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Abstract: We study the high-dimensional asymptotic behavior of inferences based
on summary statistics that are widely used in genome-wide association studies
(GWAS) under model misspecification. The high dimensionality is in the sense
that the number of single-nucleotide polymorphisms (SNPs) under consideration
may be much larger than the sample size. The model misspecification is in the
sense that the number of causal SNPs may be much smaller than the total number
of SNPs under consideration. Specifically, we establish two parameters of genetic
interest, namely, the consistency and asymptotic normality of the estimators of
the heritability and genetic covariance. Our theoretical results are supported by

the findings of empirical studies involving simulated and real data.
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1. Introduction

Over the past 15 years, genome-wide association studies (GWAS) have iden-
tified tens of thousands of single-nucleotide polymorphisms (SNPs) associ-
ated with complex human traits and diseases (Buniello et al. (2019)).
In addition to the success in finding risk loci, estimations of heritability
and genetic covariance based on collected GWAS data also provide insights
into the genetic basis of complex traits/diseases (Tenesa and Haley (2013);
van Rheenen et al. (2019)). Heritability is the proportion of phenotypic
variance due to genetic effects, and genetic covariance is the covariance of
genetic effects contributing to two phenotypes. Methods based on the lin-
ear mixed model (LMM) and the restricted maximum likelihood (REML)
algorithm have been developed to estimate these two quantities of signifi-
cant genetic interest (Yang et al. (2010); Lee et al. (2012)). Compared
with traditional family-based approaches for estimating these two quanti-
ties, these methods do not need to collect related samples and can use large
GWAS samples for estimation. Moreover, they do not require the studied
phenotypes to be measured on the same individuals when estimating the
genetic covariance, which makes it possible to study a spectrum of human
complex traits/diseases simultaneously by using different cohorts. With re-

gard to the statistical properties of these estimates, the high-dimensional



asymptotic theory of the REML for heritability estimation has been re-
cently established, even under a misspecified LMM, which provides theo-
retical support for the robustness of the REML estimator (Jiang et al.
(2016)).

However, LMM-based methods require individual-level genotype and
phenotype data, which are usually difficult to obtain, owing to policy and
privacy concerns. Increasingly accessible marginal association statistics
from GWAS and advances in analytical methods that rely only on these
summary statistics have circumvented challenges in data sharing and greatly
accelerated research in complex trait/disease genetics. Owing to its compu-
tational efficiency, the linkage disequilibrium (LD) score regression (LDSC;
Bulik-Sullivan et al.  (2015a,b)) is currently the most popular method
for estimating heritability and genetic covariance using GWAS summary
statistics. Based on this method, bioinformatics servers have been built to
improve the computation and visualization of the heritability and genetic
covariance of a wide range of phenotypes (Zheng et al. (2017)).

In a typical GWAS data set, the total number of SNPs, p (e.g., 105 ~
107), is often much larger than the sample size, n (e.g., 103 ~ 10°), that
is, p > n. In addition, more SNPs can be observed when more subjects

are recruited in GWAS, that is, p increases with n. In other words, GWAS



data analyses are high dimensional. Despite the polygenicity of many phe-
notypes, such as anthropometric characteristics (Berndt et al. (2013)) and
psychiatric disorders (Sullivan, Daly and O’donovan (2012)), the SNPs
that have biological effects on the phenotypes (causal SNPs) are still only a
small portion of all the SNPs. However, heritability and genetic covariance
estimation methods based on summary statistics, such as the LDSC, often
assume that the effects of all SNPs are nonzero, while the true underly-
ing model might be sparse; that is, the assumed model is misspecified in
the LDSC. Although the LDSC has become a routine past of post-GWAS
analyses for estimating the heritability and genetic covariance, the high-
dimensional asymptotic behavior of the LDSC under a model misspecifi-
cation has not yet been rigorously justified. Therefore, there is a pressing
need for a theoretical justification for the LDSC. In this paper, we establish
the consistency and asymptotic normality of the heritability and genetic
covariance estimators of the LDSC in a regime of high-dimensional statis-
tics, as both the sample size n and the dimension of the random effects p
tend to infinity. Our results indicate that the misspecified LDSC estima-
tors converge to the desired true values of the genetic quantities. We also
provide their convergence rates (in probability) and asymptotic variances.

Our theoretical results are fully supported by our empirical studies.



1.1 LDSC estimation under model misspecification

1.1 LDSC estimation under model misspecification

We first explain how to estimate heritability using an LDSC and GWAS
summary statistics (Bulik-Sullivan et al. (2015a)). Based on the LMM,

phenotypes are modeled as
6 = XP+e (L.1)

where ¢ is an n x 1 vector of (quantitative) phenotypes, X is an n x p ran-
dom design matrix of genotypes normalized to mean zero and variance one,
B is a p x 1 vector of random effects following a N[0, (h?/p)I,] distribution,
in which I, denotes the p-dimensional identity matrix, and € is an n x 1
vector of errors that is distributed as N[0, (1 — h?)I,]. Here, X, 3, and ¢
are mutually independent. We further assume that the genotypes of differ-
ent subjects are independent of each other. Before the normalization, the
genotypes are coded as 0, 1, and 2, which are the allelic dosages (number of
minor alleles) of the variants. Denote f; as the known minor allele frequency
(MAF) of SNP j. According to the Hardy Weinberg equilibrium (HWE),
the probabilities of the genotype being 0, 1, and 2 for SNP j are (1 — f;)?,

