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Abstract: We study the high-dimensional asymptotic behavior of inferences based

on summary statistics that are widely used in genome-wide association studies

(GWAS) under model misspecification. The high dimensionality is in the sense

that the number of single-nucleotide polymorphisms (SNPs) under consideration

may be much larger than the sample size. The model misspecification is in the

sense that the number of causal SNPs may be much smaller than the total number

of SNPs under consideration. Specifically, we establish two parameters of genetic

interest, namely, the consistency and asymptotic normality of the estimators of

the heritability and genetic covariance. Our theoretical results are supported by

the findings of empirical studies involving simulated and real data.
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1. Introduction

Over the past 15 years, genome-wide association studies (GWAS) have iden-

tified tens of thousands of single-nucleotide polymorphisms (SNPs) associ-

ated with complex human traits and diseases (Buniello et al. (2019)).

In addition to the success in finding risk loci, estimations of heritability

and genetic covariance based on collected GWAS data also provide insights

into the genetic basis of complex traits/diseases (Tenesa and Haley (2013);

van Rheenen et al. (2019)). Heritability is the proportion of phenotypic

variance due to genetic effects, and genetic covariance is the covariance of

genetic effects contributing to two phenotypes. Methods based on the lin-

ear mixed model (LMM) and the restricted maximum likelihood (REML)

algorithm have been developed to estimate these two quantities of signifi-

cant genetic interest (Yang et al. (2010); Lee et al. (2012)). Compared

with traditional family-based approaches for estimating these two quanti-

ties, these methods do not need to collect related samples and can use large

GWAS samples for estimation. Moreover, they do not require the studied

phenotypes to be measured on the same individuals when estimating the

genetic covariance, which makes it possible to study a spectrum of human

complex traits/diseases simultaneously by using different cohorts. With re-

gard to the statistical properties of these estimates, the high-dimensional
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asymptotic theory of the REML for heritability estimation has been re-

cently established, even under a misspecified LMM, which provides theo-

retical support for the robustness of the REML estimator (Jiang et al.

(2016)).

However, LMM-based methods require individual-level genotype and

phenotype data, which are usually difficult to obtain, owing to policy and

privacy concerns. Increasingly accessible marginal association statistics

from GWAS and advances in analytical methods that rely only on these

summary statistics have circumvented challenges in data sharing and greatly

accelerated research in complex trait/disease genetics. Owing to its compu-

tational efficiency, the linkage disequilibrium (LD) score regression (LDSC;

Bulik-Sullivan et al. (2015a,b)) is currently the most popular method

for estimating heritability and genetic covariance using GWAS summary

statistics. Based on this method, bioinformatics servers have been built to

improve the computation and visualization of the heritability and genetic

covariance of a wide range of phenotypes (Zheng et al. (2017)).

In a typical GWAS data set, the total number of SNPs, p (e.g., 106 ∼

107), is often much larger than the sample size, n (e.g., 103 ∼ 106), that

is, p � n. In addition, more SNPs can be observed when more subjects

are recruited in GWAS, that is, p increases with n. In other words, GWAS
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data analyses are high dimensional. Despite the polygenicity of many phe-

notypes, such as anthropometric characteristics (Berndt et al. (2013)) and

psychiatric disorders (Sullivan, Daly and O’donovan (2012)), the SNPs

that have biological effects on the phenotypes (causal SNPs) are still only a

small portion of all the SNPs. However, heritability and genetic covariance

estimation methods based on summary statistics, such as the LDSC, often

assume that the effects of all SNPs are nonzero, while the true underly-

ing model might be sparse; that is, the assumed model is misspecified in

the LDSC. Although the LDSC has become a routine past of post-GWAS

analyses for estimating the heritability and genetic covariance, the high-

dimensional asymptotic behavior of the LDSC under a model misspecifi-

cation has not yet been rigorously justified. Therefore, there is a pressing

need for a theoretical justification for the LDSC. In this paper, we establish

the consistency and asymptotic normality of the heritability and genetic

covariance estimators of the LDSC in a regime of high-dimensional statis-

tics, as both the sample size n and the dimension of the random effects p

tend to infinity. Our results indicate that the misspecified LDSC estima-

tors converge to the desired true values of the genetic quantities. We also

provide their convergence rates (in probability) and asymptotic variances.

Our theoretical results are fully supported by our empirical studies.
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1.1 LDSC estimation under model misspecification

1.1 LDSC estimation under model misspecification

We first explain how to estimate heritability using an LDSC and GWAS

summary statistics (Bulik-Sullivan et al. (2015a)). Based on the LMM,

phenotypes are modeled as

φ = Xβ + ε, (1.1)

where φ is an n× 1 vector of (quantitative) phenotypes, X is an n× p ran-

dom design matrix of genotypes normalized to mean zero and variance one,

β is a p× 1 vector of random effects following a N [0, (h2/p)Ip] distribution,

in which Ip denotes the p-dimensional identity matrix, and ε is an n × 1

vector of errors that is distributed as N [0, (1 − h2)In]. Here, X, β, and ε

are mutually independent. We further assume that the genotypes of differ-

ent subjects are independent of each other. Before the normalization, the

genotypes are coded as 0, 1, and 2, which are the allelic dosages (number of

minor alleles) of the variants. Denote fj as the known minor allele frequency

(MAF) of SNP j. According to the Hardy Weinberg equilibrium (HWE),

the probabilities of the genotype being 0, 1, and 2 for SNP j are (1− fj)2,

2fj(1 − fj), and f 2
j , respectively. Thus, after the normalization, we have

−2fj/
√

2fj(1− fj), (1 − 2fj)/
√

2fj(1− fj), and (2 − 2fj)/
√

2fj(1− fj),
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1.1 LDSC estimation under model misspecification

respectively, in X. It follows that E(XX ′) = pIn. Hence,

Var(φ) = Var(Xβ) + Var(ε) =
h2

p
E(XX ′) + (1− h2)In = In. (1.2)

Heritability is defined as the proportion of phenotypic variance attributed

to genetic factors. Based on this definition, the heritability of a phenotype

is the sum of the random effect variances, which is h2.

