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Abstract 
In this paper we use a statistical framework to analyze the relation between storm properties and the statistics of 
extreme precipitation. We identify storm events using a 24-hour dry hiatus separation. We investigate the statistics 
of the hourly maximum intensity for the heaviest storm events at durations of 1 and 24 h. A two-parameter 
Weibull distribution is used to represent precipitation frequencies at several stations from a quality-controlled 
hourly precipitation dataset over the contiguous United States, encompassing seven climate zones. The Spearman 
correlation between the distribution parameters and a selection of storm properties (duration, intensity, 
decorrelation time, convective-like ratio) and station properties (elevation and latitude) is used to measure the 
relation of these properties with the statistics of extreme precipitation. Our results indicate that observed annual 
maximum hourly precipitation over the entire study area are likely samples from the used distribution, implying 
that a two-parameter Weibull distribution is suitable for modeling hourly and 24-hour precipitation extremes over 
the contiguous United States. The spatial variability of shape parameters obtained for hourly events showed 
lighter tails in the west coast when compared to the rest of CONUS, while the central-north displays heavier tails. 
We identify statistically significant links (at the 95% confidence level) between storm characteristics connected 
with the underlying processes (e.g., typical storm duration, typical temporal autocorrelation, proportion of 
convective-like storms) and the parameters of the distribution. Notably, characteristics typical of convective 
precipitation, e.g., sharp decorrelation time and high hourly intensity, tend to be related to distributions with 
heavier tails. These results provide a first step towards linking the characteristics of storms with the local statistics 
of extremes.  
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1. Introduction 1 

Quantifying and characterizing hydrometeorological extremes is of foremost importance 2 
when dealing with hydrological hazards and climate change adaptation strategies. According 3 
to National Oceanic and Atmospheric Administration (NOAA) (2022), the United States 4 
suffered $2,278.2 billion dollars in losses due to natural disasters from 1980 to July 2022. 5 
Tropical cyclones ($1,194.4 billion, 52.4%), severe storms ($365.3 billion, 16%), and droughts 6 
($300.1 billion, 13.2%) represent the three extreme weather categories producing higher costs. 7 
NOAA (2022) also indicates an increase in the number of billion-dollar events per year, from 8 
3.1 in 1980-1989, to 17.8 in the last 5 years (2017-2021). Aside from financial impacts, these 9 
natural disasters have caused 15,355 deaths since 1980. Several studies based on future 10 
projections from Global Circulation Models (GCMs) indicate that the number of extreme 11 
precipitation events in the United States is projected to increase towards the end of the  21st 12 
century (Cooley & Chang, 2020; Lopez-Cantu et al., 2020; Prein et al., 2016; Zhu Jianting, 13 
2013). 14 

Hydro-meteorological extremes are usually assessed by the frequency analysis of 15 
precipitation data. The frequency of exceedance of very large precipitation amounts is 16 
commonly modeled using probability distributions fitted to precipitation extremes from 17 
gauges, satellites or atmospheric models (Hu et al., 2020). This procedure allows for the 18 
extrapolation of very rare events that are potentially not represented in the observations. A 19 
common basis for this approach is extreme value theory, which relies on two main assumptions: 20 
the events are independent and identically distributed; and the extremes are intended as maxima 21 
of asymptotically large blocks(practically, the number of events in each year is large enough 22 
to be assumed infinite, n → ∞). Alternatively, Poisson exceedances of an asymptotically high 23 
threshold can be examined (Fisher & Tippett, 1928; Gnedenko, 1943). This asymptotic 24 
assumption constitutes an important theoretical hindrance to establishing relations linking the 25 
physical processes bringing precipitation to a given region (i.e., the finite number of storms 26 
with given characteristics that hit the area) and the emerging statistics of extremes. Other 27 
approaches can be used, such as the identification and use of the best fitting among various 28 
probability distribution families. While these probability distributions are not based on 29 
asymptotic theory, they are characterized by the same drawbacks that we detail below. 30 

The small data samples constituted by the observed/modeled extremes result in large 31 
uncertainties on the estimated probability distributions (Katz et al., 2002; Serinaldi & Kilsby, 32 
2014). These uncertainties have motivated the development of new approaches. This new 33 
concept assumes that extremes are samples from the so-called ordinary events, which are all 34 
the independent realizations of the stochastic process of interest (Marani & Ignaccolo, 2015; 35 
Marra et al., 2018; Schellander et al., 2019; Zorzetto et al., 2016). Naturally, these approaches 36 
explicitly separate the number of occurrences of  storms from their magnitude distribution, e.g., 37 
see (Marra et al., 2020a) and thus implicitly include a direct relation between the underlying 38 
physics (the storms) and the emerging statistics. 39 
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 Frequency analysis using asymptotic and non-asymptotic frameworks has been extensively 40 
applied in the literature to quantify changes to the quantiles of extreme events, either by 41 
comparing present and future time-slices, or by examining continuous changes or trends in 42 
space or time (Huang et al., 2022; Kunkel et al., 2020; Li et al., 2022;Marra et al., 2020b; 43 
Martinez‐Villalobos & Neelin, 2018; Miniussi & Marani, 2020; Prein et al., 2016; Vidrio-44 
Sahagún et al., 2023; Zhu Jianting, 2013). Another approach examines the causative relations 45 
between predictor variables (proxies) and the process of interest. These analyses are usually 46 
focused on describing the mechanism behind each process, in contrast to the frequency analysis 47 
developed by the probabilistic framework. For example, studies have analyzed the influence of 48 
latitude and elevation on the statistics of precipitation extremes (Amponsah et al., 2022; 49 
Papalexiou et al., 2018), as well as the influence of precipitable water (Kim et al., 2022), 50 
temperature (Barbero et al., 2018; Zhu et al., 2022) and orography (Formetta et al., 2022; Marra 51 
et al., 2021).  52 

