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THE KHINCHIN-KAHANE AND LEVY INEQUALITIES FOR
ABELIAN METRIC GROUPS, AND TRANSFER FROM
NORMED (ABELIAN SEMI)GROUPS TO BANACH SPACES

APOORVA KHARE AND BALA RAJARATNAM

ABSTRACT. The Khinchin—Kahane inequality is a fundamental result in the probability literature,
with the most general version to date holding in Banach spaces. Motivated by modern settings and
applications, we generalize this inequality to arbitrary metric groups which are abelian.

If instead of abelian one assumes the group’s metric to be a norm (i.e., Z~o-homogeneous), then
we explain how the inequality improves to the same one as in Banach spaces. This occurs via a
“transfer principle” that helps carry over questions involving normed metric groups and abelian
normed semigroups into the Banach space framework. This principle also extends the notion of
the expectation to random variables with values in arbitrary abelian normed metric semigroups ¢.
We provide additional applications, including studying weakly ¢, ¥-valued sequences and related
Rademacher series.

On a related note, we also formulate a “general” Lévy inequality, with two features: (i) It
subsumes several known variants in the Banach space literature; and (i) We show the inequality
in the minimal framework required to state it: abelian metric groups.

1. INTRODUCTION

The Khinchin-Kahane inequality is a classical inequality in the probability literature. It was
initially studied by Khinchin [16] in the real case, and later extended by Kahane [10] to normed
linear spaces. A detailed history of the inequality can be found in [18]. We begin by presenting a
general version of the inequality for Banach spaces, as well as a sharp constant in some cases.

Definition 1.1. A Rademacher variable is a Bernoulli variable that equals =1 with probability %

Theorem 1.2 (Kahane [10]; Latata and Oleszkiewicz [18]). For all p,q € [1,00), there exists a
universal constant C), ; > 0 depending only on p,q, such that for all choices of Banach spaces B,
finite sets of vectors x1,...,xy, € B, and independent Rademacher variables ri,..., 7y,

n qq1/q
E Z TETk
k=1

If moreover p =1 < q < 2, then the constant Cy 4 = 21-1/4 is optimal.

n p11/p
< Cp7q -E Zrka;k . (13)
k=1

On this note, see also the work of Kalton [12, Section 6], involving (quasi-)Banach spaces with
specified type.

Notice that to state the theorem, one only requires Rademacher —i.e., random symmetric — sums
of vectors (see [11, §2.5] for more on Rademacher series). Thus, it is possible to state the result
more generally than in a normed linear space: in fact, in any abelian group ¥ equipped with a
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translation-invariant metric. Now it is natural to ask whether a variant of the Khinchin—-Kahane
inequality holds in this general (and strictly larger) setting. One of our main results provides a
positive answer to this question; see Theorem 2.7.

In working outside Banach spaces, we are motivated by several reasons, both classical and mod-
ern. Traditionally, probability theory is now well-established in the Banach space setting; see the
classic text [19]. In greater generality, Fourier analysis and Haar measure for locally compact
abelian groups, and metric group-valued random variables have been well-studied, see e.g. [9, 25].
In this vein, it is of interest to prove stochastic inequalities in the most primitive framework required
to state them. In [13], we showed such a extension of the Hoffmann-Jgrgensen inequality for all
metric semigroups, followed by applications and other extensions in [14]. The present paper is in a
parallel vein, showing an extension of the Khinchin—Kahane inequality to abelian metric groups.

There are also modern reasons to work with metric groups. In modern-day settings, one often
studies random variables with values in permutation groups, or more generally, abelian /compact Lie
groups such as lattices/tori. Moreover, data can be manifold-valued, living in e.g. real or complex
Lie groups rather than in linear spaces. Other frameworks arise from the study of large networks,
e.g. the space of graphons with the cut-norm [20], or the space of labelled graphs [15]. The latter
is a 2-torsion group, so cannot embed into a Banach space. Thus there is renewed modern interest
in studying probability outside the Banach space paradigm. Our work lies firmly in this setting.

We now state our novel contributions. The first — see above — extends the Khinchin-Kahane
inequality to abelian metric groups (Theorem 2.7 below). Second, in the course of proving Theo-
rem 2.7, we also provide a two-fold extension of Lévy’s inequality; see Theorem 2.10. In keeping
with the above philosophy, this unifies at once several existing variants of the inequality in the liter-
ature, which to our knowledge had not been consolidated within a common framework. Moreover,
we show the result in the minimal framework required to state it: for all abelian metric groups.

In addition to these two results for metric groups, we write down a useful “transfer principle” in
Theorem 3.3, which holds more generally: for normed metric semigroups. Note, probability over
metric (semi)groups ¢ has a fundamental distinction from Banach spaces: the unavailability of
an expectation function. It is thus natural to seek classes of metric semigroups ¢ for which the
expectation makes sense for every ¢-valued random variable. Theorem 3.3 provides such a class:
where ¢ is in fact “normed” (defined below) and abelian — or merely normed if ¢ is a group. In
this case the expectation does not necessarily live in ¢, but in its “Banach space closure” (below).

Theorem 3.3 enables defining linear functionals, operator spaces, and dual spaces over all abelian
normed semigroups ¢, and therefore extends the powerful theory of functional analysis to all such
semigroups. Furthermore, we provide several applications of Theorem 3.3, including extending the
notion of weakly /,-sequences to ¢-valued random variables; as a consequence, several results in
the probability literature, including those of Dilworth and Montgomery-Smith [6] (as well as prior
results of Talagrand) extend to abelian normed semigroups and to all normed groups. See Section 3
for these applications of our results; the assertions about normed groups make use of a fact on bi-
invariant metrics from geometry, which arose from the present body of work, and has been resolved
in a recent Polymath project [24].

2. KHINCHIN-KAHANE INEQUALITY AND LEVY INEQUALITY FOR ABELIAN METRIC GROUPS

We begin by extending the Khinchin—Kahane inequality from Banach spaces to arbitrary abelian
metric groups. We also prove a general version of Lévy’s inequality, for abelian metric groups.