Owing to the existence of LD, genotypes of different SNPs are corre-

lated, especially for SNPs located nearby (Stephens et al. (2001)). We

denote rjk as the genotypic correlation between SNP j and SNP k, that

is, rjk = E(XijXik), which does not depend on i. The pairwise correla-

tions between SNPs are stored in an LD matrix R, that is, for any subject

i, for 1 ≤ i ≤ n, cov(X[i]) = R, where X[i] is the ith row of X. The

correlations usually decay with an increase in the pairwise distances, and

hence the LD matrix is C-dependent, overall (discussed in detail). The LD

score of an SNP is defined as lj =
∑p

k=1 r
2
jk, where the sum is taken over

all the variants, including SNP j itself (rjj = 1). As a special case, when

SNP j is independent of the other SNPs, we have lj = 1. In practice, the

LD matrix and LD scores can be obtained from a public external reference

panel constituting individual-level genotype data (e.g., the 1000 Genomes

Project Clarke et al. (2017)). Following the arguments in Bulik-Sullivan

et al. (2015a), we replace r2
jk in the definition of lj with an approximately
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1.1 LDSC estimation under model misspecification

unbiased estimator given by r2
jk,adj = r̂2

jk −
(
1− r̂2

jk

)
/ (N − 2), where N

is the sample size of the reference panel and r̂2
jk denotes the square of the

sample Pearson correlation coefficient.

The design matrix X may be difficult to access, owing to privacy and

security issues. The advantage of the LDSC is that it needs only more ac-

cessible GWAS summary statistics as input. In GWAS summary statistics,

we have z-score for each SNP that reflects the marginal association between

the phenotype and the SNP. Because the marginal heritability explained by

one SNP is usually small, the z-score of SNP j, zj, can be approximated by

zj = X ′jφ/
√
n, where Xj denotes the jth column of X. In an LDSC (Bulik-

Sullivan et al. (2015b)), the heritability can be estimated by solving the

following linear regression:

E(z2
j ) = 1 + h2(n/p)lj, j = 1, . . . , p, (1.3)

where the intercept is fixed as one.

The model has been generalized to estimate the genetic covariance

between phenotypes (Bulik-Sullivan et al. (2015a)). Genetic covariance

analysis can provide new insights into the shared genetics of many pheno-

types, with numerous downstream applications (van Rheenen et al. (2019),

Zhang et al. (2021)), and so has become a popular post-GWAS analysis

tool. Let us assume that there are two GWAS for two different phenotypes
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1.1 LDSC estimation under model misspecification

with sample sizes n1 and n2, respectively. The two GWAS share the same

set of p SNPs, but are not necessarily performed within the same cohort.

In practice, two different GWAS may share a subset of subjects. Denote

the number of shared subjects as no (the subscript o refers to “overlap”),

0 ≤ no ≤ n1 ∧ n2 ≡ min(n1, n2). The phenotypes are modeled as

φ1 = Xβ + ε

φ2 = Y γ + δ, (1.4)

where φ1 and φ2 are n1× 1 and n2× 1 vectors, respectively, of phenotypes,

X and Y are n1 × p and n2 × p random design matrices, respectively, of

genotypes normalized to have mean zero and variance one with the same

LD matrix, β and γ are two p×1 vectors of random effects jointly normally

distributed so that E(β) = E(γ) = 0 and

Var

 β

γ

 =
1

p

 h2
1Ip ρgIp

ρgIp h2
2Ip

 ,

and ε and δ are n1×1 and n2×1 vectors, respectively, of random errors. The

marginal distributions of ε and δ are N [0, (1−h2
1)In1 ] and N [0, (1−h2

2)In2 ],

respectively. Here, (X, Y ), (β, γ), and (ε, δ) are independent. Without loss

of generality, we assume that the first no samples in each study are shared.

In addition, ε and δ are correlated because of the non-genetic correlation
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1.1 LDSC estimation under model misspecification

introduced through the overlapping samples:

cov(εi, δj) =


ρe, 1 ≤ i = j ≤ no

0, otherwise

.

Similarly to (1.3), to estimate the genetic covariance, ρg, one can fit the

following linear regression model:

E(z1jz2j) = ρno/
√
n1n2 + ρg(

√
n1n2/p)lj, j = 1, . . . , p, (1.5)

where ρ = ρg + ρe. As a special case, if study 1 and study 2 are the same

study, which means that we have n1 = n2 = no, ρg = h2
1 = h2

2 = h2, and

ρe = 1− h2, then model (1.5) reduces to model (1.3).

A basic assumption in the above LMMs is that all SNPs contribute to

the phenotypic variance. In reality, however, only a subset of the SNPs are

causal SNPs. Let S, T1, T2 ⊂ {1, 2, . . . , p} represent the indices of causal

SNPs shared in both traits, those presented only in trait 1, and those pre-

sented only in trait 2, respectively. In other words, S ∪ Tk are the indices

of the causal SNPs for trait k (where k = 1, 2). Note that S, T1, and T2 are

mutually exclusive subsets. Let βS and γS be the vectors of random effects

corresponding to the SNPs in S for both phenotypes. Similarly, βTk and γTk

are defined as the random effect vectors corresponding to the SNPs in Tk,

for k = 1, 2. Let m = |S| (cardinality), m1 = |T1|, and m2 = |T2|. Under
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1.1 LDSC estimation under model misspecification

the true model, the distribution of βj is N [0, h2
1/(m + m1)] for j ∈ S ∪ T1,

and βj = 0 for j /∈ S ∪T1. Similarly, we have γj ∼ N [0, h2
2/(m+m2)] when

j ∈ S ∪ T2, and γj = 0 when j /∈ S ∪ T2. The true LMMs can then be

expressed as

φ1 = XSβS +XT1βT1 + ε

φ2 = YSγS + YT2γT2 + δ (1.6)

[compare with (1.4)], where XA is a normalized genotype matrix for the

SNPs in set A (where A = S or T1), and YA is defined similarly (A = S or

T2). The joint distribution for the effects of the SNPs in S is given by βS

γS

 ∼ N


 0

0

 ,

 h21
m+m1

Im
ρg
m
Im

ρg
m
Im

h22
m+m2

Im


 .