Approaches similar to the causative relation analysis can also be used to identify and quantify 53 
ongoing and future changes in extremes based on changes to the causative processes and in 54 
their properties (Dallan et al., 2022; Marra et al., 2021; Marra et al., 2019; Vidrio-Sahagún & 55 
He, 2022). As this is based on physical understanding rather than mere statistical extrapolation, 56 
these approaches may enable a more robust prediction of future extremes. Analyses performed 57 
so far, however, have considered only a small number of factors (e.g., latitude, elevation, or 58 
temperature) and have not enabled the identification of a direct link between storm properties 59 
(such as hourly intensity, decorrelation time and duration) and statistics of extremes. To the 60 
best of our knowledge, a robust assessment of the relation between typical storm properties and 61 
a statistical description of precipitation extremes is still missing in the current literature. 62 
However, using the statistics of ordinary events based on storm objects allows us to do such 63 
analysis, identifying important proxies that could influence the behavior of precipitation 64 
extremes. These proxies provide insights on the formation processes behind extreme 65 
precipitation and, in addition to improving the overall understanding of tail behavior over 66 
CONUS, can enhance modeling exercises. 67 

This study investigates the relation between several storm and geographic characteristics 68 
(duration, maximum intensity, mean intensity, decorrelation time, elevation, latitude, and 69 
fraction of convective events) and the statistics of hourly and daily extreme precipitation. Our 70 
specific goals were to: (i) validate the applicability of the Weibull distribution for modeling 71 
precipitation extremes over CONUS, (ii) analyze the spatial patterns of the distribution 72 
parameters over different climatic zones, and (iii) investigate the possible relations between 73 
different storm characteristics and the distribution parameters (i.e., statistics of extremes). 74 

  75 

2. Data and Study Area 76 

2.1. Characteristics of the region  77 
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The study area consists of the contiguous United States (CONUS) (Figure 1). The region 78 
covers an extensive territory constrained between latitudes 25-50ºN, and longitudes 60-130ºW. 79 
The precipitation distribution drastically varies across CONUS. The states along the eastern 80 
coast and Gulf are influenced by tropical cyclones in late summer and early fall (Knight & 81 
Davis, 2007). The western coast is dominated by Pacific storms during the winter season 82 
(Moore et al., 2021). Precipitation events in southern areas and over the Great Plains are 83 
influenced by the North American monsoon during summer (Higgins et al., 1997). El Niño and 84 
La Niña also have a significant influence on rainfall patterns over CONUS, especially over the 85 
West, Midwest and Southeast (Gershunov, 1998).   86 

 87 

Figure 1 - Spatial distribution of stations per climate zone according to the Köppen-Geiger classification (Peel et al., 88 
2007)  89 

Table 1 - Climate Zones over CONUS modified from (Peel et al., 2007). 90 

Climate Zone Description Location 

BS Arid Steppe climate Covers most of the Great Plains, east of the Rocky 
Mountains 

BW Arid Desert climate Covers areas the Death Valley National Park and 
some locations around the Rocky Mountains 

Cf Temperate climate without dry 
season 

Encompasses the southeastern areas of CONUS 
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Csa Temperate climate with dry and hot 
summer 

Located on the entire coast of California 

Csb Temperate climate with dry and 
warm summer 

Located on the south portion of the California coast 

Dfa Cold climate without dry season and 
hot summer 

Located east of the Great Plains around 40ºN 
latitudes 

Dfb Cold climate without dry season and 
warm summer 

Includes the areas of New England, parts of the 
Rocky and Appalachian Mountains 

The statistics of extreme precipitation emerge from the interaction of different weather 91 
systems with local features and terrain conditions (Marra et al., 2021; Mazzoglio et al., 2022; 92 
Papalexiou et al., 2018). To better understand the relations between storm properties and 93 
emerging extremes in an area as vast as the CONUS, it is thus useful to separately examine 94 
regions with different climatology. According to the updated Koppen-Geiger maps (Peel et al., 95 
2007), more than 20 different climate zones are found within CONUS. In this study, the climate 96 
zones were grouped into seven main categories (Table 1) based on the availability of sufficient 97 
gauge stations (with at least 30 stations in each zone). The climate zones with less than 30 98 
stations were clustered in a category named “Other”. 99 

2.2. Data and quality control  100 

We used hourly precipitation from the Global Sub-Daily Rainfall (GSDR) observational 101 
dataset (Lewis et al., 2019). The GSDR dataset is the result of an effort from the European 102 
Research Council-funded INTENSE project (‘INTElligent use of climate models for 103 
adaptatioN to non-Stationary hydrological Extremes’) (Blenkinsop et al., 2018) in collecting 104 
sub-daily rainfall observations around the world. The complete global dataset consists of 105 
24,394 gauge stations with hourly precipitation data of varying resolution (e.g., 2.5 mm, 0.25 106 
mm), record length (spanning from <1 to 104 years), spatial coverage, completeness and 107 
quality (Lewis et al., 2021). In this study, we used a version of the GSDR dataset that was 108 
corrected to solve for quality issues, such as equipment malfunctions and recording errors (Ali 109 
et al., 2021, 2022; Lewis et al., 2021). The correction algorithm, named GSDR-QC, is based 110 
on a routine with 25 quality checks that is used to remove errors in data, being adaptable to 111 
incorporate regional information. 112 