2f;(1 — f;), and fj?, respectively. Thus, after the normalization, we have

=2fi/7/2f5 (0= f3), (1 =2f5)/3/2f5(1 = f3), and (2 — 2f;)/\/2f;(1 = f;),
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respectively, in X. It follows that E(XX') = pI,,. Hence,

Var(¢) = Var(X /) + Var(e) = %E(XX’) +(1 -, =1, (12

Heritability is defined as the proportion of phenotypic variance attributed
to genetic factors. Based on this definition, the heritability of a phenotype
is the sum of the random effect variances, which is h2.

Owing to the existence of LD, genotypes of different SNPs are corre-
lated, especially for SNPs located nearby (Stephens et al. (2001)). We
denote 7, as the genotypic correlation between SNP j and SNP k, that
is, 7, = E(X;;Xi), which does not depend on i. The pairwise correla-
tions between SNPs are stored in an LD matrix R, that is, for any subject
i, for 1 < i < n, cov(X})) = R, where X is the ith row of X. The
correlations usually decay with an increase in the pairwise distances, and
hence the LD matrix is C-dependent, overall (discussed in detail). The LD
score of an SNP is defined as I; = Y_}_, 7%, where the sum is taken over
all the variants, including SNP j itself (r;; = 1). As a special case, when
SNP j is independent of the other SNPs, we have [; = 1. In practice, the
LD matrix and LD scores can be obtained from a public external reference
panel constituting individual-level genotype data (e.g., the 1000 Genomes
Project Clarke et al. (2017)). Following the arguments in Bulik-Sullivan

et al. (2015a), we replace r?k in the definition of /; with an approximately
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unbiased estimator given by 1% . = 7% — (1 —7%) /(N —2), where N
is the sample size of the reference panel and f“fk denotes the square of the
sample Pearson correlation coefficient.

The design matrix X may be difficult to access, owing to privacy and
security issues. The advantage of the LDSC is that it needs only more ac-
cessible GWAS summary statistics as input. In GWAS summary statistics,
we have z-score for each SNP that reflects the marginal association between
the phenotype and the SNP. Because the marginal heritability explained by
one SNP is usually small, the z-score of SNP j, z;, can be approximated by
zj = Xj¢/\/n, where X; denotes the jth column of X. In an LDSC (Bulik-

Sullivan et al. (2015b)), the heritability can be estimated by solving the

following linear regression:
E(z}) = 1+h(n/p)ly, j=1,...,p, (1.3)

where the intercept is fixed as one.

The model has been generalized to estimate the genetic covariance
between phenotypes (Bulik-Sullivan et al.  (2015a)). Genetic covariance
analysis can provide new insights into the shared genetics of many pheno-
types, with numerous downstream applications (van Rheenen et al. (2019),
Zhang et al. (2021)), and so has become a popular post-GWAS analysis

tool. Let us assume that there are two GWAS for two different phenotypes
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with sample sizes ny and ng, respectively. The two GWAS share the same
set of p SNPs, but are not necessarily performed within the same cohort.
In practice, two different GWAS may share a subset of subjects. Denote
the number of shared subjects as n, (the subscript o refers to “overlap”),

0 < n, < ny Ang = min(ny, ny). The phenotypes are modeled as

»p = XB+e

2 = Yy+0, (1.4)

where ¢ and ¢y are n; X 1 and ny X 1 vectors, respectively, of phenotypes,
X and Y are ny X p and ny X p random design matrices, respectively, of
genotypes normalized to have mean zero and variance one with the same
LD matrix, S and « are two p x 1 vectors of random effects jointly normally

distributed so that E(8) = E(y) = 0 and

5 1
Var = -
p

Y Polp hg]p

h%Ip Pglp

and € and § are ny x 1 and ny x 1 vectors, respectively, of random errors. The
marginal distributions of € and § are N0, (1— h?)I,,] and N[0, (1 — h3)1,,],
respectively. Here, (X,Y), (8,7), and (¢,6) are independent. Without loss
of generality, we assume that the first n, samples in each study are shared.

In addition, € and ¢ are correlated because of the non-genetic correlation
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introduced through the overlapping samples:

Pe 1< :.] < no
COV(EZ‘,(SJ') =

0, otherwise

Similarly to (1.3), to estimate the genetic covariance, p,, one can fit the

following linear regression model:

E(lezzj) = P”o/vn1n2 + pg(\/ nl”?/p)lj> Jj=1...,p, (1-5)

where p = py + po. As a special case, if study 1 and study 2 are the same
study, which means that we have ny = ny = n,, pg = h¥ = h3 = h?, and
pe = 1 — h?%, then model (1.5) reduces to model (1.3).

