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anomaly that is non-actionable [37], they may no longer perceive
the anomaly as anomalous. In other words, although the anoma-
lous pattern persists, they treat it as normal. However, the shift in
classification could drastically impair the original anomaly detec-
tor’s performance and the guarantee’s usefulness since they are
developed oppositely.

Previous works for incremental anomaly detection span various
applications, for example, network intrusion detection [3, 42], for-
est fire risk prediction [27], airspace operations [9]. However, most
of them do not provide performance guarantees in incremental
settings. Many uncertainty quantification techniques [1] provide a
guarantee. Such techniques often assume a representative calibra-
tion data set of the actual data distribution to derive the guarantee
[19, 20, 40, 41]. Nevertheless, anomalies could be versatile in prac-
tical settings, and the chances are that one calibration set cannot
capture all the anomaly distributions. Furthermore, as people ob-
serve more incidents of a type of anomaly, the definition of the
anomaly may be revised to become normal.

In this work, we propose a framework shown in Figure 1 that
provides a Probably Approximately Correct (PAC)-based guaran-
tee for incremental anomaly detection in IoMT. Our framework
adopts a human-in-the-loop design, which adapts to the user feed-
back on the evolving anomaly categories, i.e., expected and unex-
pected anomalies. With this flexible design, the user can assign
the frequently observed anomalies to a calibration set of expected
anomalies. Besides, they can progressively expand the unexpected
anomaly categories as they discover additional types. As a result,
the anomaly detection accuracy is not hampered, along with a con-
fined performance guarantee on False Alarm Rate (FAR) and Miss
Alarm Rate (MAR). The two error rates are essential for gauging
the anomaly-detecting capability. Miss alarm characterizes missing
an actual anomaly, whereas false alarms cause alarm fatigue [30] if
there are too many of them. Both have undesirable consequences
and, thus, should be minimized for life-critical systems [13] like
IoMT.

In summary, our contributions are as follows:

• Propose an incremental framework for detecting expected
and unexpected anomalies with guarantee in IoMT.

• Improve the classification accuracy and performance guar-
antee on FAR and MAR of the underlying anomaly detector.

• Perform an update frequency analysis to show that the frame-
work requires limited user input.

• Evaluate the framework on synthetic data and an IoMT plat-
form (VitalCore) to validate the effectiveness.

The remainder of this paper is structured as follows. First, we
start with a literature review in Section 2. Then, we elaborate on
the detail of our framework in Section 3 and demonstrate the exper-
imental results of our framework in Section 4. Finally, in Section 5
we discuss the limitation of our framework and conclude the work
in Section 6.

2 RELATED WORK

2.1 Incremental Anomaly Detection

Learning-enabled anomaly detectors in IoT need to evolve con-
tinuously to adapt to operational variations as new patterns are
emerging [17], which is often referred to as incremental anomaly

detection [5]. It has broad applications in different domains, for ex-
ample, network Intrusion Detection Systems (IDSs) [3, 42], system
log analysis [4], forest fire risk prediction [27], airspace operations
[9, 43], and healthcare [24]. Many online algorithms have been
proposed to detect anomalies in ever-changing time series, some
have a tree-based structure like Half Space Tree [36], and some are
cluster-based with GaussianMixture Model (GMM) as the backbone
[6, 12, 43]. However, most algorithms do not provide a performance
guarantee, which is essential for a life-critical system like IoMT.

2.2 PAC Guarantee

Probably Approximately Correct (PAC) guarantees [20, 40] aim
to give a bounded false detection rate for neural networks, based
on two user-specified inputs, namely, confidence parameter 𝛿 and
error parameter 𝜖 . There are two fundamental false detection error
rates in anomaly detection tasks, i.e., FAR and MAR, interchange-
ably called false-negative and false-positive rates. PAC-Wrap [16]
proposes a wrapper around existing anomaly detectors to provide
a rigorous PAC guarantee on FAR and MAR. However, there might
be multiple anomaly types in practice, for example, expected or
unexpected anomalies. Hence, we cannot simply adopt a binary
differentiation of anomaly or normality as in [16]. We seek to con-
sider the evolving nature of anomalies and address the problem by
adopting a more fine-grained classification of anomalies.

2.3 Dataset Shift Problem

There has been abundant literature studying the dataset shift prob-
lem [23], which assumes that the testing data distribution is dif-
ferent from the training data distribution. Some works [28, 33, 34]
provide performance guarantees on a more straightforward dataset
shift problem Ð covariate shift problem. It assumes the training
input points and test input points follow different distributions.
However, the conditional distribution of output values given input
points is unchanged. Researchers use the Importance Weight [35]
to estimate the target distribution from a source distribution and
then perform PAC guarantee [21] on top of the estimation.

