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Abstract— This paper considers enforcing safety and stability
of dynamical systems in the presence of model uncertainty.
Safety and stability constraints may be specified using a control
barrier function (CBF) and a control Lyapunov function (CLF),
respectively. To take model uncertainty into account, robust
and chance formulations of the constraints are commonly
considered. However, this requires known error bounds or
a known distribution for the model uncertainty, and the
resulting formulations may suffer from over-conservatism or
over-confidence. In this paper, we assume that only a finite
set of model parametric uncertainty samples is available and
formulate a distributionally robust chance-constrained program
(DRCCP) for control synthesis with CBF safety and CLF sta-
bility guarantees. To facilitate efficient computation of control
inputs during online execution, we present a reformulation
of the DRCCP as a second-order cone program (SOCP).
Our formulation is evaluated in an adaptive cruise control
example in comparison to 1) a baseline CLF-CBF quadratic
programming approach, 2) a robust approach that assumes
known error bounds of the system uncertainty, and 3) a chance-
constrained approach that assumes a known Gaussian Process
distribution of the uncertainty.

I. INTRODUCTION

With the increasing deployment of automatic control
systems and robotic platforms in unstructured real-world
environments, it is crucial to develop feedback controllers
with safety and stability guarantees in the presence of model
uncertainty. Enforcing safety by utilizing set invariance prop-
erties has become a mainstream approach for constrained
control synthesis. Inspired by the property of control Lya-
punov functions (CLFs) [1] to yield invariant level sets,
control barrier functions (CBFs) [2] were introduced as
a tool to verify that a desired safe subset of the state
space is invariant. Stability and safety can be considered
simultaneously by introducing CLF and CBF constraints on
the control input in a quadratic program (QP) formulation
for control synthesis [3], [4]. The reliability and efficiency
of CLF-CBF-QP control synthesis has been evidenced in
several robotic applications, including multi-agent systems
[5], aerial robots [6], and walking robots [7].

The notion of safety in the presence of system model
uncertainty has been mainly described in two ways: using
robust constraints [8], [9] or chance constraints [10], [11].
Studies have also considered system uncertainty when pair-
ing safety with stability in the CLF-CBF-QP formulation.
Regarding robust formulations, Choi et al. [12] consider
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model disturbances with a compact and convex support set
and propose a robust control barrier value function to ensure
safety. Similarly, [13] assumes bounded model uncertainty
and reformulates the original safety and stability constraints
as min-max constraints. Regarding probabilistic formula-
tions, [14], [15] assume a Gaussian Process distribution for
the model uncertainty and propose probabilistic versions of
the CLF stability and CBF safety constraints. All these ap-
proaches require known error bounds or known distributions
of the uncertainty. In addition, robust formulations may suffer
from over-conservatism due to the worst-case error bounds,
while chance-constrained formulations may suffer from over-
confidence due to a distributional shift at deployment time.

To tackle such scenarios, we rely on a body of work from
the literature on stochastic programming [16] that considers
distributionally robust versions of stochastic optimization
problems, see e.g. [17], [18]. In particular, distributionally
robust chance-constrained programs (DRCCP) deal with un-
certain variables in the constraints when only finitely many
samples are available. The main idea is to construct an
ambiguity ball centered at the empirical distribution obtained
from the observed samples and with radius defined using
a probability distance function, such as Kullback-Leibler
divergence [19] or Wasserstein distance [20]-[24]. In DR-
CCP, the desired constraints must be satisfied with high
probability for all distributions in the constructed ambiguity
set. Given the ability to handle uncertainty with unknown or
shifting distribution within the ambiguity set, distributionally
robust formulations have been used to enforce constraints
in reinforcement learning [25], [26] and Markov decision
processes [27]-[29]. While these works are closely related,
their focus is on discrete-time planning with robustness
to uncertainty, while our work considers continuous-time
control with safety and stability guarantees.

