥ 0. �

V. SAFE AND STABLE TRACKING USING A REFERENCE

GOVERNOR

In this section, we develop a safe tracking controller by intro-
ducing a reference governor [33] to guide the reference point
x∗ for the stabilizing control law π(x, x∗) in (18) along the
desired reference path r introduced in Problem 1.

A reference governor is a virtual dynamical system whose
state g(t ) moves along r(σ ) for σ ∈ [0, 1]. In this paper, the
governor state g(t ) ∈ R

3 specifies a desired position p∗(t )
for the Hamiltonian system. We introduce a lifting function
x∗(t ) = ℓ(g(t )) to provide a desired orientation R∗(t ) and
specify a reference state x∗(t ) for the Hamiltonian system.

Given x∗(t ), we compute the safety margin �E (x(t ), x∗(t ))
in (30) and use the leeway amount by which the margin
exceeds 0 to move the governor state g(t ) along r(σ ). Intu-
itively, the reference point x∗(t ) = ℓ(g(t )) speeds up when
�E (x(t ), x∗(t )) increases, e.g., the distance to obstacles in-
creases or the system energy function decreases, and vice
versa.

Given a point g = r(σ ) on the reference path for some
σ ∈ [0, 1], we generate a reference state x∗ = (q∗, p∗) where
q∗ = (p∗, R∗) = (g, I) and p∗ = 0. The governor state g rep-
resents the desired position p∗ on the path. For simplicity, we
set the desired rotation matrix R∗ = I. If, in addition to r, a
desired yaw angle reference is provided, one can generate R∗

using the method described in [64] to achieve better orienta-
tion tracking. We define a lifting function ℓ : R3 	→ T ∗SE (3)
that generates a reference state x∗ = ℓ(g) from the governor
state g:

ℓ(g) :=
[

g⊤ e⊤
1 e⊤

2 e⊤
3 0⊤ 0⊤

]⊤

, (35)

where e1, e2, e3 are the rows of the identity matrix. Given
the reference state x∗ = ℓ(g), we compute the safety margin
�E (x, x∗) in (30) and describe how to update the governor
state to ensure that safety is preserved.

We update the governor state g(t ) = r(σ (t )) along the path
by regulating the parameter σ :

g(t ) = r(σ (t )), σ̇ (t ) = −kg(σ (t ) − σ ∗(t )), (36)

where kg > 0 is a control gain and σ ∗(t ) ∈ [0, 1] is a desired
time-varying parameter, which we construct using the safety
margin �E (x, x∗). We require σ ∗(t ) to satisfy two condi-
tions: 1) always stay ahead of the current σ (t ): σ ∗(t ) ≥ σ (t ),
∀t ≥ t0, and 2) have distance ‖σ ∗(t ) − σ (t )‖ proportional to
�E (x(t ), x∗(t )). The first condition guarantees that the gover-
nor state g(t ) moves forward along the path towards the goal
r(1). The second condition allows the safety margin �E to
adaptively regulate the governor state g(t ) in order to ensure
safety for the Hamiltonian system. To construct the desired
path parameter σ ∗, we define a local safe zone as a ball around
the governor state g with radius �E (x, x∗) based on the state
x and the reference state x∗ = ℓ(g).

Definition 1: A local safe zone is a subset of R3 that de-
pends on the system state x and the governor state g:

LS (x, g) :=
{

q ∈ R
3 |‖q − g‖2 ≤ �E (x, ℓ(g))

}

, (37)

where ℓ is the lifting function in (35) and �E is the safety
margin in (30).

We determine σ ∗ as the farthest intersection between the
local safe zone LS (x, g) and the path r by solving the scalar
optimization problem in Def. 2.

Definition 2: A local projected goal for system-governor
state (x, g) is a point ḡ ∈ LS (x, g) that is farthest along the
path r:

ḡ = r(σ ∗), σ ∗ = argmax
σ∈[0,1]

{σ | r(σ ) ∈ LS (x, g)} . (38)

The construction of the local projected goal ḡ is shown in
Fig. 2 (right), showing a reference path r, the local safe zone
LS (x, g) and the local projected goal ḡ. This constructing of
σ ∗ and ḡ completes the governor update law (36).

Our safe tracking controller consists of the reference gov-
ernor system in (36), adaptively updating the reference point
x∗ = ℓ(g) via the lifting function in (35), and the passivity-
based controller in (18) that drives the Hamiltonian system
towards x∗. The stability, safety, and robustness of the pro-
posed tracking controller are analyzed in Thm. 2.