There is a subtle difference between our problem and dataset
shift detection. Firstly, training is not demarcated from testing in
our setup since testing instances could be included in the training
set for future performance guarantees. Secondly, we assume that
there is more than one anomaly distribution. Some of the test time
anomalies might follow the same distribution as the training time.

2.4 User-feedback for Recalibration

There are, in general, three ways to perform the recalibration: su-
pervised, semi-supervised, and unsupervised [26, 31, 38, 44]. In
our work, we propose to resort to limited user feedback for an
update, which may be closest to the semi-supervised definition
[11, 18, 25, 32]. A close work [31] also adopt interactive user update
to improve detection accuracy. It differs from ours because we aim
for high accuracy and, more importantly, a guaranteed error rate.
Besides, they leverage two methods to incorporate user updates:
metric learning and the Bayesian method. However, the metric
learning method [31] is impossible with a vast number of data
points. We cannot enumerate all data pairs and instantly compute
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Specifically, in the confidence set 𝐶
𝑇
(𝑥), we only include the 𝑦

with a probability greater than 𝑒−𝑇 :

𝐶
𝑇
(𝑥) = {𝑦 ∈ Y | 𝑓 (𝑦 | 𝑥) ≥ 𝑒−𝑇 }.

We can treat the anomaly detector as a probability forecaster 𝑓 .
Namely, we provide the PAC guarantee to the anomaly prediction

result using the threshold 𝑇 on the anomaly score, computed from
an anomaly detector 𝑓 that forecasts the probability of an instance
being anomalous. Formally, given the dataset (𝑥,𝑦) ∼ D, a calibra-
tion set 𝑍𝑐𝑎𝑙 with𝑚 data points, and 𝜖, 𝛿 ∈ R>0, we obtain a PAC
confidence set 𝐶

𝑇
(𝑥) for 𝑦, satisfying the guarantee:

P𝑍cal ∼D𝑚

[
P(𝑥,𝑦)∼D

(
𝑦 ∈ 𝐶

𝑇
(𝑥)

)
≥ 1 − 𝜖

]
≥ 1 − 𝛿. (5)

One can always replace the P(𝑥,𝑦)∼D

(
𝑦 ∈ 𝐶

𝑇
(𝑥)

)
with other cri-

teria and compute the threshold accordingly. It will then guarantee
the corresponding accuracy or error metrics, and we will elaborate
on this in Section 3.3.

3.3 Two-sided Guarantee

We train an anomaly detector 𝑓 on a training set 𝑍train consisting
of solely normal instances. We maintain labelled calibration sets
𝑍cal = {𝑍𝑛, 𝑍𝑎1 , 𝑍𝑎2 , . . . , 𝑍𝑎𝑘 }, where 𝑍𝑛 means a calibration set
for normal data, and 𝑍𝑎𝑖 , 𝑖 = 1, . . . , 𝑘 are the calibration sets for
different anomaly types.

To guarantee both the MAR and FAR, the two standard error
rates for alarm-issuing applications, we replace the inner part of
the formula as in PAC-Wrap [16]. Expressly, on the calibration set
consisting of𝑚 normal data points 𝑍n, we compute the threshold

𝑇far to guarantee FAR:

P𝑍n∼D
𝑚
n

[
P(𝑥,𝑦)∼Dn

(𝑦 = 1 | 𝑦 = 0) ≤ 𝜖
]
≥ 1 − 𝛿. (6)

Similarly, on the anomalous calibration set 𝑍𝑎𝑖 with 𝑚 data

points, we compute the threshold 𝑇𝑎𝑖
mar to guarantee MAR on each

anomaly type:

P𝑍𝑎𝑖
∼D𝑚

𝑎𝑖

[
P(𝑥,𝑦)∼D𝑎𝑖

(𝑦 = 0 | 𝑦 = 1) ≤ 𝜖
]
≥ 1 − 𝛿. (7)

According to [20], the thresholds 𝑇far and 𝑇
𝑎𝑖
mar are the solution

to Equation (6) and (7). In a high level, it bounds the MAR and
FAR below a calibration loss function 𝛼 (𝑚, 𝜖, 𝛿), which enforces
the 𝜖-error and 𝛿-confidence constraint.

Then, we let 𝑇mar be the threshold from the closest anomaly

calibration set. Together with the threshold 𝑇far from the normal
calibration set, we can output a guaranteed prediction. Typically, the

threshold 𝑇mar should lay above 𝑇far since the former is calculated
from anomalous data that have higher anomaly scores. However,
the reverse scenario may occur when the anomalies cannot be easily
distinguished from the normal data. We can incrementally relax
the 𝜖 constraint or the 𝛿 constraint to allow for a more considerable
error margin or lower the confidence until 𝑇mar is above 𝑇far.