Additional constraints and quality control criteria were used to screen the stations in this 113 
study: (i) only stations within CONUS boundaries were considered, i.e., within latitudes 25-114 
50ºN, and longitudes 60-130ºW; (ii) years in which data is stored with 2.5 mm measurement 115 
resolution were discarded; (iii) years with more than 10% missing data were discarded; (iv) 116 
stations with less than 20 years of record were removed from the analysis; (v) stations in which 117 
the hypothesis test for Weibull tail (Section 3.2) was rejected (57 stations) were removed. It is 118 
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important to note that this represents a very small rejection rate (~3.6%), which is fully 119 
explained by type I errors (see Marra et al., 2022 and Marra et al., 2023). After these additional 120 
criteria had been applied, 1,530 stations were used in the study. They are divided among the 121 
climate types: BS (217), BW (35), Cf (439), Csa (71), Csb (73), Dfa (357), Dfb (254) and 122 
Others (84). Their spatial distribution can be seen in Figure 1.  123 

3. Methods 124 

Statistics of heavy precipitation were described using a two-parameter Weibull distribution 125 
(stretched exponential). The concept of ‘ordinary events’, described as all independent 126 
realizations of the process of interest (Marra et al., 2020b) was used to perform the parameter 127 
estimation and representation of such process. This definition, along with the left-censoring 128 
described in section 3.2., helped to identify those events associated with precipitation extremes, 129 
from which the characteristics used in this study were derived.   130 

3.1. Statistical framework 131 

Following the unified approach proposed in Marra et al. (2020), we based the identification 132 
of ordinary events on the concept of storms, which are defined as wet time-intervals separated 133 
by dry hiatuses of at least 24h length. In that sense, precipitation amounts separated by less 134 
than 24h are considered in the same storm event even if they are discontinuous. After 135 
identifying the storms, ordinary events are defined as the hourly maximum intensities within 136 
each storm using two time windows, 1h and 24h. This definition allows for the direct 137 
comparison of storm properties and model parameters across different storm durations, because 138 
the number of ordinary events is equal to the number of storms and is thus the same for all 139 
durations. This provides a direct correspondence between meteorological objects (the storms, 140 
and therefore their properties) and the emerging statistical parameters  (Marra et al., 2020b). In 141 
the context of extreme daily precipitation, these independent ordinary events were often 142 
defined as precipitation amounts on wet days, and modeled with a stretched exponential (two-143 
parameter Weibull) distribution (Marani & Ignaccolo, 2015; Miniussi et al., 2020; Zorzetto et 144 
al., 2016). Recent studies based on theoretical formulations and gauge observations, however, 145 
indicate that only the upper tail of the ordinary events distribution is accurately modeled by the 146 
stretched exponential distribution (Amponsah et al., 2022; Marani & Ignaccolo, 2015; Marra 147 
et al., 2023, 2020b, 2018, 2019; Miniussi & Marra, 2021; Miniussi et al., 2020; Vidrio-Sahagún 148 
& He, 2022; Zorzetto et al., 2016). This portion of ordinary events, that we term here “tail”, 149 
can be identified using a left-censoring threshold (See section 3.2). An optimal choice of such 150 
threshold assures the best representation of the tail statistics (Marra et al., 2023). The tail 151 
defined by this optimal left-censoring threshold can incorporate large portions of the timeseries, 152 
e.g., above 60th percentile. Its definition implies that the annual maxima (i.e., the traditional 153 
quantity used to define extremes) are sampled from this distribution. Figure S6 in the 154 
supplementary information illustrates the left-censoring and fitting process. 155 

Following previous applications (Marani & Ignaccolo, 2015; Marra et al., 2018), the tail of 156 
the ordinary events distribution is modeled using a Weibull distribution, which can be 157 
described by its cumulative distribution function below: 158 
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𝐹(𝑥; 𝜆, 𝜅)  =  1 −  𝑒−(
𝑥

𝜆
)𝜅

   (eq. 1) 159 

The coefficients 𝜆 and 𝜅 𝜖 ]0, ∞[ are the scale and shape parameters, respectively. The scale 160 
parameter is a parameter such that  𝐹(𝑥; 𝜆) = 𝐹(𝑥/𝜆; 1), while the shape parameter determines 161 
the skewness of the distribution, providing a direct interpretation of the tail heaviness and 162 
consequently important information on the extremes, i.e., larger shape parameters indicate 163 
lighter tails and vice-versa.  164 