Theorem 2: Suppose that the desired path r(σ ) has suffi-
cient clearance from the unsafe set O and the disturbance d is
bounded as:

min
σ∈[0,1]

d̄ 2(r(σ ),O) ≥
k2kγ

k1k3k2
p

δ2
d, ‖d‖2 ≤ δ2

d <
c2k3

k2kγ

.

Consider the Hamiltonian system in (14), the governor system
in (36) with σ ∗ constructed in Def. 2 and the control law
u = π(x, ℓ(g)) in (18). Suppose that the initial state (x0, g0)
satisfies:

�E (x0, ℓ(g0)) > 0, g0 = r(0) = p(t0), (39)
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FIGURE. 2. Structure of the reference-governor tracking controller (left). A governor with state g adaptively tracks desired path r and generates a
reference point x∗

= ℓ(g) for the closed-loop Hamiltonian system (right). A local projected goal ḡ (purple dot) is generated as the farthest intersection
between the local safe set LS(x, g) (yellow sphere) and the path r (blue curve) to guide the governor motion.

where �E (x, x∗) is the safety margin in (30). The position

p(t ) of (14) converges to a ball of radius
√

k2kγ

k1k3k2
p
δd around

r(1) and remains safe, i.e. p(t ) ∈ F , for all t ≥ t0
Proof: To simplify notation, let �E (t ) =

�E (x(t ), ℓ(g(t ))). Initially, g0 = p(t0) = r(0) ∈ LS (x0, g0)
and �E (t0) > 0. The local projected goal ḡ and the associated
σ ∗ are well defined in Def. 2. By the governor update law
(36), the path parameter σ increases, the governor state
g(σ ) moves along r towards the goal r(1). The desired state
x∗ = ℓ(g) is updated via the lifting function (35). As g tracks
ḡ on the path r via the path parameter update in (36), the
system state x tracks x∗ = ℓ(g). During this process, the
safety margin �E (t ) fluctuates and regulates the rate of
change of σ .

Since σ ∗(t ) is bounded in (38), σ (t ) is updated contin-
uously [65] in (36), leading to a continuous governor state
g(t ). By construction, the lifting function ℓ(g) is continu-
ous in g. Therefore, the reference point x∗(t ) = ℓ(g(t )) is
continuous in time, leading to a continuous Lyapunov func-
tion V (x, x∗) and a continuous safety margin �E (t ). As a
result, the safety margin �E (t ) cannot become negative with-
out crossing 0 from above at some time T0. As �E (t ) ↓

0, the local safe zone shrinks to a point, i.e., LS (x, g) ↓

{g}. This immediately stops the the governor because ḡ =

g(T0) = r(σ (T0)) and σ̇ (T0) = 0. As a result, Proposition 1
states that x(t ) stays within the invariant set Sc2 (x∗(T0))
for t ≥ T0 and converges to Sc1 (x∗(T0)) without leaving F .
Eq (30) shows that �E (t ) = 0 implies c1 ≤ V (t ) ≤ c2. By
Thm. 1, as x(t ) approaches x∗(T0), we have V̇ (T0) < 0, i.e.,
the Lyapunov function V is decreasing. There exists h >

0 such that �E (T0 + h) becomes strictly positive. Hence,
the governor is able to move again towards a new ḡ gen-
erated by the positive �E (T0 + h). This process continues
until the governor state g(t ) converges to r(1), the closed-
loop system converges to the region Sc1 (ℓ(r(1))) and the
position p(t ) satisfies the uniform ultimate bound in (29)
around r(1). �

Note that while our control design does not account for state
estimation errors, e.g. from an odometry algorithm with a sen-
sor setup (e.g. stereo camera, LiDAR, or visual-inertial), we
can conservatively handle the errors by reducing the obstacle
distance d̄ in the safety margin specification in (31).

VI. APPLICATION TO HAMILTONIAN DYNAMICS IN Rn

In this section, we show that our control design can be easily
modified and applied to a Hamiltonian system with configu-
ration q in R

n and dynamics:
[

q̇

ṗ

]

=

[

0 In

−In 0

][

∇qH(q, p)

∇pH(q, p)

]

+

[

0

B(q)

]

u +

[

0

d1

]

(40)
where the Hamiltonian H(q, p) is defined as:

H(q, p) =
1

2
p

⊤M−1(q)p + U (q). (41)

Given a desired regulation point x∗ = (q∗, p∗) with mo-
mentum p∗ = 0, define the error state xe = (qe, pe) as:

qe = q − q
∗, pe = p − p

∗. (42)

A desired Hamiltonian, minimized at x = x∗, is:

Hd (x, x∗) =
1

2
p

⊤
e M−1(qe)pe +

kp

2
‖qe‖

2. (43)