Using the two thresholds together, we guide our decision by

declaring anything above the 𝑇mar to be an anomaly and anything

below 𝑇far to be normal. Formally, using the two thresholds, we

guide our decision for determining anomaly as follows:

𝑦 =




1 𝑓 (𝑥) ≥ 𝑇mar

{0, 1} 𝑇far < 𝑓 (𝑥) < 𝑇mar

0 𝑓 (𝑥) ≤ 𝑇far

. (8)

Following this rule, both MAR and FAR will be guaranteed for the
anomaly prediction result.

If the anomaly score falls in between the two thresholds, we
abstain from making predictions and resort to user feedback in
this instance. Ideally, there should not be many instances with an
anomaly score between the two thresholds, and the region between
the two thresholds is referred to as uncertainty region. In Experiment
4.6, we conducted an ablation study to inspect the relationship
between the fraction of data points that fall in the uncertainty
region and the two user-specified parameters 𝜖 and 𝛿 . Then, if the

user demands a concrete decision and 𝑇mar is above 𝑇far, we can
use the mean value of the two thresholds as the final threshold to
guide our decision, while still maintaining the two-sided guarantee
according to [16].

3.4 Fine-grained Anomaly Calibration Sets

As we discussed earlier, the real-world anomaly distribution may
be evolving; if we apply a static classification of anomalies, the
user would provide the imprecise classification. As a result, the
effectiveness of the guarantee we can provide will be hamstrung.
An illustrating example is as follows.

For the IoMT we monitor using VitalCore, the maintenance
would suspend the system and trigger an anomalous pattern of
disconnection, which is observed as a spike in time interval be-
tween two consecutive messages. The pattern is very different from
normal patterns, which have a consistent time interval of around
60 seconds between two messages. Hence, the maintenance is pre-
dicted as an anomaly by the anomaly detector. Since we do not
have the up-to-date maintenance schedule, we can not remove the
maintenance data. Besides, the technicians want to keep the main-
tenance data to confirm that the maintenance happens as expected.
We prompt the user to decide on the category for the maintenance
data. Initially, we apply a static classification of anomalies, main-
taining a single anomaly calibration set and a normal calibration set.
After seeing some maintenance instances, the user regards them
as expected and prefers not to be bothered by the alerts on such
events. As a result, the user assigns maintenance instances to the
normal calibration instead of the anomalous one. However, this
assignment contaminates the normal training and calibration set
by mixing different data distributions, disabling us from providing
a high classification accuracy and a meaningful guarantee, as we
show in Experiment 4.2 and Experiment 4.3.

We can avoid the trivial guarantee by modifying the original
classification criteria to adapt to the change. In other words, instead
of predicting an instance to be either anomaly or a normal instance,
we incorporate the user’s perception and create a new class of
anomaly Ð expected anomaly. Although the users are not directly
involved in calibration process, they are prompted to provide label-
ing on anomalies and uncertain examples. For anomalies caused by
maintenance, we include them in the newly created calibration set
for the expected anomaly. The adjustment in classification criteria
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𝜖 . To evaluate our framework more straightforwardly, we report
in Experiment 4.5 the relationship between update frequency and
final accuracy of the confidence set, which ideally should have a
similar pattern to that of the 𝛼 .

3.6 Implementation

Two computations are involved in providing the guarantee: the
threshold computation on calibration sets and the inference on
the test instance. The testing inference is a binary operation, i.e.,
comparing the anomaly score of the instance against the thresholds.
It takes around the granularity of 10−5𝑠 on most devices, which
is undoubtedly feasible for practical deployment. The focus is on
capping the size of the calibration set to compute the PAC threshold
efficiently.

The computation complexity of PAC is 𝑂 (𝑚), i.e., it scales lin-
early with the calibration set size, as we will show in Experiment
4.5. We obtain smaller calibration sets as a side benefit using fine-
grained calibration sets. Besides, as we explicate the decreasing
marginal effect of calibration set size in Section 3.5, the PAC guar-
antee does not necessitate unreasonably large data size. Users may
shorten the computation time for calculating the threshold to suit
their needs, as long as a minimum size of:

𝑚 =
log𝛿

log(1 − 𝜖)

is kept for the calibration set size. This is as little as 𝑚 = 59 for
𝜖 = 𝛿 = 0.05.

We implement the our frameworkwith a record pool to reflect the

update frequency 𝐹 . For every 1
𝐹 records accumulated in the pool,

an alert is issued to the user and requests for feedback. The user
can choose to provide feedback to one or multiple of the records.
The ones with feedback are added to the corresponding calibration
sets. The description of our framework is in Algorithm 1.

Algorithm 1 PAC guarantee for evolving data

Input: anomaly detector 𝑓 , instance 𝑥 , error level 𝜖 , confidence
level 𝛿 , the user update frequency 𝐹 .
Output: anomaly prediction 𝑦

Compute 𝑇far according to Equation (3), (4) and (6).