2.1. Metric semigroups. Before the main results, we study basic properties of metric (semi)groups.

Definition 2.1. A metric semigroup/monoid/group is defined to be a semigroup/monoid/group
(¢,-) equipped with a metric d: 4 x ¢4 — [0,00) that is translation-invariant. In other words,

d(ac,bc) = d(a,b) = d(ca,cb), Va,b,c € 9.
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To begin, note that for such a semigroup ¢ — for instance if ¢ is abelian — the following “triangle
inequality” is straightforward, and used below without further reference:

d(y1ye, z122) < d(y1, 21) + d(y2, 22),  Vyr, 2k €Y. (2.2)
We will also require the following preliminary result and its corollary.
Proposition 2.3. Suppose (4,-,d) is a metric semigroup, and a,b € 4. Then
d(a,ba) = d(b,b*) = d(a, ab) (2.4)

is independent of a € 9. Moreover, 4 has at most one idempotent (i.e., b € 4 such that b*> = b).
Such an element b is automatically the unique two-sided identity in &, making it a metric monoid.

Proof. Equation (2.4) is immediate using the translation-invariance of d:
d(a,ba) = d(ba,b*a) = d(b,b*) = d(ab, ab®) = d(a, ab).
Next, if ¢ has idempotents b, ', then using Equation (2.4),
d(b,b') = d(b?,bb') = d(b*,b*b') = d(b,bV') = d(V, (V)?) = 0.
Hence b = b'. Moreover, given such an idempotent b € ¢, compute using Equation (2.4):
d(a,ba) = d(a,ab) = d(b,b*) =0, Vac¥.
Hence b is automatically the unique two-sided identity in ¢. U

Corollary 2.5. A set 4 is a metric semigroup only if 4 is either a metric monoid, or the set of
non-identity elements in a metric monoid 4'. This is if and only if the number of idempotents in
4 is one or zero, respectively. Moreover, the metric monoid 4’ is (up to a monoid isomorphism)
the unique smallest element in the class of metric monoids containing 4 as a sub-semigroup. A
finite metric semigroup is a metric group.

Proof. Given a semigroup ¢ that is not already a monoid, to adjoin an “identity” element 1’ one
defines: 1'-a =a-1 :=aVa € 4" := 4 U{1l'}. Also extend dy to dy: : 4' x4 — [0,00)
via: dy:(1',1") = 0 and dy/(1',b) = degi (b, 1') := dgy(b,b?) for b € 4. Then %' is a metric monoid.
The next assertion follows from Proposition 2.3. It is clear that the monoid ¥’ O ¢ is uniquely
determined. The final part holds since left- and right- multiplication by any a € ¢ are bijections. [

Remark 2.6. We will denote the unique metric monoid containing a given metric semigroup ¢

by ¢’ := 4 U {1’}. Note that the idempotent 1’ may already be in ¢, in which case ¥ = ¥’. One

consequence of Corollary 2.5 is that instead of working with metric semigroups, one can use the

associated monoid ¢’ instead. (In other words, the (non)existence of the identity is not an issue in

such cases.) This helps simplify other calculations. For instance, what would usually be a lengthy,

inductive computation now becomes much simpler: by the triangle inequality (2.2), for all k,1 > 0,
l

l
dg(20- - 2k, 20 - 2) = dagr (U, [ [ 2w4a) D dap (U, 204i) =Y d (20, 20244), Y20, - - > k41 € 9
i=1 i=1 i=1
2.2. Khinchin—Kahane and Lévy inequalities. In the sequel, we will deal mostly with metric
(semi)groups ¢ that are abelian. Thus we mostly use additive notation — and only where we do
not, should the reader assume that ¢ need not a priori be abelian.

Our first main result is a Khinchin—Kahane (type) inequality for arbitrary abelian metric groups.

Theorem 2.7 (Khinchin-Kahane). Given ¢ € [1,00), there exists a universal constant K, > 0
depending only on q such that for all choices of abelian metric groups 4, finite sequences of elements
X1,..., Ty €Y (for anyn > 0), independent Rademacher variables ry,...,r,, and scalar p € [1,00),

n 1 1/q n p11/p
EM [d (0, ol Zrkxk> ] < Kq . EM d (0, Z Tkxk> ] s (28)
k=1 k=1
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where | € Zwg is such that 271 < ¢ < 2. In fact we may choose K, = 64¢>(q/4)"/1.

Existing variants in the literature fall under the special case where ¢ = B is a Banach space (1.3).
Note that the inequality (2.8) in this more general case does not compare the same quantities as
the classical Khinchin—Kahane inequality (1.3) does, and to the best of our knowledge, is a novel
inequality that does not follow from the Banach space version (1.3). (In Section 3, we will see how a
“norm” on ¢ updates both the expressions in (2.8) and the constant K, to yield the Banach-space
counterparts.) Also remark for completeness that a separability assumption on ¢ is not required,
since one may restrict to the subgroup generated by x1, ..., x,.

Theorem 2.7 provides an example of “universal constants” which help compare LP-norms of sums
of independent ¥-valued variables, across various p > 0. This theme is explored in greater detail
and generality for abelian metric semigroups in related work [14].

The proof of Theorem 2.7 uses Lévy’s inequality for abelian metric groups 4. To this end, we
first define symmetric random variables and show a general version of Lévy’s inequality over ¥.

Definition 2.9. If (¢,+,0,d) is an abelian metric group and [ is a totally ordered finite set, then a
tuple (X;);es of random variables in LY(Q,%) is symmetric if for all subsets J C I and all functions
e:J — {£1}, the 2/l ordered tuples of variables (¢(5)X;);es all have the same joint distribution
— i.e., this is independent of e.

Theorem 2.10 (Lévy’s inequality). Fiz an abelian metric group (¢,+,0,d), integers m,n € Z,
and symmetric random variables X1, ..., X, € L°(Q,9). Also fix subsets By, ..., By, C {1,...,n},
such that for all 1 < j < k < m, Bj N By, is either B; or empty. Set Xp := Y, p Xy for all
BC{l,....,n}. If S;, = X1+ -+ + X,,, then for all s,t >0,

P, <1g}€a<};1 d(0,2Xp,) > s+ t> <P, (d(0,S,) > s)+ P, (d(0,S,) >1). (2.11)

Note that if ¢ is a normed linear space and s = t, then the left-hand side is concerned with the
event that maxi<g<m, [|2Xp, || > 2t, which is how the inequality usually appears in the literature.

