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ABSTRACT

The Internet of Medical Things (IoMT), aided by learning-enabled
components, is becoming increasingly important in health moni-
toring. However, the IoMT-based system must be highly reliable
since it directly interacts with the patients. One critical function
for facilitating reliable IoMT is anomaly detection, which involves
sending alerts when a medical device’s usage pattern deviates from
normal behavior. Due to the safety-critical nature of IoMT, the
anomaly detectors are expected to have consistently high accuracy
and low error, ideally being bounded with a guarantee. Besides,
since the IToMT-based system is non-stationary, the anomaly detec-
tor and the performance guarantee should adapt to the evolving
data distributions. To tackle these challenges, we propose a frame-
work for incremental anomaly detection in IoMT with a Probably
Approximately Correct (PAC)-based two-sided guarantee, guided
by a human-in-the-loop design to accommodate shifts in anomaly
distributions. As a result, our framework can improve detection
performance and provide a tight guarantee on False Alarm Rate
(FAR) and Miss Alarm Rate (MAR). We demonstrate the effective-
ness of our design using synthetic data and the real-world IoMT
monitoring platform VitalCore.
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1 INTRODUCTION

Internet of Medical Things (IoMT) is formed with medical devices,
embedded software, network capabilities, and physical dynamics
of the patient body [15]. Closely monitoring the physiological in-
formation of patients, IoMT provides significant benefits for the
well-being of patients by increasing the quality of life and cutting
medical expenses [2]. With the aging population and increasing
number of patients with chronic diseases, we witness an enormous
need for IoMT. Since IoMT interacts with the patients directly, the
medical community imposes rigorous requirements for its usage.
Specifically, IoMT-based systems must be reliable. It should func-
tion as expected at all times and not be prone to unexpected failure
under normal operating conditions. Besides, the clinicians man-
date the reliability of every system component to guarantee the
correctness of collected information for diagnostic functions [10].

Therefore, anomaly detection is essential for the reliability of
the IoMT-based system. An anomaly detector is tasked with raising
alarms when an observation deviates from the normal pattern. For
it to be helpful, the classification accuracy should be high, and the
error rates should be low [12]. Nevertheless, for a safety-critical sys-
tem like IoMT, more than average performance is required. There
may still be a situation when the error rates suddenly spike, re-
sulting in potentially hazardous patient outcomes. Therefore, a
guarantee of the upper bound on the error rates should be in place
to assure the system’s reliability. Furthermore, for anomaly detec-
tion in IoMT, the normal and anomalous patterns evolve dynam-
ically due to the change in usage condition, for example, patient
behavioral variation and operational fluctuation [7]. Hence, anom-
aly detectors in IoMT-based systems should incrementally perform
classification with high accuracy and tight guarantee.

We focus on addressing anomaly detection problems in IoMT
with evolving usage patterns. For example, as medical technicians
encounter more occurrences of regular maintenance, a type of
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anomaly that is non-actionable [37], they may no longer perceive
the anomaly as anomalous. In other words, although the anoma-
lous pattern persists, they treat it as normal. However, the shift in
classification could drastically impair the original anomaly detec-
tor’s performance and the guarantee’s usefulness since they are
developed oppositely.

Previous works for incremental anomaly detection span various
applications, for example, network intrusion detection [3, 42], for-
est fire risk prediction [27], airspace operations [9]. However, most
of them do not provide performance guarantees in incremental
settings. Many uncertainty quantification techniques [1] provide a
guarantee. Such techniques often assume a representative calibra-
tion data set of the actual data distribution to derive the guarantee
[19, 20, 40, 41]. Nevertheless, anomalies could be versatile in prac-
tical settings, and the chances are that one calibration set cannot
capture all the anomaly distributions. Furthermore, as people ob-
serve more incidents of a type of anomaly, the definition of the
anomaly may be revised to become normal.

In this work, we propose a framework shown in Figure 1 that
provides a Probably Approximately Correct (PAC)-based guaran-
tee for incremental anomaly detection in IoMT. Our framework
adopts a human-in-the-loop design, which adapts to the user feed-
back on the evolving anomaly categories, i.e., expected and unex-
pected anomalies. With this flexible design, the user can assign
the frequently observed anomalies to a calibration set of expected
anomalies. Besides, they can progressively expand the unexpected
anomaly categories as they discover additional types. As a result,
the anomaly detection accuracy is not hampered, along with a con-
fined performance guarantee on False Alarm Rate (FAR) and Miss
Alarm Rate (MAR). The two error rates are essential for gauging
the anomaly-detecting capability. Miss alarm characterizes missing
an actual anomaly, whereas false alarms cause alarm fatigue [30] if
there are too many of them. Both have undesirable consequences
and, thus, should be minimized for life-critical systems [13] like
IoMT.

In summary, our contributions are as follows:

e Propose an incremental framework for detecting expected
and unexpected anomalies with guarantee in IJoMT.

o Improve the classification accuracy and performance guar-
antee on FAR and MAR of the underlying anomaly detector.

e Perform an update frequency analysis to show that the frame-
work requires limited user input.

e Evaluate the framework on synthetic data and an IoMT plat-
form (VitalCore) to validate the effectiveness.

The remainder of this paper is structured as follows. First, we
start with a literature review in Section 2. Then, we elaborate on
the detail of our framework in Section 3 and demonstrate the exper-
imental results of our framework in Section 4. Finally, in Section 5
we discuss the limitation of our framework and conclude the work
in Section 6.

2 RELATED WORK

2.1 Incremental Anomaly Detection

Learning-enabled anomaly detectors in IoT need to evolve con-
tinuously to adapt to operational variations as new patterns are
emerging [17], which is often referred to as incremental anomaly
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detection [5]. It has broad applications in different domains, for ex-
ample, network Intrusion Detection Systems (IDSs) [3, 42], system
log analysis [4], forest fire risk prediction [27], airspace operations
[9, 43], and healthcare [24]. Many online algorithms have been
proposed to detect anomalies in ever-changing time series, some
have a tree-based structure like Half Space Tree [36], and some are
cluster-based with Gaussian Mixture Model (GMM) as the backbone
[6, 12, 43]. However, most algorithms do not provide a performance
guarantee, which is essential for a life-critical system like IoMT.