Compute the 𝑇mar from the closest anomaly calibration set ac-
cording to Equation (3), (4), (7), and (9).
𝑦 is determined according to Equation (8).
count = 0, pool = [ ].
if 𝑦 ≠ 0 then
pool.append(x).
count = count + 1.
if count = 1

𝐹 then

Issue an alert to the user for feedback.
if user provide feedback 𝑦′ = 𝑖 (or unexpected normal
𝑦′ = 0) then

Add 𝑥 ′ to 𝑍𝑎𝑖 (or 𝑍𝑛).
end if

count = 0, pool = [ ].
end if

end if

return 𝑦

4 EXPERIMENTAL RESULTS

We identified the below questions to validate the effectiveness of
our framework:

• Q1 Detector Improvement: how can the underlying anom-
aly detectors benefit from the incremental anomaly types?

• Q2 Adaptive recalibration: what is the performance on
the synthetic and real-world dataset using the adaptive PAC
calibration sets?

• Q3 Update frequency: Howmany alerts does the user need
to provide a label for real scenarios?

• Q4 Time Complexity: How is the computation time (in
wall clock seconds) scale with the number of anomaly types
and calibration set size?

• Q5 Ablation Study: How is 𝜖, 𝛿 going to affect the size of
the uncertainty region?

4.1 Experimental Setup

4.1.1 Dataset. Synthetic data set: We generate the synthetic
dataset with a total of 15000 data points from three 6-dimensional
normal distributions 𝑁1, 𝑁2, 𝑁3 with the same covariance matrix
but with different means 𝜇1, 𝜇2, 𝜇3 ∈ R6. Let 𝐼𝑝 be the 𝑝-dimensional

identity matrix with 𝑝 = 6, and 𝜎2 be a uniformly random value
drawn over [1, 100]. Python sklearn.datasets.make_classification
library is used. We treat 𝑁1 as the normal distribution, 𝑁2 as ex-
pected anomalous distribution and 𝑁3 as unexpected anomalous
distribution. We have:

𝑋normal ∼ N(𝜇1, 𝜎
2𝐼𝑝 )

𝑋expected anomalous ∼ N(𝜇2, 𝜎
2𝐼𝑝 )

𝑋unexpected anomalous ∼ N(𝜇3, 𝜎
2𝐼𝑝 ) .

VitalCore dataset: We experiment on a 6-dimensional real-
world data set that monitors the IoMT usage patterns collected on
the VitalCore platform. It consists of over 3000 medical devices, and
we record their connection status at the granularity of one minute.
We extract six features from the records: month, day, hour, day of
the week, whether in a business hour, and the interval between two
consecutive records. The data we collected has three usage patterns:
the connected pattern with a one-minute interval (normal), the
regular maintenance pattern (expected anomaly), and the network
outage pattern (unexpected anomaly). These patterns are obtained
with the labels provided by the technicians. We look at the time
series with a sliding window of 30 minutes upon getting the data,
and the count for the number of sliding window sequences in each
category is:

• Normal: 418523
• Expected anomaly: 512
• unexpected anomaly: 4257

Wemay vary the anomaly ratio in the data to study the effectiveness
of our guarantee.

4.1.2 Anomaly Detector. We employ an anomaly detector to calcu-
late a 1-dimensional anomaly score for computing the PAC thresh-
olds. On the synthetic data, we used a simple anomaly detector
One-class Support Vector Machine [29]. On the VitalCore data, we
adapt from an AutoEncoder-based anomaly detector [39], which
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has the best empirical prediction accuracy on VitalCore data [8].
Notice that the choice of anomaly detector is not the focus of our
work since our framework is model-agnostic. It provides a two-
sided guarantee for virtually any existing anomaly detector that
can compute the anomaly score.

4.1.3 Metrics. We check whether the estimated FAR and MAR
defined in Equation (1) and (2) are below the specified 𝜖 constraint.
Since anomaly detection is a binary classification problem, we con-
sider all anomaly classes as one and the normality as zero. We
conduct 10 Monte Carlo trials for all experiments and report the
averaged result with statistical significance computed at 95% confi-
dence level.

In Experiment 4.2, we report the Area Under the Receiver Op-
erating Characteristic Curve (ROCAUC) and the Precision-Recall
Area Under Curve (PRAUC) Score. The ROC curve is the plot of
the False Positive Rate (FPR) (in the x-axis) versus the True Positive
Rate (in the y-axis) across all thresholds. ROCAUC computes the
Area under the ROC curve, a standard metric for comparing bi-
nary classifier models directly. However, ROC curves may provide
an excessively optimistic view of the performance for imbalanced
binary classification; researchers also refer to the PRAUC for a
more comprehensive comparison. A Precision-Recall curve (or PR
Curve) is a plot of the recall (in the x-axis) and the precision (in the
y-axis) for different probability thresholds. The PR curve focuses
on the minority class, making it an effective diagnostic for imbal-
anced binary classification models like anomaly detectors. Similarly,
PRAUC summarizes the PR curve with a range of threshold values
as a single score.