3.2. Identification of the optimal left-censoring thresholds 165 

In order to represent the tail of the distribution, ordinary events need to be left-censored. The 166 
optimal value of the left-censoring threshold depends on climate and can thus vary from case 167 
to case. Therefore, we performed a separate sensitivity analysis for the two time windows (1 168 
and 24h) on all stations to identify its value. This analysis follows the Monte Carlo-based 169 
hypothesis test procedure proposed in Marra et al. (2020b) and described in detail in Amponsah 170 
et al. (2022), Marra et al. (2020b, 2022). Codes for this test are available in Marra (2022): (1) 171 
a left-censoring threshold is assumed to identify the distribution tail, e.g. the 80th percentile of 172 
the ordinary events; (2) the parameters of the Weibull distribution describing this tail are 173 
estimated by censoring (i) all the ordinary events below threshold and (ii) all the observed 174 
annual maxima (censoring means that we do not use the quantitative values for estimation but 175 
we retain the weight in probability, i.e., any j-th quantile will retain the same value after the 176 
censoring) and using a least-square regression in Weibull-transformed coordinates (e.g. see 177 
Marani & Ignaccolo, 2015); (3) 1000 stochastic samples are drawn from the estimated 178 
distribution; (4) the observed annual maxima are compared to the samples to check whether 179 
they are likely samples from the tested distribution. Full details about this test are reported in 180 
Marra et al. (2023). By definition, the optimal left-censoring thresholds are those thresholds 181 
above which the test never rejects the Weibull tails; consequently, there is no sensitivity of the 182 
estimated parameters to small variations of their value. Since the outcome of the test depends 183 
on the sampled annual maxima of each case, it is subject to some level of stochasticity. The 184 
thresholds, however, are a climatic property; therefore, we selected the optimal left-censoring 185 
threshold for each station as the median of the threshold values of stations within a 200 km 186 
radius. 187 

3.3. Definition of storm characteristics 188 

The top ten percent (the values exceeding the 90th percentile) of the storms associated with 189 
extreme events in all stations were identified for both time windows, 1h and 24h, i.e., two 190 
different sets of storms were obtained based on the 1- and 24-h maximum intensities. This 191 
common value was adopted to ensure consistency. From them, we derived the following 192 
climatic and geographic variables: (1) Duration of the storm event; (2) Maximum Intensity of 193 
the storm event; (3) Mean Intensity of the storm event; (4) Decorrelation time; (5) Gauge 194 
Station Elevation; (6) Gauge Station Latitude and (7) Ratio of convective-like storms. Each 195 
station has a single value for elevation, latitude and ratio of convective storms; conversely, to 196 
represent duration, maximum and mean intensities, and decorrelation time at the station level, 197 
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we used their mean values across the storms. The influence of the climatic variables on the tail 198 
parameters were measured by the Spearman’s correlation coefficient. A separate evaluation 199 
was performed considering the climate zones independently. The characteristics of typical 200 
storms used in this study are defined in Table 2. 201 

Table 2 - Definition of storm characteristics 202 

No. Characteristic Definition 

1 Duration Difference in time between the end and start of the storm, measured in 
hours 

2 Maximum Intensity Hourly Maximum rainfall intensity extracted from each storm, measured 
in millimeters per hour. 

3 Mean Intensity Average of rainfall intensities within each storm, measured in 
millimeters per hour. 

4 Decorrelation Time Time lag (in hours) at which the autocorrelation of hourly precipitation 
time series becomes smaller than e-1 (0.368). 

5 Gauge elevation Elevation of the gauge station relative to sea level, measured in meters. 

6 Ratio of Convective-like 
Storms 

Number of storms classified as convective (Section 3.4) divided by the 
total number of storms 

 203 

3.4. Identification of convective-like storms 204 

We classified the storms based on proxies of the dominant physical process during their peak 205 
hourly intensity. The systematic separation of convective and stratiform precipitation 206 
components is still an open research question (Ghada et al., 2022; Sui et al., 2007; Thurai et 207 
al., 2021; Treppiedi et al., 2022; Wang et al., 2021). Following previous studies (Dallan et al., 208 
2022), here we used a simplified approach based on macroscopic characteristics typical of 209 
convective precipitation, which are the sharp temporal variability and the high intensity of the 210 
emerging precipitation. We classify as ‘convective-like’ all storms with temporal decorrelation 211 
time shorter or equal to 3 hours and maximum hourly intensity greater or equal to 3 mm/h 212 
(Figure S5). It is worth noting that with respect to Dallan et al. (2022), for which sub-hourly 213 
data was available, here we only have hourly time series. The temporal autocorrelation is thus 214 
more difficult to evaluate, as the temporal scales of convection are typically around or even 215 
below 1 hour. This implies that a proper optimization of these values is not feasible with the 216 
dataset at hand. The values of 3 hour for decorrelation time and 3 mm/h for maximum hourly 217 
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intensity were thus chosen based on visual inspection. However, it is important to note that 218 
these values are well within the range indicated by other authors (Treppiedi et al., 2022). 219 

Convective-like storms are expected to have their peak intensities dominated by convective 220 
processes. The remaining storms are classified as ‘other’ and are expected to have their peak 221 
intensities associated with different types of processes. Although this classification is 222 
somewhat crude, it is deemed sufficient here as we aim to evaluate the qualitative impact that 223 
the proportion of convective-like storms may have on the parameters of the emerging 224 
distributions, and we do so by using Spearman (rank) correlations. 225 

