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Abstract

In this paper we use a statistical framework to analyze the relation between storm properties and the statistics of
extreme precipitation. We identify storm events using a 24-hour dry hiatus separation. We investigate the statistics
of the hourly maximum intensity for the heaviest storm events at durations of 1 and 24 h. A two-parameter
Weibull distribution is used to represent precipitation frequencies at several stations from a quality-controlled
hourly precipitation dataset over the contiguous United States, encompassing seven climate zones. The Spearman
correlation between the distribution parameters and a selection of storm properties (duration, intensity,
decorrelation time, convective-like ratio) and station properties (elevation and latitude) is used to measure the
relation of these properties with the statistics of extreme precipitation. Our results indicate that observed annual
maximum hourly precipitation over the entire study area are likely samples from the used distribution, implying
that a two-parameter Weibull distribution is suitable for modeling hourly and 24-hour precipitation extremes over
the contiguous United States. The spatial variability of shape parameters obtained for hourly events showed
lighter tails in the west coast when compared to the rest of CONUS, while the central-north displays heavier tails.
We identify statistically significant links (at the 95% confidence level) between storm characteristics connected
with the underlying processes (e.g., typical storm duration, typical temporal autocorrelation, proportion of
convective-like storms) and the parameters of the distribution. Notably, characteristics typical of convective
precipitation, e.g., sharp decorrelation time and high hourly intensity, tend to be related to distributions with
heavier tails. These results provide a first step towards linking the characteristics of storms with the local statistics
of extremes.
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1. Introduction

Quantifying and characterizing hydrometeorological extremes is of foremost importance
when dealing with hydrological hazards and climate change adaptation strategies. According
to National Oceanic and Atmospheric Administration (NOAA) (2022), the United States
suffered $2,278.2 billion dollars in losses due to natural disasters from 1980 to July 2022.
Tropical cyclones ($1,194.4 billion, 52.4%), severe storms ($365.3 billion, 16%), and droughts
($300.1 billion, 13.2%) represent the three extreme weather categories producing higher costs.
NOAA (2022) also indicates an increase in the number of billion-dollar events per year, from
3.1 in 1980-1989, to 17.8 in the last 5 years (2017-2021). Aside from financial impacts, these
natural disasters have caused 15,355 deaths since 1980. Several studies based on future
projections from Global Circulation Models (GCMs) indicate that the number of extreme
precipitation events in the United States is projected to increase towards the end of the 21st
century (Cooley & Chang, 2020; Lopez-Cantu et al., 2020; Prein et al., 2016; Zhu Jianting,
2013).

Hydro-meteorological extremes are usually assessed by the frequency analysis of
precipitation data. The frequency of exceedance of very large precipitation amounts is
commonly modeled using probability distributions fitted to precipitation extremes from
gauges, satellites or atmospheric models (Hu et al., 2020). This procedure allows for the
extrapolation of very rare events that are potentially not represented in the observations. A
common basis for this approach is extreme value theory, which relies on two main assumptions:
the events are independent and identically distributed; and the extremes are intended as maxima
of asymptotically large blocks(practically, the number of events in each year is large enough
to be assumed infinite, n — ). Alternatively, Poisson exceedances of an asymptotically high
threshold can be examined (Fisher & Tippett, 1928; Gnedenko, 1943). This asymptotic
assumption constitutes an important theoretical hindrance to establishing relations linking the
physical processes bringing precipitation to a given region (i.e., the finite number of storms
with given characteristics that hit the area) and the emerging statistics of extremes. Other
approaches can be used, such as the identification and use of the best fitting among various
probability distribution families. While these probability distributions are not based on
asymptotic theory, they are characterized by the same drawbacks that we detail below.

The small data samples constituted by the observed/modeled extremes result in large
uncertainties on the estimated probability distributions (Katz et al., 2002; Serinaldi & Kilsby,
2014). These uncertainties have motivated the development of new approaches. This new
concept assumes that extremes are samples from the so-called ordinary events, which are all
the independent realizations of the stochastic process of interest (Marani & Ignaccolo, 2015;
Marra et al., 2018; Schellander et al., 2019; Zorzetto et al., 2016). Naturally, these approaches
explicitly separate the number of occurrences of storms from their magnitude distribution, e.g.,
see (Marra et al., 2020a) and thus implicitly include a direct relation between the underlying
physics (the storms) and the emerging statistics.
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Frequency analysis using asymptotic and non-asymptotic frameworks has been extensively
applied in the literature to quantify changes to the quantiles of extreme events, either by
comparing present and future time-slices, or by examining continuous changes or trends in
space or time (Huang et al., 2022; Kunkel et al., 2020; Li et al., 2022;Marra et al., 2020b;
Martinez-Villalobos & Neelin, 2018; Miniussi & Marani, 2020; Prein et al., 2016; Vidrio-
Sahagun et al., 2023; Zhu Jianting, 2013). Another approach examines the causative relations
between predictor variables (proxies) and the process of interest. These analyses are usually
focused on describing the mechanism behind each process, in contrast to the frequency analysis
developed by the probabilistic framework. For example, studies have analyzed the influence of
latitude and elevation on the statistics of precipitation extremes (Amponsah et al., 2022;
Papalexiou et al., 2018), as well as the influence of precipitable water (Kim et al., 2022),
temperature (Barbero et al., 2018; Zhu et al., 2022) and orography (Formetta et al., 2022; Marra
et al., 2021).