The contributions of this work are summarized as fol-
lows. First, we relax the assumption for safe and stable
control synthesis that known error bounds or known dis-
tribution of model uncertainty are available by formulating
distributionally robust safety and stability constraints using
offline model uncertainty samples. Second, we show that the
DRCCP control synthesis problem can be reformulated as a
second-order cone program (SOCP) in two cases: when there
is no restriction on the uncertainty support set and when
the uncertainty support set is polyhedral. We demonstrate
on an adaptive cruise control problem how our DRCCP
SOCP guarantees safety in scenarios with incorrect model
uncertainty error bounds or uncertainty distribution shift, in
contrast with the vanilla CLF-CBF-QP approach, a robust
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approach, and a chance-constrained approach.

II. PRELIMINARIES

This section reviews control Lyapunov and control bar-
rier functions, distributionally robust modeling, and chance-
constrained programming.

A. Optimization-based Control Synthesis

Consider a non-linear control-affine system':

%= f(x) + g(x)u = [f(x) g(x)] - [1

u
where © € X C R” is the state and u € Y := {1} x
R™ is the control input. Assume f : R” +— R" and g :
R™ — R™ ™ are locally Lipschitz. We start by recalling the
notions of CLF [1] and CBF [4], which play a key role in
the synthesis of stable and safe controllers, respectively.

] 2 Fxu, (1)

Definition II.1. A positive-definite continuously differen-
tiable function V' : R™ — R is a control Lyapunov function
(CLF) on X for system (1) if there exists a class K function
vy such that:

inlf/{ CLC(x,u) <0, VxeX\{0}, 2
ued

where the control Lyapunov condition (CLC) is:
CLC(x,u) := LV (x)+ LV (x)u+ av(V(x)). (3)

The existence of a CLF simplifies the stabilization problem
considerably because a stabilizing feedback control law can
be obtained in terms of the derivatives of the CLF [1].

In addition to stability, it is often necessary to ensure that
the closed-loop system trajectories remain within a safe set
C C X. To facilitate safe control synthesis, the safe set is
specified as the zero superlevel set, C := {x € R" : h(x) >
0}, of a function h.

Definition IL.2. A continuously differentiable function h :
R™ +— R is a control barrier function (CBF) on X for system
(1) if there exists an extended class K, function «y with:

sup CBC(x,u) >0, Vxe X, 4
uel

where the control barrier condition (CBC) is:
CBC(x,u) := Lh(x) + Loh(x)u+ ap(h(x)).  (5)

Noting that the CLF stability requirement in (2) and the
CBF safety requirement in (4) are affine in u, they can be

INotation. The sets of real, non-negative real, and natural numbers are
denoted by R, R>q, and N, respectively. For N € N, we let [N] :=
{1,2,...N}. We denote the distribution and expectation of a random
variable Y by P and Ep(Y’), respectively. We use 0, and 1, to denote
the n-dimensional vector with all entries equal to O and 1, respectively.
For scalar z, we define (z)4+ := max(z,0). The Ly norm for a vector
x is denoted by ||x||. We denote by I, € R™*"™ the identity matrix
and by ® the Kronecker product. We use vec(X) € R™™ to denote
the vectorization of X € R™X™  obtained by stacking its columns. The
gradient of a differentiable function V' is denoted by V'V, while its Lie
derivative along a vector field f by LV = VV - f. A continuous function
a:[0,a) = [0,00) is of class K if it is strictly increasing and «(0) = 0.
A continuous function « : R — R is of extended class Koo if it is of class
K and lim, o0 (1) = 00.

enforced as constraints in an optimization problem. Given
a baseline controller k(x), the following QP modifies the
controller to guarantee safety and encourage stability:
min  [u—k(x))[|* + 1é?
uel,6€R>g (6)
s.t. CLC(x,u) < 0, CBC(x,u) > 0,

where 6 € R>( is a slack variable that relaxes the CLF
constraints to ensure the feasibility of the QP, controlled by
the scaling factor A > 0.

We are interested in the control synthesis problem in (6)
when the system dynamics in (1) are not perfectly known.
Considering probabilistic uncertainty in the system model
requires probabilistic versions of the safety and stability
constraints in (6). We investigate how to handle model
uncertainty using samples rather than a known distribution
and whether the uncertainty-aware versions of the constraints
in (6) remain convex and tractable.