4.1.4 Configuration Details. Our framework is implemented using
PyTorch [22]. All experiments, including timings, were run with 4
Nvidia 2080Ti GPU, 80 vCPUs, a processor Intel(R) Xeon(R) Gold
6148 @ 2.4 GHz and 768GiB of RAM.

4.1.5 Baseline. An alternative way to our way of updating the
calibration set is using a Bayesian approach to update the posterior
as in [31]. We could adjust the probability of an instance belonging
to each anomaly type as we receive user feedback. Let 𝑃 (𝐴 | 𝐵)

be the posterior probability we want to update, where 𝐴 denotes
a data point as an anomaly, and 𝐵 denotes that it is predicted as
normal. Then, we follow the setup in [31] and update the probability
𝑝 = 𝑃 (𝐴) whenever we receive an update from the user. Besides,
we uniformly decide the environment complexity parameter 𝑞 =

𝑃 (𝐵 | 𝐴) = 1/3. The posterior probability 𝑝 is updated as follows:

𝑝 =
𝑃 (𝐵 | 𝐴)𝑃 (𝐴)

𝑃 (𝐵)
=

𝑞𝑝

1 − 𝑝 (1 − 𝑞)

In other words, as we receive more normal feedback from the
user, we decrease the posterior probability of an instance being an
anomaly. We conduct the update for the posterior of the normal
whenever it is an anomaly update, whether expected or unexpected.
Besides, we normalize the probability with a softmax function after
each update to ensure it always remains in the [0, 1] range.

4.2 Q1 Detector Improvement

The classification accuracy of the anomaly detectors improves as
they receive incremental anomaly categorization. We illustrate this

by comparing the ROCAUC and PRAUC performance of the anom-
aly detectors with and without fine-grained anomaly distinction.
We first train an anomaly detector on a training set of 5000 data
points. The expected anomaly is considered normal if we have a
single anomaly type. Only unexpected anomalies are considered
anomalies. On the other hand, if we have two anomaly types, we
distinguish expected anomaly from normality and train with only
normal data. Specifically, on synthetic data, we have:

• Single anomaly type: the training set contains 2500 data
points from 𝑁1 and 2500 data points from 𝑁2.

• Two anomaly types: the training set contains 5000 data
points from 𝑁1.

On VitalCore data, we have:

• Single anomaly type: the training set contains 2500 data
points with the normal connected pattern and 2500 data
points with the regular maintenance pattern.

• Two anomaly types: the training set contains 5000 data
points from the normal connected pattern.

On the testing set with 5000 data points, we randomly shuffle all
data points from the three distributions and evaluate the ROCAUC
and PRAUC.

Using a single anomaly type categorization hurts the perfor-
mance of the anomaly detector. An anomaly detector usually learns
a homogeneous normal pattern. It classifies any data points that
deviate from the pattern as an anomaly. The łcontaminatedž nor-
mal category confounds the anomaly detector with heterogeneous
patterns. The detection performance is shown in Figure 3a, 3b for
synthetic data and Figure 3c, 3d for VitalCore data. To validate
the effect of contamination, we experiment with different anomaly
ratios 𝑎. We present the original anomaly detector performance
with the blue lines labeled łoriginal" and the one with incremental
anomaly categorization using the red lines labeled łincrementalž.

As shown in Figure 3, incremental anomaly detectors have higher
ROCAUC and PRAUC. It indicates that the detection performance
improves with the fine-grained classification of expected anom-
alies. On the synthetic data, we find the PRAUC of the original
anomaly detector is close to 0.5. Therefore, mixing the expected
anomaly with normal data would significantly impact the classifi-
cation performance. The gap in the original ROCAUC and PRAUC
reveals the imbalanced data problem. Even though we have a high
ROCAUC (close to 1.0) with a small anomaly ratio, the PRAUC
is low (less than 0.5). Hence, we should consider both metrics to
evaluate the anomaly detection performance. As a result, adopting
the fine-grained distinction would improve the PRAUC by 0.52 and
the ROCAUC by 0.06 on average across different anomaly ratios.

On the VitalCore data, the PRAUC increases by 0.35, and the
ROCAUC increases by 0.01 on average. In addition, we can see
that the PRAUC falls below 0.5 when the anomaly ratio is smaller
than 5%, indicating that the anomaly detector performs no better
than random guessing on anomalies. However, a minor anomaly
ratio is usually the case in reality. Fortunately, our framework can
significantly improve the anomaly detector performance to have an
average PRAUC greater than 0.65, even with a minuscule anomaly
ratio like 0.1%.