2.2 PAC Guarantee

Probably Approximately Correct (PAC) guarantees [20, 40] aim
to give a bounded false detection rate for neural networks, based
on two user-specified inputs, namely, confidence parameter § and
error parameter €. There are two fundamental false detection error
rates in anomaly detection tasks, i.e., FAR and MAR, interchange-
ably called false-negative and false-positive rates. PAC-Wrap [16]
proposes a wrapper around existing anomaly detectors to provide
a rigorous PAC guarantee on FAR and MAR. However, there might
be multiple anomaly types in practice, for example, expected or
unexpected anomalies. Hence, we cannot simply adopt a binary
differentiation of anomaly or normality as in [16]. We seek to con-
sider the evolving nature of anomalies and address the problem by
adopting a more fine-grained classification of anomalies.

2.3 Dataset Shift Problem

There has been abundant literature studying the dataset shift prob-
lem [23], which assumes that the testing data distribution is dif-
ferent from the training data distribution. Some works [28, 33, 34]
provide performance guarantees on a more straightforward dataset
shift problem — covariate shift problem. It assumes the training
input points and test input points follow different distributions.
However, the conditional distribution of output values given input
points is unchanged. Researchers use the Importance Weight [35]
to estimate the target distribution from a source distribution and
then perform PAC guarantee [21] on top of the estimation.

There is a subtle difference between our problem and dataset
shift detection. Firstly, training is not demarcated from testing in
our setup since testing instances could be included in the training
set for future performance guarantees. Secondly, we assume that
there is more than one anomaly distribution. Some of the test time
anomalies might follow the same distribution as the training time.

2.4 User-feedback for Recalibration

There are, in general, three ways to perform the recalibration: su-
pervised, semi-supervised, and unsupervised [26, 31, 38, 44]. In
our work, we propose to resort to limited user feedback for an
update, which may be closest to the semi-supervised definition
[11, 18, 25, 32]. A close work [31] also adopt interactive user update
to improve detection accuracy. It differs from ours because we aim
for high accuracy and, more importantly, a guaranteed error rate.
Besides, they leverage two methods to incorporate user updates:
metric learning and the Bayesian method. However, the metric
learning method [31] is impossible with a vast number of data
points. We cannot enumerate all data pairs and instantly compute
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Figure 1: Our framework uses historical data to create calibration sets. New data is fed through an anomaly detector, which
compares it to the expected and unexpected anomaly calibration sets. The resulting anomaly score is compared to the thresholds
Tmar and Tg, ., which guarantee Miss Alarm Rate (MAR) and False Alarm Rate (FAR), respectively. If the instance is classified as
an anomaly or uncertain, human expertise is consulted. The calibration sets are then updated based on user feedback, and new
Probably Approximately Correct (PAC) thresholds are computed for the next instance.

the pairwise distance for a large dataset. Hence, we compare our the following:

framework with their Bayesian update method in Section 4.3. .
IF»(x,y)~1)(y =1|y=0)

N IF»(x,y)~1)(g =1|y=0) +P(x,y)~2)(g =0|y=0) (1)
= IP>(x,y)~1),ﬂ =1 <e

FAR

3 METHOD

In this section, we describe our framework in detail. First, we for-
mulate the problem of providing a two-sided guarantee. We then
explain the PAC guarantee we provide, obtained using the PAC
threshold to stratify the anomaly score. After that, we give a moti-

where Dy, is the distribution of normal data. Besides, we also want:

_ P(x,y)~1)(ﬁ =0ly=1)
IP)(x,y)~Z)(yA =0]y=1) +P(x,y)~1)(g =1ly=1) )

vating example of why we need user feedback to split the anomaly =Py~ (§=0) <€
calibration sets into more fine-grained ones. Then, based on the ) o
thresholds, we explain how to guarantee FAR and MAR. In addi- where D, is the distribution of anomalous data.

tion, we explain how our method can guarantee high accuracy

without demanding laborious user input. Finally, we discuss the 3.2 PAC Thresholds

implementation of our framework. We adopt the generalization bounds for detection error from [20],
which leverages PAC learning theory to construct confidence sets
for anomaly detectors with PAC guarantee — i.e., the confidence
set for a given input contains the true label with high probability.

3.1 Problem Formulation It is accomplished via constructing the confidence set C(x) based

on a one-dimensional parameter T on the probability forecaster

f : X = R.In detail, we first sort the data in the calibration set

according to the score output by f in ascending order, and use

the score at position k* + 1 as the threshold, where k* and the

corresponding threshold T are calculated as follows:

Let X be the input space, Y be the finite label space, and x, y come
from the two spaces, respectively; let D denote a distribution over
X X Y. We assume a semi-supervised setup with many unlabeled
normal instances and a small number of labeled instances. We
denote y = 0 to be normal and y = 1 to be anomalous. Notice that
there could be more than one type of anomaly, but to evaluate the

* _
anomaly detection accuracy, we treat all of them as y = 1. Our goal k" = ma(m, e, 5) )
is to provide a prediction ¢ for a test instance x, with FAR and MAR
being upper-bounded by an error parameter €. Formally, we want T =-log[f(yrrs1 | xp+41)] (4)
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Specifically, in the confidence set C;(x), we only include the y
with a probability greater than e~ T:

i) ={yeY|flylx) e}

We can treat the anomaly detector as a probability forecaster f.
Namely, we provide the PAC guarantee to the anomaly prediction
result using the threshold T on the anomaly score, computed from
an anomaly detector f that forecasts the probability of an instance
being anomalous. Formally, given the dataset (x,y) ~ D, a calibra-
tion set Z.,; with m data points, and €, § € R, we obtain a PAC
confidence set C;.(x) for y, satistying the guarantee:

PZe~om [P(x,y)~2) (y € Cf(x)) >1- e] >1-6. (5

One can always replace the P(, ,).p (y €Cy (x)) with other cri-
teria and compute the threshold accordingly. It will then guarantee
the corresponding accuracy or error metrics, and we will elaborate
on this in Section 3.3.

3.3 Two-sided Guarantee

We train an anomaly detector f on a training set Zi,iy consisting
of solely normal instances. We maintain labelled calibration sets
Zeal = {Zn.Zays Zay, - - . Za, }, Where Z,, means a calibration set
for normal data, and Z,,,i = 1,...,k are the calibration sets for
different anomaly types.

To guarantee both the MAR and FAR, the two standard error
rates for alarm-issuing applications, we replace the inner part of
the formula as in PAC-Wrap [16]. Expressly, on the calibration set
consisting of m normal data points Zy,, we compute the threshold
Tfar to guarantee FAR:

(6)

Similarly, on the anomalous calibration set Z,, with m data
i

mar

PZnND{‘" [P(x,y)~1)n(g =1|y=0)< E] >1-6.

points, we compute the threshold
anomaly type:

to guarantee MAR on each

Pz [Py, G=0ly=D<e|21-6. (@)
According to [20], the thresholds Ty, and T2 are the solution
to Equation (6) and (7). In a high level, it bounds the MAR and
FAR below a calibration loss function a(m, ¢, §), which enforces
the e-error and §-confidence constraint.