The IDA-PBC controller:

u = π(x, x∗) = B†(q)b(x, x∗) (44)

with b(x, x∗)=∇qH(x)−∇qeHd (x, x∗)−Kd∇peHd (x, x∗)
achieves the closed-loop dynamics:

[

q̇e

ṗe

]

=

[

0 In

−In −Kd

][

∇qeHd (x, x∗)

∇peHd (x, x∗)

]

+

[

0

d

]

, (45)

where d = d1 + d2 as in (22) and d2 is as in (21).
Theorem 3: Consider the Hamiltonian system in (40) with

desired regulation point x∗ = (q∗, 0) and control law in (44)
with parameters kp, Kd. Under Assumptions 1 & 2, the func-
tion:

V (x, x∗) = Hd (x, x∗) + ρ
d

dt
Ud (qe) (46)

with Ud (qe) =
kp

2 ‖qe‖
2 is an ISS-Lyapunov function [63] with

respect to d and satisfies:

k1‖z‖2 ≤ V (x, x∗) ≤ k2‖z‖2,

V̇ (x, x∗) ≤ −k3‖z‖2 + kγ δ2
d, (47)

where z := [kp‖qe‖ ‖pe‖]⊤ ∈ R
2, kγ = 1

2λmin (Kd ) +
ρλ2

2
2λ1

,

λ1 := λmin(M−1), λ2 := λmax(M−1), k1 = 1
2λmin(Q1),
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k2 = 1
2λmax(Q2), k3 = 1

2λmin(Q3), and the associated
matrices Q1, Q2, Q3 are defined as:

Q1 =

[

k−1
p , −ρλ2

−ρλ2 λ1

]

, Q2 =

[

k−1
p , ρλ2

ρλ2 λ2

]

,

Q3 =

[

ρλ1 −ργdλ2
2

−ργdλ2
2 γdλ2

1 − 2ρλ2
2kp

]

. (48)

Any initial state x converges exponentially to Sc1 =

{x|V (x, x∗) ≤ c1} with c1 :=
k2kγ

k3
δ2

d and remains within. The
error trajectory qe(t ) is uniformly ultimately bounded:

lim
t→∞

‖qe(t )‖2 ≤
c1

k1k2
p

=
k2kγ

k1k3k2
p

δ2
d. (49)

The proof of Thm. 3 follows the same steps as that of
Thm. 1, and is omitted due to space limitations. In contrast
to Thm. 1, the result in Thm. 3 for Rn holds globally, i.e., the
region of attraction is A = R

n × R
n. Thus, the disturbance

magnitude bound δd can be arbitrarily large. The safety anal-
ysis in Section IV-A.IV-C can be modified with a new safety
margin:

�E (x, x∗) := k1k2
pd̄ 2(

q
∗,O

)

− V (x, x∗)

+ max
{

c1 − V (x, x∗), 0
}

, (50)

as Thm. 3 holds globally. The reference governor lifting func-
tion can be chosen as ℓ(g) = [g⊤ 0⊤]⊤. The governor state
update remains the same as in (36). The robustness analysis
extends the safe tracking results in [66] and [36].

VII. EVALUATION

We evaluate our robust and safe tracking controller using sim-
ulated hexarotor and quadrotor robots in 2D and 3D environ-
ments with ground-truth mass m = 6.77 kg, and inertia matrix
J = diag([1.05, 1.05, 2.05]) kg·m2, inspired by the solar-
powered UAV in [67]. The robot’s ground-truth dynamics sat-
isfy Hamilton’s equations (3) with generalized mass M(q) =

diag(mI, J), potential energy U (q) = mg
[

0 0 1
]

p, where

p is the position and g ≈ 9.8 ms−2 is the gravitational acceler-
ation. The input matrices for the hexarotor and the quadrotor

are B(q) = I and B(q) =
[

04×2 I4×4

]⊤

, respectively. The

control input u of the hexarotor includes a 3D force and a
3D torque while that of the quadrotor includes a scalar force
and a 3D torque.

For all experiments, the following control gains are used for
our controller in Section IV-A.IV-A: kp = 20, kR = 50, Kd =

15I in (16). The parameters shown in Thm. 1 are: α = 2,
β = 20, c1 = 2.2050, c2 = 8.8200, ρ = 3.5822 × 10−5. The
control gain for the governor in (36) is kg = 0.5. The control
loop frequency for all experiments is at 120 Hz.

While, our evaluation focuses on rotorcraft aerial robots,
the methodology for system identification and control synthe-
sis proposed in this paper is general. The exact same approach
is applied to hexarotor, quadrotor and other ground and marine

vehicles. This is in contrast with other system identification
and control synthesis methods, which require knowledge of
the dynamics structure, careful experiment design, and do-
main expertise for the particular system.