A basic assumption in the above LMMs is that all SNPs contribute to
the phenotypic variance. In reality, however, only a subset of the SNPs are
causal SNPs. Let S,T,T> C {1,2,...,p} represent the indices of causal
SNPs shared in both traits, those presented only in trait 1, and those pre-
sented only in trait 2, respectively. In other words, S U T}, are the indices
of the causal SNPs for trait &k (where k = 1,2). Note that S, T, and T» are
mutually exclusive subsets. Let g and g be the vectors of random effects
corresponding to the SNPs in S for both phenotypes. Similarly, 57, and v,
are defined as the random effect vectors corresponding to the SNPs in Ty,

for k = 1,2. Let m = |S| (cardinality), m; = |T3|, and my = |T3|. Under
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the true model, the distribution of §; is N[0, h3/(m + my)] for j € SU Ty,
and 3; = 0 for j ¢ SUT;. Similarly, we have v; ~ N0, h3/(m + mz)] when
j € SUT,, and 9; = 0 when j ¢ SUT,. The true LMMs can then be

expressed as

¢ = XsBs+ XpfPr +e

¢2 = YS'}/S + YTQ’}/TZ +9 (16)

[compare with (1.4)], where X4 is a normalized genotype matrix for the
SNPs in set A (where A =S or T}), and Yy is defined similarly (A = S or

T5). The joint distribution for the effects of the SNPs in S is given by

B 0 Ly Y

S N P mim
Pg hy

Vs 0 mIm m+mg =M

Here, hi, h3, and p, are the heritability of phenotype 1, heritability of phe-
notype 2, and genetic covariance between phenotype 1 and 2, respectively,
under the true model. Detailed assumptions about the distributions of the
genotype matrices and the random effects under the true model are given
in the following.

In practice, it is impossible to determine whether an SNP is causal for
a phenotype. Therefore, we have to follow the assumption of the LDSC

that all SNPs are causal in order to estimate the heritability and genetic



1.2 Numerical illustrations

covariance, which actually leads to the misspecified model. The main goal
of this study is to show that the consistency and asymptotic normality
properties of misspecified LDSC estimators are valid when n, p, and m
tend to infinity.

We conclude this section with a couple of numerical illustrations.

1.2 Numerical illustrations

In GWAS, SNPs are high-density bi-allelic genetic markers. Each SNP can
be considered as a binomial random variable with two trials, and the prob-
ability of “success” is the minor allele frequency f;. In each sample, the
SNP genotypes are correlated, which is known as LD. To mimic the LD
matrix of the human genome, the LD matrix we use to simulate genotype
data has a block structure, which is a special case of the C-dependent re-
lationship formally introduced later. In this simulation, because the LD
matrix is known, we directly calculate the LD scores based on the true LD
matrix. Please note that we usually rely on an external reference panel to
estimate LD scores in practice, owing to the unavailability of the true LD
matrix. Later, we discuss the effect of randomness in the estimation of the
LD scores. According to the genome partition software LDetect (Berisa

and Pickrell (2016)), there are ~2,000 independent blocks for ~5,000,000



1.2 Numerical illustrations

SNPs in the human genome of European ancestry. We randomly selected
200 blocks (three blocks were later removed because of their small size), and
scaled down the number of SNPs in each block to make the total number of
SNPs 20,000. In the following illustrative examples, the number of SNPs in
each block ranges from 1 to 502, with a mean of 102. The SNP genotypes
in different blocks are independent. We further assume that the local LD
matrix for each block follows an AR(1) structure, that is, if SNP j and SNP
(7 + d) are in the same block, the genotypic correlation between these two
SNPs is a?. We use the AR(1) correlation structure to mimic the obser-
vation that LD decays with distance in a real genome. The AR(1) model
coefficient a for each block is independently sampled from {0.1,...,0.9}
with equal probability. After generating the LD matrix, we fix it in the
remainder of the experiment. In our simulations, the SNPs in the same
block share the same MAF, which is sampled from the Uniform(0.05,0.5)
distribution. CorBin is a highly efficient R-package for generating high-
dimensional binary/binomial data with a specified correlation structure,
including exchangeable, AR(1), and K-dependent structures (Jiang et al.

(2020)). We use CorBin to generate correlated genotype data for each

individual.
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Heritability. In this illustrative simulation for heritability estimation,
we fix p = 20,000 and the true value of heritability h? = 0.6. Let b; = 1 if
SNP j is causal, the corresponding effect size of which follows N(0, h%/m);
otherwise, b; = 0 and the effect of SNP j is zero. The indicators by,...,b,
are independent Bernoulli random variables such that P(b; = 1) = w €
(0,1). Note that m = 37", b;. We use 7 to represent the ratio of the
sample size to the SNP number (i.e., 7 = n/p). We examine the behavior
of the LDSC heritability estimator for different w and 7 (Figure 1). In the
first scenario, we fix 7 = 0.1 and vary w from 0.005 to 1. In the second
scenario, we fix w = 0.05 and vary 7 from 0.05 to 0.5. To avoid having
no causal SNPs being generated when the expected causal SNP proportion
w is small, we set (w/2)p as a lower bound for m. The genotype data,
SNP effect sizes, and error terms are generated independently. We use an
LDSC in which all SNPs are implicitly assumed to be causal, to estimate
the heritability of the phenotype. The process is repeated 100 times for
each setting of w and 7. As shown in Figure 1, there is almost no bias in
the estimated h?, regardless of the sample size or the underlying true model.
This suggests that the LDSC works well in terms of providing an unbiased

estimator of heritability, even in the case of a model misspecification.
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tau=0.1 omega=0.05

ELS §1.0
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(a) (b)
Figure 1: Heritability Estimation: C-dependent SNPs for p = 20, 000; (a)

7=0.1 (n =2,000), and different w; (b) w = 0.05, and different 7.