Then, we let T be the threshold from the closest anomaly
calibration set. Together with the threshold Tiar from the normal
calibration set, we can output a guaranteed prediction. Typically, the
threshold Tinar should lay above Tp,, since the former is calculated
from anomalous data that have higher anomaly scores. However,
the reverse scenario may occur when the anomalies cannot be easily
distinguished from the normal data. We can incrementally relax
the € constraint or the § constraint to allow for a more considerable
error margin or lower the confidence until Trnar is above Tgy,.

Using the two thresholds together, we guide our decision by
declaring anything above the Tar to be an anomaly and anything
below Ti,, to be normal. Formally, using the two thresholds, we
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guide our decision for determining anomaly as follows:

1 f(x) = Tnar
§=11{0,1} 7A“far <fx) < 7Aﬂmar . ()
0 flx) < ffar

Following this rule, both MAR and FAR will be guaranteed for the
anomaly prediction result.

If the anomaly score falls in between the two thresholds, we
abstain from making predictions and resort to user feedback in
this instance. Ideally, there should not be many instances with an
anomaly score between the two thresholds, and the region between
the two thresholds is referred to as uncertainty region. In Experiment
4.6, we conducted an ablation study to inspect the relationship
between the fraction of data points that fall in the uncertainty
region and the two user-specified parameters e and §. Then, if the
user demands a concrete decision and Tyay is above ffar, we can
use the mean value of the two thresholds as the final threshold to
guide our decision, while still maintaining the two-sided guarantee
according to [16].

3.4 Fine-grained Anomaly Calibration Sets

As we discussed earlier, the real-world anomaly distribution may
be evolving; if we apply a static classification of anomalies, the
user would provide the imprecise classification. As a result, the
effectiveness of the guarantee we can provide will be hamstrung.
An illustrating example is as follows.

For the IoMT we monitor using VitalCore, the maintenance
would suspend the system and trigger an anomalous pattern of
disconnection, which is observed as a spike in time interval be-
tween two consecutive messages. The pattern is very different from
normal patterns, which have a consistent time interval of around
60 seconds between two messages. Hence, the maintenance is pre-
dicted as an anomaly by the anomaly detector. Since we do not
have the up-to-date maintenance schedule, we can not remove the
maintenance data. Besides, the technicians want to keep the main-
tenance data to confirm that the maintenance happens as expected.
We prompt the user to decide on the category for the maintenance
data. Initially, we apply a static classification of anomalies, main-
taining a single anomaly calibration set and a normal calibration set.
After seeing some maintenance instances, the user regards them
as expected and prefers not to be bothered by the alerts on such
events. As a result, the user assigns maintenance instances to the
normal calibration instead of the anomalous one. However, this
assignment contaminates the normal training and calibration set
by mixing different data distributions, disabling us from providing
a high classification accuracy and a meaningful guarantee, as we
show in Experiment 4.2 and Experiment 4.3.

We can avoid the trivial guarantee by modifying the original
classification criteria to adapt to the change. In other words, instead
of predicting an instance to be either anomaly or a normal instance,
we incorporate the user’s perception and create a new class of
anomaly — expected anomaly. Although the users are not directly
involved in calibration process, they are prompted to provide label-
ing on anomalies and uncertain examples. For anomalies caused by
maintenance, we include them in the newly created calibration set
for the expected anomaly. The adjustment in classification criteria
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might affect the existing calibration set. The historical calibration
set could be updated by migrating or deleting the records to reflect
the change. Compared with a single anomaly type, the fine-grained
calibration sets with more anomaly types significantly improve
the precision of the guarantee. We illustrate this example with
Experiment 4.3.

We compute the PAC threshold for each fine-grained anomaly
calibration set a;. Then, when an instance arrives, we choose the
most appropriate anomaly calibration set d; for it by taking the
one with minimal Euclidean distance between the instance and the
centroid of the anomaly calibration set.

d; = argmin \/(x — g, )?

ai

©)

If there is more than one calibration set with the same minimal
Euclidean distance, we choose the one with a smaller index. A side
benefit of splitting the calibration set is the reduction in computa-
tion time of the PAC thresholds, which scales almost linearly with
the calibration set size, as we will show in Experiment 4.5. In addi-
tion, since the threshold of different anomaly types are independent
of each other, we can conduct the calculation parallelly on different
machines, increasing the computational efficiency. Although we
illustrate our result with two anomaly types, namely, the expected
anomaly and the unexpected anomaly, there could be more fine-
grained anomaly sub-types in practice. For example, we can treat
different attack types as the sub-types of unexpected anomalies
in the network intrusion detection [14]. There could be multiple
sub-types of anomalies as the user defines, for example, Denial of
Service (DoS) attack, R2L attack, U2R attack, probing attack and
many more. Our framework can be flexibly generalized to multiple
anomaly sub-types, as illustrated in Experiment 4.5.

3.5 Update frequency

Suppose the prediction on an instance turns out to be anomalous
or uncertain. In that case, we seek help from the user, with the
options of approving or modifying the current label of the anomaly
instance. Note that we only update the calibration set with the
labeled instances. It is natural to question the practicability if a
system frequently requires the user to provide feedback. Especially
in the medical domain, clinicians and technicians are concurrently
tasked with numerous monitoring duties. Fortunately, our frame-
work only requires infrequent user feedback to generate a stable
PAC guarantee.

To start with, suppose the user is busy and can only respond to
a limited number of alerts. Specifically, for every c alert(s), the user
provides a label for any of them and misses the rest. The update
frequency (F) is then defined as the inverse of the number of alerts
generated and: F = % Let ¢ be the total number of alerts generated
in the period we monitor. We have a labeled calibration set of the
size: m = mo + Ft = mo + % where my is the initial calibration
set size. Notice that F = 0 is defined as no update, and we use the
maximal anomaly score from the training set as the threshold.

