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Robot-Assisted Immersive Kinematic Experience
Transfer for Welding Training

Yang Ye, S.M.ASCE"; Tianyu Zhou, S.M.ASCE?; and Jing Du, Ph.D., M.ASCE?

Abstract: Human motor skills are critical for executing a variety range of tasks in construction. Traditional hands-on training is resource and
labor intensive, whereas virtual training, such as video demonstrations, cannot provide trainees with egocentric kinesthetic or proprioceptive
experience such as muscular engagement. It is important to develop remote training methods that can provide rich sensory feedback and
leverage the trainee’s proprioception. This paper proposes a novel remote motor skill training system that can transfer experts’ kinematic and
kinesthetic experience, including both positional and force experience, to novice trainees by using virtual reality (VR) and a robot arm without
the physical presence of the experts. The system uses VR to simulate virtual operation scenarios and interactions to provide an immersive
operation experience. The robotic system records experts’ kinematic and kinesthetic patterns and trains novices with perceptual learning. The
system design was demonstrated with a welding training task. A welding simulator was built with a Unity engine and a seven-degrees-of-
freedom robot arm, which provided high-fidelity welding experience and could actively guide welding trainees. It was found that the welding
simulator was resilient to external disturbance and provided accurate feedback and guidance. The proposed system contributes to the design
of a more embodied remote motor skill training method. DOI: 10.1061/JCCEES.CPENG-5138. © 2023 American Society of Civil
Engineers.
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Introduction

The advancement of remote learning technologies has sparked in-
creasing discussions on transforming traditional in-person training
into a more distributed and virtual learning experience (Mourtzis
2018). Distributed and remote training for knowledge-based tasks
has been widely tested (Bond 2021; Wang et al. 2019), but human
motor skill training in the context of remote learning remains rela-
tively underexplored. Motor skills are foundational for the successful
execution of tasks that require deliciated motion and force controls,
particularly in the construction industry. Although descriptive knowl-
edge, such as the task execution sequence order, is also important and
can often contribute to good motor performance, motor skills are
indispensable for forming and reinforcing proper motion coordi-
nation, which can hardly be acquired through verbal communications
or written materials. As a result, effective motor skill training is still
mostly based on traditional hands-on and face-to-face methods.

Traditional hands-on motor skill training typically relies on
repetitive practices under the supervision and guidance of one or
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several experts at a specialized site (Reisdorph et al. 2013). The
training can be resource intensive, risky, and inefficient under most
circumstances. Take welder training as an example; except for lec-
tures, conventional welding training typically needs to be conducted
at welding schools with hands-on and interactive demonstrations
(Rusli et al. 2019). The training process usually incurs substantial
costs related to hardware platforms, consumables (materials, elec-
trode sticks, gases), and equipment depreciation. It also results in
intangible costs such as harmful gas emissions and potential health
risks for both trainers and trainees (Papakostas et al. 2022). Given
the increasing demand for remote training, new methods and sys-
tems are needed to transform conventional motor skill training
from a face-to-face process into a more distributed, engaged virtual
process.

Although recent studies have started exploring remote motor
skill training methods (Gallegos-Nieto et al. 2014; Shankhwar et al.
2022; Wang et al. 2006; White et al. 2011; Wierinck et al. 2005),
the sensory feedback provided by these methods is not sufficient
to support the complete sensorimotor process needed for com-
plex motor skill gain. In addition to visual guidance and feedback
(e.g., visualizations in virtual reality to indicate desired motion
trajectory), recent studies have ingeniously conceived and lever-
aged haptic devices to simulate contact and noncontact vibrotactile
feedback, indicating status changes. However, to capture the motor
coordination features in a complex motor task, such as welding,
kinesthetic features (proprioception) are also needed, that is, non-
visual inputs that involve awareness of the spatial, mechanical, and
force status of the musculoskeletal framework of the body (Stillman
2002). For example, in a typical welding task, seeing the target
movement trajectory and desired pressing force as visual cues in
virtual reality (VR) or through simple tactile feedback via handheld
props would not be enough for a trainee to understand how to engage
shoulder and forearm muscular groups for the proper force inputs.
Although more advanced force feedback devices (e.g., TouchX) have
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been used to provide high-fidelity force cues including weight,
torque, resistance, contact impact, and so on, these devices are lim-
ited by their applicable scales and force levels. In construction,
there are cases when trainees desire to directly feel the extensive
and intensive kinesthetic features of an expert’s motion in a passive
way, analogous to an expert holding the hands of a trainee in an
over-the-shoulder exercise. A novel method that can record expert
kinesthetic feature data and play it back in an immersive environ-
ment for the trainees is foundational for an embodied remote motor
skilling training experience.