A. EVALUATION OF SE (3) HAMILTONIAN DYNAMICS

LEARNING

We consider a simulated hexarotor unmanned aerial vehi-
cle (UAV) (Fig. 3) with fixed-tilt rotors pointing in different
directions [68] and a simulated quadrotor UAV. Since the
mass m of the UAVs can be easily measured, we assume
the mass m is known, leading to a known potential energy

U (q) = mg
[

0 0 1
]

p. We approximate the inverse gen-

eralized mass matrix by M−1
θ

(q) = diag(m−1I, J−1
θ

(q)) and
learn Jθ (q)−1 and Bθ (q) from data.

We mimic manual flights in an area free of obstacles using
a PID controller and drive the UAVs from a random initial
pose to 18 desired poses, generating 18 1-second trajectories.
We shift the trajectories to start from the origin and cre-
ate a dataset D = {t

(i)
0:N , q

(i)
0:N , ζ

(i)
0:N , u

(i)
0:N−1)}D

i=1 with N = 24
and D = 18. The Hamiltonian-based neural ODE network is
trained with the dataset D, as described in Section III, for 5000
iterations and learning rate 10−4. For the hexarotor, Fig. 3(c)
shows the loss function during training. Note that if we scale
Mθ (q) and the input matrix B(q) by a constant γ , the dynam-
ics of (q, ζ) in (3) and (5) does not change. Fig. 3(d) and 3(e)
plot the scaled version of the learned inverse mass Jθ (q)−1

and the input matrix Bθ (q), converging to the constant ground
truth values. We achieve similar results for the quadrotor using
the same training process.

B. EVALUATION OF ROBUST SAFE TRACKING CONTROL OF

A LEARNED 2D HEXAROTOR HAMILTONIAN MODEL

Next, we compare our approach with a GP-MPC technique [7]
using a simulated 2D fully-actuated hexarotor UAV, moving

on the xz-plane with position p =
[

x, 0, z

]

and orientation

R = Rψ determined by the pitch angle ψ . The control input
is a 3D wrench, including a 2D force and a 1D torque. As
we only consider the pitch angle ψ , we are interested in the
inertia value Jyy and ignore Jxx and Jzz. We assume that the
generalized mass m and Jyy are unknown for the 2D hexarotor
and approximated by mθ and J

yy

θ
, respectively. The input gain

B(q) is assumed known.
Let m0 = 1.5 m and J

yy
0 = 1.5 Jyy be initial guesses of the

mass m and the inertia Jyy. We model the approximated mass
inverse m−1

θ
and inertia inverse J

yy

θ

−1 as:

m−1
θ

=

(

√

m−1
0 + L1(q; θ)

)2

, J
yy

θ

−1

=

(
√

J
yy
0

−1
+ L2(q; θ)

)2

,

where L1(q; θ) and L2(q; θ) are two neural networks, repre-
senting the residual mass inverse and inertia inverse to be
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FIGURE. 3. SE (3) Hamiltonian neural ODE network (left to right): (a) simulated hexarotor for evaluation, (b) training loss, (c) learned inverse inertia
Jθ (q)−1, and (d) learned input matrix Bθ (q) along a test trajectory, evaluated on the simulated hexarotor.

FIGURE. 4. Comparison of position prediction errors (left) between the learned Hamiltonian dynamics and GP model, tracking errors (middle) and
distance to obstacles (right) between our safe tracking controller and GP-MPC.

learned. In GP-MPC [7], the dynamics (3) are split into a prior
nominal model with the prior mass m0 and inertia J

yy
0 , and

residual dynamics, modeled by a GP regression model.
To collect training data, we place the simulated hexarotor at

an initial location (x, z) = (−1, 0) and apply random control
inputs to obtain D = {t

(i)
0:1, q

(i)
0:1, ζ

(i)
0:1, u

(i)
0 }150

i=1. Our Hamilto-
nian neural ODE network is trained with the dataset D, as
described in Section III. For GP-MPC, the same dataset D is
used to train a GP regression model of the residual dynamics
as described in [7] and implemented in [38].