It is the universal formulation and generalization of the result that is of note here. Indeed,
Theorem 2.10 simultaneously strengthens several different variants in the literature, which to our
knowledge had not previously been unified. See [19, Proposition 2.3] for two special cases where ¢ is
a Banach space, s = ¢, m =n, and By = {1,...,k} or By = {k} for all k. Theorem 2.10 also holds
for other choices of subsets By, e.g. {1},{1,2},{3,4,5},{3,4,5,6}; or By ={n—k+1,...,n} by
reversing the order of summation; this last choice is used below. Moreover, Theorem 2.10 extends
Lévy’s inequality from Banach spaces to all abelian metric groups. We provide a formal proof as
it is in a more general setting than what is available in the literature.

Proof of Theorem 2.10. Define the stopping time

7:=min{l <k <m:d(0,2Xp,) > s+t}. (2.12)
Now note that there is a smallest integer 1 < my, < k such that B,,, 1, Bmy+2, ..., Br—1 € By. By
assumption, By, ..., By, are all disjoint from Bj. Thus the event 7 = k, which denotes

d(0,2Xp,) < s+t <d0,2Xp,) V1<j<k-1
can be represented also as the event
d(0,—2Xp,) <s+t VI<j<my, d(0,2Xp;) < s+t <d(0,2Xp,) Vmy <j<k.
Thus let X, := XU;:1 g, for all r. Then it follows from the symmetry assumption that
P, (d(0,S,) > t, 7 =k) =P, (d0,(—Xn,) + XB, — (Sn — X, — XB,)) > t, 7=k)
=P, (d(0,2Xp, —S,) >t,7=k).
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We now prove the result. Note by the triangle inequality that
d(0,2Xp,) >s+t = d(0,S,)>s or d(0,2Xp, —5,) >t

Thus by the above analysis, the result follows:

P, < max d(0,2Xp, ) > s—l—t) = Z]P)u(T: k, d(0,2Xp, ) > s+1)

1<k<m
k=1

We next show the Khinchin-Kahane inequality (2.8).

Proof of Theorem 2.7. For this proof, fix an abelian metric group ¢, elements x1,...,2z, € ¢, and
Rademacher variables r1,...,r,. For ease of exposition we break the proof into two steps.

Step 1. We claim that for all abelian metric groups & and &-valued Rademacher sumsy ,_, 12y,

P, (d(O,ZZrkxk) >s+t+u—|—v>

k=1
S(Pu(Pr>s)+Pu (P, >1t) (Py (P >u)+P, (P, >0))

(2.13)

for all s,t,u,v >0, where Py :=d (0, ,_; k).

Existing variants in the literature are usually special cases with 4 = B a Banach space and
s =t =wu = v. While the proof uses familiar arguments, we include it for the reader’s convenience,
as it is in somewhat greater generality than can usually be found in the literature.
Define S = Z§=1 rjxj for k € [1,n]. Similar to the proof of Lévy’s inequality (Theorem 2.10),
define the stopping time 7 := min{k € [1,n] : d(0,2Sy) > s + t}. Also recall that (r1,...,r,) and
(i, .oy Ty TETE41,s - - - » TETy) are identically distributed. Therefore (using that d(0,g) = d(0, —g)),

P, (d(2Sk-1,25,) >u+v, 7 =k) =P, d(0,22rj:17j) >u+v,T=k

j=k

=P, d(0,2Zrkrja:j) >u+v, 7=k
j=Fk

n
=Py | d(0,22,+2 Y rrjag) >uto, =k
Jj=k+1

n
=P, | d(0,2x) +2 Z rix;) >u+v, 7=k | =P, (d2x; +25,,25;) >u+v,7T=k).
Jj=k+1

The same argument without restricting to the event 7 = k shows that:

P, (d(2Sk—-1,25,) > u+v) =P, (d(2x), + 25,,2S;) > u+v).



6 APOORVA KHARE AND BALA RAJARATNAM
Now note that if d(0,2S,(w)) > s+t + u+ v and 7(w) = k, then d(25k_1(w),25,(w)) > u + v.
Since 7 = k and d(2Sk, 2z) + 25,,) are independent, we compute:
P, (d(0,2S,) > s+t+u+v,7=k) <P, (d(25,-1,25,) > u+v,7 = k)
=P, (d(2zy, +25,,25;) > u+v)P, (T =k) =P, (d(255-1,25,) > u+v)P, (T =k)
SPu(r=k) Py (Py>u)+P, (P, >v)),

by using Lévy’s inequality (Theorem 2.10) with m = 1,B; = {k,...,n}, X; = 2rjz; VI > k, and
replacing (s,t) by (u,v). Now another application of Lévy’s inequality with the same choice of
parameters — except with By = {1,...,k} — concludes the proof.

Step 2. We now prove the inequality (2.8) for p,q > 1. Repeatedly applying the inequality (2.13),
P, (d(O, 2LS,) > 4%) <A2TIP, (d(0,S,) > 7)Y, VIE Zsg (2.14)

Set [ to be the unique positive integer such that 2!=! < ¢ < 2!, and change variables t = 4! € (0, 00).
Using that E,[27] = q [ t7'P, (Z > t) dt for an L? random variable Z > 0, we compute:

E,[d(0,2'S,)9] = ¢ / (4lr)r-1p, (d(O, 2LS,) > 4%) 4 dr
0

< q4lq+2l_1/ r?=1P, (d(0,S,) > 7‘)2l dr.

0
Now 417 < (2¢)% and rP,, (d(0, S,) > r) < E,[d(0, S,)] by Markov’s inequality. Therefore,
> (8g)%*
E,[d(0,2'8,)7] < (2¢)%14%1¢ / E,[d(0, S,)]7 - P, (d(0,8,) > r) dr = 35 Euld(0, Sn)]".
0
Taking gth roots and using Holder’s inequality now yields (2.8). 0

3. THE TRANSFER PRINCIPLE FOR NORMED (ABELIAN SEMI)GROUPS AND ITS APPLICATIONS

In this section we formulate and prove the transfer principle promised above, which will allow
one to take random variables and their probability/functional analysis from a subclass of abelian
metric semigroups to Banach spaces. We begin by introducing the key notion required for this.

Definition 3.1. We say that a (possibly non-abelian) metric semigroup (¢, -, d) is normed if
d(g,¢"™) = nd(g, ¢°), Vge Y, necZso. (3.2)
Notice that if ¢ is an abelian metric group, then (3.2) implies the following stronger version:
d(ng,nh) = |n|d(g, h), Vg,h €9, n € Z.