B. Distributionally Robust Chance-constrained Program

To handle probabilistic constraints, we begin by reviewing
chance-constrained programming. Throughout the paper we
consider a complete separable metric space = with metric d
and associate with it a Borel o-algebra F and the set P(=)
of Borel probability measures on =. A chance-constrained
program (CCP) takes the form:

minc' z,
zEZ 7
s.t. P(G(z,€) <0)>1—¢,

with closed convex set Z C R™ and uncertainty set = C RE.
The constraint function G(z,€) € Z x = — R depends
both on the decision vector z and an uncertainty vector
&, whose distribution P is supported on Z, and € € (0,1)
is a user-specified risk tolerance. The feasible set defined
by the chance constraint in (7) is not convex in general.
Nemirovski and Shapiro [30] proposed a conservative convex
approximation [30] of the feasible set in (7), which consists
of replacing the chance constraint by a conditional value-at-
risk (CVaR) constraint:

minc' z,

zCZ (8)

s.t. CVaR,__(G(z,€)) < 0.

The feasible set of (8) is a subset of the feasible set of (7).
The following paragraph describes a way of defining CVaR.

Value-at-risk (VaR) at confidence level 1 — ¢ for € € (0, 1)
is defined as VaR]lpq_e(Q) = infiep{t | Py(Q <t) > 1—¢€}
for a random variable ) with distribution P,. VaR does not
provide information about the right tail of the distribution,
and optimization programs involving VaR variables are in-
tractable in general [31]. To address this, Rockafellar and
Uryasev [32] introduced conditional value-at-risk (CVaR),
defined as CVuR,* (Q) = Ep,[Q | Q > VaR," (Q)]. CVaR
can be also formulated as a convex program:

CVaRy" (Q) = inf[e ' Bg, [(Q + 1)1 =] (9)
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Both the formulations in (7) and (8) assume that PP, the true
distribution of &, is known. When this is not the case, one
can instead resort to distributionally robust formulations [20],
[22]. Assume we only have access to samples {§; };c[n] from
the true distribution of £. We describe a way of constructing
an ambiguity set of distributions that could have potentially
generated such samples. Let P,(Z) C P(Z) be the set of
Borel probability measures with finite p-th moment for p >
1. The p-Wasserstein distance [23] between two probability
measures /i, v in Ppy(E) is:

1

p

Wy (p,v) = ( inf U d(x, y)Pdy(z, y)]) , (10)
veQ(v) [Jaxz=

where Q(u, ) denotes the measures on = x = with marginals

1 and v on the first and second factors, and d denotes the

metric in the space =.

Let Py := ~ Zi\; d¢, denote the discrete empirical
distribution constructed from the observed samples {&;} ;.
Using the Wasserstein distance (10), one can define a Wasser-
stein ambiguity set of radius r centered at Py:

My = {p € Py(E) | Wp(u, Py) < v}, (11)

and, in turn, a distributionally robust chance-constrained
program (DRCCP):

minc' z,

zeZ

t. inf P <0)>1-—
s.t pih (G(z,6) <0) >

12)

The constraint in (12) is equivalent to suppe v P(G(2,£) >
0) < €. Thus, mimicking the convexification for CCP in (8),
one can use CVaR to obtain a convex approximation of (12):
minc' z,
zCZ

st. sup CVaR,__(G(z,€)) <0.
PEMY,

13)

III. PROBLEM FORMULATION

We study the problem of enforcing safety and stability
of control-affine dynamical systems with model uncertainty.
Critically, we do not assume that the probability distribution
or error bounds for the model uncertainty are known. We
model the uncertainty in the system in (1) using a nominal
model F(x) and a linear combination of  perturbations:

k

% = F(x)u = (F(x) + 3 W, (x)¢)u.

j=1

(14)

For 1 < j < k, we use W;(x) € R"(m+1) (o denote the
possible model perturbations, and &£ € R* with elements § €
R to denote the corresponding unknown weights. We assume
the perturbations W;(x) are known, while the weights & are
stochastic. We require a set of historical realizations {&;} Y ;
as training data, which can be obtained from past state-
control system trajectories using system identification tech-
niques, e.g., based on neural ordinary differential equations
[33] or Koopman operator theory [34].

Many control applications require safety and stability
guarantees for an uncertain system under online error re-
alizations. This motivates us to consider a distributionally
robust formulation for online control synthesis.