Update frequency affects the guarantee via the calibration loss.
Specifically, we have a larger calibration set as we update more fre-
quently. The increased calibration set size leads to a larger allowed
calibration loss, denoted as a(m, €, §). This is because a(m, €, §) is
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Figure 2: Relationship between F and a.

an increasing function of calibration set size m [20]:

a(m.e.8) = ¢ - \/log(Zm) +1-10g(0/4)

(10)

At first sight, the high frequency increasing the calibration loss
might seem counter-intuitive since we normally expect increasing
the effort to result in something beneficial. However, it should be
alternatively interpreted as raising the selectiveness of C;.(x). As
we have a higher a, we have a larger k* by Equation (3). Since we
sort the anomaly score f(yi | x;) in ascending order, we have a

m

smaller T and larger e~ with a larger k* by Equation (4). With a

larger threshold e~ we include less label y to the confidence set
C;(x) on average. Therefore, a high update frequency is favorable
because it creates a more refined confidence set, which reduces the
likelihood of getting a trivial C;(x) containing all the labels in Y/,
ie, Cs(x) = {0,1}.

Moreover, there is a decreasing marginal effect in the update
frequency or, equivalently, the calibration set size. Taking a first-
order derivative of Equation (10), we get:

da(m,e,5) log(2m)

dm om? /log(Zm)+’1n—log(5/4)

The derivative in Equation (11) is positive for m > 1 and then
converges to zero as we increase m. Specifically, as we update
more frequently, the confidence set shrinks less beyond a point. We
visualize the relationship between frequency F and the « in Figure 2,
given different numbers of total alerts: t = [100, 1000, 5000] with a
initial calibration set size my = 100, and € = § = 0.05. We found that
the PAC confidence set is getting more selective (a getting closer to
€ = 0.05) as we update more frequently. Nevertheless, in the short
run, as shown in Figure 2a and 2b, we could end up with a locally
lower a as we update more frequently. According to Equation (8)
in [20], larger m leads to a bigger binomial sum initially, and to
satisfy the § constraint, we must choose smaller k and hence lower
a. Overall @ increases and the PAC confidence set gets refined as
we increase the update frequency F. As shown in Figure 2c, our
framework has a decreasing return on margin regarding update
frequency with t = 5000. Therefore, our method does not require
the user to respond to every alert generated; instead, it is sufficient
to label with a frequency generating the calibration loss close to

(11)
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€. To evaluate our framework more straightforwardly, we report
in Experiment 4.5 the relationship between update frequency and
final accuracy of the confidence set, which ideally should have a
similar pattern to that of the a.

3.6 Implementation

Two computations are involved in providing the guarantee: the
threshold computation on calibration sets and the inference on
the test instance. The testing inference is a binary operation, i.e.,
comparing the anomaly score of the instance against the thresholds.
It takes around the granularity of 1075 on most devices, which
is undoubtedly feasible for practical deployment. The focus is on
capping the size of the calibration set to compute the PAC threshold
efficiently.

The computation complexity of PAC is O(m), i.e., it scales lin-
early with the calibration set size, as we will show in Experiment
4.5. We obtain smaller calibration sets as a side benefit using fine-
grained calibration sets. Besides, as we explicate the decreasing
marginal effect of calibration set size in Section 3.5, the PAC guar-
antee does not necessitate unreasonably large data size. Users may
shorten the computation time for calculating the threshold to suit
their needs, as long as a minimum size of:

m logé
log(1—¢)
is kept for the calibration set size. This is as little as m = 59 for
€=0=0.05.

We implement the our framework with a record pool to reflect the
update frequency F. For every }l; records accumulated in the pool,
an alert is issued to the user and requests for feedback. The user
can choose to provide feedback to one or multiple of the records.
The ones with feedback are added to the corresponding calibration
sets. The description of our framework is in Algorithm 1.

Algorithm 1 PAC guarantee for evolving data

Input: anomaly detector f, instance x, error level €, confidence
level &, the user update frequency F.
Output: anomaly prediction §
Compute Tp,, according to Equation (3), (4) and (6).
Compute the Tmar from the closest anomaly calibration set ac-
cording to Equation (3), (4), (7), and (9).
7 is determined according to Equation (8).
count = 0, pool = [ ].
if j # 0 then
pool.append(x).
count = count + 1.
if count = % then
Issue an alert to the user for feedback.
if user provide feedback y’ = i (or unexpected normal
y’ =0) then
Add x" to Zg, (or Zy).
end if
count = 0, pool = [ ].
end if
end if

return j
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4 EXPERIMENTAL RESULTS

We identified the below questions to validate the effectiveness of
our framework:

¢ Q1 Detector Improvement: how can the underlying anom-
aly detectors benefit from the incremental anomaly types?

e Q2 Adaptive recalibration: what is the performance on
the synthetic and real-world dataset using the adaptive PAC
calibration sets?

¢ Q3 Update frequency: How many alerts does the user need
to provide a label for real scenarios?

e Q4 Time Complexity: How is the computation time (in
wall clock seconds) scale with the number of anomaly types
and calibration set size?

e Q5 Ablation Study: How is €, § going to affect the size of
the uncertainty region?

4.1 Experimental Setup

4.1.1 Dataset. Synthetic data set: We generate the synthetic
dataset with a total of 15000 data points from three 6-dimensional
normal distributions Ni, No, N3 with the same covariance matrix
but with different means 1, y2, i3 € R, Let Ip be the p-dimensional
identity matrix with p = 6, and 2 be a uniformly random value
drawn over [1,100]. Python sklearn.datasets.make_classification
library is used. We treat N; as the normal distribution, N, as ex-
pected anomalous distribution and N3 as unexpected anomalous
distribution. We have:

2
Xnormal ~ N(,Ul, o Ip)
2
Xexpected anomalous ~ N (42, & Ip)
2
Xunexpected anomalous ™~ N(IlS, o Ip)~

VitalCore dataset: We experiment on a 6-dimensional real-
world data set that monitors the [oMT usage patterns collected on
the VitalCore platform. It consists of over 3000 medical devices, and
we record their connection status at the granularity of one minute.
We extract six features from the records: month, day, hour, day of
the week, whether in a business hour, and the interval between two
consecutive records. The data we collected has three usage patterns:
the connected pattern with a one-minute interval (normal), the
regular maintenance pattern (expected anomaly), and the network
outage pattern (unexpected anomaly). These patterns are obtained
with the labels provided by the technicians. We look at the time
series with a sliding window of 30 minutes upon getting the data,
and the count for the number of sliding window sequences in each
category is:

e Normal: 418523
o Expected anomaly: 512
o unexpected anomaly: 4257

We may vary the anomaly ratio in the data to study the effectiveness
of our guarantee.

4.1.2  Anomaly Detector. We employ an anomaly detector to calcu-
late a 1-dimensional anomaly score for computing the PAC thresh-
olds. On the synthetic data, we used a simple anomaly detector
One-class Support Vector Machine [29]. On the VitalCore data, we
adapt from an AutoEncoder-based anomaly detector [39], which
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has the best empirical prediction accuracy on VitalCore data [8].
Notice that the choice of anomaly detector is not the focus of our
work since our framework is model-agnostic. It provides a two-
sided guarantee for virtually any existing anomaly detector that
can compute the anomaly score.

