2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

ACTIONSREMAKER: Reproducing GITHUB ACTIONS

Hao-Nan Zhu, Kevin Z. Guan, Robert M. Furth and Cindy Rubio-Gonzailez
University of California, Davis
United States of America
{hnzhu, zeyguan, rmfurth, crubio}@ucdavis.edu

Abstract—Mining Continuous Integration and Continuous
Delivery (CI/CD) has enabled new research opportunities for
the software engineering (SE) research community. However,
it remains a challenge to reproduce CI/CD build processes,
which is crucial for several areas of research within SE such
as fault localization and repair. In this paper, we present
ACTIONSREMAKER, a reproducer for GITHUB ACTIONS builds.
We describe the challenges on reproducing GITHUB ACTIONS
builds and the design of ACTIONSREMAKER. Evaluation of
ACTIONSREMAKER demonstrates its ability to reproduce fail-
pass pairs: of 180 pairs from 67 repositories, 130 (72.2%) from
43 repositories are reproducible. We also discuss reasons for
unreproducibility. ACTIONSREMAKER is publicly available at
https://github.com/bugswarm/actions-remaker, and a demo of the
tool can be found at https://youtu.be/flblISqoxeAk.

Index Terms—CI/CD, GitHub Actions, software mining, soft-
ware build, software reproducibility

I. INTRODUCTION

Continuous Integration (CI) and Continuous Delivery (CD)
play important roles in modern software development. They
allow developers to configure and deploy a process to be au-
tomatically triggered by designated events (e.g., git push).
In most cases, the CI/CD process will involve setting up
the environment, building the code, and/or running tests.
There are various popular CI/CD service providers, including
TRAVIS-CI [6], GITHUB ACTIONS [2], and JENKINS [3].

The wide use of CI/CD has opened opportunities for the
software engineering (SE) research community. Specifically,
it has given researchers access to the build and testing pro-
cesses of software projects at a large scale. Several research
areas within SE, such as fault localization and automated
program repair, are evaluated on large sets of successful and
failed CI/CD builds. Furthermore, previous work has leveraged
CI/CD to mine large scale code repositories and build software
defect datasets [12, 15], to predict build outcomes [9, 10], or
to automatically repair build scripts [11, 14].

To realize the full value of CI/CD from a research perspec-
tive, it is essential to be able to reproduce the build processes
at scale whenever needed. Successful reproduction means the
ability to run exactly the same steps in exactly the same en-
vironments and obtaining exactly the same outcomes as when
the process was first completed (e.g., the code was pushed to
GITHUB). Unfortunately, the process of reproducing builds is
hampered by many challenges such as the unavailability of
software dependencies [14, 15]. Previous work [15] proposed
a methodology to mine and reproduce builds of GITHUB
projects that use TRAVIS-CI by using TRAVIS-CI DOCKER

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00015

images to recreate the exact build environments and TRAVIS-
BUILD [5] to automatically create build scripts. While having
reproduced thousands of builds, the success rate was extremely
low. Most recently, reproducing TRAVIS-CI builds has become
even more challenging: following a change in business model,
TRAVIS-CI historical logs for a majority of projects are no
longer available, and DOCKER images capturing environments
are no longer publicly accessible.

As mentioned earlier, other CI/CD services have gained
popularity in the past few years. Among the existing CI/CD
service providers, GITHUB ACTIONS [2] is one of the most
popular due to its deep integration with GITHUB, which is
the most popular software project hosting provider with more
than 350 million code repositories [1]. GITHUB ACTIONS uses
workflow runs to refer to build processes. However, to repro-
duce workflow runs for GITHUB ACTIONS, there are several
challenges. First, GITHUB ACTIONS by default uses Azure
VMs to host workflow runs so it is not easy to reconstruct the
exact runtime environment while ensuring portability. Second,
unlike TRAVIS-CI, GITHUB ACTIONS does not provide an
official converter from workflow files to build scripts, thus
a parsing process is required to run a workflow “offline.” To
address these challenges, it requires (1) proper containerization
techniques to reconstruct the runtime environment of a build,
and (2) a sophisticated parser to convert the non-executable
workflow file to executable build scripts.

In this paper, we demonstrate ACTIONSREMAKER, a re-
producer for GITHUB ACTIONS workflows. Given a desired
workflow job to reproduce, ACTIONSREMAKER will first
reconstruct the original runtime environment by building
DOCKER containers with the information retrieved from the
original workflow job. Then GITHUBBUILDER translates the
workflow file into a build script. Finally, ACTIONSREMAKER
packages the software repository and build script along with
the required environment into a DOCKER image. To the best of
our knowledge, ACTIONSREMAKER is the first tool designed
to reproduce existing GITHUB ACTIONS workflow runs.