Problem 1 (Distributionally Robust Safety and Stability
for Uncertain Systems). Consider a nominal model F(x)
and perturbation matrices W;(x), j € [k] for the system
dynamics in (1). Given observations {&,;}Y, of the model
uncertainty £ with support set =, design a feedback controller
k™ : R™ — U with a risk-tolerance parameter € € (0,1) such
that, for each x € X:

inf P(CLC(x,k*(x),£)) <d) >1—c¢,

Pe MY}
inf P(CBC(x,k*(x),£)) >0)>1—c¢, 15)
Pe M2
where My, M’ are Wasserstein ambiguity sets with user-

specified radii r; and rs.

While we do not assume a particular distribution for &,
the Wasserstein ball radii 1, 72 specify the maximal shift of
the true distribution of £ from the empirical distribution Py
of the historical samples that our method can handle.

We consider two cases based on the information available
about the support set =. In the first case, we consider a
unbounded support set = = R*: in the second case, we
assume a compact polyhedron set = = {¢ € RF | C¢ <
d}. Inspired by the CLF-CBF-QP in (6), we consider the
following DRCCP formulation to enforce safety and stability
with high probability and out-of-sample errors by leveraging
the CVaR approximations (13) and the CVaR definition (9),

. . 2 2
JSin e~ kG + A0 (16)
s.t. sup infle 'Ep[(CLC(x,u,€) +t—6),] —1] <0,
PeM;\} teR
sup inf[e 'Ep[(—~CBC(x,u,&) +t),] — ] <0.
Pem’2 tER

Although the constraints in (16) are convex, the program
is intractable [20], [23] due to the search of suprema over
the Wasserstein ambiguity set. In the following sections,
we discuss our approach to identify tractable reformulations
of (16) and enable online stable and safe control synthesis.

IV. TRACTABLE REFORMULATION OF CONTROL
SYNTHESIS WITH MODEL UNCERTAINTY

This section presents our approach for solving (16). To
simplify the notation, we use the vectorization of F'(x),

A7)

vee(F(x)) = vee(F(x)) + W(x)e,
where
W (x) = [vec(Wy(x)) --- vec(Wi(x))] € RMmHDxE,

Observe that the CBC expression in (5) is affine in both u
and €. Using the Kronecker product property vec(ABC) =
(CT ® A)vec(B) and vec(F(x)) in (17), we have:

CBC(x,u,€) = [Vxh(x)] " F(x)u + an(h(x))
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u " vee([Vh(x)] " F(3) L) + an(h(x))
=u' (L1 ® [Vxh(X)]T)VeC(ﬁ(X)) + an(h(x))
=u' (L1 ®© [Vxh(x)]")vee(F(x)) +an (h(x))+

an(x)
ET (I @ [Vxh(x)]T)W(x) 3
R (x)
=u'qn(x) +u' Ry(x)€ + an(h(x)). (18)
We can also write CLC(x,u,£) = u'qy (x)+u' Ry (x)€+
oy (V(x)) with similar definitions. Since F'(x), h(x), ( ),

and W (x) are known and deterministic, both CBC(x, u, §)
and CLC(x,u, &) are affine in &.
We consider a general optimization program:

min [lu - k(x)|?, (19)
s.t. sup infle 'Ep[(Gi(x,u,&) + ;)] — 1] <0, VI € [M
PEMT teR
where G : x U x Z — R may represent a safety or

stability constraint that is affine in &:
Gi(x,u,8) =u'qu(x) + u Ry (x)€ + oy (Ji(x)), (20)

and J; is used to represent the certificate function (e.g. CLF,
CBF). We write G;(x,1, ;) as G;(i) for brevity. Dependmg
on the information available about the uncertainty space =,
we propose two reformulations of (19). In either case, we
assume the metric d of = is the Euclidean distance.

A. Reformulation with Unbounded Uncertainty Space

First, we consider the case with no prior knowledge of =,
meaning that = = R¥. We show that the constraints in (19)
can be reformulated as second-order cone constraints.