4.1.3 Metrics. We check whether the estimated FAR and MAR
defined in Equation (1) and (2) are below the specified € constraint.
Since anomaly detection is a binary classification problem, we con-
sider all anomaly classes as one and the normality as zero. We
conduct 10 Monte Carlo trials for all experiments and report the
averaged result with statistical significance computed at 95% confi-
dence level.

In Experiment 4.2, we report the Area Under the Receiver Op-
erating Characteristic Curve (ROCAUC) and the Precision-Recall
Area Under Curve (PRAUC) Score. The ROC curve is the plot of
the False Positive Rate (FPR) (in the x-axis) versus the True Positive
Rate (in the y-axis) across all thresholds. ROCAUC computes the
Area under the ROC curve, a standard metric for comparing bi-
nary classifier models directly. However, ROC curves may provide
an excessively optimistic view of the performance for imbalanced
binary classification; researchers also refer to the PRAUC for a
more comprehensive comparison. A Precision-Recall curve (or PR
Curve) is a plot of the recall (in the x-axis) and the precision (in the
y-axis) for different probability thresholds. The PR curve focuses
on the minority class, making it an effective diagnostic for imbal-
anced binary classification models like anomaly detectors. Similarly,
PRAUC summarizes the PR curve with a range of threshold values
as a single score.

4.14  Configuration Details. Our framework is implemented using
PyTorch [22]. All experiments, including timings, were run with 4
Nvidia 2080Ti GPU, 80 vCPUs, a processor Intel(R) Xeon(R) Gold
6148 @ 2.4 GHz and 768GiB of RAM.

4.1.5 Baseline. An alternative way to our way of updating the
calibration set is using a Bayesian approach to update the posterior
as in [31]. We could adjust the probability of an instance belonging
to each anomaly type as we receive user feedback. Let P(A | B)
be the posterior probability we want to update, where A denotes
a data point as an anomaly, and B denotes that it is predicted as
normal. Then, we follow the setup in [31] and update the probability
p = P(A) whenever we receive an update from the user. Besides,
we uniformly decide the environment complexity parameter g =
P(B | A) = 1/3. The posterior probability p is updated as follows:

_P(BIAPA) _ gp
P(B) 1-p(1-q)
In other words, as we receive more normal feedback from the
user, we decrease the posterior probability of an instance being an
anomaly. We conduct the update for the posterior of the normal
whenever it is an anomaly update, whether expected or unexpected.

Besides, we normalize the probability with a softmax function after
each update to ensure it always remains in the [0, 1] range.

4.2 Q1 Detector Improvement

The classification accuracy of the anomaly detectors improves as
they receive incremental anomaly categorization. We illustrate this
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by comparing the ROCAUC and PRAUC performance of the anom-
aly detectors with and without fine-grained anomaly distinction.
We first train an anomaly detector on a training set of 5000 data
points. The expected anomaly is considered normal if we have a
single anomaly type. Only unexpected anomalies are considered
anomalies. On the other hand, if we have two anomaly types, we
distinguish expected anomaly from normality and train with only
normal data. Specifically, on synthetic data, we have:

¢ Single anomaly type: the training set contains 2500 data
points from Nj and 2500 data points from Np.

e Two anomaly types: the training set contains 5000 data
points from Nj.

On VitalCore data, we have:

¢ Single anomaly type: the training set contains 2500 data
points with the normal connected pattern and 2500 data
points with the regular maintenance pattern.

e Two anomaly types: the training set contains 5000 data
points from the normal connected pattern.

On the testing set with 5000 data points, we randomly shuffle all
data points from the three distributions and evaluate the ROCAUC
and PRAUC.

Using a single anomaly type categorization hurts the perfor-
mance of the anomaly detector. An anomaly detector usually learns
a homogeneous normal pattern. It classifies any data points that
deviate from the pattern as an anomaly. The “contaminated” nor-
mal category confounds the anomaly detector with heterogeneous
patterns. The detection performance is shown in Figure 3a, 3b for
synthetic data and Figure 3c, 3d for VitalCore data. To validate
the effect of contamination, we experiment with different anomaly
ratios a. We present the original anomaly detector performance
with the blue lines labeled “original” and the one with incremental
anomaly categorization using the red lines labeled “incremental”.

As shown in Figure 3, incremental anomaly detectors have higher
ROCAUC and PRAUC. It indicates that the detection performance
improves with the fine-grained classification of expected anom-
alies. On the synthetic data, we find the PRAUC of the original
anomaly detector is close to 0.5. Therefore, mixing the expected
anomaly with normal data would significantly impact the classifi-
cation performance. The gap in the original ROCAUC and PRAUC
reveals the imbalanced data problem. Even though we have a high
ROCAUC (close to 1.0) with a small anomaly ratio, the PRAUC
is low (less than 0.5). Hence, we should consider both metrics to
evaluate the anomaly detection performance. As a result, adopting
the fine-grained distinction would improve the PRAUC by 0.52 and
the ROCAUC by 0.06 on average across different anomaly ratios.

On the VitalCore data, the PRAUC increases by 0.35, and the
ROCAUC increases by 0.01 on average. In addition, we can see
that the PRAUC falls below 0.5 when the anomaly ratio is smaller
than 5%, indicating that the anomaly detector performs no better
than random guessing on anomalies. However, a minor anomaly
ratio is usually the case in reality. Fortunately, our framework can
significantly improve the anomaly detector performance to have an
average PRAUC greater than 0.65, even with a minuscule anomaly
ratio like 0.1%.

Moreover, the PRAUC improvement is not as significant as the
synthetic data when we have a large anomaly ratio above 5%. It
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(c) PRAUC on VitalCore data. (d) ROCAUC on VitalCore data.

Figure 3: The PRAUC and ROCAUC performance improves with
the incremental distinction of anomaly types.

may be because the expected anomaly pattern in VitalCore is close
to the normal data. Expected anomalies are system reboots that
usually recover within three minutes, and normal patterns are
consistent at one-minute intervals. However, a network outage
could last up to several hours. Hence, the anomaly detector may
merge the expected anomaly and normal into a single cluster and
classify them against the unexpected anomaly well. Despite this,
the anomaly detector would still benefit from an updated anomaly
categorization, especially when we have a relatively small anomaly
ratio.