We assume there are two walls in the environments, gener-
ating two safety constraints on the robot position: −x + z <

1.1, 0.8x + z < 0.4. The task is to track a predefined piece-
wise linear path r, shown in Fig. 5, while safely avoiding
collision with the walls. We adapt the GP-MPC implemen-
tation by [38] for the 2D hexarotor and enforce the safety
constraints probabilistically with 95% confidence interval
using the GP model uncertainty. To propagate the model un-
certainty through a horizon of 10 time steps, we linearize
the dynamics model around the hovering state and propagate
the state mean and covariance using the mean equivalence
technique [7], [38] with a time step of 1/120 s. Meanwhile,
our learned Hamiltonian neural ODE model is used with the
safe tracking controller described in Section V to perform
the task and enforce safety constraints. Fig. 4 compares the
prediction errors of our learned neural ODE network and the
GP model. We collect the robot states and control inputs, gen-
erated by our controller while tracking the path, and predict
the next state. Fig. 4 (left) plots the prediction error over time,
showing that we achieve better prediction than the trained GP
model. This reflects the difference between our model, which
encodes the Hamiltonian structure and translation equivari-
ance in the network architecture, and the GP model, which
incurs higher model uncertainty in locations far from the data
points.

FIGURE. 5. Path tracking with our approach (left) and GP-MPC [7] (right).

Figs. 4 and 5 show tracking performance of our approach
and GP-MPC. We compare the tracking error of both meth-
ods, calculated as the distance from the robot position to the
reference point, specified by the governor in our approach and
by time parameterization of the path in GP-MPC: p∗(t ) =

r(min(t, 10)/10), i.e., the GP-MPC method finishes the task
in about 10 seconds, similar to the tracking time of our ap-
proach. Our controller is able to track the path more accurately
than GP-MPC, illustrated qualitatively in Fig. 5 and quantita-
tively in Fig. 4 (middle). This can be explained by the higher
predictions errors shown in Fig. 4 (left), which grow quickly
after multiple time steps due to uncertainty propagation. Both
our safe tracking controller with learned Hamiltonian dynam-
ics and the GP-MPC safe controller keep the hexarotor in the
safe region, i.e., the distance to the obstacles is always positive
in Fig. 4 (right).

C. EVALUATION OF ROBUST SAFE TRACKING CONTROL OF

A LEARNED 3D FULLY-ACTUATED HEXAROTOR

HAMILTONIAN MODEL

This section evaluates our Hamiltonian dynamics learning and
safe tracking control techniques using a simulated hexarotor
UAV in a 3D environment. The task is to navigate from a start
position to a goal in a cluttered warehouse environment with-
out colliding with the obstacles O. The same control gains are
used for this 3D navigation task as in the previous section. A
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FIGURE. 6. Safe navigation of a hexarotor system using learned model in a warehouse (left). The hexarotor (red body) navigates from a start (red star) to
a goal location (green star) while avoiding obstacles. The obstacles are sensed by a simulated LiDAR sensor. The reference path, the robot path are shown
in blue and green, respectively. Local safe set is shown in yellow sphere. The right plots show the dynamic safety margin �E , the Lyapunov function V ,
and the distance to the obstacles d̄ (p(t ),O), indicating that the safety constraints are never violated.

FIGURE. 7. Tracking error of a hexarotor system (top to bottom): position,
velocity, angle and angular velocity errors.

simulated LiDAR scanner provides point cloud measurements
P (t ) of the surface of the unsafe set O, depending on the sys-
tem pose at time t , with a maximum sensing range of dmax =

30 m. The distance from the governor g(t ) to the unsafe set O
is approximated via d̄ (g(t );O) ≈ miny∈P (t ) ‖g(t ) − y‖. The
reference path r is pre-computed using an A* planner and
tracked in ∼ 80 s.

Fig. 6 shows the behavior of the closed-loop hexarotor
system in the warehouse environment. The safety margin
�E (x, x∗) fluctuates during the tracking process but, as can
be seen in Fig. 6, it never becomes negative. The augmented
system (x, g) is controlled adaptively, slowing down when the
dynamic safety margin decreases (e.g., when the hexarotor is
close to an obstacle or has large Lyapunov value V) and speed-
ing up otherwise (e.g., when the robot is far away from the
obstacles or has small total energy V). The simulations show
that our control policy successfully drives the system from the
start to the end of the reference path while avoiding sensed
obstacles online, i.e., d (p,O) remains positive throughout the
tracking task. Fig. 7 plots the tracking errors between the robot
state x and the reference state x∗ generated by the governor,
showing that our controller tracks the path well. The tracking
errors for the Euler angles and angular velocity, are close to 0.

FIGURE. 8. Tracking controller performance for hexarotor in warehouse
simulation with the ground truth model subject to a disturbance d with
different magnitudes: the average position tracking error (top) and the
minimum distance to obstacle (bottom).

The position and linear velocity errors in the x and z directions
are close to zero as well while the errors in y direction fluctu-
ates around −0.5 m and 0.8 m/s, respectively, and converges
to 0 at the end. This is expected as the robot stays behind the
reference point, mostly in y direction, and converges to the
end of the path.

