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Abstract—Polynomial based approaches, such as the Mat-Dot
and entangled polynomial codes (EPC) have been used extensively
within coded matrix computations to obtain schemes with good
recovery thresholds. However, these schemes are well-recognized
to suffer from poor numerical stability in decoding. Moreover,
the encoding process in these schemes involves linearly combining
a large number of input submatrices, i.e., the encoding weight is
high. For the practically relevant case of sparse input matrices,
this can have the undesirable effect of significantly increasing
the worker node computation time. In this work, we propose
a generalization of the EPC scheme by combining the idea of
gradient coding along with the basic EPC encoding. Our tech-
nique allows us to reduce the weight of the encoding and arrive
at schemes that exhibit much better numerical stability; this is
achieved at the expense of a worse threshold. By appropriately
setting parameters in our scheme, we recover several well-known
schemes in the literature. Simulation results show that our scheme
provides excellent numerical stability and fast computation speed
(for sparse input matrices) as compared to EPC and Mat-Dot
codes.

I. INTRODUCTION

Large scale matrix computations are at the heart of various
machine learning and optimization problems. In many of these
problems, the size of the underlying matrices requires the us-
age of distributed computing, where the overall job is divided
into smaller tasks that can be executed in parallel over multiple
workers. However, straightforward task assignments can result
in situations where the job execution time is limited by the
speed of the slowest worker. This is especially problematic in
cloud computing scenarios where workers are well-recognized
to exhibit appreciable variance in computing speeds [1].

Background: The field of coded matrix computation [2]—
[6] aims at leveraging ideas from coding theory to improve the
overall job execution time within distributed clusters. Given
matrices A € RP*® and B € RPX7, suppose that we
are interested in computing ATB. In coded computation, a
designated central node performs a block decomposition of
A and B and assigns encoded submatrices of them to the
worker nodes. The task of the worker nodes is now to compute
the product of these encoded matrices. For carefully designed
schemes, it can be shown that the desired result can be decoded
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as long as any T worker nodes return their results. Thus, the
job execution time is not dominated by slow workers. 7T is
known as the threshold of the scheme.

More recently, it has been recognized [7]-[14] that there
are other metrics that are also of interest within coded ma-
trix computation. The work of [7], [9], [10], [15], [16] has
demonstrated that several of the original polynomial-based
schemes suffer from the problem of numerical instability (i.e.,
computation error caused by distributing the computation).
In particular, the decoded result in these schemes can be
essentially useless even for clusters with thirty nodes or more.
Furthermore, in several settings, the input matrices A and B
are sparse. Note that the encoding process typically combines
a number of different submatrices of A (and B); we refer
to this as the encoding weight of the scheme. This encoding
can significantly increase the number of non-zero entries in
the encoded matrices. This in turn will have the undesired
effect of increasing the worker node computation time [9],
[17], [18]. Thus, coded computation schemes that have small
encoding weights are of interest. Other metrics include how
well a given scheme leverages partial computations performed
by the worker nodes [9], [12], [15], [17].

Within coded computation, the central node first performs
a block-decomposition of A7 and B as follows.

[ Afo Al 1o
AT = : . : ,and
_A({7n71 qu,mq
[ Boyo Bon-1
B = : : . (1)
[Bp—10 - Bp_1n1

Each worker node is allowed to store the equivalent of 1/pm-
fraction of A and 1/pn-fraction of B. The overall idea is to
encode the submatrices of A and B and assign the worker
nodes the task of computing the product of these encoded
submatrices, such that the central node can decode if enough
tasks are completed.

Related Work: In polynomial-based schemes [4], [19],
[20], the encoding functions are polynomial evaluation maps.
Upon multiplication of the encoded matrices, the desired terms
appear as coefficients of certain monomials and the other
coefficients are treated as interference. If enough worker nodes
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return their results, there are enough evaluation points so that
the polynomial can be interpolated and the desired terms and
hence ATB can be recovered.

In particular, the Mat-Dot code [19] applies in the setting
when m = n = 1 and arbitrary p and has recovery threshold
of 2p—1. The entangled polynomial code (EPC) [4] applies for
any m, n and p and has threshold of pmn+p—1. The decoding
process in both cases requires interpolating polynomials of
degree 2p — 2 and pmn + p — 2 respectively. There have been
several works that have examined the case of p = 1.