4.3 Q2 Adaptive recalibration

To evaluate the effectiveness of our guarantee, we compare the
performance with and without adaptive recalibration. Specifically,
without recalibration, we have a single anomaly-type calibration
set. However, with the adaptive change to accommodate evolv-
ing anomalies, we have two fine-grained anomaly calibration sets,
i.e,, expected anomaly and unexpected anomaly. Besides, we also
compared our update method with a Bayesian update approach in
[31].

4.3.1 Synthetic data. On the synthetic data, we first train an anom-
aly detector on a training set of 5000 data points drawn from Nj.
Then, we simulate real-world settings to feed data into the system.
We use the trained anomaly detector to compute the anomaly score
on the calibration set with 5000 data points. On the anomaly score
computed from the calibration set, we calculate the two thresholds:

e Single anomaly type: we calculate threshold T,, from the
“normal” calibration set consists of half of N; and half of N»,
and calculate Tinar on the anomaly score of Ns.

o Two anomaly types: we calculate threshold Ty, on Ny, and
calculate T2 - and T2, on N and Nj respectively.
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On the testing set with 5000 data points, we randomly shuffle all
data points from the three distributions. For each point fed into
the system, we get the anomaly score from the trained anomaly
detector and use the thresholds to guide our detection:

e Single anomaly type: we use Tj,, and Ty as calculated
above.

e Two anomaly types: we calculate the Euclidean distance
of a data point to the calibration set centroid of N2 and N3
as in Equation (9). We then use the threshold of the closer
one as the Tiar together with f‘far to determine an anomaly.

Eventually, we evaluate the final FAR and MAR on the test-
ing set. We experiment with different levels of anomaly ratio a =
[0.1%,0.5%, 1%, 2%, 5%, 15%, 20%, 50%| while fixing the calibration
set size to be 5000 and see how the PAC guarantee is affected. Ini-
tially, we set the error constraint to be € = 0.02. Then, if it cannot
be satisfied, we increment at a step of 0.1 each round until both
error rates can be guaranteed below the updated e.

As aresult, if we do not adaptively include new anomaly types,
the guarantee we can provide is imprecise. The results are shown
in Table 1, a denotes the anomaly ratio, € is the guaranteed upper
bound for error rates, Uy is the initial uncertainty region without
relaxing €, and U is the final uncertainty region. With a single
anomaly type, the error rate we can guarantee goes from 0.02 to
0.62 with an increasing ratio of anomaly. Since column MAR and
FAR are smaller than column e with 95% confidence, the guarantee
is satisfied. However, at the level of 0.62, we can only guarantee that
there would be around half the chance that the alarm is not a false
alarm or that we will not miss an actual alarm, which is of limited
usefulness. Figure 4a shows the anomaly score distribution. We
can see that the normal calibration set contains both real normal
instances and anomalous instances that are perceived as normal;
thus, the maximal anomaly score for the normal calibration set is
high.

Also, without relaxing the € constraint, the uncertain region
between the two thresholds contains more and more data points,
i.e., from 23% to 89%, as shown in column Uj of Table 1. Intuitively, it
means that with more anomalies mixed up in the normal calibration
set, we get more confused and abstain from predicting at the initial
level of € = 0.02, which aligns with our expectations. Therefore, we
relax the error constraint incrementally to reduce the uncertainty
region. As a result, the final uncertainty region in U is much smaller
than Uj.

On the other hand, with the fine-grained calibration sets, the €
guarantee we can get is precise, i.e., € = 0.02. The result is shown
in columns €, MARp,c and FARp,e of Table 2, implying that using
the user perception to create fine-grained anomaly calibration sets
can significantly improve the guarantee we can provide to the
user. Furthermore, the uncertain region Uy, U between the two
thresholds is consistently lower than 2%. It illustrates that we are
relatively sure about the prediction with the fine-grained anomaly
calibration sets. Hence, we do not abstain from making predictions
on more than 2% of the test data. The anomaly score distribution
for the fine-grained calibration sets is shown in Figure 4b, and the
normal calibration set contains only the actual normal instances.
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a € MAR FAR Uy U

0.1% 0.02 0.0+0.0 0.0015 + 0.0 0.0191 £+ 0.0007 0.0191 + 0.0007

0.5% 0.02 0.0+0.0 0.0062 + 0.0001 0.0134 + 0.0006 0.0134 + 0.0006

1% 0.02 0.0+0.0 0.0123 = 0.0001  0.0057 + 0.0007  0.0057 £ 0.0007

5% 0.22  0.1297 £ 0.0025 0.2066 + 0.0003  0.2291 + 0.0004 0.0128 + 0.0004

10% 0.42 0.2897 + 0.0037 0.3409 + 0.0007 0.4004 + 0.0005 0.073 £+ 0.0013

15% 0.52 0.3781 +0.0021 0.4239 + 0.0009 0.5265 £+ 0.0005 0.1464 + 0.0011

20% 0.52 0.4371 £ 0.0027 0.4826 + 0.0012 0.6234 + 0.0006 0.0743 + 0.0025

50% 0.62 0.6039 +£0.0011 0.5921 £+ 0.0009  0.8935 + 0.0007 0.0359 + 0.0025

Table 1: Single-anomaly-type calibration set for synthetic data.

a € MARpac  MARpayes FARpac  FARpayes Uy U
0.1% 0.02 0.0+0.0 0.0+0.0 0.0+ 0.0 0.0004+0.0 0.0176 +0.0004 0.0176 + 0.0004
0.5% 0.02 00x0.0 0.0+0.0 0.0+ 0.0 0.0004+0.0 0.0182+0.0005 0.0182 + 0.0005
1% 0.02 00+0.0 0.0+0.0 0.0+ 0.0 0.0004+0.0 0.0171 £ 0.0006 0.0171 % 0.0006
2% 0.02 0.0+00 0.0£0.0 0.0+0.0 0.0005+0.0 0.0183 +0.0003 0.0183 + 0.0003
5% 0.02 0.0+00 0.0x£0.0 0.0 +0.0 0.0007 +£0.0 0.0171 +£0.0004 0.0171 £ 0.0004
10% 0.02 0.0+0.0 0.0+0.0 0.0+ 0.0 0.0006+0.0 0.0176 +0.0004 0.0176 + 0.0004
15% 0.02 0.0+0.0 0.0+0.0 0.0+0.0 0.0001+0.0 0.0163 +0.0004 0.0163 £ 0.0004
20% 0.02 0.0+00 0.0x£0.0 0.0+0.0 0.0002+0.0 0.0167 £0.0002 0.0167 = 0.0002
50% 0.02 0.0%+0.0 0.0+0.0 0.0+ 0.0 0.0001+0.0 0.0136 +£0.0002 0.0136 = 0.0002

Table 2: Two-anomaly-type calibration sets for synthetic data, compared with the Bayesian approach. MARpac and FARpac
denotes the MAR and FAR using the our update approach. MAR},,yes and FARp,yes denotes the MAR and FAR using the Bayesian

approach.