We evaluate ACTIONSREMAKER by examining its capa-
bility to reproduce fail-pass build pairs. Fail-pass pairs are
consecutive builds where the first fails and the second passes,
and have been used to construct software defect datasets
such as BUGSWARM [15]. BUGSWARM is a software defect
dataset mined from TRAVIS-CI builds, of which workflows are
defined as .yml files that can be translated to shell scripts
by the official converter provided by TRAVIS-CI. We reuse
the pipeline from BUGSWARM to mine fail-pass pairs from

O Input

GitHub Actions Job

D

Environment
Reconstruction

Fig. 1.

GITHUB projects. Among 180 fail-pass pairs mined from
67 projects, ACTIONSREMAKER successfully reproduced 130
(72.2%) of them, which is dramatically higher than the re-
producibility reported by BUGSWARM (5.56%) when repro-
ducing TRAVIS-CI builds. We also study and categorize the
root causes of unreproducible pairs. The rest of the paper
presents background on GITHUB ACTIONS, the approach of
ACTIONSREMAKER, and its evaluation.

II. BACKGROUND: GITHUB ACTIONS

GITHUB ACTIONS is a CI/CD service provided by
GITHUB. All configurations and steps are defined in .yml
formatted files in the .github/workflows directory of
the repository, which are referred as workflow files. Each
of workflows will contain events, jobs, steps, and runners
configured by developers. Events are specific activities that
trigger a workflow run, such as a push to a branch or a pull
request. In a workflow run, there could be multiple jobs for
different environments. Each job consists of a set of steps to
be executed. Steps are the smallest portable unit in GITHUB
ACTIONS. They can be either predefined actions or custom
actions from GITHUB or developers. Runners are the virtual
machines where jobs are executed. Developers can use matrix
parameters to define a set of environments by combinations
of different operating systems, programming languages, and
compiler versions for runners. A workflow run triggered by an
event executes all jobs defined in the workflow file. Finally,
each job executes all steps defined in the job in a runner. The
whole process is referred as a build.

III. APPROACH

In this section, we describe ACTIONSREMAKER’s approach
to reproduce GITHUB ACTIONS builds. As shown in Figure 1,
ACTIONSREMAKER takes as input the desired GITHUB AC-
TIONS job, and outputs a DOCKER image in which the job can
be easily reproduced. ACTIONSREMAKER first reconstructs
the environment based on information retrieved from the origi-
nal job. Then, GITHUBBUILDER generates a build script based
on the workflow file. Finally, with the original environment,
ACTIONSREMAKER packages the build script and software
repository into a DOCKER image. We discuss limitations of
ACTIONSREMAKER at the end of the section.

Build Script
Generation

Docker Images

Image Packaging

Steps of ACTIONSREMAKER

A. Environment Reconstruction

Given the job ID, ACTIONSREMAKER can retrieve the envi-
ronmental information via the GITHUB API to reconstruct the
original runtime environment. The reconstructed environment
includes the operating system, software repository, predefined
actions, and the original logs of the job.

For GITHUB ACTIONS, operating systems are specified
in the workflow file with the runs-on option. Based on
this value, ACTIONSREMAKER will determine the original
operating system to construct with. However, if the users
specify ubuntu-latest as the operating system version,
ACTIONSREMAKER will parse the original log to get the
correct operating system version because ubuntu-latest
could vary based on the time when the original job was
triggered. Next, ACTIONSREMAKER downloads the software
repository with the exact revision that corresponds to the job.
The GITHUB ACTIONS official runner requires developers to
use the actions/checkout action at runtime to set up
the repository. For ACTIONSREMAKER, it retrieves the project
source code by cloning the project and runs git reset to
reset the project back to the target commit. Sometimes the
target commit is not in the git history thus it is not resettable.
In such cases ACTIONSREMAKER downloads the zip archive
of the commit directly from GITHUB. ACTIONSREMAKER
also retrieves the source code for all predefined actions based
on the action name and version listed in the job’s workflow
file. Moreover, since the goal of ACTIONSREMAKER is to re-
produce existing workflow runs, it also downloads the original
build logs from GITHUB API for future validation.