Proposition IV.1 (DRCCP formulation with unbounded
support set). Consider the optimization problem in (19) with
Gy in (20), p-Wasserstein distance with p =1, and = = RF.
Then, the following SOCP is equivalent to (19):

min 21
ucl,yeR,t; €R,s; (i) ER
N
st ru Ry(x)]| + — Zsl —t1e <0,
z:l

()>Gl()+tl7 Sl( ) >0 Vi€ [N]v Vi e [M]a
y+12 V2@ - k)2 +(y - 1?2
Proof. We start by considering the following program:

min |ju — k(x)||? (22)
ueld
N
s.t. rllu’ Ry(x)] + 1nf Z )+t)+ —tie| <O0.
z:l
Based on [23, Lemma V.8] and assuming = = R, the

supremum over the Wasserstein ambiguity set (i.e. the con-
straint in (19)) can be written equivalently as the sample

average inf;cg [% Zfil(Gl(i) +t) — tle} and a regular-
ization term rL(u,x), where L(u,x) denotes the Lipschitz
constant of (G in &.

As defined in (20), for each x, we can define the convex
function L : U x X — Ry by

L(u,x) = [u"Ri(x)]. (23)

Then, the function & — G;(x,u,&) is Lipschitz in & with
constant L(u,x) for fixing x (assuming L(u,x) < oo). This
is because the Lipschitz constant of a differentiable affine
function equals the dual-norm of its gradient [35], and the
dual norm of the Lo norm is itself. This implies that (22) is
equivalent to (19).

Next, we show that the bi-level optimization in (22) is
equivalent to:

lu — k(x)|”
N

! st ru Ry(x)]| + — Z
si(i) = Gi(i) + b, sl()zo, Vi € [N], Vi e [M].

min 24)
ucl,t;€R,s; (i) ER

1) —tie <0,

For i € [N],l € [M], let (uy,t,s,(¢)*) denote an optimal

solution to (24) and u, an optimal solution to (22), with i

the optimizer for the inf terms in the constraint of (22).
Given (uy,t}, s;(7)*), we have s;(¢)* > (G;(7) +t;)+ and

N
rllu) Ry(x)]| + % ;sl(i)* —tfe<0.
Thus, if s;(2)* is replaced by (Gi(i) + t])+ in (25), we
conclude that the constraint in (22) is satisfied with u; and
ty. This implies that u; is also a solution to (22), and the
cost satisfies |[u; — k(x)[|? > [|u, — k(x)]?.
Given u, and t;, for every i € [N], we choose §(i) =
(G1(i) +1;) 4. This implies 3;(i) > G;(i) +1;, §(i) > 0, and
the first constraints in (24) is satisfied since

(25)

N

%Z(Gl(i) + i)y — e < 0.

i=1

rllug Ra(x)| +

Thus, (u,,, lei)) is also a solution to (24). Furthermore,
the cost satisfies |[[u; — k(x)|? lu, — k(x)||* since
(uy,t, s:(¢)*) is an optimal solution to (24). Therefore, both
costs are equal, and (24) and (22) are equivalent.

Finally, by reformulating the objective function of (24) as
a linear objective with an SOC constraint [15, Proposition
IV.3], we conclude the SOCP (21) is equivalent to (19). [

Proposition IV.1 allows control synthesis with distribu-
tionally robust safety and stability constraints without prior
knowledge about the uncertainty support set =. The SOCP
in (21) can be solved efficiently online using an off-the-shelf
solver (e.g. [36]).

B. Reformulation with Bounded Uncertainty Space

Assuming no prior knowledge about the uncertainty set
= may result in an overly conservative controller. This
motivates us to also consider the case that the uncertainty
support set = is a compact polyhedron.
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Proposition IV.2 (DRCCP formulation with bounded
polyhedron support set). Consider the optimization prob-
lem in (19) with G; in (20), p-Wasserstein distance with
p = 1, and compact = = {¢£ € R* | C¢ < d}, where
C c R?*F and d € RY for some q > 0. Then, the following
SOCP is equivalent to (19),

min Y (26)
uEU yER 1 ER,s; (1) ER,BER > 0,m,; ERY

ae pou

si(i) > 0,
si(i) > u' qi(x) +t + (u Ry(x) —
au(Ji(x)),
lu"Ry(x)
y+1> V2 —-kx)|?+ (y— 1)2