Approaches similar to the causative relation analysis can also be used to identify and quantify
ongoing and future changes in extremes based on changes to the causative processes and in
their properties (Dallan et al., 2022; Marra et al., 2021; Marra et al., 2019; Vidrio-Sahagun &
He, 2022). As this is based on physical understanding rather than mere statistical extrapolation,
these approaches may enable a more robust prediction of future extremes. Analyses performed
so far, however, have considered only a small number of factors (e.g., latitude, elevation, or
temperature) and have not enabled the identification of a direct link between storm properties
(such as hourly intensity, decorrelation time and duration) and statistics of extremes. To the
best of our knowledge, a robust assessment of the relation between typical storm properties and
a statistical description of precipitation extremes is still missing in the current literature.
However, using the statistics of ordinary events based on storm objects allows us to do such
analysis, identifying important proxies that could influence the behavior of precipitation
extremes. These proxies provide insights on the formation processes behind extreme
precipitation and, in addition to improving the overall understanding of tail behavior over
CONUS, can enhance modeling exercises.

This study investigates the relation between several storm and geographic characteristics
(duration, maximum intensity, mean intensity, decorrelation time, elevation, latitude, and
fraction of convective events) and the statistics of hourly and daily extreme precipitation. Our
specific goals were to: (i) validate the applicability of the Weibull distribution for modeling
precipitation extremes over CONUS, (ii) analyze the spatial patterns of the distribution
parameters over different climatic zones, and (iii) investigate the possible relations between
different storm characteristics and the distribution parameters (i.e., statistics of extremes).

2. Data and Study Area

2.1. Characteristics of the region
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The study area consists of the contiguous United States (CONUS) (Figure 1). The region
covers an extensive territory constrained between latitudes 25-50°N, and longitudes 60-130°W.
The precipitation distribution drastically varies across CONUS. The states along the eastern
coast and Gulf are influenced by tropical cyclones in late summer and early fall (Knight &
Davis, 2007). The western coast is dominated by Pacific storms during the winter season
(Moore et al., 2021). Precipitation events in southern areas and over the Great Plains are
influenced by the North American monsoon during summer (Higgins et al., 1997). El Nifio and
La Nifia also have a significant influence on rainfall patterns over CONUS, especially over the
West, Midwest and Southeast (Gershunov, 1998).

S per Climate Zone

atial Distribution of Stations

| |Climate Zone
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50°N iy
« Cf
» Csa
= Csb
= Dfa
= Dfb
Other
8 40°N
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i |
30°N
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Figure 1 - Spatial distribution of stations per climate zone according to the Koppen-Geiger classification (Peel et al.,
2007)

Table 1 - Climate Zones over CONUS modified from (Peel et al., 2007).

Climate Zone Description Location
BS Arid Steppe climate Covers most of the Great Plains, east of the Rocky
Mountains
BW Arid Desert climate Covers areas the Death Valley National Park and

some locations around the Rocky Mountains

Cf Temperate climate without dry Encompasses the southeastern areas of CONUS
season
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Csa Temperate climate with dry and hot Located on the entire coast of California
summer
Csb Temperate climate with dry and Located on the south portion of the California coast

warm summer

Dfa Cold climate without dry season and Located east of the Great Plains around 40°N
hot summer latitudes
Dfb Cold climate without dry season and Includes the areas of New England, parts of the
warm summer Rocky and Appalachian Mountains

The statistics of extreme precipitation emerge from the interaction of different weather
systems with local features and terrain conditions (Marra et al., 2021; Mazzoglio et al., 2022;
Papalexiou et al., 2018). To better understand the relations between storm properties and
emerging extremes in an area as vast as the CONUS, it is thus useful to separately examine
regions with different climatology. According to the updated Koppen-Geiger maps (Peel et al.,
2007), more than 20 different climate zones are found within CONUS. In this study, the climate
zones were grouped into seven main categories (Table 1) based on the availability of sufficient
gauge stations (with at least 30 stations in each zone). The climate zones with less than 30
stations were clustered in a category named “Other”.

2.2. Data and quality control

We used hourly precipitation from the Global Sub-Daily Rainfall (GSDR) observational
dataset (Lewis et al., 2019). The GSDR dataset is the result of an effort from the European
Research Council-funded INTENSE project (‘INTElligent use of climate models for
adaptatioN to non-Stationary hydrological Extremes”) (Blenkinsop et al., 2018) in collecting
sub-daily rainfall observations around the world. The complete global dataset consists of
24,394 gauge stations with hourly precipitation data of varying resolution (e.g., 2.5 mm, 0.25
mm), record length (spanning from <1 to 104 years), spatial coverage, completeness and
quality (Lewis et al., 2021). In this study, we used a version of the GSDR dataset that was
corrected to solve for quality issues, such as equipment malfunctions and recording errors (Ali
et al., 2021, 2022; Lewis et al., 2021). The correction algorithm, named GSDR-QC, is based
on a routine with 25 quality checks that is used to remove errors in data, being adaptable to
incorporate regional information.