B. Build Script Generation

GITHUBBUILDER, a core component of ACTIONSRE-
MAKER, automatically generates shell scripts from the work-
flow file for running a GITHUB ACTIONS job. GITHUB-
BUILDER retrieves additional workflow metadata like actor
(the user that triggered the workflow run) and head ref
(the source branch of the pull request) via the GITHUB API.
It also retrieves runtime information like global environment
variables, default shell, and working directory from the work-
flow file. If a job was triggered by a pull request (PR), the
PR number is crucial for job reproduction since oftentimes
the job will require information such as the title and head
repository name of the PR. However, the PR number is not
accessible from the API. To address this, ACTIONSREMAKER

parses the original build log to extract the PR number, then
uses the GITHUB API to fetch all PR-related information.

GITHUB ACTIONS workflow files contain a list of steps
for a job. A step could be either a custom action (specified
using the “run” field) or a predefined action (specified using
the “uses” field). Regardless of action type, GITHUBBUILDER
will extract metadata such as the step name, step number, the
conditions to run the step, etc. For custom actions, GITHUB-
BUILDER will save the user-defined commands into a script
file, then add a shell command that executes this script into a
main build script. For predefined actions, GITHUBBUILDER
supports JavaScript and composite actions. To reproduce those,
GITHUBBUILDER first downloads the source code of the
predefined action and its metadata file based on the version
listed in the workflow file. Then, to reproduce JavaScript
predefined actions, it will use Node.js to run the main program
specified in the action metadata file. Just like GITHUB AcC-
TIONS, GITHUBBUILDER also passes arguments to JavaScript
programs using a list of environment variable. For example, the
actions/setup-java action requires users to specify the
java-version option. So if we have java-version:
17, it will set the INPUT_JAVA-VERSION variable to 17.
A composite action is similar to the workflow file; it contains
a list of custom and predefined action steps, which can be
grouped. To implement the composite action, ACTIONSRE-
MAKER recursively generate the build scripts for this list of
steps, similar to how it generates build commands from the
steps list in the workflow file.

When generating build scripts, GITHUBBUILDER needs
to handle contexts and expressions used in workflow files.
Contexts are the collection of variables containing informa-
tion about the workflow run, steps, environment variables,
runner, etc., and expressions are the combinations of literal
values, contexts, operators, and functions. For example, the
startsWith (searchString, searchValue) func-
tion will return true if the searchString starts with search-
Value. They are generally used in the conditional statements to
control step execution. GITHUBBUILDER will replace static
contexts (constant variables such as github.repository)
with strings and replace dynamic contexts (non-constant vari-
ables such as steps.<step_id>.outcome) with environ-
ment variables. GITHUBBUILDER then converts expressions
into lists of arguments to evaluate them at runtime.

C. Image Packaging

The final step is to build the DOCKER image. In this
step, ACTIONSREMAKER generates a DOCKER file to specify
a list of instructions for the image-building process. Some
instructions include: adding a new user with proper permis-
sion, changing file permissions, adding the source code of
the repository and pre-defined actions, and adding the build
scripts. We also set the base image of the DOCKER file based
on the job’s operating system. Currently, ACTIONSREMAKER
supports base images ubuntu-18.04, ubuntu-20.04,
and ubuntu-22.04.

D. Limitations of ACTIONSREMAKER

ACTIONSREMAKER does not support certain types of ac-
tions: (1) actions that invoke DOCKER are not supported since
the runtime environment is constructed within a DOCKER con-
tainer and running DOCKER in DOCKER will lead to security
risks, (2) actions that require secret context are not supported
since secrets are private and not accessible to the public, (3)
actions/checkout actions with specified submodules is
not supported only when the job is not resettable, since the
downloaded zip archive does not contain the .git directory.

IV. EVALUATION

In this section, we evaluate ACTIONSREMAKER by measur-
ing its capability to reproduce fail-pass pairs from open-source
projects, i.e., we include real-world failures. We answer the
following research questions:

RQ1 How effective is ACTIONSREMAKER at reproducing
real-world builds?
RQ2 What are the root causes of unreproducible builds?

A. Experimental Setup

We reuse BUGSWARM’s pipeline for mining fail-pass pairs,
which we extended to support GITHUB ACTIONS. In the case
of GITHUB ACTIONS, fail-pass pairs are two consecutive job
runs where (1) the first job comes from a failed build and the
second comes from a passed build, (2) the two jobs are gen-
erated by the same GITHUB ACTIONS workflow file and have
identical configurations and matrix parameters, and (3) the
commits corresponding to each job are from the same branch.
To verify reproducibility, we slightly modify BUGSWARM'’s
log analyzer to make it compatible with GITHUB ACTIONS
log formats, so it can analyze and compare the reproduced log
against the original log.