The Bayesian approach, which is shown in the MARp,y.s and
FARpj columns of Table 2, also meets the initial € = 0.02 guarantee.
However, our framework has a lower FAR and a comparable MAR.

4.3.2 VitalCore data. On VitalCore data, we follow the same train-
ing, calibrating, and testing procedure and data set size as the one on
synthetic data. Furthermore, we observe a similar result for contam-
inating the normal calibration set with the expected anomalies. The
results are shown in Table 3, 4, and Figure 5. Using two-anomaly-
type calibration sets separates the expected anomaly from normal.
It enables us to have a clean normal score distribution, as shown
in Figure 5b. As a result, we have a more precise guarantee based
on column € of Table 3 and Table 4, i.e., from 0.12 to 0.09. However,
the improvement is not as significant as in the synthetic data for
a similar reason as we discussed in Experiment 4.2. Despite this,
it is still advantageous to use the fine-grained calibration sets for
tight control of both MAR and FAR. The uncertainty region Uy also
expands as we increase the anomaly ratio, mitigated as we relax
the error constraint, as shown in column U.

The result for using the Bayesian approach on VitalCore data is
shown in column MARpayes and FARpayes of Table 4. It manifests
the benefit of having a guarantee for error rates. Although the
Bayesian method generates a smaller MAR than ours, it has FAR of
around 40%, violating the € = 0.09 constraint on FAR. The high FAR
would lead to the alarm fatigue phenomenon among clinicians. On
the other hand, our framework ensures that both FAR and MAR are
below the € = 0.09 constraint, which is shown in columns MARpac
and FARp,. of Table 4.
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4.4 Q3 Update frequency

To free the user from continual labeling of the alert generated, we
demonstrate that our framework does not require a high update
frequency (e.g., labeling every alert). In addition, it would be suffi-
cient for the user to label at a frequency that gives a high accuracy
close to the convergence accuracy.

To validate our theoretical analysis on an actual application, we
experiment with the VitalCore data from April to October 2022.
During these six months, the platform generates 146 alerts for 22
servers across ten hospitals. The technicians provide labels for 130
unexpected anomalies. We begin with an initial calibration set of the
size mg = 2500, and € = § = 0.05. Then, we add labeled instances to
the calibration set. During expanding calibration sets, we vary the
update frequency to study its effect on accuracy. Then, we evaluate
the resultant accuracy on the testing set; we plot around it with a
95% confidence interval.

The result in Figure 6 confirms our theoretical analysis. As the
update frequency reaches approximately F* = 0.27, equivalent to 35
alerts in real life, the accuracy stays close to perfect accuracy. Hence,
there is no incentive to increase the update frequency further and
provide labels to all 146 alerts. The update frequency suggests 35
anomaly labels over six months, which is approximately one label
input for the anomaly per week. Moreover, the time needed to
converge to a high accuracy depends on the user-specified error
and confidence level. The higher the level (i.e., more relaxed), the
faster we can gather enough feedback from the user and guarantee
accurate performance.
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Up

U

0.0629 + 0.0213
0.0604 + 0.0184
0.0566 + 0.0164
0.0577 + 0.0176
0.0598 + 0.0191
0.0596 + 0.0189
0.06 + 0.0187

0.0641 £ 0.0209
0.0552 + 0.0159

0.1121 + 0.0636
0.1279 £+ 0.0799
0.1177 + 0.0566
0.1126 + 0.071

0.1458 + 0.0792
0.1302 + 0.0678
0.127 £ 0.0552

0.1492 + 0.0617
0.2221 + 0.0563

0.0658 + 0.022

0.0699 + 0.0146
0.0776 + 0.0126
0.0735 + 0.0144
0.0663 + 0.0184
0.0737 + 0.0186
0.0756 + 0.0173
0.0691 + 0.0197
0.0908 + 0.014

Table 3: Single-anomaly-type calibration set with VitalCore data.

FARbaye s

Up

U

0.0419 + 0.0225
0.0465 + 0.0259
0.0419 + 0.0233
0.044 + 0.0244

0.0485 + 0.0283
0.0439 + 0.0245
0.0422 + 0.0239
0.0405 + 0.0223

a € MAR FAR
0.1% 0.12 0.0464 + 0.0312
0.5% 0.12 0.053 £+ 0.0301
1% 0.12  0.0533 + 0.0313
2% 0.12  0.0468 + 0.0236
5% 0.12  0.0456 + 0.0237
10% 0.12 0.0498 + 0.0246
15% 0.12 0.051 £ 0.0263
20% 0.12  0.0397 £+ 0.0209
50% 0.12 0.0579 + 0.0307
a € MARpaC MARbayes FARpac
0.1% 0.09 0.0504 +£0.0278 0.0 + 0.0
0.5% 0.09 0.0398 +0.0213 0.0 £ 0.0
1% 0.09 0.0432 +0.0219 0.0 £0.0
2% 0.09 0.0416 + 0.0219 0.0 £0.0
5% 0.09 0.0387 £0.0204 0.0 0.0
10% 0.08 0.0361 +0.0193 0.0 £ 0.0
15% 0.09 0.0422 +0.0222 0.0 £ 0.0
20%  0.09 0.0453 £+ 0.0238 0.0 £ 0.0
50% 0.09 0.0396 +£0.0221 0.0 + 0.0

0.0420 + 0.0228

0.4051 = 0.0
0.4040 + 0.0
0.4060 = 0.0
0.4060 = 0.0
0.4048 + 0.0
0.4060 = 0.0
0.4039 = 0.0
0.4070 + 0.0
0.4056 = 0.0

0.0942 + 0.0574
0.1348 + 0.0892
0.1057 + 0.0708
0.0973 + 0.0726
0.1395 + 0.0948
0.1074 + 0.076

0.1283 + 0.0861
0.0928 + 0.0626
0.0918 + 0.0614

0.064 + 0.0274
0.0591 £ 0.0269
0.0636 + 0.0267
0.0614 + 0.0268
0.0554 + 0.0291
0.0491 £ 0.0256
0.0632 + 0.0266
0.0636 + 0.027
0.0597 £+ 0.024

Table 4: Two-anomaly-type calibration set with VitalCore data, compared with the Bayesian approach. MARy,c and FARp,c
denotes the MAR and FAR using the our update approach. MAR},,yes and FARp,yes denotes the MAR and FAR using the Bayesian

approach.