Additional constraints and quality control criteria were used to screen the stations in this
study: (i) only stations within CONUS boundaries were considered, i.e., within latitudes 25-
50°N, and longitudes 60-130°W; (ii) years in which data is stored with 2.5 mm measurement
resolution were discarded; (ii1) years with more than 10% missing data were discarded; (iv)
stations with less than 20 years of record were removed from the analysis; (v) stations in which
the hypothesis test for Weibull tail (Section 3.2) was rejected (57 stations) were removed. It is
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important to note that this represents a very small rejection rate (~3.6%), which is fully
explained by type I errors (see Marra et al., 2022 and Marra et al., 2023). After these additional
criteria had been applied, 1,530 stations were used in the study. They are divided among the
climate types: BS (217), BW (35), Cf (439), Csa (71), Csb (73), Dfa (357), Dfb (254) and
Others (84). Their spatial distribution can be seen in Figure 1.

3. Methods

Statistics of heavy precipitation were described using a two-parameter Weibull distribution
(stretched exponential). The concept of ‘ordinary events’, described as all independent
realizations of the process of interest (Marra et al., 2020b) was used to perform the parameter
estimation and representation of such process. This definition, along with the left-censoring
described in section 3.2., helped to identify those events associated with precipitation extremes,
from which the characteristics used in this study were derived.

3.1. Statistical framework

Following the unified approach proposed in Marra et al. (2020), we based the identification
of ordinary events on the concept of storms, which are defined as wet time-intervals separated
by dry hiatuses of at least 24h length. In that sense, precipitation amounts separated by less
than 24h are considered in the same storm event even if they are discontinuous. After
identifying the storms, ordinary events are defined as the hourly maximum intensities within
each storm using two time windows, 1h and 24h. This definition allows for the direct
comparison of storm properties and model parameters across different storm durations, because
the number of ordinary events is equal to the number of storms and is thus the same for all
durations. This provides a direct correspondence between meteorological objects (the storms,
and therefore their properties) and the emerging statistical parameters (Marra et al., 2020b). In
the context of extreme daily precipitation, these independent ordinary events were often
defined as precipitation amounts on wet days, and modeled with a stretched exponential (two-
parameter Weibull) distribution (Marani & Ignaccolo, 2015; Miniussi et al., 2020; Zorzetto et
al., 2016). Recent studies based on theoretical formulations and gauge observations, however,
indicate that only the upper tail of the ordinary events distribution is accurately modeled by the
stretched exponential distribution (Amponsah et al., 2022; Marani & Ignaccolo, 2015; Marra
etal., 2023, 2020b, 2018, 2019; Miniussi & Marra, 2021; Miniussi et al., 2020; Vidrio-Sahagin
& He, 2022; Zorzetto et al., 2016). This portion of ordinary events, that we term here “tail”,
can be identified using a left-censoring threshold (See section 3.2). An optimal choice of such
threshold assures the best representation of the tail statistics (Marra et al., 2023). The tail
defined by this optimal left-censoring threshold can incorporate large portions of the timeseries,
e.g., above 60" percentile. Its definition implies that the annual maxima (i.e., the traditional
quantity used to define extremes) are sampled from this distribution. Figure S6 in the
supplementary information illustrates the left-censoring and fitting process.

Following previous applications (Marani & Ignaccolo, 2015; Marra et al., 2018), the tail of
the ordinary events distribution is modeled using a Weibull distribution, which can be
described by its cumulative distribution function below:
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F(x;A,k) =1 — e_(i)K (eq. 1)

The coefficients A and k € |0, oo[ are the scale and shape parameters, respectively. The scale
parameter is a parameter such that F(x; 1) = F(x/A4; 1), while the shape parameter determines
the skewness of the distribution, providing a direct interpretation of the tail heaviness and
consequently important information on the extremes, i.e., larger shape parameters indicate
lighter tails and vice-versa.