 226 

4. Results and Discussion 227 

4.1. Evaluation of statistical framework   228 

The sensitivity test results indicate a good performance of the Weibull distribution in 229 
representing the tail statistics and annual maxima. Figure 3 reports the optimal left-censoring 230 
thresholds needed to identify the Weibull portion of the ordinary events distribution. We can 231 
see significant variability across CONUS, with thresholds ranging from near 0 (light blue dots 232 
on Figure 3), i.e., the entire ordinary events distribution is well approximated by a stretched 233 
exponential from which annual maxima are sampled, to the 90th percentile (red dots on Figure 234 
3). Higher thresholds are needed for the 1-hour time window in the northeastern and western 235 
portions of CONUS, covering parts of Maine, New York, parts of the Appalachian and Rocky 236 
Mountains. The higher left-censoring threshold in areas with high elevation for short durations 237 
suggests an influence of orography. The area covered by the Great Plains presents middle range 238 
values, from the 20th to 70th percentile. The 24-hour time window (bottom panel of Figure 3) 239 
presents more stations associated with smaller thresholds (< 10th percentile), especially in the 240 
central portions of CONUS and the southern coast of California. Given the sensitivity and 241 
specificity of the test against alternative tail models, such as power-type tails and Generalized 242 
Pareto tails shown by Marra et al. (2023), the results in Figure 3 support the use of a stretched-243 
exponential tail model also for hourly precipitation. 244 



Araujo et. al.                                                                           Submitted to Advances in Water Resources 
 

 

 245 

Figure 3 - Left-Censoring Threshold for tail definition of extremes at 1 and 24-hour time-windows. The optimal value 246 
corresponds to the threshold used to define the tail of the distribution, i.e., an optimal value of 0.90 indicates that values 247 

above the 90th percentile are considered to be in the tail. Lighter blue colors indicate smaller thresholds, darker blue indicate 248 
middle-range values and red colors represent higher values. The upper panel refers to values of 1-hour time window ordinary 249 

events, while the bottom panel displays results for 24-hour events. 250 

A detailed investigation of the optimal left-censoring thresholds per climate zone is 251 
displayed in Figure 4. We can observe that for all climate zones the optimal values are 252 
consistently smaller for the longer duration against the shorter. The 1-hour median optimal 253 
value ranges from the 45th to 70th percentile, while the 24-hour ranges from the 30th to 50th 254 
for the seven climate zones considered. The climate zones BW and Dfb present higher 255 
threshold values for the 1-hour time window, which are significantly reduced for the 24-hour 256 
duration. These higher optimal values mean that a smaller portion of the ordinary events is 257 
included in the tail.  The temperate climate zone (Cf) presents the smallest left-censoring values 258 
for 24-h and the second smallest for the 1-hour. This region is characterized by no dry season, 259 
i.e., it has a significant number of extreme events year-round, with a consequent larger 260 
proportion of the ordinary events belonging to the tail. 261 
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 262 

Figure 4 - Left-Censoring Threshold for tail definition of extremes for the different climate zones of CONUS. Light 263 
colors indicate values for 1-hour, while darker colors indicate 24-hour time window. The climate types are: BS (yellow) - 264 
Arid Steppe climate; BW (red) - Arid Desert climate; Cf (green) - Temperate climate without dry season; Csa (orange) - 265 

Temperate climate with dry and hot summer; Csb (dark green) - Temperate climate with dry and warm summer; Dfa (light 266 
purple) - Cold climate without dry season and hot summer; Dfb (dark purple) - Cold climate without dry season and warm 267 

summer. 268 

The mean annual number of ordinary events (N) provides an insight into the occurrences of 269 
events across CONUS, as presented in Figure 5. The southwest and a significant part of the 270 
Great Plains have the smallest values of N, ranging from near 0 to 45 independent events/year. 271 
This result is consistent with the precipitation patterns in these regions, which are characterized 272 
by desert and an arid climate.  In contrast, the northeast has the highest values in the study 273 
domain (60-90 events/year). The southeast and northwest regions have a similar mean annual 274 
number of events, ranging from 45 to 75 events/year. In general, values of N followed the 275 
expected patterns based on the rainfall climatology of CONUS. 276 

 277 

 278 
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 279 

Figure 5 - Mean annual number of ordinary events (N) over CONUS. 280 

4.2. Parameters of the Weibull distribution describing the tails 281 

The definition of the tails, based on the left-censoring thresholds discussed above, allows us 282 
to describe the extremes using a two parameter Weibull distribution. The analysis of the two 283 
parameters (scale and shape) across regions allows important insights into the characteristics 284 
of extreme precipitation. The shape parameter in particular controls the skewness of the 285 
distribution, providing information about the tail heaviness, which represents the rate at which 286 
the occurrence probability decreases at increasing intensities. In the formulation in eq. (1), 287 
smaller values of the shape parameter indicate heavier tails.  288 

 289 
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 290 

Figure 6 - Scale Parameters (in mm h-1) for ordinary events of 1 and 24-hour time window obtained from a stretched 291 
exponential (Weibull) fitting of the ordinary events tail. Red color indicates larger values of scale, while cyan indicates 292 

smaller. The color scale is different for upper and lower panels because the different durations generate peak intensities of 293 
different order of magnitudes.  294 

The scale parameters for stations over CONUS are displayed in Figure 6. We can observe 295 
that there is a gradient of increasing scale parameter for the 1-hour time window from northwest 296 
(0-2.5) to southeast (≥ 7.5). This pattern is not present in the 24-hour time window (bottom 297 
panel of Figure 6), where the scale values of the west coast are similar to the ones obtained for 298 
the southeast (≥ 0.80). This behavior highlights the precipitation patterns of the two regions. 299 
Intense short-duration events occur often in the Southeast during the summer and early fall, 300 
while the precipitation on the west coast is dominated by winter and spring events coming from 301 
the Pacific Ocean. It is worth noting that the order of magnitude of scale values is different for 302 
1-hour and 24-hour time window events.  303 
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 304 