Moreover, the PRAUC improvement is not as significant as the
synthetic data when we have a large anomaly ratio above 5%. It
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𝑎 𝜖 MAR FAR 𝑈0 𝑈

0.1% 0.02 0.0 ± 0.0 0.0015 ± 0.0 0.0191 ± 0.0007 0.0191 ± 0.0007
0.5% 0.02 0.0 ± 0.0 0.0062 ± 0.0001 0.0134 ± 0.0006 0.0134 ± 0.0006
1% 0.02 0.0 ± 0.0 0.0123 ± 0.0001 0.0057 ± 0.0007 0.0057 ± 0.0007
5% 0.22 0.1297 ± 0.0025 0.2066 ± 0.0003 0.2291 ± 0.0004 0.0128 ± 0.0004
10% 0.42 0.2897 ± 0.0037 0.3409 ± 0.0007 0.4004 ± 0.0005 0.073 ± 0.0013
15% 0.52 0.3781 ± 0.0021 0.4239 ± 0.0009 0.5265 ± 0.0005 0.1464 ± 0.0011
20% 0.52 0.4371 ± 0.0027 0.4826 ± 0.0012 0.6234 ± 0.0006 0.0743 ± 0.0025
50% 0.62 0.6039 ± 0.0011 0.5921 ± 0.0009 0.8935 ± 0.0007 0.0359 ± 0.0025

Table 1: Single-anomaly-type calibration set for synthetic data.

𝑎 𝜖 MARpac MARbayes FARpac FARbayes 𝑈0 𝑈

0.1% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0004 ± 0.0 0.0176 ± 0.0004 0.0176 ± 0.0004
0.5% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0004 ± 0.0 0.0182 ± 0.0005 0.0182 ± 0.0005
1% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0004 ± 0.0 0.0171 ± 0.0006 0.0171 ± 0.0006
2% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0005 ± 0.0 0.0183 ± 0.0003 0.0183 ± 0.0003
5% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0007 ± 0.0 0.0171 ± 0.0004 0.0171 ± 0.0004
10% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0006 ± 0.0 0.0176 ± 0.0004 0.0176 ± 0.0004
15% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0001 ± 0.0 0.0163 ± 0.0004 0.0163 ± 0.0004
20% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0002 ± 0.0 0.0167 ± 0.0002 0.0167 ± 0.0002
50% 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0001 ± 0.0 0.0136 ± 0.0002 0.0136 ± 0.0002

Table 2: Two-anomaly-type calibration sets for synthetic data, compared with the Bayesian approach. MARpac and FARpac

denotes theMAR and FAR using the our update approach. MARbayes and FARbayes denotes theMAR and FAR using the Bayesian

approach.

The Bayesian approach, which is shown in the MARbayes and
FARpac columns of Table 2, also meets the initial 𝜖 = 0.02 guarantee.
However, our framework has a lower FAR and a comparable MAR.

4.3.2 VitalCore data. On VitalCore data, we follow the same train-
ing, calibrating, and testing procedure and data set size as the one on
synthetic data. Furthermore, we observe a similar result for contam-
inating the normal calibration set with the expected anomalies. The
results are shown in Table 3, 4, and Figure 5. Using two-anomaly-
type calibration sets separates the expected anomaly from normal.
It enables us to have a clean normal score distribution, as shown
in Figure 5b. As a result, we have a more precise guarantee based
on column 𝜖 of Table 3 and Table 4, i.e., from 0.12 to 0.09. However,
the improvement is not as significant as in the synthetic data for
a similar reason as we discussed in Experiment 4.2. Despite this,
it is still advantageous to use the fine-grained calibration sets for
tight control of both MAR and FAR. The uncertainty region𝑈0 also
expands as we increase the anomaly ratio, mitigated as we relax
the error constraint, as shown in column𝑈 .

The result for using the Bayesian approach on VitalCore data is
shown in column MARbayes and FARbayes of Table 4. It manifests
the benefit of having a guarantee for error rates. Although the
Bayesian method generates a smaller MAR than ours, it has FAR of
around 40%, violating the 𝜖 = 0.09 constraint on FAR. The high FAR
would lead to the alarm fatigue phenomenon among clinicians. On
the other hand, our framework ensures that both FAR and MAR are
below the 𝜖 = 0.09 constraint, which is shown in columns MARpac
and FARpac of Table 4.

4.4 Q3 Update frequency

To free the user from continual labeling of the alert generated, we
demonstrate that our framework does not require a high update
frequency (e.g., labeling every alert). In addition, it would be suffi-
cient for the user to label at a frequency that gives a high accuracy
close to the convergence accuracy.