Here, h2
1, h2

2, and ρg are the heritability of phenotype 1, heritability of phe-

notype 2, and genetic covariance between phenotype 1 and 2, respectively,

under the true model. Detailed assumptions about the distributions of the

genotype matrices and the random effects under the true model are given

in the following.

In practice, it is impossible to determine whether an SNP is causal for

a phenotype. Therefore, we have to follow the assumption of the LDSC

that all SNPs are causal in order to estimate the heritability and genetic
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1.2 Numerical illustrations

covariance, which actually leads to the misspecified model. The main goal

of this study is to show that the consistency and asymptotic normality

properties of misspecified LDSC estimators are valid when n, p, and m

tend to infinity.

We conclude this section with a couple of numerical illustrations.

1.2 Numerical illustrations

In GWAS, SNPs are high-density bi-allelic genetic markers. Each SNP can

be considered as a binomial random variable with two trials, and the prob-

ability of “success” is the minor allele frequency fj. In each sample, the

SNP genotypes are correlated, which is known as LD. To mimic the LD

matrix of the human genome, the LD matrix we use to simulate genotype

data has a block structure, which is a special case of the C-dependent re-

lationship formally introduced later. In this simulation, because the LD

matrix is known, we directly calculate the LD scores based on the true LD

matrix. Please note that we usually rely on an external reference panel to

estimate LD scores in practice, owing to the unavailability of the true LD

matrix. Later, we discuss the effect of randomness in the estimation of the

LD scores. According to the genome partition software LDetect (Berisa

and Pickrell (2016)), there are ∼2,000 independent blocks for ∼5,000,000
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1.2 Numerical illustrations

SNPs in the human genome of European ancestry. We randomly selected

200 blocks (three blocks were later removed because of their small size), and

scaled down the number of SNPs in each block to make the total number of

SNPs 20,000. In the following illustrative examples, the number of SNPs in

each block ranges from 1 to 502, with a mean of 102. The SNP genotypes

in different blocks are independent. We further assume that the local LD

matrix for each block follows an AR(1) structure, that is, if SNP j and SNP

(j + d) are in the same block, the genotypic correlation between these two

SNPs is αd. We use the AR(1) correlation structure to mimic the obser-

vation that LD decays with distance in a real genome. The AR(1) model

coefficient α for each block is independently sampled from {0.1, . . . , 0.9}

with equal probability. After generating the LD matrix, we fix it in the

remainder of the experiment. In our simulations, the SNPs in the same

block share the same MAF, which is sampled from the Uniform(0.05, 0.5)

distribution. CorBin is a highly efficient R-package for generating high-

dimensional binary/binomial data with a specified correlation structure,

including exchangeable, AR(1), and K-dependent structures (Jiang et al.

(2020)). We use CorBin to generate correlated genotype data for each

individual.
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1.2 Numerical illustrations

Heritability. In this illustrative simulation for heritability estimation,

we fix p = 20, 000 and the true value of heritability h2 = 0.6. Let bj = 1 if

SNP j is causal, the corresponding effect size of which follows N(0, h2/m);

otherwise, bj = 0 and the effect of SNP j is zero. The indicators b1, . . . , bp

are independent Bernoulli random variables such that P(bj = 1) = ω ∈

(0, 1). Note that m =
∑p

j=1 bj. We use τ to represent the ratio of the

sample size to the SNP number (i.e., τ = n/p). We examine the behavior

of the LDSC heritability estimator for different ω and τ (Figure 1). In the

first scenario, we fix τ = 0.1 and vary ω from 0.005 to 1. In the second

scenario, we fix ω = 0.05 and vary τ from 0.05 to 0.5. To avoid having

no causal SNPs being generated when the expected causal SNP proportion

ω is small, we set (ω/2)p as a lower bound for m. The genotype data,

SNP effect sizes, and error terms are generated independently. We use an

LDSC in which all SNPs are implicitly assumed to be causal, to estimate

the heritability of the phenotype. The process is repeated 100 times for

each setting of ω and τ . As shown in Figure 1, there is almost no bias in

the estimated h2, regardless of the sample size or the underlying true model.

This suggests that the LDSC works well in terms of providing an unbiased

estimator of heritability, even in the case of a model misspecification.
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1.2 Numerical illustrations

Figure 1: Heritability Estimation: C-dependent SNPs for p = 20, 000; (a)

τ = 0.1 (n = 2, 000), and different ω; (b) ω = 0.05, and different τ .