There is extensive literature on the analysis of topological semigroups with translation-invariant
metrics and related structures. See [1, 3, 7] and the references therein for more on the subject. These
references call any group with a metric (under which the inverse map is an isometry) a “normed”
group, while the above condition (3.2) is termed Z-o-homogeneity. However, in Definition 3.1 we
instead adopt the notation of [26], and define a norm to be more in the flavor of Banach spaces.
The objects in Definition 2.1 will be called metric (semi)groups in this paper.

3.1. The transfer principle and its applications to abelian normed semigroups. We now
return to our extension (2.8) of the traditional Khinchin—Kahane inequality. Notice that if the
abelian metric group ¢ is moreover normed, then the left-hand side of (2.8) equals a scalar times
the original left-hand side in (1.3), and so it is natural to ask if Theorem 2.7 can be modified to
yield the same (improved) constants as in the Banach space case (1.3).

It turns out that this is indeed possible, as we explain presently using our next result, Theo-
rem 3.3, which says that 4 “is” a subspace/additive subgroup of a Banach space — and constructs
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a candidate for the “smallest” such Banach space. We show this result for all abelian normed
semigroups . Of course, the Khinchin—Kahane inequality works with metric groups, so only the
special case of our next result, wherein ¢ is a(n abelian) normed group, is required to address our
motivation in the preceding paragraph. This special case can be found in the literature, see below.

Theorem 3.3 (Transfer principle). Every (separable) abelian normed metric semigroup & canon-
ically and isometrically embeds into a “smallest” (separable) real Banach space B(¥). The same
holds if 4 is a normed (but not a priori abelian) metric group. In particular, the theory of
Bochner integration and expectations extends to all such (semi)groups 4G : if X is 4-valued then
E,[X] € B(¥).

Remark 3.4. While the results in this work hold only for groups that are abelian, we stress that
the abelian hypothesis is not required in the second assertion in Theorem 3.3. See Theorem 3.24.

The proof of Theorem 3.3 is related to previous constructions in the literature, and we defer it
to later in this section. At present, we discuss some of its consequences and applications.

Example 3.5. The first application is that our Khinchin—Kahane inequality (2.8) can be refined
for normed metric groups ¢ to yield precisely the (sharp) constants in the Banach space setting:

Proposition 3.6. For all normed groups ¢4, one has the “usual” Khinchin—Kahane inequality, with
a uniwersal constant Cp, 4 (for fized p,q > 1 but universal across all normed ¢ and n, xy,7):

n a7 1/q n p1/p
Eu [d (0, Z Tkﬂjk> ] < Cpg . EH d (0, Z Tkﬂjk> ] . (3.7)
k=1

k=1
Moreover, for all p,q, the constant Cp, , (universal over the category of all abelian normed groups)
is equal to the universal constant when working only with the sub-category of all real Banach spaces.

Recall that in the classic paper [18], Latala—Oleszkiewicz obtained the optimal such universal
constant across all Banach spaces in the regime p = 1 < ¢ < 2, namely, Cy, = 21-1/4_ Proposi-
tion 3.6 shows that C , also works for the Khinchin-Kahane inequality in (abelian) normed metric
groups. The proof is immediate: consider all ¥-valued random variables to now be B(%¥)-valued.

We now explain several other applications — all of which involve abelian normed semigroups
(noting that such results/applications are not discussed even for normed groups in the literature):

Example 3.8. More broadly than Proposition 3.6, Theorem 3.3 provides a route to “transfer”
problems from abelian normed metric semigroups to Banach spaces. For instance, Lévy’s equiva-
lences between modes of stochastic convergence of sums of independent ¢-valued random variables
immediately follow from their Banach space counterparts for B(¥¢), e.g. [19, Theorem 2.4].

Example 3.9. A third — and more challenging — application of Theorem 3.3 is to extend to
normed ¢ the main result of [6], which provides universal constants that occur in bounding vector-
valued Rademacher series. We now extend this theorem to arbitrary normed ¢ (and the K71’ in the
statement of the next result will be explained following Corollary 3.14). Note that such an extension
result is not immediate as one has to first understand better the notion of “linear functionals” on
¢. This is carried out below; in what follows, ||g|| denotes d(0, g).

Theorem 3.10. Fiz an i.i.d. sequence of Rademacher variables €, ~ Unif{—1,1}. Then there
exists an absolute constant ¢ > 0 such that for all choices of (a) separable abelian normed metric
semigroups ¢, (b) points g, € 4 such that the Rademacher series X := " epgy is almost surely
convergent (e.g. in B(¥)), and (c) scalars t > 0, we have:

w 42
Py (IIX]| > 2B X +6K{5((g0), 1)) < de™"/%, (3.11)

1 " e
P (11 > GELX ] + chial(an)t)) > ce e (312)
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Observe that the results of Talagrand [29] that are cited in [6] also extend to abelian normed
semigroups, as does the observation that opens the proof of the main theorem in [6]:

Proposition 3.13. All separable abelian normed semigroups are “isometric sub-semigroups” of
loo.

Furthermore, the various applications of (the version of) Theorem 3.10 in [6] also hold in abelian
normed semigroups. These include the following “semigroup-valued” precise form of the Khinchin—
Kahane inequality, in a sense bringing us back full circle to Theorem 2.7.

Corollary 3.14 (see [6, Corollary 3]). As above, let X := )" eng, be an almost surely convergent
Rademacher series with all g, in a separable abelian normed metric semigroup 4. Then there is
an absolute constant ¢ > 0 such that

1 w
EE[HXH”]”” <E||IX[ + Ki%((9n), vP) < E[IXIPIYP, ¥ € [1,00).

Let us explain the preceding theorem (and hence its corollary), and in particular, why these
results are not direct applications of the transfer principle in Theorem 3.3. In Theorem 3.10 and
Corollary 3.14, the constant K{’5((gn),t) was used for scalars ¢ > 0. In the original setting of [6],
defining this constant involves Banach space analysis and weakly ¢, sequences. We now extend this
definition to all abelian normed semigroups ¢. For p € [1,00), we say a sequence of points (g, ), in
G is weakly 0, if (g*(gn))n is £y for every g* € 4*, where ¢* denotes the set of additive Lipschitz
real-valued maps on ¢. Note, this differs from the Banach space definition, which would require
running over all functionals in B(¢)* (or the dual space to a larger Banach space), via Theorem 3.3.