Figure 7 - Shape Parameters for ordinary events of 1 and 24-hour time window from a stretched exponential (Weibull) 305 
fitting of the ordinary events tail. Red and pink colors indicate shape values > 1 (light tail), while blue values indicate 306 

otherwise (heavy tail), with lighter colors indicating smaller values. 307 

The shape parameters for stations over CONUS are displayed in Figure 7. Light tails are 308 
observed on the west coast of CONUS (shape values ≥ 1.0) for 1-hour time window. This is 309 
not observed for 24-hour window, for which the west coast has heavier tails that are comparable 310 
with the rest of CONUS (also see upper panels of Figure 8). The climate zones Csa and Csb, 311 
located on the west coast, show median shape values >1 for 1-hour and around 0.80 for 24-312 
hour, which indicate tails heavier than exponential. The shape derived for 24-hour time window 313 
does not vary significantly across the regions (Figure 8, upper right), which suggests that, 314 
CONUS wide, the daily extremes are associated with similar combinations of precipitation 315 
processes. This is not the case for 1-h time windows. The regions Csa and Csb have lighter 316 
tails (larger shape parameters), as opposed to other regions. This implies that hourly extremes 317 
could be associated with diverse combinations of processes across CONUS. In fact, results 318 
displayed in Figures S3 and S4 shows that 25-60% of the events associated with the tail are 319 
different from 1 to 24-h, demonstrating that different proportions of precipitation processes are 320 
associated with each time window. The central portion of CONUS, covering the whole extent 321 
of the Great Plains, is characterized by heavier tails, with most stations indicating shape 322 
parameters between 0.5 and 0.7 for both durations (Figure 6). This behavior can be confirmed 323 
by analyzing the shape parameters for the climate zone BS in Figure 8, which presents a median 324 
value of 0.7 for 1-hour and 0.75 for 24-hour. The Great Plains are characterized by the 325 
formation of mesoscale convective systems during summer and fall seasons (Ashley et al., 326 
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2003), which seem to have significant influence on the regional rainfall extremes. The shape 327 
parameter values are also consistent between time windows for the Southeast, represented by 328 
the climate zone Cf (Figure 8), with median values around 0.85. This consistency can indicate 329 
that the tails for both time windows are composed by a common group of storms (24-hour 330 
peaks may often derive from short-duration extremes). The northeastern region shows a 331 
decrease in tail heaviness for longer time windows, with most stations being in the 0.60-0.80 332 
range for 1-hour and 0.80-0.90 for 24-hour windows (Figure 6). The region is represented by 333 
Climate Types Dfa and Dfb, which presents a median shape value of 0.75 (0.85) and 0.75 (0.9) 334 
for 1-hour (24-hour) respectively (Figure 8).  335 

 336 

Figure 8 - Parameters of the Weibull distributions describing the tail of ordinary events of 1 and 24h time window 337 
considering different climate zones of CONUS. The y-axis is different for scale plots of 1 and 24-hour because the different 338 

durations generate peak intensities of different orders of  magnitude. The climate types are: BS (yellow) - Arid Steppe 339 
climate; BW (red) - Arid Desert climate; Cf (green) - Temperate climate without dry season; Csa (orange) - Temperate 340 

climate with dry and hot summer; Csb (dark green) - Temperate climate with dry and warm summer; Dfa (light purple) - 341 
Cold climate without dry season and hot summer; Dfb (dark purple) - Cold climate without dry season and warm summer. 342 

 343 

4.3. Storm properties in different climate zones  344 

The analysis of storm characteristics can provide useful information on the relation between 345 
the statistics of extreme precipitation and the underlying physical processes. We extracted a set 346 
of properties from the 1-h and 24-h time window events which exceeded the 90th percentile of 347 
the ordinary events (mean duration, mean intensity, maximum intensity, decorrelation time) at 348 
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each station. This common threshold is chosen to provide comparability of the properties across 349 
stations. Although the value of threshold is common, the storms in 1h and 24h tail are not the 350 
same, as the heaviest storms can be different for different time windows (Figure S3 and S4). 351 
This implies that the reported differences between 1h and 24 statistics are attributed both to 352 
inter-storm variability and to intra-storm scaling, although the exact contributions of the two 353 
cannot be quantified. Their distribution across the different climate zones of CONUS is 354 
illustrated in Figure 9. The west coast, represented by the climate zones Csa and Csb, has 355 
extreme events of longer duration, indicating that large-scale atmospheric processes tend to 356 
dominate the tail. The decorrelation time of intense storms in these regions is also larger, 357 
highlighting a possible tendency for non-convective-like processes. Mean and Maximum 358 
intensity show similar relative patterns between climate zones, with the Cf zone showing larger 359 
values, illustrating the role of intense and short-duration extremes over the region. The BS and 360 
BW climate zones have short-duration events with relatively low intensities and short 361 
decorrelation time. The regions classified as Dfa and Dfb also have short-duration events with 362 
relatively high intensities and a very small variability in the decorrelation time, with a median 363 
of ~ 3 hours.  364 