Genetic covariance. We also conducted simulations for the genetic

covariance estimation (Figure 2). Here, we set p = 20, 000, ρg = 0.15,

and ρe = 0.1. We assume that study 1 and study 2 are performed on

the same cohort. Thus, n1 = n2 = no and X = Y . We define τ =

n1/p = n2/p. We use the Bernoulli random variables b1j and b2j to indicate

whether SNP j is a causal SNP for phenotypes 1 and 2, respectively, such

that P(b1j = 1) = ω1, P(b2j = 1) = ω2, and P(b1jb2j = 1) = ω. We have

m =
∑p

j=1 b1jb2j, m + m1 =
∑p

j=1 b1j, and m + m2 =
∑p

j=1 b2j. As an

illustration, we assume the causal SNPs for the two phenotypes are the

same set, that is, ω1 = ω2 = ω and m1 = m2 = 0. However, the consistency

from this illustrative experiment is also evident when ω1, ω2, and ω are
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1.2 Numerical illustrations

not equal. Here, we use (ω/2)p as a lower bound for m to avoid no causal

SNPs being generated. After independently generating the genotype data,

SNP effect sizes, and error terms, we use the LDSC to estimate the genetic

covariance of the phenotypes. All SNPs are misspecified as causal during

the LDSC estimation. The process is repeated 100 times for each setting

of ω and τ . We first fix τ = 0.1 and vary ω from 0.005 to 1. We then

fix ω = 0.05 and vary τ from 0.05 to 0.5. Figure 2 shows that the LDSC

estimator for genetic covariance remains unbiased under the misspecified

models and different scenarios and sample sizes.

Figure 2: Genetic Covariance Estimation: C-dependent SNPs for p =

20, 000; (a) τ = 0.1 (n = 2, 000), ω1 = ω2 = 0, and different ω; (b)

ω1 = ω2 = 0, ω = 0.05, and different τ .
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2. Asymptotic theory

As noted in the previous section, there are two main quantities of genetic

interest, namely, heritability and genetic covariance. We first study the

asymptotic behavior of the LDSC heritability estimator under a suitable

framework. Later, we extend the framework to study the asymptotic be-

havior of the LDSC genetic covariance estimator. We begin with some

preparation.

2.1 Definition, key lemmas, and corollary

For any two subsets of indexes Br ⊂ {1, . . . , p}, for r = 1, 2, the distance

between B1 and B2 is defined as

d(B1,B2) = min
j1∈B1,j2∈B2

|j1 − j2|.

Definition 2.1. The columns of X, denoted by X1, . . . , Xp, are said to

be C-dependent, where C is a constant, which may not be known, if for any

subsets of {1, . . . , p}, J1, . . . , Jt, such that d(Jr, Js) > C, for 1 ≤ r 6= s ≤ t,

[Xj]j∈J1 , . . . ,[Xj]j∈Jt are independent.

A standard example of C-dependency is the moving average process in

time series (e.g., Shumway and Stoffer (2017)), and a special case is that of

independent SNPs, which corresponds to C = 0; in other words, X1, . . . , Xp
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2.2 Heritability

are independent. In practice, even without such a cut-off C, if the corre-

lation decays reasonably fast as the distance between the SNPs increases,

after a certain distance, the correlation may be treated as approximately

zero. Therefore, the C-dependent notion is not unreasonable from a prac-

tical standpoint.We show that as long as C is O(1), the asymptotic results

do not depend on the actual value of C.

The technical lemmas and their corollaries are given in the Supplemen-

tary Material.

2.2 Heritability

We assume that the locations of the causal SNPs are characterized by a

set of independent Bernoulli random variables, b1, . . . , bp, such that P(bj =

1) = ω ∈ (0, 1]. Let S = {1 ≤ j ≤ p : bj = 1}, m = |S| (cardinality),

XS = [Xj]j∈S, and βS = (βj)j∈S. Note that there is a nonzero probability

thatm = 0, in which case, some of the quantities introduced below involving

m in the denominators are not well defined. However, we can (slightly)

modify the definition of m as m∗ = m ∨ {(ω/2)p}, without affecting the

consistency or asymptotic normality we examine here. For example, let ζN

denote a random variable involving m, and let ζ̃N be the same quantity,
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2.2 Heritability

but with m replaced by m∗. Then, we have, for any Borel set B,

P(ζN ∈ B) = P[ζN ∈ B,m ≥ (ω/2)p] + P[ζN ∈ B,m < (ω/2)p]

= P[ζ̃N ∈ B,m ≥ (ω/2)p] + P[ζN ∈ B,m < (ω/2)p]

= P(ζ̃N ∈ B)− P[ζ̃N ∈ B,m < (ω/2)p]

+P[ζN ∈ B,m < (ω/2)p]

= P(ζ̃N ∈ B) + o(1).

It can be shown that P(m∗ 6= m) = o(n−K), for any positive integer K.

Therefore, without loss of of generality, we can replace m by m∗; however,

for notational simplicity, we still denote it by m. We assume that the

following hold:

(i) X and b = (bj)1≤j≤p are independent;

(ii) (X, b, β) is independent of ε;

(iii) βS|X, b ∼ N [0, (h2/m)Im], and

(iv) ε ∼ N [0, (1− h2)In].

The true underlying model can be expressed as

φ = XSβS + ε =
∑
j∈S

βjXj + ε. (2.1)
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2.2 Heritability

Let W = (X, b). For any n-dimensional constant λ, we have

E(eλ
′φ|W ) = E{eλ′XSβSE(eλ

′ε|W,β)|W}

= e(1−h2)λ′λ/2E(eλ
′XSβS |W )

= eλ
′Σλ/2,

where Σ = (1− h2)In + (h2/m)XSX
′
S. It follows that φ|W ∼ N(0,Σ).

It can be shown that the heritability estimator of LDSC, ĥ2, can be

expressed as

ĥ2 =

∑p
j=1 uj(z

2
j − 1)∑p

j=1 u
2
j

, (2.2)

where uj = (n/p)lj. Furthermore, we have z2
j = φ′(n−1XjX

′
j)φ. Thus, we

have

ĥ2 = φ′Aφ− u·
u2
·
, (2.3)

where u· =
∑p

j=1 uj, u
2
· =

∑p
j=1 u

2
j , and A = (nu2

· )
−1
∑p

j=1 ujXjX
′
j.