Now define for a weakly /5 sequence (g,,) and a scalar sequence (a,) € f3:

Ki2((an),t) .= inf{||(a1,n)|1 +tl|(azn)l|2 : an = a1n + a2n V1, (ajn)n € £ for j =1,2},
K{'5((gn),t) == sup{K12((9"(gn))n,t) 1 g~ €97, [lg"]| < 1}.

Then the key is that the K{’y-value computed using @* exactly matches the Banach space version
that uses B(¢)* (hence the results of [6] extend to abelian normed semigroups), by our next result:

Proposition 3.15. For 4 an abelian normed semigroup, let 4* denote the set of additive Lipschitz
real-valued maps on9. Then G* is a Banach space, which coincides with the dual space construction
if 9 is a Banach space. More generally if 4 is an abelian normed semigroup, then 4* ~ B(94)*.

As this paper focuses on probability inequalities and analysis-related constructions, we defer the
proof of Proposition 3.15 to a standalone appendix on a category-theoretic treatment of normed
modules and their properties, for the interested reader; see Proposition A.7. In particular, as noted
in [6], the assignment t — K{’5((gn),t) is Lipschitz with Lipschitz constant at most

05 ((gn)) == ||S:T|p1 (g™ (gn))ll2
g*lI<

(where ¢g* runs over ¥*), and Theorem 3.10 holds over all abelian normed metric semigroups.

Example 3.16. As additional consequences of our “transfer principle” in Theorem 3.3, the main
results in [21, 22] immediately extend to arbitrary abelian normed semigroups.

3.2. Banach space embeddings. We next return to (the proof of) Theorem 3.3, and discuss it
vis-a-vis the question of embedding a given topological group into a Banach space. The theorem says
that for a metric (semi)group (¢, -, d), the assumption of being (abelian and) normed is sufficient to
embed ¥ into a Banach space. Clearly, the assumption is also necessary. The next result provides
additional equivalent conditions when ¥ is a group, and also relates it to results in the literature.

Definition 3.17. Given J C Z~, a (possibly non-abelian) metric semigroup (¢, d) is J-normed if
d(z0, 21 = nd(z0, 23), Voo e 9,ne J. (3.18)
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Proposition 3.19. Suppose ¥ is a topological group, with a continuous map || - || : 4 — [0, 00)
satisfying: (a) ||lg|| = 0 if and only if g = 1; (b) ||lg7 || = |lgl| for all g € 4; and (c) the triangle
inequality holds: ||gh|| < ||g|| + ||k|| for g,h € 4. Then the following are equivalent:
(1) There exists a Banach space B and a group map : 4 — (B, +) that is an isometric embedding.
(2) ¥ is abelian and d(g,h) := ||g~ h|| is a translation-invariant metric for which 4 is normed.
(3) 4 is {2}-normed and is weakly commutative, i.e., for all g,h € & there exists n = n(g,h) €
Z~q such that (gh)?" = g*"h?".
(4) ¢ is {2}-normed and amenable.

In fact there is a fifth (a priori weaker than (2) or (4), yet) equivalent condition — that ¢ is
{2}-normed without additional restrictions — which we explain in Theorem 3.24.

Proof. That (1) = (2) = (3) is immediate. That (3) or (4) implies (1) follows from [3,
Proposition 4.12] via [7, Corollary 1]. This is a constructive proof, and the formula for the Banach
space in question is discussed later in this subsection. Finally, that (1) = (4) follows since every
abelian group is amenable (see [5, 23, 30] for more on amenable groups). O

In this connection, the following result shows (as a special case) that even without requiring the
semigroup to be abelian, the “normed” property of a translation-invariant metric on a semigroup:

d(zo,zgﬂ) = nd(zo,zg), Vzo €9, n € Zx

already follows from — hence is equivalent to — the “doubling” property of being {2}-normed:
d(z0, 23) = 2d(20, 23) for all 29 € 4. We omit the proof as it is a variant of [7, Lemma 1].

Lemma 3.20. Given a nonempty subset J C Z~q, J # {1}, a metric semigroup ¢ is J-normed if
and only if 9 is Z~o-normed.

We next constructively prove the “transfer principle” above.

Proof of Theorem 38.3. The first point is that every normed metric group is abelian by Theorem 3.24
below (see [24]), and so the second assertion reduces to the first. To show the first assertion, we
will use additive notation throughout this proof as ¢ is abelian. The proof is constructive, and
carried out in stages; however, an outline is in the following equation:

YN =9 — gNU{O} =9 — Gy =7 ®NU{0} gNU{O} — %@ =Q®z Yy — B(g) = g@, (3.21)

where N := Z- . We now explain these steps one by one.

(1) Embed the semigroup into a metric monoid ¢’ via Corollary 2.5. We label %y := ¢ and
Gnugoy = 9’ to denote that &, 9" are “modules” over N,NU {0} respectively.

(2) It is easily shown that %y and hence %y o) is cancellative. Therefore the monoid %y, o)
embeds into its Grothendieck group® % (which is a Z-module) by attaching additive inverses
and quotienting by an equivalence relation. Extend the metric dg, 0y 1O Gy, via: dg,(p —
q,r—s):= A0y (p+s,q+r), for all p,q,7,5 € Gnugoy- Then (47, O‘fNu{o}vd‘fz) is an abelian

metric group and 9y — Yooy < 9z are isometric (hence injective) semigroup/monoid
homomorphisms. ¥ is also normed since for all n € Z and all p, q € 9y 0,

d‘fz (Of/Nu{O} ) n(p - Q)) = d‘fNU{o} (‘n‘% ]n]p) - ’n’dgNu{o} (qvp) = ’n’dgz (O‘fNU{opp - Q)-

(3) Note that %7 is a torsion-free Z-module — i.e., if ng = Oy, for n € Z \ {0} and g € ¥,
then g = Og,. Now define %y = Q ®z ¥z; thus ¥ is a Q-vector space (i.e., a torsion-free
divisible? group), and %, embeds into “o. Moreover for every g € 9 there exists ny € N

1The Grothendieck group of an abelian monoid M is the abelian group Gras of equivalence classes in M x M
under: (a,a’) ~ (b, V') if there exists m € M such that a+b"+m = a’ + b+ m. The element/class [(m,m’)] should be
thought of as m — m/, the operation is coordinatewise addition, the zero is [(m,m)] for any m € M, and the inverse
of [(m,m’)] is [(m’,m)]. If M has the cancellation property then M < Gry.