To evaluate the robustness of our controller, we repeat
the warehouse experiment using the ground-truth dynamics,
subject to a artificially generated disturbances d ∈ R

6 with
different upper bounds δd. Each component of the distur-
bance d ∈ R

6 is uniformly generated in [−0.5δd, 0.5δd]. If
‖d‖ > δd, we normalize the disturbance as δdd/‖d‖. Our ro-
bust tracking controller successfully finishes the tracking task
across a wide range of δd: [0.001, 0.01, 0.1, 1, 10, 20, 30].
Larger δd are not reported due to violation of the positiveness
requirement on �E . Fig. 8 shows the average position errors
and the minimum distance to obstacle during the tracking
task versus the disturbance upper bound δd. The average
position tracking errors remain similar against δd. The
minimum distance to obstacle d (p,O) is always positive,
illustrating the safety guarantees of our controller. This
number starts decreasing when δd > 1 as larger disturbances
can suddenly move the robot towards the obstacles.
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FIGURE. 9. Safe navigation of quadrotor system (learned model) in a
warehouse: the dynamic safety margin �E , the Lyapunov function V (top)
and the distance to the obstacles d̄ (p(t ),O) (bottom), indicating that the
safety constraints are never violated.

FIGURE. 10. Tracking error of a quadrotor system (top to bottom):
position, velocity, angle and angular velocity errors.

FIGURE. 11. The Lyapunov function V and safety margin �E in the
presence of: high-frequency noise (top), state estimation error with
standard deviation from [69] (middle) and 3x larger (bottom), respectively).

D. EVALUATION OF ROBUST SAFE TRACKING CONTROL OF

A LEARNED 3D UNDERACTUATED QUADROTOR

HAMILTONIAN MODEL

In this section, we repeat the task of safely navigating from
a start position to a goal in the same cluttered warehouse

environment in Section VII-C. with a quadrotor, whose model
is learned from data as described in Section VII-A. As men-
tioned in Section IV-A, the control input in (18) would
not introduce additional disturbance d2 when the matching
condition (20) is satisfied. For quadrotor, a maximal-rank

left annihilator of the ground-truth B(q) =
[

04×2 I4×4

]⊤

is B†(q) =
[

I2×2 02×4

]

. The matching condition (20) is

satisfied if and only if the first two elements of b(x, x∗) =
[

b⊤
v b⊤

ω

]⊤

, bv ∈ R
3, bω ∈ R

3 in (19) equal to 0, i.e. the

force component bv coincides with the z-axis of the body
frame. As guaranteeing this condition is hard, we instead use
the force component in the world frame Rbv and a desired
yaw angle ψ∗ to determine the desired rotation matrix, similar
to [64]. The vector Rbv is set as the z-axis of the desired
frame, i.e., the third column b∗

3 of the rotation matrix R∗,
to minimize the disturbance d2 in (21) from the matching
condition. We calculate the second column b∗

2 by project-

ing the second column of the yaw’s rotation matrix b
ψ
2 =

[− cos ψ, sin ψ, 0] onto the plane perpendicular to b∗
3. We use

the controller (18) with R∗ = [b∗
1 b∗

2 b∗
3] where:

b∗
3 =

Rbv

‖Rbv‖
, b∗

1 =
b

ψ
2 × b∗

3

‖b
ψ
2 × b∗

3‖
, b∗

2 = b∗
3 × b∗

1, (51)

and ω̂∗ = R∗⊤Ṙ∗ for our tracking task. We successfully finish
the task with the quadrotor while remaining safe for the entire
experiment, as shown in Fig. 9, with similar behavior of the
closed-loop quadrotor system in terms of the safety margin,
Lyapunov function and distance to obstacle compared to Sec-
tion VII.VII-C. However, the orientation tracking error of
quadrotor (Fig. 10) is larger than that of hexarotor, as expected
since the quadrotor is underactuated.

E. EVALUATION OF OUR APPROACH AGAINST

UNMODELED NOISE

In this section, we verify the robustness of our controller
against unmodeled noise on a simulated hexarotor by injecting
high frequency noise (e.g., propeller vibration) into control
inputs and simulating state estimation errors. In particular, a
4.8 kHz 6D sinusoidal signal with amplitude 5 is generated
for high frequency noise. Meanwhile, state estimation errors
in positions, Euler angles, linear and angular velocity are
randomly generated with zero mean and standard deviation,
chosen from [69] (position: 0.01 m, Euler angle: 0.01◦, linear
velocity: 0.02 m/s and angular velocity: 0.14 ◦/s). We consider
the task of stabilizing to a static governor, i.e. the governor is
not moving, with the learned dynamics model: without any
unmodeled noise (base), with high-frequency noise, and with
state estimation error. Fig. 11 plots the Lyapunov function V

and the safety margin �E over time. Our controller is not
affected significantly from the high-frequency noise, poten-
tially because the noise’s effect is canceled out due to its zero
mean. Our controller is safe against the state estimation errors

VOLUME 1, 2022 175



LI ET AL.: ROBUST AND SAFE AUTONOMOUS NAVIGATION FOR SYSTEMS WITH LEARNED SE(3) HAMILTONIAN DYNAMICS

from [69], i.e. �E > 0 over time, but fails to remains safe, i.e.
�E < 0 at some times, if we triple the noise deviation.