Genetic covariance. We also conducted simulations for the genetic
covariance estimation (Figure 2). Here, we set p = 20,000, p, = 0.15,
and p. = 0.1. We assume that study 1 and study 2 are performed on
the same cohort. Thus, ny = ny = n, and X = Y. We define 7 =
n1/p = ny/p. We use the Bernoulli random variables by; and by; to indicate
whether SNP j is a causal SNP for phenotypes 1 and 2, respectively, such
that P(by; = 1) = wy, P(by; = 1) = ws, and P(by;by; = 1) = w. We have

m = Z?:l bijbaj, m +my = Z§:1 bij, and m + my = Z?ﬂ

bej. As an
illustration, we assume the causal SNPs for the two phenotypes are the

same set, that is, w; = ws = w and m; = my = 0. However, the consistency

from this illustrative experiment is also evident when w;, w», and w are
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not equal. Here, we use (w/2)p as a lower bound for m to avoid no causal
SNPs being generated. After independently generating the genotype data,
SNP effect sizes, and error terms, we use the LDSC to estimate the genetic
covariance of the phenotypes. All SNPs are misspecified as causal during
the LDSC estimation. The process is repeated 100 times for each setting
of w and 7. We first fix 7 = 0.1 and vary w from 0.005 to 1. We then
fix w = 0.05 and vary 7 from 0.05 to 0.5. Figure 2 shows that the LDSC
estimator for genetic covariance remains unbiased under the misspecified
models and different scenarios and sample sizes.
tau=0.1 08 omega=0.05

0.6
o

sl

0.0 T

|
o
N

-0.5

genetlc covariance
o o
o o
genetlc covariance

0.0050.05 025 1 -04 005 0.1 025 05
omega tau

(a) (b)

Figure 2: Genetic Covariance Estimation: C-dependent SNPs for p =
20,000; (a) 7 = 0.1 (n = 2,000), w; = wy = 0, and different w; (b)

w; = wy = 0, w = 0.05, and different 7.



2. Asymptotic theory

As noted in the previous section, there are two main quantities of genetic
interest, namely, heritability and genetic covariance. We first study the
asymptotic behavior of the LDSC heritability estimator under a suitable
framework. Later, we extend the framework to study the asymptotic be-
havior of the LDSC genetic covariance estimator. We begin with some

preparation.

2.1 Definition, key lemmas, and corollary

For any two subsets of indexes B, C {1,...,p}, for r = 1,2, the distance

between B; and B, is defined as

d(Bl,Bg) = min ’]1 — ]2‘

J1EB1,j2€B2

Definition 2.1. The columns of X, denoted by X;,..., X, are said to
be C-dependent, where C' is a constant, which may not be known, if for any
subsets of {1,...,p}, J1,...,J;, such that d(J,, Js) > C, for 1 <r # s <t,
[ Xiljens -1 Xjljes, are independent.

A standard example of C-dependency is the moving average process in
time series (e.g., Shumway and Stoffer (2017)), and a special case is that of

independent SNPs, which corresponds to C' = 0; in other words, X;,..., X,



2.2 Heritability

are independent. In practice, even without such a cut-off C', if the corre-
lation decays reasonably fast as the distance between the SNPs increases,
after a certain distance, the correlation may be treated as approximately
zero. Therefore, the C-dependent notion is not unreasonable from a prac-
tical standpoint.We show that as long as C' is O(1), the asymptotic results
do not depend on the actual value of C.

The technical lemmas and their corollaries are given in the Supplemen-

tary Material.

2.2 Heritability

We assume that the locations of the causal SNPs are characterized by a
set of independent Bernoulli random variables, by, ..., b,, such that P(b; =
1) =w e (0,1]. Let S ={1 <j <p:b; =1}, m = |5| (cardinality),
Xs = [Xjljes, and Bs = (f;);jes. Note that there is a nonzero probability
that m = 0, in which case, some of the quantities introduced below involving
m in the denominators are not well defined. However, we can (slightly)
modify the definition of m as m* = m Vv {(w/2)p}, without affecting the
consistency or asymptotic normality we examine here. For example, let (y

denote a random variable involving m, and let (y be the same quantity,
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but with m replaced by m*. Then, we have, for any Borel set B,

P((y € B) = P[(yv € B,m > (w/2)p] + Pl(xy € B,m < (w/2)p]
= Py € B,m > (w/2)p] + P[Cy € B,m < (w/2)p]
= P((v € B) —P[{y € B,m < (w/2)p]
+P[¢n € B,m < (w/2)p]

= P({y € B) +o(1).