To validate our theoretical analysis on an actual application, we
experiment with the VitalCore data from April to October 2022.
During these six months, the platform generates 146 alerts for 22
servers across ten hospitals. The technicians provide labels for 130
unexpected anomalies.We begin with an initial calibration set of the
size𝑚0 = 2500, and 𝜖 = 𝛿 = 0.05. Then, we add labeled instances to
the calibration set. During expanding calibration sets, we vary the
update frequency to study its effect on accuracy. Then, we evaluate
the resultant accuracy on the testing set; we plot around it with a
95% confidence interval.

The result in Figure 6 confirms our theoretical analysis. As the
update frequency reaches approximately 𝐹 ∗ = 0.27, equivalent to 35
alerts in real life, the accuracy stays close to perfect accuracy. Hence,
there is no incentive to increase the update frequency further and
provide labels to all 146 alerts. The update frequency suggests 35
anomaly labels over six months, which is approximately one label
input for the anomaly per week. Moreover, the time needed to
converge to a high accuracy depends on the user-specified error
and confidence level. The higher the level (i.e., more relaxed), the
faster we can gather enough feedback from the user and guarantee
accurate performance.

335



IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Xiayan Ji, Hyonyoung Choi, Oleg Sokolsky, and Insup Lee

𝑎 𝜖 MAR FAR 𝑈0 𝑈

0.1% 0.12 0.0464 ± 0.0312 0.0629 ± 0.0213 0.1121 ± 0.0636 0.0658 ± 0.022
0.5% 0.12 0.053 ± 0.0301 0.0604 ± 0.0184 0.1279 ± 0.0799 0.0699 ± 0.0146
1% 0.12 0.0533 ± 0.0313 0.0566 ± 0.0164 0.1177 ± 0.0566 0.0776 ± 0.0126
2% 0.12 0.0468 ± 0.0236 0.0577 ± 0.0176 0.1126 ± 0.071 0.0735 ± 0.0144
5% 0.12 0.0456 ± 0.0237 0.0598 ± 0.0191 0.1458 ± 0.0792 0.0663 ± 0.0184
10% 0.12 0.0498 ± 0.0246 0.0596 ± 0.0189 0.1302 ± 0.0678 0.0737 ± 0.0186
15% 0.12 0.051 ± 0.0263 0.06 ± 0.0187 0.127 ± 0.0552 0.0756 ± 0.0173
20% 0.12 0.0397 ± 0.0209 0.0641 ± 0.0209 0.1492 ± 0.0617 0.0691 ± 0.0197
50% 0.12 0.0579 ± 0.0307 0.0552 ± 0.0159 0.2221 ± 0.0563 0.0908 ± 0.014

Table 3: Single-anomaly-type calibration set with VitalCore data.

𝑎 𝜖 MARpac MARbayes FARpac FARbayes 𝑈0 𝑈

0.1% 0.09 0.0504 ± 0.0278 0.0 ± 0.0 0.0419 ± 0.0225 0.4051 ± 0.0 0.0942 ± 0.0574 0.064 ± 0.0274
0.5% 0.09 0.0398 ± 0.0213 0.0 ± 0.0 0.0465 ± 0.0259 0.4040 ± 0.0 0.1348 ± 0.0892 0.0591 ± 0.0269
1% 0.09 0.0432 ± 0.0219 0.0 ± 0.0 0.0419 ± 0.0233 0.4060 ± 0.0 0.1057 ± 0.0708 0.0636 ± 0.0267
2% 0.09 0.0416 ± 0.0219 0.0 ± 0.0 0.044 ± 0.0244 0.4060 ± 0.0 0.0973 ± 0.0726 0.0614 ± 0.0268
5% 0.09 0.0387 ± 0.0204 0.0 ± 0.0 0.0485 ± 0.0283 0.4048 ± 0.0 0.1395 ± 0.0948 0.0554 ± 0.0291
10% 0.08 0.0361 ± 0.0193 0.0 ± 0.0 0.0439 ± 0.0245 0.4060 ± 0.0 0.1074 ± 0.076 0.0491 ± 0.0256
15% 0.09 0.0422 ± 0.0222 0.0 ± 0.0 0.0422 ± 0.0239 0.4039 ± 0.0 0.1283 ± 0.0861 0.0632 ± 0.0266
20% 0.09 0.0453 ± 0.0238 0.0 ± 0.0 0.0405 ± 0.0223 0.4070 ± 0.0 0.0928 ± 0.0626 0.0636 ± 0.027
50% 0.09 0.0396 ± 0.0221 0.0 ± 0.0 0.0420 ± 0.0228 0.4056 ± 0.0 0.0918 ± 0.0614 0.0597 ± 0.024

Table 4: Two-anomaly-type calibration set with VitalCore data, compared with the Bayesian approach. MARpac and FARpac

denotes theMAR and FAR using the our update approach. MARbayes and FARbayes denotes theMAR and FAR using the Bayesian

approach.