B. RQI: Effectiveness at Reproducing Real-World Builds

We use two sets of real-world fail-pass pairs to create our
benchmark. The first set consists of manually-selected fail-
pass pairs that make use of important and popular features
of GITHUB ACTIONS. For instance, we chose pairs from the
repository Netflix/spectator because its jobs dynam-
ically modify environment variables when they run, and we
chose pairs from junit-team/junit5 because they use
composite actions. Such features are expected to be handled
by ACTIONSREMAKER. The manual selection yielded 87 fail-
pass pairs from 11 repositories.

The second set is generated by mining GITHUB repositories
with the adapted BUGSWARM pipeline. For a repository to
be considered, it should (1) use GITHUB ACTIONS, (2) be
written in Java, and (3) have at least 50 stars on GITHUB.'
The above criteria yielded a set of over 3,600 repositories. To
keep the benchmark at a practical size, we selected 75 of these
repositories to be included in the benchmark. Then, we filtered
out the pairs with inaccessible original logs, pairs with jobs

I ACTIONSREMAKER is language agnostic, but we focused on Java because
it is a popular language, and is supported by the BUGSWARM analyzer.

TABLE 1
FAIL-PASS PAIR COUNTS FOR EACH TYPE OF UNREPRODUCIBLE PAIR

Category # Failure Reason Number Percentage
1 Test Mismatch 23 12.8%
2 Missing Requirement 10 5.6%
3 Dependency Error 8 4.4%
4 Tool Failure 6 3.3%
5 Other 3 1.7%

Total 50 27.8%

that run on unsupported operating systems (Section III-C), and
pairs with unsupported actions (Section III-D). This excluded
19 out of 75 repositories that have no suitable pairs to mine.
Since we wanted to collect a diverse set of pairs while keeping
the size of the benchmark manageable, we only kept the
three most recent pairs from repositories that had more than 3
suitable pairs, and all pairs from repositories with more than
one but less than 3 pairs. The process above generated a set of
93 fail-pass pairs from 56 repositories. Combining the two sets
yields a benchmark of 180 fail-pass pairs from 67 repositories.

We provide each fail-pass pair in the benchmark as input
to ACTIONSREMAKER, get the resulting DOCKER image,
run the generated build script in the DOCKER container, and
collect build outcomes. Then we use the adapted BUGSWARM
analyzer to extract the number of tests run, passed, failed, and
skipped, as well as the name of failed tests. We repeat the
process for the original logs and compare them against the
reproduced outcomes. A fail-pass pair is reproducible only if
the outcomes from both jobs match their original counterparts.
Out of the 180 fail-pass pairs in the benchmark, 130 (72.2%)
are reproducible. Out of the 67 repositories represented in our
benchmark, there were 39 with all pairs reproducible, and 43
with at least one pair reproducible.

C. RQ2: Root Causes of Unreproducible Builds

In total, 50 (27.8%) out of the 180 fail-pass pairs were not
reproducible. Our manual inspection identified four reasons
for unreproducibility, which are summarized in Table I.

a) Test Mismatches: 23 pairs failed to reproduce because
their number of failed and passed tests did not match those
listed in the original logs. The main cause for this is test flaki-
ness. Flaky tests are tests that fail in some runs but pass in oth-
ers. For example, the test test SingleValueRandomJoin
from the Apache Lucene project failed in the original GITHUB
ACTIONS workflow run but ACTIONSREMAKER does not
always trigger the expected failure. While the source of
flakiness can usually be attributed to non-determinism, it is
often difficult to ascertain the exact root cause.

b) Missing Requirements: 10 pairs failed to reproduce
due to missing system requirements such as MySQL and
the Android SDK. For purposes of practicality, our base
images only contain a subset of the software installed on
GITHUB ACTIONS’s official virtual machines, thus jobs using
not included software will not be reproduced correctly.

c) Dependency Errors: Some jobs rely on external ser-
vices or data that are outside of our control. A total of 8
pairs failed to reproduce due to the inability to access Maven
dependencies that are no longer available and external APIs.

d) Tool Failures: Sometimes ACTIONSREMAKER fails
to package a job properly; for instance a git reset might
fail unexpectedly. A total of 6 pairs failed due to this reason.