The ratio of convective-like storms (as defined in Section 3.4) is displayed in the bottom 365 
panel of Figure 9. For the 1-h time window, the ratio is around 0.8 for almost all climate 366 
regions, indicating that the tail properties are dominated by convective-like storms. The Csa 367 
and Csb climate zones provide an exception to this, with much lower ratios (around 0.4). This 368 
result corresponds with other storm properties associated with convective-like characteristics, 369 
that show intense, short-duration and short decorrelation time in the storms associated with the 370 
tail. The ratio of convective-like storms producing the maximum 24-h time intensity is much 371 
lower, confirming that different rainfall generation processes are present for longer time 372 
windows peak intensities. However, even for 24-h time window, over half of the stations still 373 
indicate tails dominated by convective-like storms, although this is almost entirely absent in 374 
the Csa and Csb regions. 375 
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 376 

Figure 9 - Storm (ordinary events) characteristics above the 90th percentile considering the different climate zones of 377 
CONUS. The climate types are BS (yellow) - Arid Steppe climate; BW (red) - Arid Desert climate; Cf (green) - Temperate 378 

climate without dry season; Csa (orange) - Temperate climate with dry and hot summer; Csb (dark green) - Temperate 379 
climate with dry and warm summer; Dfa (light purple) - Cold climate without dry season and hot summer; Dfb (dark purple) 380 

- Cold climate without dry season and warm summer. Darker shades indicate values for 24-h time window, while lighter 381 
shades indicate 1-h. It is worth noting that the y-scale of the subplots corresponding to mean and maximum intensity are 382 

different.  383 

Information on the hour of the day and seasonality of storm events is displayed on Figures 384 
S1 and S2 of the supplementary information. There, we can see that afternoon and early night 385 
(12pm to 12am) events are more common in most of the stations. The west coast has tail events 386 
associated with winter precipitation, whereas the rest of CONUS is spring/summer dominated. 387 

 388 

4.4. Correlation between storm properties and shape parameter  389 

The correlation between the storm properties and the shape parameter has revealed 390 
important features of the physical processes associated with the tails. Convective-like 391 
characteristics were demonstrated to have a link with tail heaviness, where increasing 392 
convective characteristics implied heavier tails, i.e., increased probability of extreme events.    393 
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The shape parameter shows a moderate positive correlation with the mean duration of the 394 
storms associated with 1-hour extremes for the whole CONUS (0.53) and a weak correlation 395 
for most of the climate zones separately (0.27-0.44) (Figure 10), with the Cf (0.07) and Dfa 396 
(0.13) zones showing no correlation. A similar link is observed between storm duration and the 397 
shape parameter for 24-hour time window, with a weak correlation for most regions (0.23-398 
0.34) and no correlation for Cf (0.01) and Csa (0.16). The maximum and mean intensities do 399 
not show significant correlations with the shape parameter for 1-h time windows, and show 400 
weak to moderate correlations for 24-h. The BW climate zone is the only one that presents a 401 
notable and significant relationship between the shape parameter and 1-h time window peak 402 
rainfall intensity, with a correlation of -0.46 and -0.51 for maximum and mean intensity 403 
respectively. Decorrelation time shows a positive correlation with the shape parameter for both 404 
windows considered for ordinary events, with coefficients indicating a weak correlation (0.29 405 
for 1-hour and 0.41 for 24-hour). Although the correlation metrics range from weak to 406 
moderate, they show a significant link of the storm properties with the shape parameter, 407 
indicating that intense, short-duration events with short decorrelation times result in smaller 408 
values for the shape parameter, i.e. heavier tailed distributions. 409 

The overall negative correlation of the shape parameter with intensities and convective 410 
fraction, and the positive trend with decorrelation time, suggests the possible role of convection 411 
in increasing tail heaviness. Considering the entire CONUS, a correlation of -0.39 was obtained 412 
for both durations. The values per climate zone vary from -0.43 to -0.13 for 1-h, and -0.61 to 413 
0.26 for 24-h. This suggests a general agreement in the effect of an increase in convective-like 414 
processes on decreasing the shape parameter.  415 

Elevation and latitude have different effects on the shape parameter depending on the time 416 
window duration and climate region. The correlation coefficients vary from -0.39 to 0.25 for 417 
elevation and from -0.53 to 0.52 for latitude. For the 1-hour time window over CONUS, both 418 
elevation and latitude have a weak negative correlation with the shape parameter, at -0.39 and 419 
-0.33 respectively. This behavior is not observed for the 24-hour time window, which presents 420 
coefficients of -0.16 and 0.07 respectively. The fact that stronger relationships are found for 1-421 
hour indicates that latitude and elevation have a greater influence on processes driving short-422 
duration extremes. The variability in the sign of correlation between climate zones, however, 423 
indicates that there are stronger factors than elevation and latitude influencing the shape 424 
parameter. Amponsah et al., (2022) found a positive relationship of elevation and latitude with 425 
shape parameters obtained from daily precipitation in Ghana. The results differ from the ones 426 
obtained for CONUS, but they are comparable with the results obtained here for the Temperate 427 
Climate Zone (Cf) considering the time window of 24h, 0.2 for elevation and 0.52 for latitude. 428 
Ghana is classified as tropical, which shares similarities (i.e., hot, and humid summer) with the 429 
Cf region. The difference in spatial scales between CONUS and Ghana can also explain the 430 
discrepancy in the results, indicating that the relationship is influenced by factors other than 431 
elevation when considering continent-sized areas. In fact, when considering a smaller area 432 
focused on the mountainous region of North Carolina (Figure S7), we obtained a correlation 433 
coefficient of 0.35 for elevation-shape and 0.12 for latitude-shape. Results obtained by Marra 434 
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et al., (2021) corroborate with this statement, where a positive relationship was found for a 435 
focused area on the southeastern Mediterranean, between the Mediterranean and the dead sea.  436 