VIII. CONCLUSION

This paper developed a tracking controller for Hamiltonian
systems with learned dynamics. We employed a neural ODE
network to learn translation-invariant Hamiltonian dynamics
on the SE (3) manifold from trajectory data. The Hamil-
tonian of the learned system was used to synthesize an
energy-shaping controller and quantify its robustness to mod-
eling errors. A reference governor was employed to guide
the system along a desired reference path using the trade-off
between system energy, disturbance bounds, and distance to
obstacles to guarantee safe tracking. Our results demonstrate
that encoding SE (3) kinematics and Hamiltonian dynamics in
the model learning process achieves more accurate prediction
than Gaussian Process regression. Utilizing the system energy
in the control design offers a general approach for guarantee-
ing robustness and safety for physical systems and generalizes
well to desired trajectories which are significantly different
from the training data. Future work will focus on disturbance
compensation and real robot experiments. We also plan to
verify our control design with systems in R

n that involve more
unknown parameters than just inertia and input gain.
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APPENDIX

PROOF OF THOEROM 1

We do not write function arguments explicitly to simplify
the notation. We also introduce the following notation for the
components of e and pe in (23):

e =

[

ep

eR

]

=

[

kpR⊤pe

1
2 kR

(

Re − R⊤
e

)∨

]

,

pe = M

[

ev

eω

]

= M

[

v − R⊤
e v∗

ω − R⊤
e ω∗

]

. (52)

Consider the Lyapunov function candidate in (24):

V =
1

2
p

⊤
e M−1

pe + Ud + ρ
d

dt
Ud , (53)

where Ud =
kp

2 ‖pe‖
2 +

kR

2 tr(I − Re). In the domain A, we
have [70], Prop. 1]:

k−2
R

‖eR‖2
2 ≤ tr(I − Re) ≤

4k−2
R

4 − α
‖eR‖2

2. (54)

By the chain rule and (23), we have:

d

dt
Ud = ∇qeH

⊤
d q̇e = ∇qeH

⊤
d JM−1

pe = e⊤M−1
pe (55)

Using (54) and (55), together with the Cauchy-Schwartz in-
equality and the sub-multiplicative property of the Euclidean
norm, the Lyapunov function candidate is bounded as:

V ≤
λ2

2
‖pe‖

2 +
k−1

p

2
‖ep‖2 +

2k−1
R

4 − α
‖eR‖2 + ρλ2‖e‖‖pe‖.

V ≥
λ1

2
‖pe‖

2 +
k−1

p

2
‖ep‖2 +

k−1
R

2
‖eR‖2 − ρλ2‖e‖‖pe‖.

The bounds can be stated compactly in quadratic form using
z = [‖e‖ ‖pe‖]⊤ and Q1, Q2 in (26):

1

2
z⊤Q1z ≤ V ≤

1

2
z⊤Q2z. (56)

The time derivative of the Lyapunov candidate satisfies:

d

dt
V = p

⊤
e M−1

ṗe + e⊤M−1
pe + ρe⊤M−1

ṗe + ρė⊤M−1
pe.

The term ṗe is from (23). The term ė is obtained from (52):

ė =

[

ėp

ėR

]

=

[

−ω̂ep + kpev

kREReω

]

= −

[

ω̂ 0

0 0

]

e +

[

kpI 0

0 kRER

]

M−1
pe, (57)

where ER = 1
2 [tr(R⊤

e )I − R⊤
e ] satisfies ‖ER‖2 ≤ 1 [64],

Prop. 1]. Hence, we have:

d

dt
V = −p

⊤
e M−1KdM−1

pe + p
⊤
e M−1d

− ρe⊤M−1e − ρe⊤M−1KdM−1
pe + ρe⊤M−1d

− ρp⊤
e M−1

[

ω̂ 0

0 0

]

e + ρp⊤
e M−1

[

kpI 0

0 kRER

]

M−1
pe.