4.5 Q4 Computation Time

In this experiment, we study the scalability of our framework with
different calibration set sizes and anomaly types. The experiment
of varying anomaly types considers the potential distribution shift
in the future, where the unexpected anomalies further evolve into
more anomaly sub-categories. We recorded the time needed to
calculate the thresholds on the calibration set (calibration) as well
as the inference time during testing (test). Specifically, we change
the calibration set size and number of anomaly sub-types to see
how our framework scales with them.

We first describe how we generate the data for Table 5 and Table
6. To generate Table 5, we vary the calibration set size from 2000
to 20000, with anomaly ratio a = 0.05. For Table 6, we generate
from one to ten unexpected anomaly sub-types. Specifically, we
sample data from different normal distributions with distinct means
12, 13, . . ., fi11. Meanwhile, we fix the calibration size to be 10000 to
have sufficient instances for each anomaly type. In Table 6, we start
with two anomaly types in the first row (expected and unexpected)
and then add one more unexpected sub-type for the next row, and
SO on.

In Table 5 and Table 6, we can see that the time needed to com-
pute the threshold scales almost linearly with calibration size and
the number of anomaly types. The inference time for each instance
takes around 10~ seconds, making it feasible for real-time appli-
cations. As we increase the calibration set size, we expect the test
to be relatively constant. However, the test time also increases, as
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size calibration test

2000 0.8858 + 0.0104  7.2519 X 10~ % + 9.0409 x 10~%
3000  1.3554 +£0.0192  7.2484 x 107% + 8.9195 x 10~8
5000  2.6700 + 0.0297  9.6435 X 107% + 6.8809 x 10~/
10000 5.0126 + 0.0523  1.0513 X 107> + 8.6625 X 107
15000 7.2046 + 0.0247  1.0234 X 1077 + 9.4843 x 10~
20000 10.1308 + 0.2232  1.0529 X 10~° + 8.5205 X 10~/

Table 5: Calibration and test time with different calibration
set size.

shown in column test of Table 5. It may be because we need more
time to compute the centroid of a larger calibration set.

Furthermore, since the PAC threshold computations of different
anomaly types are independent, we can distribute the workloads to
several machines to curtail the linear growth. The result is shown
in column parallel of Table 6. However, the benefit of parallelization
is not very obvious when we have less then nine anomaly types
due to the computation overhead.

4.6 Q5 Ablation Study

Figure 7 shows the mean uncertainty region with different values
of user-specified € and §. It is computed on VitalCore data with its
original anomaly ratio a = 0.05, and we perform no recalibration.
The uncertainty region increases as we impose a more stringent
requirement on error and confidence levels, revealing a trade-off
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Figure 4: Anomaly score distribution on the synthetic data
with initial € = 0.02, a = 0.05.

types calibration parallel test

2 5.1763 + 0.4813 6.329 + 0.5084  7.5182 X 107° + 4.4831 X 10~
3 53526 + 0.521 5.7737 + 0.5048  8.9622 X 107° + 5.7485 x 10~/
4 5.4606 + 0.4675 6.2248 + 0.5167 1.0615 X 107> + 1.0786 x 107°
5 5.5443 + 0.4664 5.9686 + 0.5462 1.2305 X 107 + 1.6992 X 10~°
6 5.7472 + 0.4666 5.7497 + 0.5147 1.3343 X 107 + 1.4019 X 107°
7 5.8692 + 0.465 5.6113 + 0.5027 1.4792 X 107 + 1.5338 X 107°
8 6.0652 + 0.4685 6.1067 + 0.5232  1.6849 X 107> + 2.3269 x 10™°
9 6.2204 + 0.4748 5.6539 + 0.5335 1.6838 X 10™° + 8.0361 X 10~/
10 6.4894 + 0.4868 5.8449 + 0.5301 1.9270 X 107 + 2.1625 X 107°
11 6.6487 + 0.5101 5.8172 + 0.5221 2.0047 X 107 + 1.2425 X 107°

Table 6: Calibration and test time with different number of
anomaly types. parallel is the time for computing the PAC
thresholds with parallelization. Total calibration set size is
fixed to be 10000.

between the requirements and uncertainty region. Additionally, the
uncertainty is predominately affected by € rather than §. Therefore,
we can shrink the uncertainty region by relaxing the ¢,  constraint
or vice versa.
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Figure 5: Anomaly score distribution on the VitalCore data
with initial € = 0.02, anomaly ratio a = 0.05.
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5 DISCUSSION

One obvious concern regarding the feasibility of our framework
is prompting the user for feedback. The usefulness of our frame-
work will naturally be challenged if it needs laborious user input.
However, in experiments on the VitalCore platform in real scenar-
ios, the technicians are satisfied with providing at least one label
for each anomaly type weekly. The frequency sustains the anom-
aly detection performance and obtains a minimum performance
guarantee.

The trade-off between the user input and the tightness of the
guarantee is that the PAC guarantee is asymptotic. As we obtain
more data points, we are more certain about the underlying data
distribution and derive a more confined guarantee. Therefore, it is
up to the user to determine the level of guarantee they desire after
considering the effort of providing feedback.

In addition, although we assume the normal data distribution to
be relatively stable, one should continuously retrain the anomaly
detector with normal data to ensure it is up-to-date. Hence, it would
be beneficial if there are also feedback on normal data so as to
characterize the distribution. However, we do not assume to obtain
them in an online manner. If the normal data distribution shifts,
the update frequency should be similar to that of the anomalies.
We expect a performance enhancement when feedback on normal
data becomes available.

6 CONCLUSION

We have designed a general framework to guarantee accurate per-
formance for incremental anomaly detection in IoMT. We propose
to interactively incorporate the user’s judgment of evolving anom-
aly types to construct fine-grained anomaly calibration sets, on
which we compute the PAC thresholds. We provide a two-sided
guarantee on FAR and MAR based on the thresholds. Besides, our
framework requires limited user input (weekly labels per class).
As a side benefit, the smaller calibration size reduces the com-
putation time, allowing for faster computation. Our framework
has high accuracy and provides a theoretical guarantee for detect-
ing evolving anomalies on synthetic and VitalCore datasets. Our
method can broadly apply to ensure reliability in IoT, for example,
network intrusion detection systems (IDS), industrial plants, and
autonomous systems. As the next step, we look forward to con-
ducting a user study to evaluate the level of comfort among the
technicians concerning the frequency of updates. Besides, we seek
to provide anomaly explanations for the predicted outcomes.
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