3.2. Identification of the optimal left-censoring thresholds

In order to represent the tail of the distribution, ordinary events need to be left-censored. The
optimal value of the left-censoring threshold depends on climate and can thus vary from case
to case. Therefore, we performed a separate sensitivity analysis for the two time windows (1
and 24h) on all stations to identify its value. This analysis follows the Monte Carlo-based
hypothesis test procedure proposed in Marra et al. (2020b) and described in detail in Amponsah
et al. (2022), Marra et al. (2020b, 2022). Codes for this test are available in Marra (2022): (1)
a left-censoring threshold is assumed to identify the distribution tail, e.g. the 80th percentile of
the ordinary events; (2) the parameters of the Weibull distribution describing this tail are
estimated by censoring (i) all the ordinary events below threshold and (ii) all the observed
annual maxima (censoring means that we do not use the quantitative values for estimation but
we retain the weight in probability, i.e., any j-th quantile will retain the same value after the
censoring) and using a least-square regression in Weibull-transformed coordinates (e.g. see
Marani & Ignaccolo, 2015); (3) 1000 stochastic samples are drawn from the estimated
distribution; (4) the observed annual maxima are compared to the samples to check whether
they are likely samples from the tested distribution. Full details about this test are reported in
Marra et al. (2023). By definition, the optimal left-censoring thresholds are those thresholds
above which the test never rejects the Weibull tails; consequently, there is no sensitivity of the
estimated parameters to small variations of their value. Since the outcome of the test depends
on the sampled annual maxima of each case, it is subject to some level of stochasticity. The
thresholds, however, are a climatic property; therefore, we selected the optimal left-censoring
threshold for each station as the median of the threshold values of stations within a 200 km
radius.

3.3. Definition of storm characteristics

The top ten percent (the values exceeding the 90 percentile) of the storms associated with
extreme events in all stations were identified for both time windows, 1h and 24h, i.e., two
different sets of storms were obtained based on the 1- and 24-h maximum intensities. This
common value was adopted to ensure consistency. From them, we derived the following
climatic and geographic variables: (1) Duration of the storm event; (2) Maximum Intensity of
the storm event; (3) Mean Intensity of the storm event; (4) Decorrelation time; (5) Gauge
Station Elevation; (6) Gauge Station Latitude and (7) Ratio of convective-like storms. Each
station has a single value for elevation, latitude and ratio of convective storms; conversely, to
represent duration, maximum and mean intensities, and decorrelation time at the station level,
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we used their mean values across the storms. The influence of the climatic variables on the tail
parameters were measured by the Spearman’s correlation coefficient. A separate evaluation
was performed considering the climate zones independently. The characteristics of typical
storms used in this study are defined in Table 2.

Table 2 - Definition of storm characteristics

No. Characteristic Definition
1 Duration Difference in time between the end and start of the storm, measured in
hours
2 Maximum Intensity Hourly Maximum rainfall intensity extracted from each storm, measured

in millimeters per hour.

3 Mean Intensity Average of rainfall intensities within each storm, measured in
millimeters per hour.

4 Decorrelation Time Time lag (in hours) at which the autocorrelation of hourly precipitation
time series becomes smaller than e-1 (0.368).

5 Gauge elevation Elevation of the gauge station relative to sea level, measured in meters.
6 Ratio of Convective-like Number of storms classified as convective (Section 3.4) divided by the
Storms total number of storms

3.4. Identification of convective-like storms

We classified the storms based on proxies of the dominant physical process during their peak
hourly intensity. The systematic separation of convective and stratiform precipitation
components is still an open research question (Ghada et al., 2022; Sui et al., 2007; Thurai et
al., 2021; Treppiedi et al., 2022; Wang et al., 2021). Following previous studies (Dallan et al.,
2022), here we used a simplified approach based on macroscopic characteristics typical of
convective precipitation, which are the sharp temporal variability and the high intensity of the
emerging precipitation. We classify as ‘convective-like’ all storms with temporal decorrelation
time shorter or equal to 3 hours and maximum hourly intensity greater or equal to 3 mm/h
(Figure S5). It is worth noting that with respect to Dallan et al. (2022), for which sub-hourly
data was available, here we only have hourly time series. The temporal autocorrelation is thus
more difficult to evaluate, as the temporal scales of convection are typically around or even
below 1 hour. This implies that a proper optimization of these values is not feasible with the
dataset at hand. The values of 3 hour for decorrelation time and 3 mm/h for maximum hourly
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intensity were thus chosen based on visual inspection. However, it is important to note that
these values are well within the range indicated by other authors (Treppiedi et al., 2022).

Convective-like storms are expected to have their peak intensities dominated by convective
processes. The remaining storms are classified as ‘other’ and are expected to have their peak
intensities associated with different types of processes. Although this classification is
somewhat crude, it is deemed sufficient here as we aim to evaluate the qualitative impact that
the proportion of convective-like storms may have on the parameters of the emerging
distributions, and we do so by using Spearman (rank) correlations.