2These terms — as also tensor products — are defined and studied in standard algebra textbooks, e.g. [17].
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such that ngg € ¢z. Define dg, on %& via:

da, (g, h) == dag, (np(ngg), ng(nph)).

ngnp,

It is not hard to check that dg, is well-defined and induces a “Q-norm” on ¢ that extends
dg, on ¥z. In particular, it induces a translation-invariant metric on ¥y, so that we have
embedded the normed semigroup %y isometrically into a normed Q-vector space.

(4) Define B(¥¢) to be the set of equivalence classes of dg,-Cauchy sequences (i.e., the topological
completion) of ¥y. One shows using algebraic and topological arguments that B(¥) is an
abelian group and %p embeds isometrically into B(%¢). Moreover, if € R and (gy,), is
Cauchy in B(%), then choose any sequence z;,, € Q converging to x, and define x - (g, )n] :=
[(ngn)n]. It is easy to verify that (2,9, )n is also a Cauchy sequence in 4, and the resulting
operation makes B(%) into an R-vector space.

Now define dg(y)([(gn)n]; [(An)n]) = limpy oo dgy (gn, hn) (this exists and is well-defined
by applying topological arguments). It is easily verified that dp() induces a norm on B(%),
making B(¥¢) a complete normed linear space, and proving (3.21).

To conclude the proof, observe that if any of the steps starts with a separable metric space,
then the subsequent constructions also yield separable metric spaces. The final assertion about
extending Bochner integration to ¢ now follows; note the Bochner integral (or expectation) of
¢-valued random variables lives in B(¥¢) and not necessarily in ¢. O

Remark 3.22. If one restricts Theorem 3.3 to groups instead of semigroups, Proposition 3.19
from [3, 7] is related, as it embeds an abelian normed group into some Banach space, via the
“double dual”. To our knowledge, an explicit construction of a minimal Banach space “envelope”
was not recorded to date in the literature. We briefly discuss this and other aspects of our proof:

(1) There was no mention of separability in the proof in [3]. This is useful for applications (see
Section 3.1) and hence is addressed by our proof.

(2) The construction in [3, Proposition 4.12] is that of the “double-dual” B := Homg) 44(¥4,R)*,
i.e., the dual space to the set of bounded/Lipschitz real-valued group maps : 4 — R. Thus, if
¢ is an infinite-dimensional Banach space, then the double-dual construction ¢** is strictly
larger than ¢ — and hence, does not yield the “minimal” Banach space envelope of ¢ for
“most” real Banach spaces — whereas the above proof does. One of the referees mentioned
to us that the construction can be refined to yield the minimal Banach space; however, to
our knowledge this refinement is not written down. This was one reason to write the above
argument in full detail — especially given that our constructive proof is along different lines.

(3) To the best of our knowledge, we could not find references to embedding abelian normed
semigroups. For this a little more work is needed to embed into an abelian normed group
(via the monoid-extension and then its Grothendieck group, as above). This semigroup-
extension also features in several applications (in Section 3.1), hence its proof above.

We end with two further remarks. First, each step in (3.21) is canonical (and optimal), in the
sense that it uses only the given information without any additional structure (and it constructs
the “minimal” larger structure containing the structure at each step). The natural way to encode
this information is via category theory. In other words, every further step/extension in (3.21) is
the smallest possible — hence universal — “enveloping” object in some category. For the interested
reader, we defer these categorical discussions to Appendix A.

Second, given Corollary 2.5, it is natural to ask in the non-abelian situation if every (cancellative)
metric semigroup embeds into a metric group. This question is harder to tackle; see [4, Chapter 1]
for a sufficient condition involving right reversibility.



KHINCHIN-KAHANE, LEVY INEQUALITIES; TRANSFER FROM NORMED GROUPS TO BANACH SPACES 11

3.3. Non-abelian normed groups. We end this section with a geometric question that clarifies
the second assertion in Theorem 3.3: Do non-commutative normed metric groups exist? Or: find a
non-abelian topological group ¢ with a bi-invariant metric d, such that d(1, ¢") = |n|d(1, g) for all
g € 94 and n € Z. To our knowledge (and that of experts including [8, 28] and others), the answer
to this question was not known until recent work [24], whose main result we now describe.

As a possible approach to answering the aforementioned question, a first step is to ask if certain
prototypical examples of non-commutative groups with a bi-invariant metric are normed. This is
now shown to be false for a well-studied example: the free group F» on two generators. Recall, this
is simply the set of words in a,b,a™ ", b~ !, modulo the relations aa ™' =a ta =bb"! =b"1b = 1.

Lemma 3.23. Let Y = F5 and let dy denote the bi-invariant word metric in the generators a®', b*!

and their conjugates. Then (¥4,-,1,dy) is not normed.

Note that we work with dy and not the usual word metric in the four semigroup generators
a*!, bt of 4. For more on the metric dy and related structures, see [2] and the references therein.

Proof. First compute: [a,b]® = aba=! -b~tab-a='b~ta-ba~'b~!. Examining the word lengths, the
right-hand side yields at most 4, while Iy ([a,b]) # 1. Hence (¥, -, 1,dy) is not normed, as

ly([a,b]?) < 4 < 6 < 3ly([a,b]). O

We conclude with a solution to the above question, obtained by the first author in recent joint
work [24] with T. Fritz, S. Gadgil, P. Nielsen, L. Silberman, and T. Tao. It turns out that non-
commutative normed metric groups do not exist! Namely:

Theorem 3.24 ([24]). Given a group ¢4, the following are equivalent:

(1) 4 is a metric group (with a bi-invariant metric) that is {2}-normed (equivalently, normed).
(2) ¢ is abelian and torsion-free.
(3) ¢ is an additive subgroup of (i.e., embeds isometrically and additively into) a Banach space.