We establish the consistency of the heritability estimator in the follow-

ing theorem. The proof is given in the Supplementary Material.

Theorem 1. Suppose that X1, · · · , Xp are C-dependent, and n/p −→

τ ∈ (0, 1]. Then, we have ĥ2 = h2 + oP(1).

We now consider the asymptotic normality of the heritability estimator.

First, define

rj1j2j3 = E(X1j1X
2
1j2
X1j3), r1,j1j2j3j4 = E(X1j1X1j2X

2
1j3
X2

1j4
),
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2.2 Heritability

r2,j1j2j3 = E(X2
1j1
X2

1j2
X2

1j3
), r2,j1j2j3j4 = E(X2

1j1
X2

1j2
X2

1j3
X2

1j4
),

vt =
∑p

j=1 ujr
2
tj, 1 ≤ t ≤ p, v2

· =
∑p

t=1 v
2
t , and (uv)· =

∑p
t=1 utvt.

Theorem 2. Suppose that, in addition to the conditions of Theorem

1, the following limits exist: τ2 = lim(u2
· /p) > 0, λ = lim(u·/u

2
· ), φ =

lim{(uv)·/u
2
· },

γ = lim{(u2
· )

2/nv2
· } > 0,

γ1 = lim p−1
∑p

j1,j2,j3,j4=1 uj1uj3rj1j2rj2j3rj3j4rj4j1 ,

γ2 = lim p−2
∑p

j1,j2,j3,j4=1 uj1uj3rj1j2j3rj3j4rj4j1 ,

γ3 = lim p−3
∑p

j1,j2,j3,j4=1 uj1uj3rj1j2r1,j1j2j3j4 ,

γ4 = lim p−3
∑p

j1,j2,j3,j4=1 uj1uj3rj1j2j3rj3j4j1 ,

γ5 = lim p−4
∑p

j1,j2,j3,j4=1 uj1uj3r2,j1j2j3j4 ,

γ6 = lim p−1
∑p

j1,j2,j3=1 uj1uj2rj1j2rj2j3rj3j1 ,

γ7 = lim p−2
∑p

j1,j2,j3=1 uj1uj2(rj1j2rj2j3j1 + rj2j3rj3j1j2 + rj3j1rj1j2j3),

and γ8 = lim p−3
∑p

j1,j2,j3=1 uj1uj3r2,j1j2j3 , as p→∞. Then, we have

√
n(ĥ2 − h2)

d−→ N(0, σ2), (2.4)

as p→∞, where the asymptotic variance has the following expression:

σ2 = 3h4τ

(
1− ω
ω

)(
τ

γ
− 1

)
+2

[
h4

{
γ1τ

3 + 6γ2τ
2 + (4γ3 + 2γ4)τ + γ5

τ 2
2

+

(
1− ω
ω

)
τ(λ+ 1)2

}
+2h2(1− h2)

γ6τ
2 + γ7τ + γ8

τ 2
2

+ (1− h2)2

(
φτ

τ2

+ λ2

)]
. (2.5)
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2.2 Heritability

An inspection of the limits defined in Theorem 2, in terms of the order

of the sum involved in the limit, suggests that they can all be reasonably

expected. The proof of Theorem 2 is given in the Supplementary Material.

A special case is when the SNPs are independent, that is, C = 0. In

this case, it can be verified that τ2 = τ 2, λ = τ−1, γ = τ , φ = 1, and

γs = τ 2, if 1 ≤ s ≤ 8 and s 6= 7, and γ7 = 3τ 2, where τ is given by Theorem

2. Thus, we have the following result.

Corollary 2. In the case of independent SNPs, (2.4) holds under

n/p −→ τ ∈ (0, 1], where

σ2 ≡ 2

[
1

τ
+ h4

{
τ

ω

(
1 +

1

τ

)2

+

(
2 +

1

τ

)2
}

+2h2(1− h2)

(
1 +

1

τ

)2

+
(1− h2)2

τ 2

]
. (2.6)

Note that because ω, τ ∈ (0, 1], we have σ2 = O(1), and hence the con-

vergence rate of ĥ2 is n−1/2. Because m and n are of the same order, the

convergence rate can be expressed in terms of either n or m. In fact, be-

cause the asymptotic depends on both ω and τ , the asymptotic variance

depends on the (limit) ratio of m/n, which makes sense.
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2.3 Genetic covariance

2.3 Genetic covariance

Let brj, for 1 ≤ j ≤ p, r = 1, 2, be such that

(I) (b1j, b2j), for j = 1, . . . , p, are independent;

(II) brj ∼ Bernoulli(ωr), for j = 1, 2, where ω1, ω2 ∈ (0, 1];

(III) ω = P(b1jb2j = 1) > 0.

Note that the definition allows a correlation between b1j and b2j for the

same j. Note that ω = ω1ω2 if b1j, and b2j are independent. Denote

br = (brj)1≤j≤p, r = 1, 2, and b = (b1, b2). Then, we have S = {1 ≤ j ≤

p : b1jb2j = 1}, and m = |S|, and S ∪ Tr = {1 ≤ j ≤ p : brj = 1}, and

mr = |S∪Tr|−|S| = |S∪Tr|−m. Thus, |S∪Tr| = m+mr, for r = 1, 2. For

any subset of indices J ⊂ {1, . . . , p}, let XJ = [Xj]j∈J and YJ be defined

similarly. Let β = (β′S, β
′
T1
, β′T2 , β

′
U)′, and γ = (γ′S, γ

′
T1
, γ′T2 , γ

′
U)′. We assume

that the following conditions hold:

(a) (X, Y ) and b are independent;

(b) (X, Y, β, γ, b) is independent of (ε, δ);

(c) (β, γ)|b ∼ N(0,Ω), where Ω is the covariance matrix described in Section

1;

(d) (ε, δ) ∼ the distribution specified in Section 1.