There were also 3 unreproducible fail-pass pairs that did not
fit neatly into any one of above categories. The unreproducible
jobs in those pairs failed due to, respectively, the job not being
run in a clean Git repository, a Maven plugin failing for unclear
reasons, and a syntax error in a predefined action.

V. RELATED WORK

Mining CI Services for Dataset Creation. Among popular CI
services, TRAVIS-CI in particular has been mined extensively
by the SE community for different purposes. Related to
dataset creation, TRAVISTORRENT [7] mines TRAVIS-CI
to create a large-scale dataset of TRAVIS-CI builds that
allows to easily access information from the build logs as
well as trigger commits and aggregated CI project data.
BUGSWARM [15] and BEARS [12] mine TRAVIS-CI to
automatically create software defect datasets. To the best of
our knowledge, ACTIONSREMAKER is the first tool that can
be integrated into a pipeline that mines GITHUB ACTIONS to
automate the process of reproducing builds.

Reproducing and Fixing Builds. Prior work has studied the
reproducibility of builds on DOCKERFILE [8], snapshots of
Java projects [13], or Python projects [14]. In the scenario
of CI services, BUGSWARM [15] reproduced TRAVIS-CI
builds with a reported 5.56% success rate. Others have also
proposed approaches to fix broken builds [9, 11, 16]. Unlike
the above, this is the first study on the reproducibility of
GITHUB ACTIONS builds.

Triggering GITHUB ACTIONS. Open source work [4] de-
veloped by the community provides functionality to trigger
GITHUB ACTIONS workflow runs locally. However, the ap-
proach is designed to run a job that has not been triggered
yet, not for reproducing historical workflow jobs. Unlike
the above, ACTIONSREMAKER is the first tool targeting the
reproduction of existing workflow jobs, and delivering a
reproducible DOCKER image for future use.

VI. CONCLUSION

We present ACTIONSREMAKER, a tool for reproducing
GITHUB ACTIONS workflow runs. ACTIONSREMAKER takes
as input the desired workflow job to reproduce and outputs a
DOCKER image with the exact environment, software repos-
itory and build script. Our evaluation showed that ACTION-
SREMAKER can reproduce 130 (72.2%) fail-pass build pairs
from 43 out of 67 distinct open-source repositories.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under award CNS-2016735.

[10]

REFERENCES

GitHub Search for Number of Repositories. https:/github.com/
search?type=repositories, 2022.

GitHub Actions. https://docs.github.com/en/actions, 2022.
Jenkins. https://www.jenkins.io/, 2022.

nektos/act. https://github.com/nektos/act, 2022.

Travis Build. https:/github.com/travis-ci/travis-build, 2022.
Travis CI. https://www.travis-ci.com/, 2022.

M. Beller, G. Gousios, and A. Zaidman. Travistorrent: synthe-
sizing travis CI and github for full-stack research on continuous
integration. In MSR, pages 447-450. IEEE Computer Society,
2017.

J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi,
and H. C. Gall. An empirical analysis of the docker container
ecosystem on github. In MSR, pages 323-333. IEEE Computer
Society, 2017.

F. Hassan. Tackling build failures in continuous integration. In
ASE, pages 1242-1245. 1EEE, 2019.

F. Hassan and X. Wang. Change-aware build prediction model
for stall avoidance in continuous integration. In ESEM, pages

[11]

[12]

[13]

[14]

[15]

[16]

157-162. IEEE Computer Society, 2017.

F. Hassan and X. Wang. Hirebuild: an automatic approach to
history-driven repair of build scripts. In ICSE, pages 1078-
1089. ACM, 2018.

F. Madeiral, S. Urli, M. de Almeida Maia, and M. Monper-
rus. BEARS: an extensible java bug benchmark for automatic
program repair studies. In SANER, pages 468—478. IEEE, 2019.
M. Maes-Bermejo, M. Gallego, F. Gortazar, G. Robles, and
J. M. Gonzilez-Barahona. Revisiting the building of past
snapshots - a replication and reproduction study. Empir. Softw.
Eng., 27(3):65, 2022.

S. Mukherjee, A. Almanza, and C. Rubio-Gonzilez. Fixing
dependency errors for python build reproducibility. In ISSTA,
pages 439-451. ACM, 2021.

D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-Gonzéalez. Bugswarm:
mining and continuously growing a dataset of reproducible
failures and fixes. In ICSE, pages 339-349. IEEE / ACM, 2019.
H.-N. Zhu and C. Rubio-Gonzélez. On the reproducibility of
software defect datasets. In ICSE. IEEE, 2023.