Proof. Based on [23, Proposition V.1] and [20, Corollary
5.1], we know the following program is equivalent to (19),

s.t. B 1) —tie <0,

n! C)&; +n/ d+

min lu-kx)[* @D
uel,t,eR, Sz(’)ER BER>o,m; ERY
s.t. Br+ —Zsl —t1e <0,
(u'aq(x )+t1+(u R,(x) —n] C)¢; +n/ d+
ar(Ji(x)))+ < si(i),
lu"Ri(x) =0 C| < B, m; >0, Viel[N]

Next, we aim to rewrite (27) as a SOCP. The ReLU-type
inequality (w;); = (uqi(x) +t+ (u"Ry(x) —n/ C)§; +
1) d + a;(Ji(x)))+ < si(i) can be written equivalently as
two constraints: s;(¢) > w; and s;(i) > 0. Following the
same technique as in Proposition IV.1, we conclude that (26)
is equivalent to (19). O]

Remark IV.3 (Comparison between the two formula-
tions). If C = 0,44, and d = 0, in Proposition IV.2, then
= = RF and the SOCP in (26) reduces to (21). .

Remark IV.4 (Different choice of metric d). If instead
of L, norm, we take the metric d of = to be the L; norm,
then the optimization problems in Propositions I'V.1 and IV.2
become QPs. Details are provided in Appendix I. .

V. EVALUATION

We evaluate the proposed distributionally robust approach
for safe and stable control synthesis in an adaptive cruise
control problem introduced in [3].

A. Cruise Control Model

Consider a simplified adaptive cruise control model that
consists of two vehicles, one leading vehicle traveling at a
constant speed and one following vehicle using our control
synthesis methodology. The objective is have the following

—n, C|| <8, n; >0, Vie[N], Vie[M]

TABLE I: Parameters used in the simulation results

Variable Description Value
g Gravitational acceleration 9.81
m Mass of vehicle 1650
fo Coefficient in Fy-(v) 0.1
fi Coefficient in Fy.(v) 5
fo Coefficient in Fy.(v) 0.25
V4 Desired speed 35
Vo Speed of leading vehicle 20
Caq Max accelerate constant 0.3
cq Max decelerate constant -0.3

vehicle achieve a desired speed while keeping a safe distance
from the leading vehicle. The system model is:

P v 0

v| = f%Fr(v) + % u,

z Vo — U 0 (28)
x f(x) 9(x)

where v and vy are the velocities of the following and leading
vehicles, respectively, F.(v) = fo+fiv+ fav? is the air drag,
p is the following vehicle position, and z is the distance to the
leading vehicle. The input is constrained by —c4g < &+ <
cqg, wWhere cg and c, denote the factor of g for deceleration
and acceleration, respectively. We define a CLF, V(x) =
(v — vq)?, where vy is the desired speed of the following
vehicle. The safety rzequirements is specified by the CBF
h(x) = z — %% — 1.8v. We assume that the system
(28) is uncertain with the following parametric uncertainty,

3
F(x) + Y Wi(x)é)u (29)
=1
where F(x) = [f(x) g(x)], u=[1 u]", and:
0 0 0 0 0 0
Wi(x)=|g5 0|, Wa(x)={0 28| Ws(x)=|0 0,
0 0 0 0 2z

25

where Wy, Ws, and W3 represent the model perturbations
in the drag, input force, and leading vehicle distance, re-
spectively. Table I reports the parameter values used in the
simulation.

B. Results

We evaluate our distributionally robust control synthesis
approach and illustrate its versatility in handling model
uncertainty. We report simulation results from the unbounded
uncertainty formulation (Proposition IV.1) and the bounded
uncertainty formulation (Proposition IV.2). For comparison,
we include results from the CLF-CBF-QP (which takes no
model uncertainty into account) formulation in [3] with
baseline controller k(x) = [I F,.(v)]", the robust (which
requires prior knowledge on the error bound) and the chance-
constrained (which assumes the uncertainty distribution to
be Gaussian) formulations in [15]. In the simulation, the
error bounds are provided by the support set information and
the Gaussian parameters are estimated via offline uncertainty
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samples. In all cases, we use the value of the CBF as a mea-
sure of the safety ensured by the corresponding approach.
We consider different choices of Wasserstein radius r; =
ro = r, confidence level e, support set =, offline uncertainty
samples {&,;}Y,, and online true uncertainty realization
&¢*. To demonstrate that our formulation ensures safety for
out-of-sample uncertainty, we use different distributions for
sampling offline observations &, and a true online uncertainty
realization £*.