It is more convenient to define βj = 0, for j /∈ S ∪ T1, and γj = 0, for

j /∈ S ∪ T2. Let ξj = (ξ1j, ξ2j)
′ = (

√
m+m1b1jβj,

√
m+m2b2jγj)

′, for
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2.3 Genetic covariance

1 ≤ j ≤ p. Then, given b, ξj, for 1 ≤ j ≤ p are independent vectors with

ξj ∼ N(0,Σb), where

Σb =

 h2
1 ρg

√
(1 +m1/m)(1 +m2/m)

ρg

√
(1 +m1/m)(1 +m2/m) h2

2

 ,
j ∈ S; ξj = (ξ1j, 0)′ with ξ1j ∼ N(0, h2

1), j ∈ T1; ξj = (0, ξ2j)
′ with

ξ2j ∼ N(0, h2
2), j ∈ T2; and ξj = 0, j /∈ S ∪ T1 ∪ T2. Let ξb = (ξj)1≤j≤p, the

column vector that combines all ξj. Note that for βS, and γS to have the

joint distribution specified in Section 1, it is necessary that the following

holds:

ρg

m
= |cov(βj, γj)| ≤

√
var(βj)var(γj) =

h1h2√
(m+m1)(m+m2)

,

j ∈ S, if S 6= ∅. It follows that the following inequality must be satisfied:

(
1 +

m1

m

)(
1 +

m2

m

)
≤

(
h1h2

ρg

)2

. (2.7)

Therefore, we modify the definition of the covariance matrix of β and γ

so that, when (2.7) does not hold, the covariance matrix of βS and γS is

0 (matrix). As a result, the covariance matrix of ξj is diag(h2
1, h

2
2), for

1 ≤ j ≤ p, when (2.7) does not hold. It can be seen that (2.7) holds with

probability tending to one, provided that

ω1ω2

ω2
<

(
h1h2

ρg

)2

. (2.8)
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2.3 Genetic covariance

Therefore, asymptotically, (βS, γS) still has the distribution described in

Section 1.

The LDSC estimator of the genetic covariance is defined differently

under independent SNPs than it is under correlated SNPs. We consider

these cases separately.

1. Independent SNPs. In this case, we assume no = 0 in order to ensure

identifiability. Then, the LDSC estimator of ρg is simplified to

ρ̂g =
1

n1n2

p∑
j=1

φ′1XjY
′
jφ2 = φ′Aφ, (2.9)

where φ = (φ′1, φ
′
2)′ and A = (2n1n2)−1

∑p
j=1 Ψj, with

Ψj =

 0 XjY
′
j

YjX
′
j 0

 . (2.10)

The following result is proved in the Supplementary Material.

Theorem 3. Suppose that the SNPs are independent, (2.8) holds with

ω > 0, and

nr
p
→ τr ∈ (0, 1], r = 1, 2. (2.11)

Then, we have ρ̂g = ρg + oP(1).

The next result relates to the asymptotic distribution of ρ̂g. The proof

is given in the Supplementary Material.
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2.3 Genetic covariance

Theorem 4. Under the conditions of Theorem 1, we have
√
n·(ρ̂g −

ρg)
d−→ N(0, σ2), where n· = n1 + n2 and

σ2 = (τ1 + τ2)

{
h2

1h
2
2

(
ω

ω1ω2

+
τ1 + τ2 + 1

τ1τ2

)
+ ρ2

g

(
1

ω
+

1

τ1

+
1

τ2

)}
+

(
1

τ1

+
1

τ2

){
h2

1(1− h2
2)τ1 + (1− h2

1)h2
2τ2 + 1− h2

1h
2
2

}
. (2.12)

2. C-dependent SNPs. In this case, the genetic covariance, ρg, is esti-

mated by fitting the following linear regression in the LDSC:

zj = β0 + β1uj + ej, j = 1, . . . , p, (2.13)

where zj = z1jz2j, uj = (
√
n1n2/p)lj, and β1 = ρg. The LDSC estimators,

which are also the least squares (LS) estimators of the regression coefficients,

are given by

ρ̂g = β̂1 =

∑p
j=1(uj − ū)(zj − z̄)∑p

j=1(uj − ū)2
= φ′Aφ, (2.14)

β̂0 = z̄ − β̂1ū, (2.15)

where A = (2
√
n1n2dp)

−1
∑p

j=1(uj − ū)Ψj, dp =
∑p

j=1(uj − ū)2, Ψj is given

by (2.10), ū = p−1
∑p

k=1 uk, and z̄ = p−1
∑p

k=1 zk. Because our main in-

terest lies in estimating ρg, we focus on β̂1 = ρ̂g. Theorem 5 states the

consistency of the estimator.

Theorem 5. Suppose that the SNPs are C-dependent, ω > 0, (2.8),

and (2.11) hold, and dp/
√
p→∞. Then, we have ρ̂g = β̂1 = ρg + oP(1).
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2.3 Genetic covariance

Note that, under (2.11), dp/
√
p→∞ iff

∑p
j=1(lj − l̄)2/

√
p→∞, where

lj is the LD score and l̄ = p−1
∑p

j=1 lj. The proof of Theorem 5 is given in

the Supplementary Material.