 437 

Figure 10 - Variability in the Spearman Correlation of 1 and 24-h time window (ordinary events) characteristics 438 
and the shape parameter for different climate zones over CONUS. Blue colors indicate positive correlation while 439 
red colors indicate negative. Most values are significant at the 95% confidence level (p-value < 0.05), the values 440 

that are outside this CI have the p-values displayed in parentheses. 441 

4.4. Correlation between storm properties and scale parameter  442 

An investigation of the relationship between storm properties and the scale parameter 443 
revealed stronger correlations than those for the shape parameter. We found a weak positive 444 
correlation for mean duration considering 24-h time window events for the whole CONUS 445 
(0.29) and a moderate correlation for the Csa (0.57) and Csb (0.46) climate zones. There is no 446 
link observed between the mean storm duration and the scale parameter for the 1-h time 447 
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window events, with the exception of a weak negative correlation (-0.25) for the BS climate 448 
zone. The maximum and mean intensities show a strong correlation with scale for 1-hour time 449 
window events over CONUS (0.88 for maximum and 0.74 for mean) and for most of the 450 
climate zones (0.72-0.87 and 0.49-0.7, respectively); however, values are lower (0.11-0.64) for 451 
the 24-hour time window. Decorrelation time shows no significant link when considering the 452 
entire CONUS, but there are strong relationships with the scale parameter for specific climate 453 
zones, such as for Csa (0.71) and Csb (0.74). 454 

 455 

Figure 11 - Variability in the correlation metrics of 1 and 24-h time window (ordinary events) characteristics and 456 
the scale parameter for different climate zones over CONUS. Blue colors indicate positive correlation while red 457 
colors indicate negative. Most values are significant at the 95% confidence level (p-value < 0.05), the values that 458 

are outside this CI have the p-values displayed in parentheses. 459 

Elevation and latitude are a significant factor of influence on the scale parameter, both for 1- 460 
and 24-hour time windows. The correlation coefficients obtained for CONUS were -0.5 (-0.54) 461 
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and -0.69 (-0.5) for 1-h (24-h) for elevation and latitude respectively. Amponsah et al., (2022) 462 
found positive relationship of the scale parameter with latitude and no significant relationship 463 
between elevation and scale for a tropical climate zone in Sub-Saharan Africa, differing from 464 
our results. However, Marra et. al., (2021) found a negative relationship between scale and 465 
elevation for a region in the southeastern Mediterranean, in agreement with our findings. These 466 
results emphasize the role of other major factors, such as climate characteristics, in the 467 
relationship of geographic properties and tail statistics. 468 

 5. Conclusions 469 

In this study we used a statistical framework based on the concept of ordinary events, here 470 
defined as the maximum intensities of storm events over two time windows (1 and 24-h), to 471 
analyze the influence of storm properties on the statistics of extreme precipitation. A two-472 
parameter Weibull distribution was used to represent precipitation frequencies at several 473 
stations from the GSDR dataset (Lewis et al., 2019) over CONUS, encompassing seven climate 474 
zones. Our results reveal significant (at the 95% confidence level) relationships between storm 475 
properties and the statistics of extreme precipitation. 476 

Our analysis indicated that the stretched exponential (two-parameter Weibull) is a suitable 477 
distribution to represent the ordinary events over CONUS. Considering the robustness of the 478 
applied test in comparison with alternative tail models (e.g., power-type and Generalized 479 
Pareto), our results also demonstrate the viability of a stretched-exponential tail framework for 480 
hourly precipitation. The proportion of ordinary events belonging to the tail, represented by the 481 
left-censoring threshold, is a climate property, with higher values of the threshold (less events 482 
in the tails) in the Northwest and Northeast of CONUS. Overall, the threshold is lower when a 483 
longer time window (24h) is considered.  484 

The parameters obtained from the fitted distribution offered useful insights into the spatial 485 
distribution of precipitation extremes. The shape parameter revealed lighter tails on the west 486 
coast for the 1-h time window events. Heavier tails were found in the central region of CONUS, 487 
indicating larger probabilities of extreme precipitation in that region. The scale parameter 488 
showed large variation from 1-h to 24-h time window events for the west coast. At 24-h 489 
duration, the scale parameters of the west coast have similar values as the Eastern region, while 490 
this behavior is not observed at 1-h. 491 

The storm properties tested showed significant correlations with properties of the ordinary 492 
events distribution (the shape and scale parameters). The ratio of convective-like storms, and 493 
the average maximum and mean storm intensities have a positive correlation with the tail 494 
heaviness, which indicates that increasing convective fraction likely translates into heavier 495 
tails. The positive link with storm duration and decorrelation time corroborated these results. 496 
Elevation and latitude presented weak to moderate correlation with the distribution parameters 497 
for the entire CONUS, even more for climate zones on the eastern coast. Correlation 498 
coefficients were stronger between storm properties and the scale parameter than for the shape 499 
parameter, presenting a significant strong correlation with latitude, and maximum and mean 500 
intensities. These relationships provide useful information on relation of storm properties and 501 
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storm parameters over CONUS, contributing to an increase in overall knowledge of the 502 
statistical analysis of extreme events. 503 
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