The issue of numerical stability has been examined in
several works. For instance, [16] works within a different
basis set of polynomials. In [10], the authors presented a
technique that exploits the properties of rotation and circulant
permutation matrices for improved numerical stability and in
[9], [11], the authors used random linear combinations for
the encoding. Low weight encodings were considered in [9],
[17] that also demonstrated a scheme that continues to have
the optimal threshold. Finally, techniques that leverage partial
stragglers have also been investigated in several works [9],
[12], [15], [17]. We note here that for large values of p,m
and n, the numerical instability issue with the Mat-Dot and
EP code approaches is especially acute. In addition, as we
will see their encoding weights are also high, rendering them
unsuitable for sparse input matrices.

Main Contributions:

o In this work, we present a coded computation scheme
that allows us to trade-off the interpolation degree of
the reconstructed polynomial & encoding weight with
the recovery threshold for EP and Mat-Dot codes. By
operating on this tradeoff we can arrive at schemes that
are significantly more stable numerically and suitable for
sparse input matrices. Our schemes proceed by combining
the idea of gradient coding (GC) [21] and the structure
of the EP codes. We calculate the recovery threshold of
our scheme.

o We show that [4] and [22] can be viewed as two extremes
of the proposed scheme depending on the choice of pa-
rameters. Thus, our proposed scheme is a generalization
of these schemes.

o Extensive simulation results corroborate our theoretical
findings.

We point out that there is a related work that utilizes GC for
coded matrix computations in [22]. However, we note that this
paper is different from our paper since [22] focuses more on
designing numerically stable GC using binary coefficients and
does not analyze the recovery threshold. We discuss this in
more detail in Sections II-C and III.

Notation: For integers a, b, the notation a|b denotes that a
divides b. For a set of vectors V, span()) denotes the span of
the vectors (i.e., set of all linear combinations of the vectors)
in V. If A is a set of integers then A mod ¢ denotes A with
all elements reduced modulo /.

II. SPARSITY CONTROLLED DISTRIBUTED MATRIX
MULTIPLICATION WITH GENERAL MATRIX PARTITIONS

Definition 1: Gradient Coding matrix. Let H be a n X n
matrix, with its rows denoted h;,i = 0,...,7 — 1. We say
that H is a gradient coding matrix with parameters 7 and & if
it has the following properties.

(1) It has cyclically shifted rows and each row has x + 1
non-zero entries. Let Z; = {i,i+ 1,...,i+ x} mod 7.
Row hl = [h@o hi,l e hi,n—l] is such that hi,j 75 0, if
and only if j € Z;.

(i) The all-ones row vector is contained in the span of any
n—r rows of H, i.e., for J C {0,...,n—1} with |J| =

17 — Kk we have,
IL1><17 S span({hz\z S J}) (2)

A. Motivating example

Example 1: Suppose there are N = 4c¢ (¢ > 5) workers.
Henceforth, let v4 and yp denote the storage fraction of
matrices A and B. We assume that each worker can store the
equivalent of y4 = yp = 1/4 fractions of matrices A € C°*
and B € C#*7, respectively. The MatDot code [19] where A”
and B are decomposed into four block-columns is applicable
here (m = n = 1,p = 4) and is resilient to N —7 stragglers. In
this approach the encoded A and B submatrices involve linear
combinations of all the respective submatrices, and decoding
requires interpolating a polynomial of degree 6.

Now suppose that we are interested in a scheme where
weight of the encoding matrices (both A and B) is two. In this
case, a simple technique is to work with two independent Mat-
Dot schemes each with (m = n = 1, p’ = 2). We first partition
AT and B as AT = [AT ... Al] and B = [By---B;3]7.
Then, we divide the workers into 2¢ groups where each group
consists of two workers such that the w = 0, 1-th worker of
the group stores

1

1
AT (w,z;) = ZréAQTwH and B(w,z;) = Zx}_lBg,wH‘
=0 =0

as illustrated in Fig. 1(a). The value of z; is fixed for a group. It
is not hard to see that the recovery threshold of above scheme
is 2c+ 3. Since the product of A” (w, ;) and B(w, x;) yields
a degree-2 polynomial, we can decode as long as we obtain
three evaluations of each of the two relevant polynomials
corresponding to w = 0,1. Thus, we cannot decode when
we have all the results, e.g., of the polynomial for w = 0
from all of 2¢ groups and the result of the polynomial for
w = 1 from at most two groups. Thus, the recovery threshold
becomes 2¢ + 3.