It can be shown that P(m* # m) = o(n™X), for any positive integer K.
Therefore, without loss of of generality, we can replace m by m*; however,
for notational simplicity, we still denote it by m. We assume that the
following hold:

(i) X and b = (b;)1<;<, are independent;

(ii) (X,b, ) is independent of €;

(iii) Bs|X,b ~ N[0, (h?/m)I,,], and

(iv) € ~ N0, (1 — h?)1,).

The true underlying model can be expressed as

¢:Xsﬁs+6225ij+€. (2.1)

JjeS
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Let W = (X,b). For any n-dimensional constant A, we have
BeW) = B{eX B |W, 5)[ W}
_ e(kh?),\',\/zE(eXXSﬁs’W)
N TN/2
where ¥ = (1 — h?)I, + (h?/m)XsX§. Tt follows that ¢|W ~ N(0,X).

It can be shown that the heritability estimator of LDSC, 32, can be

expressed as

p 2
LY (8-
W= S (2.2)
J=1"J

where u; = (n/p)l;. Furthermore, we have 27 = ¢'(n"'X;X})¢. Thus, we

have

co ) Uu.

2 = fag- =, (2.3)
where u. = ?:1 uj, u2 = :;.):1 U?, and A = (nu?)—l ?:1 UJX]X;

We establish the consistency of the heritability estimator in the follow-
ing theorem. The proof is given in the Supplementary Material.

Theorem 1. Suppose that Xy, --- , X, are C-dependent, and n/p —
7 € (0,1]. Then, we have h% = h% + op(1).

We now consider the asymptotic normality of the heritability estimator.

First, define

_ 2 . 2 2
Tjvgags = E(X1ji X7, X155)s Tjagagais = B(X1j X1 X175, X145,

172
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_ 2 v2 2 _ 2 v2 v2 v2
T'2,41j2gs = E(X1j1X1j2X1j3)7 T2g1jogsgs = B X1, X1, X155 X

1j1 152 173 1j4)7

p
=1

p

_ 2 2 _ 2 _ NP
vy = ury;, 1<t <p,v?=>37 v}, and (uv). = Y7 upvy.

Theorem 2. Suppose that, in addition to the conditions of Theorem
1, the following limits exist: 7 = lim(u?/p) > 0,A = lim(u./u?),¢ =
lim{ (uv). /u?},

v = lim{(u?)?/nv?} > 0,

T —1\"P TIR
v1 = limp J1.d2.d3,ja=1 Wit WisTg1ga T joga TV jaja T jagn s
2 p J1,92,73,94=1 31 33" J19293" 7374" Jag1>
Y3 p J1.d2.93,4a=1 V31 Wizt j1g2 " Lj1gegsdas
Va p J1d2-g3,ja=1 9103 1d2d3 7 J3jadn)

1 —4 NP Ty )
Y5 = hmp 91.52,93,74=1 ujlu]3r2,]132]3]4’

-1 -1N\7P TR R A
Yo = limp 1,j2,ga=1 Ui Uga T 51522 gs T jagn >

— T —2N\7P TR R
Y7 = limp 1.,j2,js=1 Wi Uja (Tj1jaTjagain + TiagaTisguia T Tisia Tivjada)s

_1; -3\ P Ty L
and vg = limp g gam1 Wi Wjs T2 jyjpjg s @S P —> 0. Then, we have

vah? = h?) -5 N(0,02), (2.4)
as p — 0o, where the asymptotic variance has the following expression:

1 —
o = 3h'r (_w) (Z — 1)
w v

49 [h4 {7173 + 67972 + (473 + 274)T + 75 N (1 —w> O+ 1)2}
w

2
T2
2
+2h2(1 . h2)767' +’Y277'+78 + (1 o h2)2 (ﬂ + )\2):| ) (25)
Tz 7—2
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An inspection of the limits defined in Theorem 2, in terms of the order
of the sum involved in the limit, suggests that they can all be reasonably
expected. The proof of Theorem 2 is given in the Supplementary Material.

A special case is when the SNPs are independent, that is, C' = 0. In
this case, it can be verified that 7 = 72, A = 77!, v = 7, ¢ = 1, and
v =72, if 1 <s < 8and s # 7, and 7 = 372, where 7 is given by Theorem
2. Thus, we have the following result.

Corollary 2. In the case of independent SNPs, (2.4) holds under

n/p — 1 € (0, 1], where

o’ =2

1 2 2

—+h4{1 (1+1) +<2+1) }

T w T T
_h2)2

+2h2%(1 — h?) (1 + %)2 + a 5 (2.6)

T

Note that because w,7 € (0,1], we have 0> = O(1), and hence the con-

/2 Because m and n are of the same order, the

vergence rate of h% is n~
convergence rate can be expressed in terms of either n or m. In fact, be-

cause the asymptotic depends on both w and 7, the asymptotic variance

depends on the (limit) ratio of m/n, which makes sense.
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2.3 Genetic covariance

Let b,j, for 1 < j < p,r = 1,2, be such that

(I) (b1j, b)), for j =1,...,p, are independent;

(II) b,; ~ Bernoulli(w,), for j = 1,2, where wy,ws € (0, 1];

(ITT) w = P(by;by; = 1) > 0.