We consider 8 cases with different parameter choices,
where A and B denote normal and beta distributions, re-
spectively. For each case, we conduct 50 simulations with
the same {&;} Y510 and different £*.

Case 1 (Gausszan Distribution): » = 0.3, ¢ = 0.1,
[—25,25], & ~ N(flv 1/3), £~ N(flv 1/3).
Case 2 (Confident in Sample): r = 0.001, ¢ = 0.1, =
[—25,23], §; ~ N(=1,1/3), & ~N(-1,1/3).

Case 3 (Out of Sample): r = 03, ¢ = 0.1, =
[—23,25], & ~N(0,0.2), & ~ B(0.1,2) — 1.

Case 4 (Baseline Radius and Confidence): v = 0.3,
0.1, E=1[-23,23], § ~4B(3,0.1)-2, £ ~N(-1,1/3
Case 5 (Larger Radius): r = 0.5, ¢ = 0.1, =
[—23,25], & ~4B(3,0.1) —2, £ ~ N (-1,1/3).
Case 6 (Higher Confidence): r = 0.3, ¢ = 0.05,
[—25,23], & ~4B(3,0.1) — 2, & ~ N (-1,1/3).
Case 7 (Larger Radius and Higher Confidence
0.5, € = 0.05, = = [—23,23], & ~ 4B(3,0.1) —
N(-1,1/3).

Case 8 (Out of Support): r = 03, ¢ = 0.1, =
[-0.55,0.53], &, ~ B(2,0.1) — 0.5, & ~N(-1,1/3).

In Table II, we report the failure rate and the average
CBF values for the 8 cases above. In Cases 1 and 2, under
Gaussian uncertainty in the dynamics model, all formulations
ensure safety except the CLF-CBF-QP. When we set the
Wasserstein radius small (r = 0.001), meaning that we are
confident in the offline uncertainty samples, the unbounded
DRCCP and bounded DRCCP formulations have the same
mean CBF values. In Case 3, we verify that if the uncertainty
distribution shifts during the online phase (e.g., the online
uncertainty no longer from a Gaussian distribution), then the
Gaussian CLF-CBF-SOCP formulation fails, while the other
three formulations ensure safety. Cases 4 to 7 demonstrate
the effects of the Wasserstein distance and confidence level
in our bounded and unbounded DRCCP formulations. On
the one hand, the unbounded DRCCP formulations tend to
be more conservative if we increase the Wasserstein radius
r and/or the confidence level, as shown in Fig. 1. On the
other hand, only increasing the confidence level makes the
bounded DRCCP controller more conservative, since support
information provides a tighter bound than the Wasserstein
radius. In Case 8, we see that the unbounded DRCCP
formulation works well even with out-of-support uncertainty,
while the robust CLF-CBF-SOCP and bounded DRCCP both
fail due to the provided incorrect support set information, as
Fig. 2 shows.

Generally, the controller provided by the bounded DRCCP
formulation has the best performance in ensuring safety

(1]
|

/3

=

[1]

)T
2, & ~

= Unbounded DRCCP
5t —#—Bounded DRCCP
Robust CLF-CBF-SOCP
— — —Gaussian CLF-CBF-SOCP
4 Original CLF-CBF-QP

CBF (h(x))

time (s)

Fig. 1: CBF value of one of the 50 simulations corresponding to
Case 5. Both the unbounded and bounded DRCCP formulations
ensure safety while the CLF-CBF-QP and the Gaussian formulation
fail. This demonstrates that either the bounded or unbounded
DRCCP formulation ensures safety for out-of-sample uncertainty.
The unbounded DRCCP formulation is more conservative since it
does not take the uncertainty support set information into account.

while not being too conservative (smaller average CBF
values). However, if one fails to provide reliable support set
information, then the controller provided by the unbounded
DRCCP formulation is the safe choice.