The situation differs when we are interested in schemes
where the encoding weight, e.g., is three. In this case, the en-
coding weight does not divide p = 4. Thus, a simple scheme as
the one discussed above cannot be found in a straightforward
manner. Instead, consider the following scheme. We partition
AT and B into 12 submatrices denoted
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I Af + X0 147 l Aj + x50 143 ]

AT | A7+ xeA]

®

| AT + xoA} I

B [ xBo+Bi | xBtB; | [ x2c1Bo+Bs | x2c1B2+By |

(a) A simple scheme with two independent MatDot codes.

Fig. 1.

© © © ©

|A0+x.AT+x A% IAT+x,AI+x1A5 [AT+xA;+x2AT [AT+x,Aw+x a7, |

AT

[[az+ ,1:1-14’7 + 245 | A8+ xillhy + 24T | 45+ xial + 245 | A5+ xah + 24T |

[ %2Bo+ xBy + B, | x2Bs+ xiBs+Bs | x?Be+xB; + By |x2Bo + x:Bao + Bus |

B

[ %2Be+ xB; + By |x2Bo + xiB1o + Bay | %7Bo+xB1 +B; | x7Bs+xBy+Bs |

(b) A group G; of the proposed scheme.

Task assignment in Example 1. There are N = 4¢ workers for distributed matrix computation with storage size v4 = vp = 1/4. In Fig. 1(b), each

worker has three encoded A and B assignments. Owing to space limitations, we use vertical dots to denote the missing encoded assignments.

By
AT = [AT Afl], andB=| :
B
Since the partitioned submatrices have 1/12-th the size of
matrices A and B, we can store three of them in each
worker while still respecting the storage constraint. Now,
consider a group of four workers G; = {4i,--- ,4i + 3} for
i =0,...,c— 1, where the worker 47 + w stores

Zw St 3)

,w+ 2} mod 4 (note that the index

l"np

forall p € P, = {w, ...
p depends upon w) and

Zw

for all p € P,. Here, x; is the same for all workers in the
group. Next, we choose a matrix H that satisfies (2) with the
parameters 77 = 4 and xk = 2 and assign each worker the task
of computing

B(z;,p) Basp 4

w42

l’z) = Z hw7ﬁA
p=w

3
(a) =~ NS -
= Z hw,i}’AT(xiap/)B($i7pl)7

7'=0

(2, p)B(24,p) 5)

where h; ; is the i-th row and j-th column of the matrix H.
The summation indices in (5) are reduced modulo-4.

Here, (a) holds because of the zeros in the matrix H. When
we have at least five groups of workers (i.e., ¢ > 5), we can
prove that this scheme has recovery threshold = ¢ + 13.

Lemma 1: The recovery threshold of this scheme is ¢+ 13.

Proof: Our overall idea is to show that if the central
node can receive at least five evaluations from at least five
distinct groups, it can decode the desired result. Towards
this end, suppose that the central node receives results from
two workers in the group G;. From Definition 1, there exists

gl = [go,--,g3] such that it has non-zero entries only

corresponding to the two workers that return their results with
the property that g"h; = 1 for columns h; of H. Thus,

3
> 9uCul(x:)
w=0

3 3
- Z ZgwhwﬁAT(xi,;ﬁ)B(mmﬁ)

w=0 p=0

3
=Y " g"h;A” (2, 5)B(x:, )
=0

3
= Z AT (;,p)B(xi,p) (6)
S»3 Z 2 T AL, Bapis
$=01,=01y=
11
=a? Z ATB, + interference terms @)
1=0

Thus, we are able to obtain the useful term Zzlio Al'B, as the
coefficient of 2? in the above polynomial. Furthermore, note
that the interference term does not depend on which workers
returned their results since we are able to obtain (6) in the
decoding process. Since the equation (7) is a polynomial of
degree four, we need at least five different interpolation points
x; to obtain the useful term from the equation (7). Thus,
obtaining five evaluations from five groups suffices to decode.

To see that the recovery threshold is ¢ + 13, we proceed
by contradiction. Note that, there are ¢ groups, each of which
contains four nodes. It follows that we cannot decode when
there are at most four groups where all the nodes return their
results and all other groups are such that at most one node
returns its result. Thus, we can have at most 4 x 4+ (¢ —4) =
¢+ 12 nodes return their results in this case, i.e., decoding is
guaranteed when ¢ + 13 workers return their results. |

B. General ka,kp and k,

We now consider the general case where each worker can
store the equivalent of y4 = 1/kak, and v = 1/kpk,
fractions of matrices A and B, respectively. In this case,
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the work of [4] considers k, x k4 and k, x kp block-
decompositions of A and B respectively and proposes the
EPC scheme with recovery threshold k,kakp + k, — 1. The
encoding weight of the A and B matrices is kak, and kpk,
respectively.