4. Results and Discussion
4.1. Evaluation of statistical framework

The sensitivity test results indicate a good performance of the Weibull distribution in
representing the tail statistics and annual maxima. Figure 3 reports the optimal left-censoring
thresholds needed to identify the Weibull portion of the ordinary events distribution. We can
see significant variability across CONUS, with thresholds ranging from near 0 (light blue dots
on Figure 3), i.e., the entire ordinary events distribution is well approximated by a stretched
exponential from which annual maxima are sampled, to the 90th percentile (red dots on Figure
3). Higher thresholds are needed for the 1-hour time window in the northeastern and western
portions of CONUS, covering parts of Maine, New York, parts of the Appalachian and Rocky
Mountains. The higher left-censoring threshold in areas with high elevation for short durations
suggests an influence of orography. The area covered by the Great Plains presents middle range
values, from the 20th to 70th percentile. The 24-hour time window (bottom panel of Figure 3)
presents more stations associated with smaller thresholds (< 10th percentile), especially in the
central portions of CONUS and the southern coast of California. Given the sensitivity and
specificity of the test against alternative tail models, such as power-type tails and Generalized
Pareto tails shown by Marra et al. (2023), the results in Figure 3 support the use of a stretched-
exponential tail model also for hourly precipitation.
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Figure 3 - Left-Censoring Threshold for tail definition of extremes at 1 and 24-hour time-windows. The optimal value
corresponds to the threshold used to define the tail of the distribution, i.e., an optimal value of 0.90 indicates that values
above the 90th percentile are considered to be in the tail. Lighter blue colors indicate smaller thresholds, darker blue indicate
middle-range values and red colors represent higher values. The upper panel refers to values of 1-hour time window ordinary
events, while the bottom panel displays results for 24-hour events.

A detailed investigation of the optimal left-censoring thresholds per climate zone is
displayed in Figure 4. We can observe that for all climate zones the optimal values are
consistently smaller for the longer duration against the shorter. The 1-hour median optimal
value ranges from the 45th to 70th percentile, while the 24-hour ranges from the 30th to 50th
for the seven climate zones considered. The climate zones BW and Dfb present higher
threshold values for the 1-hour time window, which are significantly reduced for the 24-hour
duration. These higher optimal values mean that a smaller portion of the ordinary events is
included in the tail. The temperate climate zone (Cf) presents the smallest left-censoring values
for 24-h and the second smallest for the 1-hour. This region is characterized by no dry season,
i.e., it has a significant number of extreme events year-round, with a consequent larger
proportion of the ordinary events belonging to the tail.



262

263
264
265
266
267
268

269
270
271
272
273
274
275
276

277

278

Araujo et. al. Submitted to Advances in Water Resources

1 T T T T T
09+ T T T T
T T 1
11 |
0.8 : n . |
1 I
o7t ' L -
% ! i |
o6l o H K : .
o . |
= 1
o |
£ 05" — lo| .
= | |
2
S 04F I 1 B
Q 1 - L
& I
© 0.3 - | .
—_— |
I
0.2 [ 1 i
1 L I |
01F 1 1 |
O 1 | | | 1 1 1
BS BW Cf Csa Csb Dfa Dfb

Climate Types

Figure 4 - Left-Censoring Threshold for tail definition of extremes for the different climate zones of CONUS. Light
colors indicate values for 1-hour, while darker colors indicate 24-hour time window. The climate types are: BS (yellow) -
Arid Steppe climate; BW (red) - Arid Desert climate; Cf (green) - Temperate climate without dry season; Csa (orange) -
Temperate climate with dry and hot summer; Csb (dark green) - Temperate climate with dry and warm summer; Dfa (light
purple) - Cold climate without dry season and hot summer; Dfb (dark purple) - Cold climate without dry season and warm
summer.

The mean annual number of ordinary events (N) provides an insight into the occurrences of
events across CONUS, as presented in Figure 5. The southwest and a significant part of the
Great Plains have the smallest values of N, ranging from near 0 to 45 independent events/year.
This result is consistent with the precipitation patterns in these regions, which are characterized
by desert and an arid climate. In contrast, the northeast has the highest values in the study
domain (60-90 events/year). The southeast and northwest regions have a similar mean annual
number of events, ranging from 45 to 75 events/year. In general, values of N followed the
expected patterns based on the rainfall climatology of CONUS.
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Figure 5 - Mean annual number of ordinary events (N) over CONUS.
4.2. Parameters of the Weibull distribution describing the tails

The definition of the tails, based on the left-censoring thresholds discussed above, allows us
to describe the extremes using a two parameter Weibull distribution. The analysis of the two
parameters (scale and shape) across regions allows important insights into the characteristics
of extreme precipitation. The shape parameter in particular controls the skewness of the
distribution, providing information about the tail heaviness, which represents the rate at which
the occurrence probability decreases at increasing intensities. In the formulation in eq. (1),
smaller values of the shape parameter indicate heavier tails.
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290
291 Figure 6 - Scale Parameters (in mm h'!) for ordinary events of 1 and 24-hour time window obtained from a stretched
292 exponential (Weibull) fitting of the ordinary events tail. Red color indicates larger values of scale, while cyan indicates
293 smaller. The color scale is different for upper and lower panels because the different durations generate peak intensities of
294 different order of magnitudes.
295 The scale parameters for stations over CONUS are displayed in Figure 6. We can observe

296 thatthere is a gradient of increasing scale parameter for the 1-hour time window from northwest
297  (0-2.5) to southeast (= 7.5). This pattern is not present in the 24-hour time window (bottom
298  panel of Figure 6), where the scale values of the west coast are similar to the ones obtained for
299  the southeast (> 0.80). This behavior highlights the precipitation patterns of the two regions.
300 Intense short-duration events occur often in the Southeast during the summer and early fall,
301  while the precipitation on the west coast is dominated by winter and spring events coming from
302 the Pacific Ocean. It is worth noting that the order of magnitude of scale values is different for
303  1-hour and 24-hour time window events.
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Figure 7 - Shape Parameters for ordinary events of 1 and 24-hour time window from a stretched exponential (Weibull)
fitting of the ordinary events tail. Red and pink colors indicate shape values > 1 (light tail), while blue values indicate
otherwise (heavy tail), with lighter colors indicating smaller values.