TABLE II: Failure rate and average CBF values. The results
are shown in the following format: a% | b, where a% denotes
the violation rate of each formulation: (simulations with unsafe
state)/(total simulations), and b denotes the average value of CBF
over all simulations. The average CBF value is computed based on
stabilized CBF values, e.g., for 5 <t < 15 in Fig. 2.

Case Unbounded Bounded Robust Gaussian Original

DRCCP DRCCP CLF-CBF-SOCP  CLF-CBF-SOCP  CLF-CBF-QP
1 0% | 2.11 0% | 0.56 0% | 1.01 0% | 0.55 100% | -0.48
2 0% 035 0% |0.35 0% | 1.01 0% | 0.56 100% | -0.48
3 0% | 1.23 0% | 0.55 0% | 0.96 98% | -0.17 100% | -0.50
4 0% | 0.56 0% | 0.51 0% | 0.89 100% | -0.92 100% | -0.53
5 0% | 1.42 0% | 0.57 0% | 1.01 100% | -0.88 100% | -0.48
6 0% | 1.94 0% | 0.57 0% | 1.01 100% | -0.65 100% | -0.48
7 0% | 4.49 0% | 0.57 0% | 1.01 100% | -0.64 100% | -0.49
8 0% | 1.29 98% | -0.26 84% | -0.16 100% | -0.57 100% | -0.51

VI. CONCLUSIONS

We considered the problem of enforcing safety and sta-
bility of uncertain control-affine systems. Compared with
previous approaches, we derive new distributionally robust
chance constrained formulations of safe and stable control
synthesis that do not require any prior knowledge of er-
ror bounds or uncertainty distributions. Using only offline
model uncertainty samples, we show that our formulations
ensure safety and stability with out-of-sample errors during
online execution. Future work will consider deploying the
algorithms on real autonomous systems and learning the
perturbation matrices and uncertainty samples from offline
state-control sequences.
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= Unbounded DRCCP
5t —#—Bounded DRCCP

Robust CLF-CBF-SOCP
— — —Gaussian CLF-CBF-SOCP
4 Original CLF-CBF-QP

CBF (h(x))
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Fig. 2: CBF value of one of the 50 simulations corresponding to
Case 8. The offline uncertainty distribution is set to be within the
uncertainty support set =, while the online uncertainty distribution
is outside of =. The controller obtained with the bounded DRCCP
formulation (26) fails to guarantee safety because the assumptions
in Proposition IV.2 are violated. However, the controller obtained
with the unbounded DRCCP formulation (21) still guarantees safety.
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APPENDIX I
DIFFERENT CHOICE OF METRIC d

We show that when the metric d of the uncertainty support
set = is the L; norm (instead of the Euclidean norm as in
Propositions IV.1 and IV.2), then (19) becomes a QP for both
the cases of unbounded and bounded uncertainty sets.

Proposition 1.1 (DRCCP formulation with unbounded
support set under L, norm). Consider the optimization
problem in (19) with G in (20), p-Wasserstein distance with
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p =1, and = = R* with metric d(§,€') = ||& — &'||1. Then,
the following QP is equivalent to (19):
i -k 2 30
e 0 e 1@ =k (30)
1 N
st. 7[R} (x)ul < (tre — v ;sl(i))lk,
si(@) > G1(i) + t1, si(@) >0, Vi€ [N],le[M].

Proposition 1.2 (DRCCP formulation with bounded poly-
hedron set under L; norm). Consider the optimization
problem in (19) with G; in (20), p-Wasserstein distance
with p = 1, and compact © = {£ € R¥ | C¢ < d}
with C € R?* and d € RY for some q > 0 and metric
d(&,¢&") = ||& — &'||1. Then, the following QP is equivalent
to (19):
min I(u — k(x))|”
ueld,t;eR,s; (i) ER,BER>0,m,; ERY
(3D

N
1
s.t. Br + i §Sl(i) —te <0,

We provide a proof sketch for these results. When d is
the L; norm, the Lipschitz constant in (23) is defined by
the Lo, norm, since the dual norm of L; is L. Similarly,
the Ly norm in the fourth constraint in Proposition IV.2 is
replaced by the L., norm. This means that we no longer need
to reformulate the objective function, since all constraints
are linear in the decision variables and both optimization
problems are QPs.
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