Note that the definition allows a correlation between b;; and by; for the
same j. Note that w = wiwsy if by;, and by; are independent. Denote
by = (brj)i<j<p, ¥ = 1,2, and b = (b1, by). Then, we have S = {1 < j <
p bbby =1}, and m = |S|, and SUT, = {1 < j < p:b; =1}, and
m, = |SUT,|—|S| = |SUT,|—m. Thus, |SUT,| = m+m,, for r = 1,2. For
any subset of indices J C {1,...,p}, let X; = [X|];es and Y be defined
similarly. Let 8 = (8%, 57, 67, By)'s and v = (v, ¥y Vg, 1y)'- We assume
that the following conditions hold:

(a) (X,Y) and b are independent;

(b) (X,Y,B,,b) is independent of (e, 0);

(c) (B,7)|b ~ N(0,9), where Q is the covariance matrix described in Section
L;

(d) (¢,6) ~ the distribution specified in Section 1.

It is more convenient to define §; = 0, for j ¢ S U T, and v; = 0, for

j ¢ SUT2 Let gj = (51]‘752]‘)/ = (vm—l—mlbljﬂj,\/m—i—mgbgjvj)’, for
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1 < j < p. Then, given b, §;, for 1 < j < p are independent vectors with

& ~ N(0,%,), where

Yo hi pey/ (1 +my/m)(1 +my/m)

pg/ (1 +ma/m)(1 +ma/m) h3
j €8 & = (&;,0) with &; ~ N(0,h3), j € Ti; & = (0,&;)" with
€7 ~ N(0,13), j € To;and & =0, j ¢ SUTIUTs. Let § = (§)i<j<p, the
column vector that combines all ;. Note that for B¢, and g to have the

joint distribution specified in Section 1, it is necessary that the following

holds:

hiho
V(m A my)(m+my)

% = [cov(8;, )] < \/Var(ﬁj)var(%') -

je S, if S+#0. It follows that the following inequality must be satisfied:

I ENCOR o

Therefore, we modify the definition of the covariance matrix of § and

so that, when (2.7) does not hold, the covariance matrix of fs and ~g is
0 (matrix). As a result, the covariance matrix of ¢; is diag(h?, h3), for
1 < j < p, when (2.7) does not hold. It can be seen that (2.7) holds with

probability tending to one, provided that

e <h1h2>2. (2.8)

2
w Pg
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Therefore, asymptotically, (8s,7s) still has the distribution described in
Section 1.

The LDSC estimator of the genetic covariance is defined differently
under independent SNPs than it is under correlated SNPs. We consider
these cases separately.

1. Independent SNPs. In this case, we assume n, = 0 in order to ensure

identifiability. Then, the LDSC estimator of p, is simplified to

1 P
pe = D XY hy = ¢/ Ag, (2.9)
7j=1

ning <

where ¢ = (¢, ¢5)" and A = (2n1n9) ' 37F_, Uy, with

0 X;Y/
U, = . (2.10)
Y;X; 0
The following result is proved in the Supplementary Material.

Theorem 3. Suppose that the SNPs are independent, (2.8) holds with

w > 0, and

D e (0,1], r=1,2. (2.11)
p

Then, we have p, = py + op(1).
The next result relates to the asymptotic distribution of p,. The proof

is given in the Supplementary Material.
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Theorem 4. Under the conditions of Theorem 1, we have /n.(py —

pe) — N(0,02), where n. = ny + n, and

w Tm+1m+1 1 1 1
o = (71+T2){h§h§< + )+p§(—+—+—)}
W19 T1T2 w T T2

11
+ <_ + T—) {n}(1—h3)m + (1 — k)3 +1—hih3}. (2.12)
2

1

2. C-dependent SNPs. In this case, the genetic covariance, p,, is esti-

mated by fitting the following linear regression in the LDSC:
Zj = ﬁﬂ—i_ﬁl'u’j—i_ej’ jzl,...7]), (213)

where z; = 21295, u; = (y/mnz/p)l;, and fy = p,. The LDSC estimators,
which are also the least squares (LS) estimators of the regression coefficients,

are given by
p — —
. 1 (u; —u)(z — 2)
Pg = Bl B !

Z?:l (u; — w)?
Po =z — b, (2.15)

= ¢/ A9, (2.14)

where A = (2y/minady) ™ 320 (u; — @)y, dp = 378 (u; —@)?, U is given
by (2.10), w = p~' > P _ uy, and z = p~' > 7_, 2. Because our main in-
terest lies in estimating p,, we focus on Bl = pg. Theorem 5 states the
consistency of the estimator.

Theorem 5. Suppose that the SNPs are C-dependent, w > 0, (2.8),

and (2.11) hold, and d,/,/p — oo. Then, we have p, = By = pg + op(1).
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Note that, under (2.11), d,/\/p — o0 iff 330, (I; = 1)?/\/p — oo, where

l; is the LD score and [ = p~' Y27, [,

. The proof of Theorem 5 is given in
the Supplementary Material.
Next, we consider the asymptotic distribution of p,. The result is rel-

atively simpler in terms of the asymptotic variance under the assumption

that
n, = o(ni Ana). (2.16)

Thus, we consider this special case first. Define the following quantities:

py = cov (b, byj) = w—wiwy, o = dp/p, Y1 = p7! §7k:1(uj_a>(uk_a>7}2‘ka
Yo = 20 (uy — W) (wp — Wrjeristisg, Yss = p 20 s (wy — @) (uy —

W)rjkTrsy; Y1(s,t) = B(h3 ), and (s, t) = B(hyshasy), where hy,, and
ho st are the (s,t) elements of H; = X'XDY'Y and Hy, = Y'YDX'X,
respectively, and D = diag(u; —u,1 < j <p).