The shape parameters for stations over CONUS are displayed in Figure 7. Light tails are
observed on the west coast of CONUS (shape values > 1.0) for 1-hour time window. This is
not observed for 24-hour window, for which the west coast has heavier tails that are comparable
with the rest of CONUS (also see upper panels of Figure 8). The climate zones Csa and Csb,
located on the west coast, show median shape values >1 for 1-hour and around 0.80 for 24-
hour, which indicate tails heavier than exponential. The shape derived for 24-hour time window
does not vary significantly across the regions (Figure 8, upper right), which suggests that,
CONUS wide, the daily extremes are associated with similar combinations of precipitation
processes. This is not the case for 1-h time windows. The regions Csa and Csb have lighter
tails (larger shape parameters), as opposed to other regions. This implies that hourly extremes
could be associated with diverse combinations of processes across CONUS. In fact, results
displayed in Figures S3 and S4 shows that 25-60% of the events associated with the tail are
different from 1 to 24-h, demonstrating that different proportions of precipitation processes are
associated with each time window. The central portion of CONUS, covering the whole extent
of the Great Plains, is characterized by heavier tails, with most stations indicating shape
parameters between 0.5 and 0.7 for both durations (Figure 6). This behavior can be confirmed
by analyzing the shape parameters for the climate zone BS in Figure 8, which presents a median
value of 0.7 for 1-hour and 0.75 for 24-hour. The Great Plains are characterized by the
formation of mesoscale convective systems during summer and fall seasons (Ashley et al.,
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2003), which seem to have significant influence on the regional rainfall extremes. The shape
parameter values are also consistent between time windows for the Southeast, represented by
the climate zone Cf (Figure 8), with median values around 0.85. This consistency can indicate
that the tails for both time windows are composed by a common group of storms (24-hour
peaks may often derive from short-duration extremes). The northeastern region shows a
decrease in tail heaviness for longer time windows, with most stations being in the 0.60-0.80
range for 1-hour and 0.80-0.90 for 24-hour windows (Figure 6). The region is represented by
Climate Types Dfa and Dfb, which presents a median shape value of 0.75 (0.85) and 0.75 (0.9)
for 1-hour (24-hour) respectively (Figure 8).
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Figure 8 - Parameters of the Weibull distributions describing the tail of ordinary events of 1 and 24h time window
considering different climate zones of CONUS. The y-axis is different for scale plots of 1 and 24-hour because the different
durations generate peak intensities of different orders of magnitude. The climate types are: BS (yellow) - Arid Steppe
climate; BW (red) - Arid Desert climate; Cf (green) - Temperate climate without dry season; Csa (orange) - Temperate
climate with dry and hot summer; Csb (dark green) - Temperate climate with dry and warm summer; Dfa (light purple) -
Cold climate without dry season and hot summer; Dfb (dark purple) - Cold climate without dry season and warm summer.

4.3. Storm properties in different climate zones

The analysis of storm characteristics can provide useful information on the relation between
the statistics of extreme precipitation and the underlying physical processes. We extracted a set
of properties from the 1-h and 24-h time window events which exceeded the 90th percentile of
the ordinary events (mean duration, mean intensity, maximum intensity, decorrelation time) at
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each station. This common threshold is chosen to provide comparability of the properties across
stations. Although the value of threshold is common, the storms in 1h and 24h tail are not the
same, as the heaviest storms can be different for different time windows (Figure S3 and S4).
This implies that the reported differences between 1h and 24 statistics are attributed both to
inter-storm variability and to intra-storm scaling, although the exact contributions of the two
cannot be quantified. Their distribution across the different climate zones of CONUS is
illustrated in Figure 9. The west coast, represented by the climate zones Csa and Csb, has
extreme events of longer duration, indicating that large-scale atmospheric processes tend to
dominate the tail. The decorrelation time of intense storms in these regions is also larger,
highlighting a possible tendency for non-convective-like processes. Mean and Maximum
intensity show similar relative patterns between climate zones, with the Cf zone showing larger
values, illustrating the role of intense and short-duration extremes over the region. The BS and
BW climate zones have short-duration events with relatively low intensities and short
decorrelation time. The regions classified as Dfa and Dfb also have short-duration events with
relatively high intensities and a very small variability in the decorrelation time, with a median
of ~ 3 hours.