4.5 Q4 Computation Time

In this experiment, we study the scalability of our framework with
different calibration set sizes and anomaly types. The experiment
of varying anomaly types considers the potential distribution shift
in the future, where the unexpected anomalies further evolve into
more anomaly sub-categories. We recorded the time needed to
calculate the thresholds on the calibration set (calibration) as well
as the inference time during testing (test). Specifically, we change
the calibration set size and number of anomaly sub-types to see
how our framework scales with them.

We first describe how we generate the data for Table 5 and Table
6. To generate Table 5, we vary the calibration set size from 2000
to 20000, with anomaly ratio 𝑎 = 0.05. For Table 6, we generate
from one to ten unexpected anomaly sub-types. Specifically, we
sample data from different normal distributions with distinct means
𝜇2, 𝜇3, . . . , 𝜇11. Meanwhile, we fix the calibration size to be 10000 to
have sufficient instances for each anomaly type. In Table 6, we start
with two anomaly types in the first row (expected and unexpected)
and then add one more unexpected sub-type for the next row, and
so on.

In Table 5 and Table 6, we can see that the time needed to com-
pute the threshold scales almost linearly with calibration size and
the number of anomaly types. The inference time for each instance
takes around 10−5 seconds, making it feasible for real-time appli-
cations. As we increase the calibration set size, we expect the test
to be relatively constant. However, the test time also increases, as

size calibration test

2000 0.8858 ± 0.0104 7.2519 × 10−6 ± 9.0409 × 10−8

3000 1.3554 ± 0.0192 7.2484 × 10−6 ± 8.9195 × 10−8

5000 2.6700 ± 0.0297 9.6435 × 10−6 ± 6.8809 × 10−7

10000 5.0126 ± 0.0523 1.0513 × 10−5 ± 8.6625 × 10−7

15000 7.2046 ± 0.0247 1.0234 × 10−5 ± 9.4843 × 10−7

20000 10.1308 ± 0.2232 1.0529 × 10−5 ± 8.5205 × 10−7

Table 5: Calibration and test time with different calibration

set size.

shown in column test of Table 5. It may be because we need more
time to compute the centroid of a larger calibration set.

Furthermore, since the PAC threshold computations of different
anomaly types are independent, we can distribute the workloads to
several machines to curtail the linear growth. The result is shown
in column parallel of Table 6. However, the benefit of parallelization
is not very obvious when we have less then nine anomaly types
due to the computation overhead.

4.6 Q5 Ablation Study

Figure 7 shows the mean uncertainty region with different values
of user-specified 𝜖 and 𝛿 . It is computed on VitalCore data with its
original anomaly ratio 𝑎 = 0.05, and we perform no recalibration.
The uncertainty region increases as we impose a more stringent
requirement on error and confidence levels, revealing a trade-off
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5 DISCUSSION

One obvious concern regarding the feasibility of our framework
is prompting the user for feedback. The usefulness of our frame-
work will naturally be challenged if it needs laborious user input.
However, in experiments on the VitalCore platform in real scenar-
ios, the technicians are satisfied with providing at least one label
for each anomaly type weekly. The frequency sustains the anom-
aly detection performance and obtains a minimum performance
guarantee.

The trade-off between the user input and the tightness of the
guarantee is that the PAC guarantee is asymptotic. As we obtain
more data points, we are more certain about the underlying data
distribution and derive a more confined guarantee. Therefore, it is
up to the user to determine the level of guarantee they desire after
considering the effort of providing feedback.

In addition, although we assume the normal data distribution to
be relatively stable, one should continuously retrain the anomaly
detector with normal data to ensure it is up-to-date. Hence, it would
be beneficial if there are also feedback on normal data so as to
characterize the distribution. However, we do not assume to obtain
them in an online manner. If the normal data distribution shifts,
the update frequency should be similar to that of the anomalies.
We expect a performance enhancement when feedback on normal
data becomes available.

6 CONCLUSION

We have designed a general framework to guarantee accurate per-
formance for incremental anomaly detection in IoMT. We propose
to interactively incorporate the user’s judgment of evolving anom-
aly types to construct fine-grained anomaly calibration sets, on
which we compute the PAC thresholds. We provide a two-sided
guarantee on FAR and MAR based on the thresholds. Besides, our
framework requires limited user input (weekly labels per class).
As a side benefit, the smaller calibration size reduces the com-
putation time, allowing for faster computation. Our framework
has high accuracy and provides a theoretical guarantee for detect-
ing evolving anomalies on synthetic and VitalCore datasets. Our
method can broadly apply to ensure reliability in IoT, for example,
network intrusion detection systems (IDS), industrial plants, and
autonomous systems. As the next step, we look forward to con-
ducting a user study to evaluate the level of comfort among the
technicians concerning the frequency of updates. Besides, we seek
to provide anomaly explanations for the predicted outcomes.
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