Next, we consider the asymptotic distribution of ρ̂g. The result is rel-

atively simpler in terms of the asymptotic variance under the assumption

that

no = o(n1 ∧ n2). (2.16)

Thus, we consider this special case first. Define the following quantities:

ρb = cov(b1j, b2j) = ω−ω1ω2, ψ0 = dp/p, ψ1 = p−1
∑p

j,k=1(uj−ū)(uk−ū)r2
jk,

ψ2,s =
∑p

j,k=1(uj − ū)(uk − ū)rjkrksrsj, ψ3,s = p−1
∑p

j,k=1(uj − ū)(uk −

ū)rjkrksj; ψ1(s, t) = E(h2
1,s,t), and ψ2(s, t) = E(h1,s,th2,s,t), where h1,s,t and

h2,s,t are the (s, t) elements of H1 = X ′XDY ′Y and H2 = Y ′Y DX ′X,

respectively, and D = diag(uj − ū, 1 ≤ j ≤ p).

Theorem 6. Suppose that the SNPs are C-dependent, ω > 0, and

(2.8), (2.11), and (2.16) hold. Further suppose that the following identities

hold for all j, k, and s:

E(X1jX
2
1kX1s) = E(Y1jY

2
1kY1s), E(X2

1jX
2
1kX

2
1s) = E(Y 2

1jY
2

1kY
2

1s).

Furthermore, suppose that the following limits exist as p → ∞: φ0 =
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2.3 Genetic covariance

limψ0 > 0, φ1 = limψ1, φr = lim(n·/p
2)
∑p

s=1 ψr,s, r = 2, 3, and

ϑ1 = lim
n·n1n2

p4

p∑
t=1

{
p∑
s=1

(us − ū)r2
st

}2

,

λr = lim
n·

n1n2p4

p∑
s,t=1

ψr(s, t), µr = lim
n·

n1n2p4

p∑
s=1

ψr(s, s),

r = 1, 2. Then, we have
√
n·(ρ̂g − ρg)

d−→ N(0, σ2), where σ2 = σ2
1 + σ2

2

with

σ2
1 = ρ2

g

(
1

ω
− 1

)(
ϑ1

φ2
0

− τ1 − τ2

)
, (2.17)

σ2
2 =

1

φ2
0

{
h2

1h
2
2

(
λ1 − µ1 +

ωµ1

ω1ω2

)
+ h2

1(1− h2
2)(τ1φ2 + φ3) (2.18)

+(1− h2
1)h2

2(τ2φ2 + φ3) + (1− h2
1)(1− h2

2)(τ1 + τ2)φ1

+ρ2
g

(
λ2 − µ2 +

µ2

ω

)}
.

When b1j and b2j are uncorrelated, that is, ω = ω1ω2, the above asymp-

totic variance, σ2, depends on ω−1, but not on ω1 and ω2. A similar obser-

vation is made for (2.12). The proof of Theorem 6 is given in the Supple-

mentary Material.

Finally, we extend Theorem 6 to not require (2.16). First, define the

following additional quantities: ψr(i, t) = E(h2
r,i,t), r = 3, 4, where h3,i,t

and h4,i,t are the (i, t) elements of H3 = XDY ′Y and H4 = Y DX ′X,

respectively, and ψ5(i, t) = E(h3,i,th4,i,t). Furthermore, define ψ6(i1, i2) =

E(h2
5,i1,i2

), where h5,i1,i2 is the (i1, i2) element of H5 = XDY ′. We now have
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the extension of Theorem 6.

Theorem 7. Suppose that the conditions of Theorem 6 without (2.16)

hold. In addition, suppose that the following limits exist:

λr = lim
n·

n1n2p3

nr−2∑
i=1

p∑
t=1

ψr(i, t), r = 3, 4,

λ5,o = lim
n·

n1n2p3

no∑
i=1

p∑
t=1

ψ5(i, t),

λ6 =
n·

n1n2p2

n1∑
i1=1

n2∑
i2=1

ψ6(i1, i2), λ6,o =
n·

n1n2p2

no∑
i1,i2=1

ψ6(i1, i2).

Then, the conclusion of Theorem 6 holds with σ2
2 replaced by the following:

σ2
2 =

1

φ2
0

[
h2

1h
2
2

(
λ1 − µ1 +

ωµ1

ω1ω2

)
+ ρ2

g

(
λ2 − µ2 +

µ2

ω2

)
+(1− h2

1)h2
2λ3 + h2

1(1− h2
2)λ4 + 2ρeρgλ5,o

+(1− h2
1)(1− h2

2)λ6 +

{
ρe +

(h2
1 − h2

2)2

2

}
λ6,o

]
.

The proof of Theorem 7 is given in the Supplementary Material.

3. Simulation studies

We carried out comprehensive simulations to numerically validate our the-

oretical results. In these experiments, we evaluated the consistency of the

summary-statistics-based heritability and genetic covariance estimators un-

der a model misspecification. We also compared the empirical distributions

of these estimators with the asymptotic distributions derived from our the-
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3.1 Heritability

ory. Unless explicitly stated, the heritability and genetic covariance esti-

mators refer to those described in the previous sections.

3.1 Heritability

Figure 1.2 shows that the heritability estimator is nearly unbiased, even

under a model misspecification. Following the same settings introduced in

Section 1.2, we computed the observed standard deviation of the heritabil-

ity estimator during 100 runs for each combination of the underlying model

parameters (i.e., τ and ω). Then, we computed the corresponding theoret-

ical standard errors of the estimators under different model settings using

the formula derived in Theorem 2. All the limits presented in Theorem 2

are computed based on their corresponding observed values. For example,

τ2 is replaced by u2
· /p. As shown in Table 3.1, the values of the standard

errors derived from our theory are very close to the observed standard er-

rors under different combinations of τ and ω. Further evaluation results for

the consistency and asymptotic normality of the heritability estimator are

included in the Supplementary Material. The consistency and asymptotic

normality of the heritability estimators under different settings look good.
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3.2 Genetic covariance

τ = 0.1 ω = 0.05
ω observed theoretical τ observed theoretical

0.005 0.41 0.39 0.05 0.37 0.36
0.05 0.17 0.20 0.1 0.17 0.20
0.25 0.17 0.18 0.25 0.13 0.13