The ratio of convective-like storms (as defined in Section 3.4) is displayed in the bottom
panel of Figure 9. For the 1-h time window, the ratio is around 0.8 for almost all climate
regions, indicating that the tail properties are dominated by convective-like storms. The Csa
and Csb climate zones provide an exception to this, with much lower ratios (around 0.4). This
result corresponds with other storm properties associated with convective-like characteristics,
that show intense, short-duration and short decorrelation time in the storms associated with the
tail. The ratio of convective-like storms producing the maximum 24-h time intensity is much
lower, confirming that different rainfall generation processes are present for longer time
windows peak intensities. However, even for 24-h time window, over half of the stations still
indicate tails dominated by convective-like storms, although this is almost entirely absent in
the Csa and Csb regions.
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Figure 9 - Storm (ordinary events) characteristics above the 90th percentile considering the different climate zones of
CONUS. The climate types are BS (yellow) - Arid Steppe climate; BW (red) - Arid Desert climate; Cf (green) - Temperate
climate without dry season; Csa (orange) - Temperate climate with dry and hot summer; Csb (dark green) - Temperate
climate with dry and warm summer; Dfa (light purple) - Cold climate without dry season and hot summer; Dfb (dark purple)
- Cold climate without dry season and warm summer. Darker shades indicate values for 24-h time window, while lighter
shades indicate 1-h. It is worth noting that the y-scale of the subplots corresponding to mean and maximum intensity are
different.

Information on the hour of the day and seasonality of storm events is displayed on Figures
S1 and S2 of the supplementary information. There, we can see that afternoon and early night
(12pm to 12am) events are more common in most of the stations. The west coast has tail events
associated with winter precipitation, whereas the rest of CONUS is spring/summer dominated.

4.4. Correlation between storm properties and shape parameter

The correlation between the storm properties and the shape parameter has revealed
important features of the physical processes associated with the tails. Convective-like
characteristics were demonstrated to have a link with tail heaviness, where increasing
convective characteristics implied heavier tails, i.e., increased probability of extreme events.
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The shape parameter shows a moderate positive correlation with the mean duration of the
storms associated with 1-hour extremes for the whole CONUS (0.53) and a weak correlation
for most of the climate zones separately (0.27-0.44) (Figure 10), with the Cf (0.07) and Dfa
(0.13) zones showing no correlation. A similar link is observed between storm duration and the
shape parameter for 24-hour time window, with a weak correlation for most regions (0.23-
0.34) and no correlation for Cf (0.01) and Csa (0.16). The maximum and mean intensities do
not show significant correlations with the shape parameter for 1-h time windows, and show
weak to moderate correlations for 24-h. The BW climate zone is the only one that presents a
notable and significant relationship between the shape parameter and 1-h time window peak
rainfall intensity, with a correlation of -0.46 and -0.51 for maximum and mean intensity
respectively. Decorrelation time shows a positive correlation with the shape parameter for both
windows considered for ordinary events, with coefficients indicating a weak correlation (0.29
for 1-hour and 0.41 for 24-hour). Although the correlation metrics range from weak to
moderate, they show a significant link of the storm properties with the shape parameter,
indicating that intense, short-duration events with short decorrelation times result in smaller
values for the shape parameter, i.e. heavier tailed distributions.

The overall negative correlation of the shape parameter with intensities and convective
fraction, and the positive trend with decorrelation time, suggests the possible role of convection
in increasing tail heaviness. Considering the entire CONUS, a correlation of -0.39 was obtained
for both durations. The values per climate zone vary from -0.43 to -0.13 for 1-h, and -0.61 to
0.26 for 24-h. This suggests a general agreement in the effect of an increase in convective-like
processes on decreasing the shape parameter.

Elevation and latitude have different effects on the shape parameter depending on the time
window duration and climate region. The correlation coefficients vary from -0.39 to 0.25 for
elevation and from -0.53 to 0.52 for latitude. For the 1-hour time window over CONUS, both
elevation and latitude have a weak negative correlation with the shape parameter, at -0.39 and
-0.33 respectively. This behavior is not observed for the 24-hour time window, which presents
coefficients of -0.16 and 0.07 respectively. The fact that stronger relationships are found for 1-
hour indicates that latitude and elevation have a greater influence on processes driving short-
duration extremes. The variability in the sign of correlation between climate zones, however,
indicates that there are stronger factors than elevation and latitude influencing the shape
parameter. Amponsah et al., (2022) found a positive relationship of elevation and latitude with
shape parameters obtained from daily precipitation in Ghana. The results differ from the ones
obtained for CONUS, but they are comparable with the results obtained here for the Temperate
Climate Zone (Cf) considering the time window of 24h, 0.2 for elevation and 0.52 for latitude.
Ghana is classified as tropical, which shares similarities (i.e., hot, and humid summer) with the
Cf region. The difference in spatial scales between CONUS and Ghana can also explain the
discrepancy in the results, indicating that the relationship is influenced by factors other than
elevation when considering continent-sized areas. In fact, when considering a smaller area
focused on the mountainous region of North Carolina (Figure S7), we obtained a correlation
coefficient of 0.35 for elevation-shape and 0.12 for latitude-shape. Results obtained by Marra
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et al., (2021) corroborate with this statement, where a positive relationship was found for a
focused area on the southeastern Mediterranean, between the Mediterranean and the dead sea.
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Figure 10 - Variability in the Spearman Correlation of 1 and 24-h time window (ordinary events) characteristics

and the shape parameter for different climate zones over CONUS. Blue colors indicate positive correlation while

red colors indicate negative. Most values are significant at the 95% confidence level (p-value < 0.05), the values
that are outside this CI have the p-values displayed in parentheses.