Theorem 6. Suppose that the SNPs are C-dependent, w > 0, and
(2.8), (2.11), and (2.16) hold. Further suppose that the following identities

hold for all 7, k, and s:
E(X1; X1, X1:) = E(V; YY), B(XTX5,XT,) = E(VSYRYY).

Furthermore, suppose that the following limits exist as p — oco: ¢g =
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lim %Uo > 07 ¢1 = lim ¢17 ¢7" = hm(n/pz) 13021 wr,& r= 27 37 and

2
P P
T DRSS

4
p t=1 s=1

p

p
A = lim —+ Grls, 1), gty = lim ——— 3 "4, (s, 5),
1

4 4
nin2p= == ninop

s=1

r = 1,2. Then, we have \/n.(p; — pg) —45 N(0,0?), where 0% = 02 + o2

1 0
U%:pz (;—1) (¢—%—71—T2>, (217)

- {h%h% ()\1 — M1+ —_— ) +h3(1 = h3) (11 + B3) (2.18)

with

2

o
2 2

(/50 Wiz

+(1 — h)h3(Taps + ¢3) + (1 — hT)(1 — h3) (11 + 72) 1

+P§ (/\2—M2+%)}-

When b;; and by; are uncorrelated, that is, w = wiws, the above asymp-
totic variance, o2, depends on w!, but not on w; and w,. A similar obser-
vation is made for (2.12). The proof of Theorem 6 is given in the Supple-
mentary Material.

Finally, we extend Theorem 6 to not require (2.16). First, define the

following additional quantities: ,.(i,t) = E(h?

.t

),7 = 3,4, where hg;;
and hg;, are the (i,t) elements of H3 = XDY'Y and Hy = YDX'X,
respectively, and ¢5(i,t) = E(hg;tha;e). Furthermore, define ¢g(iy,i2) =

B(h2

5,11,%2

), where hs;, ;, is the (i1, i2) element of Hy = X DY’. We now have



the extension of Theorem 6.
Theorem 7. Suppose that the conditions of Theorem 6 without (2.16)

hold. In addition, suppose that the following limits exist:

Nr—2 p

n.
)\r:hm Q/}T Z’t , 7’:3747
no P
n.
A o = lim E E ¢ i,t ,
! n1n2p3 =1 t=1 5( )
ni  na o
n. n.
Ao = i) A = S dlin, ).
6 n1n9p? 22%(21,22)7 6, a2 1/16(@1 @2)
i1=142=1 i1,d0=1

Then, the conclusion of Theorem 6 holds with ¢ replaced by the following:

1
0'5 = — |:h%h§ ()\1—M1+ le)—O—p; ()\2—,&24—&)

Q% Wi wa

+(1 — hD)h3A3 + hi(1 — h3) A4 + 2pePgXs.0

h2 — h2)2
HL= - At { oot

The proof of Theorem 7 is given in the Supplementary Material.

3. Simulation studies

We carried out comprehensive simulations to numerically validate our the-
oretical results. In these experiments, we evaluated the consistency of the
summary-statistics-based heritability and genetic covariance estimators un-
der a model misspecification. We also compared the empirical distributions

of these estimators with the asymptotic distributions derived from our the-
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ory. Unless explicitly stated, the heritability and genetic covariance esti-

mators refer to those described in the previous sections.

3.1 Heritability

Figure 1.2 shows that the heritability estimator is nearly unbiased, even
under a model misspecification. Following the same settings introduced in
Section 1.2, we computed the observed standard deviation of the heritabil-
ity estimator during 100 runs for each combination of the underlying model
parameters (i.e., 7 and w). Then, we computed the corresponding theoret-
ical standard errors of the estimators under different model settings using
the formula derived in Theorem 2. All the limits presented in Theorem 2
are computed based on their corresponding observed values. For example,
7y is replaced by u?/p. As shown in Table 3.1, the values of the standard
errors derived from our theory are very close to the observed standard er-
rors under different combinations of 7 and w. Further evaluation results for
the consistency and asymptotic normality of the heritability estimator are
included in the Supplementary Material. The consistency and asymptotic

normality of the heritability estimators under different settings look good.
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7=0.1 w = 0.05
w observed theoretical 7  observed theoretical
0.005 0.41 0.39 0.05 0.37 0.36
0.05 0.17 0.20 0.1 0.17 0.20
0.25 0.17 0.18 0.25 0.13 0.13
1 0.18 0.17 0.5 0.10 0.11