This yields a novel characterization — from analysis — of a fundamental class of algebraic objects:
abelian torsion-free groups. Now given Theorem 3.24, many of the above results (e.g. our transfer
principle in Theorem 3.3) are stated for normed metric groups ¢, as a norm on ¢ implies ¥ is
abelian. Note however that this last can fail if “group” is replaced by “semigroup” or even “monoid”,
since non-abelian (free) monoids with norms — i.e., homogeneous length functions — indeed exist;
see [24] for details. Another consequence is that the four assertions in Proposition 3.19 are further
equivalent to an a priori weaker assertion than (2) or (4): namely, that ¢ is merely {2}-normed.

APPENDIX A. CATEGORIES OF NORMED METRIC MODULES

We now construct “dual spaces” to abelian normed metric groups, in order to prove Proposi-
tion 3.15 (see the discussion after Theorem 3.10). This construction is similar — with minor adjust-
ments — for abelian normed metric semigroups and their refinements: (i) semigroups, (ii) monoids,
(iii) groups, (iv) torsion-free divisible groups, (v) real vector spaces, and (vi) Banach spaces. To
study all of these constructions systematically, we use the language of category theory. (For basics
of categories and functors, see [17].) We will show in Proposition A.7 below that “dual space con-
structions” are covariant endofunctors — more generally, so are spaces of linear Lipschitz operators.

Using categories has additional advantages. Recall that the proof of Theorem 3.3 showed that
every abelian normed semigroup (respectively, group) embeds into a smallest abelian normed group
(respectively, Banach space). We now make these statements precise using category theory. Briefly,
we will show in a unified way that the above constructions are instances of “universal objects”, and
provide examples of pairs of adjoint “induction-restriction functors”.

To proceed, we first propose a unifying framework in which to simultaneously study abelian
normed metric semigroups of types (i)—(vi) above: normed metric modules. In the sequel, N = Z~.
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Definition A.1. Suppose a subset S C R is closed under addition and multiplication.

(1) An S-module is defined to be an abelian semigroup (G, +) together with an action map

-1 8 x G — @G, satisfying the following properties for s,s’ € S and g,¢’ € G:*
s (gt+g)=sg+sg, (s+5)g=(s-9)+(s-9), (s8)-g=5-(5-9), 1l-g=gifles

(2) A metric S-module is an S-module (G, +) together with a translation-invariant metric d.
We say (G, +,d) is normed if d(s-g,s-¢') =|s|d(g,¢’) for all s € S and g,¢" € G.

(3) Let € denote the category whose objects are normed metric S-modules G, and morphisms
are S-module maps that are moreover Lipschitz. For each such morphism ¢ : Gg — G'g,
define [|¢o]| to be the smallest constant & > 0 such that [|¢(g)|| < K||g|| for all g € Gs. Also
denote by %' g the full sub-category of all objects in %5 that are complete metric spaces.

Now N-modules are semigroups and (N U {0})-modules are monoids. Using this notation, The-
orem 3.3 discusses the objects in the categories €5 for S = NN U {0},Z,Q, as well as €, the
category of Banach spaces and bounded operators. Note that normed linear spaces (i.e., ¢r) are
missing from Theorem 3.3; however, our next result also produces a similar “universal” normed lin-
ear space containing a(n abelian) normed group. Thus, the constructions in (3.21) possess functorial
properties and therefore are universal in the above categories:

Theorem A.2. Suppose each of S,T,U is either N,NU {0}, or a unital subring of R, with S C T
or S O T. Suppose also that Gg is an object of €s. Now define

Ggs (viewed as an object of 6r), if SO T;
9r(Gg) = | the unique object of €r defined as in (3.21), if S=N,NU{0}, T2 S; (A.3)
T ®5 Gg, fZCSCT.

(1) 97 (Gg) is an object of €s N Ep with the following universal property: given an object G in
s N Er, together with a morphism ¢ : Gg — Gp in €s, ¢ extends via the unique isometric
monomorphism Gs < 9r(Gg) to a unique morphism vp : 9p(Gg) — Gr in ép.

(2) In particular, (9r(Gg),tr) is unique up to a unique isomorphism in 6r.

(3) Given Gg, define 97(Gg) to be the Cauchy completion of 9r(Ggs) (as a metric space).
Then 91(Gs) is an object of €1 and satisfies the same properties as in the previous parts.

(4) Suppose NC S CT CU CR, with S,T,U of the form N,NU {0}, or a unital subring of
R. For all objects Gg in 9s, there exist unique isomorphisms:

G (9r(Gs)) =9 (Gs),  Gu(@r(Gs)) =9u(@r(Gs)) = Gy(Gs).

(5) Given a unital subring S C R, S is dense in R if and only if G5 = 97(Gs) = B(Gg) for
all objects Gs of €s and all subrings S C T C R. (Here, B(Gg) is as in Theorem 3.3.)

For the above reason, if S C T or S 2 T' then we call 97(G's), G1(Gg) the universal envelopes of
Gg in €1 and €1 respectively.* Also observe that B(Gg) is the completion of the smallest normed
linear space containing Gg, for all § O Q and objects Gg in €s.

Proof of Theorem A.2. The proof involves (sometimes standard) category-theoretic arguments, and
is included for the convenience of the reader.

(1) The first part is immediate if S O T'; we now show it assuming that S C T". Given an object
Ggs in €, note 9r(Gg) C B(Gg). This immediately shows ¥r(Gg) is an object of 7. Now
given a morphism ¢ : Gg — G in €, if S = N then first define 17(0y, (qy)) = Oy If
S = NU{0} then define tp(—g) := —t(g) for g € Gg. Finally, if S is a unital subring of

3Note that if 0 € S then G is necessarily a monoid.