Once again, in this case we are interested in schemes where
the encoding weights of the A and B is lower and the
degree of the polynomial that needs to be interpolated during
decoding is lower.

For our scheme, we consider the following scenario. Let
m and n be positive integers such that k4|m and kg|n. Our
scheme has another parameter A, < k,, that allows us to tune
the weight of the encoding. We set p = LCM (A, ky). As
we saw in the motivating example, if A, |k,, we will see that
a srmg)le scheme that essentially divides the overall scheme
into A EP codes applies. Thus, for the discussion below we
consider the scenario where A, does not divide k.

The central node first partitions the matrices A7 and B
into submatrices as shown in (1). We assume that there are
N = Ap - ¢ workers, i.e., there are ¢ groups consisting of -
nodes each.

The storage constraints imply that we can store the equiva-
lent of 27~ encoded submatrices for A” and 27— encoded
submatrrces for B in each worker. Thus, we consrder a worker

group of - workers G; = {A (i +1) = 1} for
1=0,.. — 1, where the < L + w-th Worker stores
Ap—1ky—1
I o 450,
AT(J%Z% m) = Z Ty ’ 1A£p5+l,kAm+sa
=0 s=0

forallﬁe{w ~ow+ =1} mod £ and m € Py =

{0,---, % — 1}, and
p—lkp—1 N
p—1=l+ul,k
B(zi,p, 1 Z Z TUEPAB A ks
=0 u=0

forallpe{w w—i———l} mod ,andnePn—
{0,--+, = — 1} Also, z; is the same for all workers in the
group.

Now, we choose a gradient coding matrix (cf. Definition 1)
H with parameters n = £ and x = i 1. Then, the w-th
worker in the i-th group Computes

w+%—
Cw (mM m 7'L Z hw pA (‘r’ﬁp? )B($77]37 Iﬁ)
p=w
-1
Z hw ;5A ($17p7 )B(Izvﬁvﬁ)
p=0

for all m € P, and 7 € P,. The summation indices are
reduced modulo Al in the expression above. The last step
above holds because of the properties of the GC matrix.
Define 7¢c_gpc as the recovery threshold of the proposed
scheme. The subscript GC-EPC refers to the fact that we
combine gradient coding and entangled polynomial coding in

this approach. The proof of the following theorem appears in
the full version of the paper [23].

Theorem 1: For a given parameter A, < k,, we need at
least ¢ > kakpAp + A, — 1 worker groups and the recovery
threshold of the scheme is

TGC—EPC = <A£ - kﬁ) e+ k:£ (kakpAp + Ay —2)+1
P P P 8)
(

Remark 1: From the encoding scheme, we can clearly see
that overall polynomial to be interpolated is now of degree
kakpA, + A, — 2 as opposed to kakpky, + k, — 2 for the
EP code. Thus numerical stability improves. Next, the weight
of the encoding of A and B matrices is k4 A, and kA, as
against kak, and kak, for the EP code, respectively. These
benefits come at the cost of a worse recovery threshold.

Example 2: Consider a scenario where k4 = kg = 1 and
k, = 15. In this case, the EPC code has a threshold of 29 and
the encoding weight of both the A and B matrices is 15. We
note that interpolating a polynomial of degree 28 will already
result in significant numerical issues whereby the decoded
result will essentially be useless (see Section III).

For our scheme, suppose that we have N > 5c¢ workers and
that we set A, = 6. Then, we will choose p = LCM (6, 15) =
30. The corresponding threshold will be 3¢ + 21, and the
encoding weights for both the A and B matrices will be 6. We
note here that the decoder will only interpolate a polynomial
of degree 10 which is much smaller than the Mat-Dot code.

C. Discussions

A comparison of the various performance measures of the
proposed scheme and the EPC scheme is summarized in
Table I. The recovery threshold and the number of weights
of the proposed scheme and the EPC scheme with vari-
ous system parameters are discussed in Table II. In Table
I, Wtepe, Wtgc—Epc, and Tepc, Tac—epc denotes the encoding
weights for EPC scheme and the proposed scheme, and the
recovery threshold of the EPC scheme and the proposed
scheme respectively. From Table II, we can observe that the
threshold of the GC-EPC scheme is higher than the EPC
scheme when A, < k,. However, the encoding weights
are lower. Moreover, as discussed shortly in Section III, our
scheme is much more numerically stable.