Table 1: Observed and Theoretical Standard Errors of the Heritability Es-

timator

3.2 Genetic covariance

In the numerical examples presented in Section 1.2, we demonstrated the
approximate unbiasedness of the genetic covariance estimator when the two
studies share the same set of subjects. However, in practice, there are often
few, if any, subjects shared between two GWAS, especially when they come
from different cohorts. Here, we set n,/n = 0.1, where n = ny = ny. All
other settings are the same as those described in Section 1.2. We calcu-
lated the observed standard deviation of the genetic covariance estimator
based on 100 simulation runs under each parameter setting. We then com-
puted the theoretical standard errors derived from Theorem 7. Similarly,
the limits presented in the theorem are determined by their corresponding
observed values. The comparisons of the observed and theoretical standard
errors are compared in Table 3.2. The theoretical standard errors are close

to the observed standard deviation, confirming our results for Theorems 6
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and 7. We further investigated the consistency and asymptotic normality
of the genetic covariance estimator. The empirical results are presented in
the Supplementary Material. The consistency and asymptotic normality of
the genetic covariance estimator look good under all settings. We also con-
ducted additional simulations to investigate the relationship between the
efficiency loss of the LDSC and model sparsity; the results are provided in
the Supplementary Material. We found that the sparser the true model is,
the greater is the efficiency loss. This makes intuitive sense, because the

LD score regression is developed based on a polygenetic assumption.

7=0.1,n,/n=0.1 w = 0.05, n,/n =0.1

w observed theoretical 7  observed theoretical
0.005 0.28 0.26 0.05 0.29 0.24
0.05 0.17 0.17 0.1 0.17 0.17
0.25 0.17 0.15 0.25 0.14 0.12
1 0.17 0.15 0.5 0.11 0.11

Table 2: Observed and Theoretical Standard Errors of Genetic Covariance

Estimator

Next, we provide a real-data example that applies the LDSC to estimate
the heritability and genetic covariance among four lipid traits: high-density
lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,
total cholesterol (TC), and triglyceride (TG). In the example, we compare

the results from the LDSC with the REML estimates; see the Supplemen-



tary Material.

4. Discussion

The LDSC has become a popular method for estimating heritability and ge-
netic correlation, owing to its efficiency and simplicity. We have examined
the consistency and asymptotic normality of the LDSC under a misspeci-
fied model. Although the LDSC is based on a random-effects model, several
methods have been proposed that estimate heritability and genetic corre-
lation based on a fixed-effects model (Shi et al. (2017), Shi, Kichaev and
Pasaniuc (2016), Wang and Li (2021), Guo et al. (2019)). It has been
shown that under the assumption of a random-effects model, the estimator
of the fixed-effects model converges to the estimator of the LDSC, almost
surely (Wang and Li (2021)). When the assumption does not hold, nei-
ther model holds an advantage. One benefit of the random-effects model
is that it incorporates implicit and automatic regularization of the regres-
sion coefficients, unlike in the case of a sparse fixed-effects model. The
latter requires a careful choice of the penalty/thresholding parameters in
orders to be effective. In addition, the random-effects model provides a sys-
tematic mechanism for carrying out statistical inference. In essence, this

is achieved using the asymptotic distribution of the estimated heritability



and genetic correlation. Furthermore, methods based on the random-effects
model are, in general, more computationally efficient. The fixed-effects
model involves calculating the inverse of the LD matrix, which needs the
additional assumption that the LD matrix is block-diagonal. On the other
hand, methods based on the fixed-effects model require fewer assumptions
on the genetic effects. Therefore, some researchers believe it is more robust
across a wide range of genetic architectures, such as sparse causal SNPs
(Wang and Li (2021)). However, we have proved that the LDSC can also
provide a consistent estimator under a model misspecification.

The LDAK model (Speed and Balding (2019)) assumes that the vari-
ances of the SNP effects of the standardized SNPs are proportional to a
set of known parameters qi,qo,...,q,, where p is the number of SNPs.
This model can be viewed as a generalization of the LDSC. Indeed, when
¢ = q¢2 = ... = ¢y, the LDAK model reduces to the LDSC. In practice, the
value of ¢; for SNP ¢ is a function of the MAF of SNP 4, f;. Our results
can be extended to the LDAK model. Under the model of the LDSC, we
have E (27) =1+ h*(n/p)l;, where j = 1,2,...,p. Instead, in the LDAK,
the regression problem changes to E (22) = 14+nh? (3], szqu) />R
where rj; is the correlation between SNP j and SNP k. Under an ap-

propriate assumption for g1, g, . . ., gy, the term (3°7_; r?qu) p/Y h_ qk s



interchangeable with [;. However, for simplicity and to conserve space, we
leave this extension to future work.

There are certain limitations in our theoretical assumptions. First,
in practice, because the true LD matrix is unknown, we have to use an
external reference panel to estimate the LD score. If the external data
source used to estimate the LD scores is of higher order than n, which is
the sample size of the GWAS, neither the consistency nor the asymptotic
normality are affected. If the external sample size is of the same order as n,
the consistency is not affected, but the asymptotic distribution will change.
Second, we assume that the constant C' in the C-dependent assumption is of
O(1). Actually, it is possible to allow C' to increase, slowly, with n, so that
the asymptotic results do not change. However, if the order of C' exceeds
a certain threshold, the asymptotic distribution, and even the consistency

result, may change.

Supplementary Material

The online Supplementary Material contains our proofs and additional em-

pirical results.
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