To find an upper bound on d
dt
V , we need a few intermediate

steps. First, on the domain A, we have:
∥

∥

∥

∥

∥

[

ω̂ 0

0 0

]
∥

∥

∥

∥

∥

2

= ‖ω̂‖2 = ‖ω‖ ≤ ‖M−1
p‖ ≤ λ2β. (58)

Second, an upper bound on

ξ1 := −λmin(Kd)‖M−1
pe‖

2 + ‖M−1
pe‖‖d‖ (59)

can be found using Young’s inequality [43]:

−ǫ‖a‖2 + η‖a‖‖b‖ ≤ −
ǫ

2
‖a‖2 +

η2

2ǫ
‖b‖2 (60)

with ǫ = λmin(Kd ), η = 1, a = M−1pe, b = d:

ξ1 ≤ −
λmin(Kd )

2
‖M−1

pe‖
2 +

1

2λmin(Kd )
‖d‖2. (61)

Similarly, we have:

ξ2 := −λ1‖e‖2 + λ2‖e‖‖d‖ ≤ −
λ1

2
‖e‖2 +

λ2
2

2λ1
‖d‖2. (62)
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Using (58), (61), and (62), d
dt
V is bounded by:

d

dt
V ≤ −

1

2
z⊤Q3z + kγ ‖d‖2, (63)

where the elements of Q3 are provided in (27) and kγ =

1
2λmin (Kd ) +

ρλ2
2

2λ1
. Since the parameters ρ, kp, kR, Kd can

be chosen arbitrarily, there exists some choice that ensures
the matrices Q1, Q2, Q3 are positive definite as shown below.
The inequalities in (25) are obtained from (56) and (63) using
the Rayleigh-Ritz inequality.
Region of Attraction: We use the invariant sets Sc = {x |

V (x, x∗) ≤ c} induced by the Lyapunov function to restrict the
error dynamics inside the domain A and estimate the region
of attraction.

We determine c1 ≥ 0 such that V̇ is positive on Sc1 . From
(25), V̇ is positive when kγ δ2

d − k3‖z‖2 ≥ 0, which happens

when V

k2
≤

kγ

k3
δ2

d. Hence, with c1 = k2kγ δ2
d/k3, we have V̇ ≥ 0

on Sc1 . Then, we determine c2 ≥ 0 such that Sc2 ⊆ A. From
(54) and (56), we have:

4 − α

4
k2

Rtr(I − Re) ≤ ‖eR‖2 ≤ ‖z‖2 ≤
V

k1
. (64)

Hence, if V ≤ 1
4 k1k2

Rα(4 − α), then tr(I − Re) ≤ α. Simi-
larly, if V ≤ k1β

2, then ‖pe‖
2 ≤ ‖z‖2 ≤ V

k1
≤ β2. Hence, to

ensure that Sc2 ⊆ A, we define c2 as:

c2 := k1 min
{

k2
Rα(4 − α)/4, β2} . (65)

To ensure that c1 < c2, the disturbance bound δd must sat-

isfy δd <
√

c2k3
k2kγ

. Then, any closed-loop system trajectory

that starts in Sc2 converges exponentially to Sc1 and remains
within it. Recall that ep = kpR⊤pe and from (56):

k2
p‖pe‖

2 = ‖ep‖2 ≤ ‖e‖2 ≤ ‖z‖2 ≤
V

k1
. (66)

Hence, on Sc1 , ‖pe‖
2 ≤ c1/(k1k2

p) and the uniform ultimate
bound on the position error trajectory in (29) is satisfied.
Design Parameter Choice: We propose a systematic way to
select parameters ρ, kp, kR, Kd, ensuring that the matrices
Q1, Q2, Q3 are positive definite. Suppose kp < 4−α

4 kR and
Kd = γd I for some γd > 0, then we have

Q1 =

[

k−1
R

−ρλ2

−ρλ2 λ1

]

Q2 =

[

k−1
p ρλ2

ρλ2 λ2

]

q2 = −ρλ2
2 (γd + β ) q3 = γdλ2

1 − 2ρλ2
2kR. (67)

To guarantee the positive definiteness of Q1, Q2, Q3, the
following requirements must be satisfied:

λ1

kR

− ρ2λ2
2 > 0,

λ2

kp

− ρ2λ2
2 > 0, γdλ2

1 − 2ρλ2
2kR > 0

ρλ1
(

γdλ2
1 − 2ρλ2

2kR

)

− ρ2λ4
2 (γd + β )2 > 0.

All these constraints put upper bounds on ρ:

ρ ≤ min

{√

λ1

kRλ2
2

,

√

1

kpλ2
,

γdλ2
1

2kRλ2
2

, ρ̄Q3

}

, (68)

where ρ̄Q3 =
γdλ3

1
λ2

2[2λ1kR+λ2
2(γd+β )2]

.
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