4Such “minimal envelopes” are ubiquitous in mathematics; examples include the universal enveloping algebra of
a Lie algebra, the convex hull of a set (in a real vector space), and the o-algebra generated by a set of subsets.
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(2)
(3)

(4)
()

Rand 2 := 377 tj9; € T ®s Gs (with g; € Gg Vi), then define vp(z) := Y1 t;e(g;).
These conditions are necessary to extend ¢ to tp; moreover, it is not hard to show using
Theorem 3.3 that they are also sufficient to uniquely extend ¢ to v7. Also using Theorem 3.3,
one verifies that vp is Lipschitz, with ||cp|| = [|¢]|.
This is a standard categorical consequence of universality.
This is clear if S D T, so say S C T, Gg € €s. Given ¢ : Gg — G with G € €5 N €,
by (1) ¢ extends uniquely to tp : 9r(Gs) — Gp, which in turn extends uniquely to 77 :
4G7(Gs) — Gr by uniform continuity. Now verify 77 is a morphism in €7, with ||77|| = ||cr].
This part is standard from above using universal properties, and is omitted for brevity.
First if S is not dense in R, i.e. S = Z, then choose Gg = Z. Now G5 = Z # R = B(G), as
asserted. Conversely, suppose S is dense in R and Gg is in ¥5. Repeat the construction in
step (4) of the proof of Theorem 3.3, to show that the embedding : Gg < B(Gg) uniquely
extends to an isometric isomorphism : Gis — B(Gs) of Banach spaces.

Finally, given S C T' C R, note that 4r(Gs) =T ®s Gs C R®g Gs C B(Gg). Hence
by universality of completions, 47(Gs) C B(Gg). Moreover, by the previous paragraph
471(Gg) is a Banach space containing G'g. This shows the reverse inclusion. O

Having discussed universality, we now study functoriality. The following result shows that the
assignments ¥s provide examples of induction and restriction functors.

Theorem A.4. Suppose each of S C T is either NN U {0}, or a unital subring of R.

(1)
(2)

(3)

Then 9s : 61 — €5 is a covariant “restriction” (of scalars) functor which is fully faithful
but not essentially surjective. If S is a ring then 9s is faithfully exract.

Moreover, 9r : €s — 1 is a covariant “extension” (of scalars) functor which is faithful
and essentially surjective but not full. If S is a ring, then 9Gr is additive, right-exact, and
left adjoint to Ys.

If S is dense in R, then 9s,%r yield an equivalence of categories : €5 <> €.

In other words, the module-theoretic correspondence involving extension-restriction of scalars
also holds for the categories €g, € s of normed metric modules.

Proof. Assume henceforth that Gg, G'g are objects in €5, and G, G/, are objects in ¢r.

(1)

(3)

It is immediate that 95 : €7 — %5 is a faithful, covariant functor. It is not essentially
surjective because S C T is not a T-module. We now show ¥s is full - in fact we show more
strongly that all S-module maps are in fact T-linear. Note, every S-module map between
objects G, G in 67 gives rise to a unique Z-module map between them. Given such a
map @, we only use the continuity and additivity of ¢ to show that ¢ is in fact T-linear.
Thus, fix g € Gr and consider the function f : ' — G/ given by f(t) := ¢(tg). Clearly f
is continuous and additive, so given a sequence of rationals my/ny — t, we compute:

0 < f(my —tng) = mp f(1) — nef(t) = mre(g) — nrp(tg).

It follows that ¢(tg) = t¢(g), showing that ¢ is in fact T-linear and hence ¥s is full. Finally
if S is a ring, the restriction functor ¥s is easily seen to be faithfully exact (i.e., it takes a
short sequence to a short exact sequence if and only if the short sequence is exact).

That 4r : €5 — 67 is a faithful, covariant functor is trivial. It is also essentially surjective
because G = 91 (9s(Gr)) for all objects Gp in ép. Now fix tg € T'\ S. To show that ¥p
is not full, set Gg = G'g := S and define o7 : 97 (Gs) =T — 9r(GY) =T via: pr(t) = tot.
Then there does not exist a map ¢g : Gg = S — G5 = S such that o7 = 9r(pg). The
assertions in the case when S is a ring are also standard.

This part follows from straightforward verifications using the last part of Theorem A.2. [J
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Remark A.5. The above results continue to hold upon replacing the categories €5, €s by the
larger categories with the same objects, but where the morphisms are allowed to be uniformly
continuous rather than Lipschitz.

We now construct dual spaces, as promised in the discussion following Theorem 3.10 above.
More generally, we will study the structure of the spaces Home,. (47(Gg), Gr) for S C T. We begin
with an elementary observation, which helps define norms of Lipschitz maps.

Lemma A.6. Suppose S is either N,NU{0}, or a unital subring of R. Fiz a morphism ¢ : Gg — Gy
in s, and consider the following assertions:

(1) ¢ is Lipschitz on Gg.

(2) ¢ is (uniformly) continuous.
(3) (If0 € S:) ¢ is continuous at 0.

Then (2),(3) are equivalent and implied by (1). The converse holds if and only if S is dense in R.

Proof. We only show the very last assertion, as the rest is standard. If S = Z then consider Gg = Gy
to be the functions from N to S with finite support. Let {e, : n € N} denote the “standard basis”
of Gg, and define ¢(e,,) := ne,. Then ¢ is continuous but not Lipschitz. Conversely, suppose S is
dense in R, and ||| = co. Then there exist g, € Gg such that ||¢(gn)|| > 2n|g,|| for all n. Choose
sp € (n,2n) such that (s,||gn|)~! € S. Then ||o(h,)| > 1 Vn, where h, := (s,]lgnl]) '9n € Gs.
Since h,, — 0, it follows that ¢ is not continuous at 0. O

Proposition A.7. Suppose S C T are both of the form N;NU {0}, or a unital subring of R, and
Gs € €s,Glr € 6r. Identifying G with 95(GY), the set Homy, (Gg, G) is itself an object of €.
It is moreover an object of €1 (i.e., complete) for all Gg € €s, if and only if G} is complete.

In particular for 7' = R, the above construction yields a Banach space of “linear functionals”,
which we called the dual space G§ above (see Proposition 3.15). More generally, the assignment
Homg, (Gg,—) defines a covariant additive functor : ¥ — ¢r and : €g — €. This result
(together with Lemma A.6) explains why we chose the category %s to have linear morphisms that
were also bounded /Lipschitz, and not merely uniformly continuous.

Proof. We only sketch why if G/, is complete, then so is H := Hom,(Gg, G/ for any fixed G.
Suppose ¢, € H is a Cauchy sequence. Then so is ¢, (g) for any g € Gg, and hence one defines
¢ : Gg — Gl via: ¢(g) := lim, ¢, (g). One checks ¢ is S-linear. Moreover ||p|| < sup, |l¢n| < oo,
so ¢ € H. A standard argument now shows dg (¢n, @) := |¢n — ¢l = 0 as n — oo. O
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