We observe that our scheme reduces to other well-known
schemes for specific parameter regimes.

o If Ay = p = kp, the proposed scheme is the same as
the EPC scheme [4] and the recovery threshold becomes
kpkakp + Kk, — 1.

e If A, =1, m =n =1 and p = k,, the proposed
scheme equals to the scheme which just applies GC
to uncoded matrices (CMM-1 scheme in [22]) and the
recovery threshold becomes (p — 1)c + 1.

o If Ay =1 and k, = p =1, the proposed scheme equals
to the EPC scheme [4] for p = 1 (or CMM-3 scheme in
[22]). The recovery threshold becomes k4kp.

Note that all the three schemes [4], [22], and our proposed

GC-EPC scheme have the same computational cost per worker.
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Entangled Polynomial

code | Proposed |

Recovery threshold

kakgky + kp — 1

P
kp

(kakpAp + A, —2)+1

( ).c+

r _ P
Ap Ky

Number of assignments per worker 1 % pp ;:ZZ 5
. ay 8 o 2a8y oy B pmn — 2a8y
Computational cost per worker O(kAkB QE) 7O<kpkAk'B> O(m '22 : kpkAkB> *O(kpkAkB)

Encoding weight of A (or B) kpka (or kpkg)

Apka (or Apkp)

TABLE 1
PERFORMANCE COMPARISON OF THE VARIOUS SCHEMES

kakp

N A kp Ay p Tepc TGC—EPC Wtepe WIGC—EPC
24 1 6 4 12 11 21 6 4
24 1 6 3 6 11 17 6 3
24 1 6 2 6 11 19 6 2
10 1 6 3 6 | N/A 10 6 3
64 1 4 3 12 7 29 4 3
64 1 8 3 24 15 53 8 3
64 2 4 3 12 19 56 8 6
TABLE II

SIMPLE COMPARISON OF THE RECOVERY THRESHOLD AND NUMBER OF
WEIGHTS WITH THE VARIOUS SYSTEM PARAMETERS

III. SIMULATION RESULT

In this section, we evaluate and compare our proposed
schemes with benchmark schemes in terms of two different
performance measures.

o First, we measure numerical stability caused by dis-
tributing the computations. i.e., the computation error of
the reconstructed solution C normalized by the original
solution given by

|C— ATB||r
|ATB||F

Second, we compare the average computation time (in
seconds), the computation time consumed until receiving
the computation results from 7,,x = epc or GC — EPC
number of worker nodes, of each scheme.

We compare the performance of the EPC scheme [4] and
our proposed scheme; both schemes have the same storage
capacity v4 = 1/kak, for the matrix AT and yp = 1/kpky
for the matrix B. For both schemes the interpolation points are
chosen from points spaced equidistant on the interval [—1, 1].

For the simulation environment, we consider the input
matrices A and B having the size 5040 x 5040. We consider
the storage parameter as k4 = 1,k = 1, where each
matrix has the 0.01 fraction of nonzero elements (i.e., sparsity
parameter p = 0.01), and k, = 14. The total number of
workers is given as N = 420.

In Fig. 2, we compare the normalized computation errors
and recovery thresholds of various schemes with respect to
the sparsity controlling parameter A,. The blue bold lines
and the green dashed line represent the computation errors
and recovery thresholds, respectively. As expected, we can
first observe that the EPC scheme is numerically unstable. On
the other hand, the proposed scheme can provide numerical
stability while still having straggler resilience. Also, we can
observe the tradeoff between the computation error and the
recovery threshold. i.e., the computation error of the proposed
scheme increases and the recovery threshold decreases as the
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Fig. 2. A plot of the trade-off between computation error
threshold of the various schemes with respect to A.
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Fig. 3. The average computation time of various schemes with respect to
Ap.
P

sparsity controlling parameter A, increases. Finally, we can
observe that the recovery threshold of the proposed scheme
meets the EPC scheme and GC scheme in extreme cases as
we discussed in subsection II-C.

In Fig. 3, we compare the average computation time of the
schemes with respect to A,. We observe that the proposed
scheme is faster than the EPC scheme, since the sparsity of the
encoded matrices for the proposed scheme is better preserved
as compared to that for the EPC scheme.
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