1 0.18 0.17 0.5 0.10 0.11

Table 1: Observed and Theoretical Standard Errors of the Heritability Es-

timator

3.2 Genetic covariance

In the numerical examples presented in Section 1.2, we demonstrated the

approximate unbiasedness of the genetic covariance estimator when the two

studies share the same set of subjects. However, in practice, there are often

few, if any, subjects shared between two GWAS, especially when they come

from different cohorts. Here, we set no/n = 0.1, where n = n1 = n2. All

other settings are the same as those described in Section 1.2. We calcu-

lated the observed standard deviation of the genetic covariance estimator

based on 100 simulation runs under each parameter setting. We then com-

puted the theoretical standard errors derived from Theorem 7. Similarly,

the limits presented in the theorem are determined by their corresponding

observed values. The comparisons of the observed and theoretical standard

errors are compared in Table 3.2. The theoretical standard errors are close

to the observed standard deviation, confirming our results for Theorems 6
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3.2 Genetic covariance

and 7. We further investigated the consistency and asymptotic normality

of the genetic covariance estimator. The empirical results are presented in

the Supplementary Material. The consistency and asymptotic normality of

the genetic covariance estimator look good under all settings. We also con-

ducted additional simulations to investigate the relationship between the

efficiency loss of the LDSC and model sparsity; the results are provided in

the Supplementary Material. We found that the sparser the true model is,

the greater is the efficiency loss. This makes intuitive sense, because the

LD score regression is developed based on a polygenetic assumption.

τ = 0.1, no/n = 0.1 ω = 0.05, no/n = 0.1
ω observed theoretical τ observed theoretical

0.005 0.28 0.26 0.05 0.29 0.24
0.05 0.17 0.17 0.1 0.17 0.17
0.25 0.17 0.15 0.25 0.14 0.12

1 0.17 0.15 0.5 0.11 0.11

Table 2: Observed and Theoretical Standard Errors of Genetic Covariance

Estimator

Next, we provide a real-data example that applies the LDSC to estimate

the heritability and genetic covariance among four lipid traits: high-density

lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,

total cholesterol (TC), and triglyceride (TG). In the example, we compare

the results from the LDSC with the REML estimates; see the Supplemen-
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tary Material.

4. Discussion

The LDSC has become a popular method for estimating heritability and ge-

netic correlation, owing to its efficiency and simplicity. We have examined

the consistency and asymptotic normality of the LDSC under a misspeci-

fied model. Although the LDSC is based on a random-effects model, several

methods have been proposed that estimate heritability and genetic corre-

lation based on a fixed-effects model (Shi et al. (2017), Shi, Kichaev and

Pasaniuc (2016), Wang and Li (2021), Guo et al. (2019)). It has been

shown that under the assumption of a random-effects model, the estimator

of the fixed-effects model converges to the estimator of the LDSC, almost

surely (Wang and Li (2021)). When the assumption does not hold, nei-

ther model holds an advantage. One benefit of the random-effects model

is that it incorporates implicit and automatic regularization of the regres-

sion coefficients, unlike in the case of a sparse fixed-effects model. The

latter requires a careful choice of the penalty/thresholding parameters in

orders to be effective. In addition, the random-effects model provides a sys-

tematic mechanism for carrying out statistical inference. In essence, this

is achieved using the asymptotic distribution of the estimated heritability
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and genetic correlation. Furthermore, methods based on the random-effects

model are, in general, more computationally efficient. The fixed-effects

model involves calculating the inverse of the LD matrix, which needs the

additional assumption that the LD matrix is block-diagonal. On the other

hand, methods based on the fixed-effects model require fewer assumptions

on the genetic effects. Therefore, some researchers believe it is more robust

across a wide range of genetic architectures, such as sparse causal SNPs

(Wang and Li (2021)). However, we have proved that the LDSC can also

provide a consistent estimator under a model misspecification.

The LDAK model (Speed and Balding (2019)) assumes that the vari-

ances of the SNP effects of the standardized SNPs are proportional to a

set of known parameters q1, q2, . . . , qp, where p is the number of SNPs.

This model can be viewed as a generalization of the LDSC. Indeed, when

q1 = q2 = . . . = qp, the LDAK model reduces to the LDSC. In practice, the

value of qi for SNP i is a function of the MAF of SNP i, fi. Our results

can be extended to the LDAK model. Under the model of the LDSC, we

have E
(
z2
j

)
= 1 + h2 (n/p) lj, where j = 1, 2, . . . , p. Instead, in the LDAK,

the regression problem changes to E
(
z2
j

)
= 1+nh2

(∑p
k=1 r

2
jkqk

)
/
∑p

k=1 qk,

where rjk is the correlation between SNP j and SNP k. Under an ap-

propriate assumption for q1, q2, . . . , qp, the term
(∑p

k=1 r
2
jkqk

)
p/
∑p

k=1 qk is
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interchangeable with lj. However, for simplicity and to conserve space, we

leave this extension to future work.

There are certain limitations in our theoretical assumptions. First,

in practice, because the true LD matrix is unknown, we have to use an

external reference panel to estimate the LD score. If the external data

source used to estimate the LD scores is of higher order than n, which is

the sample size of the GWAS, neither the consistency nor the asymptotic

normality are affected. If the external sample size is of the same order as n,

the consistency is not affected, but the asymptotic distribution will change.

Second, we assume that the constant C in the C-dependent assumption is of

O(1). Actually, it is possible to allow C to increase, slowly, with n, so that

the asymptotic results do not change. However, if the order of C exceeds

a certain threshold, the asymptotic distribution, and even the consistency

result, may change.

Supplementary Material

The online Supplementary Material contains our proofs and additional em-

pirical results.
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