4.4. Correlation between storm properties and scale parameter

An investigation of the relationship between storm properties and the scale parameter
revealed stronger correlations than those for the shape parameter. We found a weak positive
correlation for mean duration considering 24-h time window events for the whole CONUS
(0.29) and a moderate correlation for the Csa (0.57) and Csb (0.46) climate zones. There is no
link observed between the mean storm duration and the scale parameter for the 1-h time
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window events, with the exception of a weak negative correlation (-0.25) for the BS climate
zone. The maximum and mean intensities show a strong correlation with scale for 1-hour time
window events over CONUS (0.88 for maximum and 0.74 for mean) and for most of the
climate zones (0.72-0.87 and 0.49-0.7, respectively); however, values are lower (0.11-0.64) for
the 24-hour time window. Decorrelation time shows no significant link when considering the
entire CONUS, but there are strong relationships with the scale parameter for specific climate
zones, such as for Csa (0.71) and Csb (0.74).

pearman Correlation (rho) with Scale
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Figure 11 - Variability in the correlation metrics of 1 and 24-h time window (ordinary events) characteristics and
the scale parameter for different climate zones over CONUS. Blue colors indicate positive correlation while red
colors indicate negative. Most values are significant at the 95% confidence level (p-value < 0.05), the values that
are outside this CI have the p-values displayed in parentheses.

Elevation and latitude are a significant factor of influence on the scale parameter, both for 1-
and 24-hour time windows. The correlation coefficients obtained for CONUS were -0.5 (-0.54)
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and -0.69 (-0.5) for 1-h (24-h) for elevation and latitude respectively. Amponsah et al., (2022)
found positive relationship of the scale parameter with latitude and no significant relationship
between elevation and scale for a tropical climate zone in Sub-Saharan Africa, differing from
our results. However, Marra et. al., (2021) found a negative relationship between scale and
elevation for a region in the southeastern Mediterranean, in agreement with our findings. These
results emphasize the role of other major factors, such as climate characteristics, in the
relationship of geographic properties and tail statistics.

5. Conclusions

In this study we used a statistical framework based on the concept of ordinary events, here
defined as the maximum intensities of storm events over two time windows (1 and 24-h), to
analyze the influence of storm properties on the statistics of extreme precipitation. A two-
parameter Weibull distribution was used to represent precipitation frequencies at several
stations from the GSDR dataset (Lewis et al., 2019) over CONUS, encompassing seven climate
zones. Our results reveal significant (at the 95% confidence level) relationships between storm
properties and the statistics of extreme precipitation.

Our analysis indicated that the stretched exponential (two-parameter Weibull) is a suitable
distribution to represent the ordinary events over CONUS. Considering the robustness of the
applied test in comparison with alternative tail models (e.g., power-type and Generalized
Pareto), our results also demonstrate the viability of a stretched-exponential tail framework for
hourly precipitation. The proportion of ordinary events belonging to the tail, represented by the
left-censoring threshold, is a climate property, with higher values of the threshold (less events
in the tails) in the Northwest and Northeast of CONUS. Overall, the threshold is lower when a
longer time window (24h) is considered.

The parameters obtained from the fitted distribution offered useful insights into the spatial
distribution of precipitation extremes. The shape parameter revealed lighter tails on the west
coast for the 1-h time window events. Heavier tails were found in the central region of CONUS,
indicating larger probabilities of extreme precipitation in that region. The scale parameter
showed large variation from 1-h to 24-h time window events for the west coast. At 24-h
duration, the scale parameters of the west coast have similar values as the Eastern region, while
this behavior is not observed at 1-h.

The storm properties tested showed significant correlations with properties of the ordinary
events distribution (the shape and scale parameters). The ratio of convective-like storms, and
the average maximum and mean storm intensities have a positive correlation with the tail
heaviness, which indicates that increasing convective fraction likely translates into heavier
tails. The positive link with storm duration and decorrelation time corroborated these results.
Elevation and latitude presented weak to moderate correlation with the distribution parameters
for the entire CONUS, even more for climate zones on the eastern coast. Correlation
coefficients were stronger between storm properties and the scale parameter than for the shape
parameter, presenting a significant strong correlation with latitude, and maximum and mean
intensities. These relationships provide useful information on relation of storm properties and
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storm parameters over CONUS, contributing to an increase in overall knowledge of the
statistical analysis of extreme events.
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