To fill the gap, this study designed and demonstrated a human
motor training system that acquaints novice trainees with experts’
kinematic and kinesthetic experience of not only positional control
(trajectories) but also force control strategies. The system records
kinematic (e.g., velocity, acceleration, and positional changes) and
kinesthetic (e.g., initiated pressing force when punching a panel)
features of an expert’s motions and transfers this egocentric sen-
sation to novice trainees in an immersive and embodied manner
via robotic arms. We designed a VR system to establish immersive
training scenarios and used a standby robotic assistant to provide
encountered and recorded haptic feedback. This system, on the one
hand, can record and digitalize the expert’s motion patterns. On the
other hand, it can proactively guide novice trainees through visual
and force guidance, such that trainees can “feel” and comprehend the
expert’s motion features using their proprioception. The proposed
system facilitates the motor skill training and transfer of a variety of
motor tasks, such as surgery, welding, and instrument performance.
These motor tasks share common features like operating certain
tools to facilitate spatial motion and force exertion. Specifically,
we chose keyhole welding training as a demonstration example be-
cause of the high demand for welders in the market (AWS 2022), as
well as the resource-intensive nature of welding workshop training
(Rusli et al. 2019). We implemented the proposed system for weld-
ing tasks and created a virtual training environment with interactive
visual feedback and material properties. A seven-degrees-of-free-
dom Franka Emika robot arm (Franka Emika 2022) was repurposed
as a haptic controller and robotic tutor. The robot arm provided
haptic feedback when the electrode touched the welding surface
following material properties. The expert welder’s motion and force
exertion were recorded to be replayed to a novice welder. We dem-
onstrated the feasibility of the proposed system by implementing
the system in keyhole welding training as well as testing the oper-
ability and accuracy. The rest of the paper further illustrates the
point of departure, system design detail, and our findings.

Related Work

Proprioception for Motor Learning

This study used human proprioception or kinesthetics to assist mo-
tor skill acquisition. In motor tasks, a person often relies on non-
visual inputs to gain awareness of the spatial and mechanical status
of the musculoskeletal framework and determine the spatial location
and status of the body (Stillman 2002). Proprioceptive information
is constituted of multiple channels, including muscle, tendon, and
skin afferents (Yousif et al. 2015). It has been recognized that
proprioception is critical to developing new motor skills (Adams
et al. 1975; Rosenkranz and Rothwell 2012; Wong et al. 2012).
While acquiring new motor skills, proprioception keeps the trainee
aware of what is happening. The motor experience from participat-
ing body segments can be stored as a motion template in brains
(Stillman 2002), which is confirmed by neurological evidence
(Flament et al. 1996; Jenkins et al. 1994). The learning process
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in which proprioception mainly plays a role is so-called perceptual
learning (Beets et al. 2012).

Previous studies have shown the feasibility and effectiveness
of accelerating motor skill acquisition by proprioceptive stimula-
tion (Adams et al. 1975; Wong et al. 2012). Representative methods
leveraged linear slider motors (Sakamoto and Kondo 2015), pow-
ered exoskeletons (Chiyohara et al. 2020), robotic arms (Darainy
et al. 2013; McGregor et al. 2018), or other customized apparatus
(Beets et al. 2012) to manipulate participants’ body parts, mostly
arms, in active motor learning. Participants could feel and perceive
the motion of their limbs and thus learn kinematic experience and
develop relevant motor skills. Wong et al. (2012) compared motor
training outcomes with proprioceptive feedback with those with ac-
tive exploration. The result showed that the proprioception group
showed improved time and positional accuracy. Those who actively
explored the motion did not demonstrate the same benefit as pure
proprioceptive learning. Similar results were provided by recent
studies, in the sense that proprioception could help trainees better
understand the motion pattern (McGregor et al. 2018), accelerate
the learning speed, and improve motor task accuracy (Chiyohara
et al. 2020). Although behavioral and neurological studies have in-
dicated the effectiveness of perceptual learning in spatial motions,
few studies discussed the perception of extensive force engagement
during learning, such as passively feeling the simulated kinematic
and kinesthetic features of another person, similar to the over-the-
shoulder interactive experience in motor training. Most people have
the ability to perceive force both in terms of direction (Long et al.
2021) and magnitude (Van Beek et al. 2013). It remains unclear
whether individuals can make use of somatosensory capabilities to
perceive force, contributing to comprehending and gaining new mo-
tor skills. We propose to create augmented sensory feedback per-
taining to proprioception via virtual simulation for effective remote
motor skilling training.

Augmented Experience for Motor Skill Training

Facing the increasing demand for remote work and remote training,
researchers have been exploring the feasibility of using cut-edge
technologies to transform the traditional centralized, in-person mo-
tor skill training methods into a more distributed, virtual approach
(Mourtzis 2018). Owing to the ability to create an immersive virtual
environment with augmented sensation (Ye et al. 2022a), VR has
been considered a potential solution for remote motor skill training
(Schiiler et al. 2015). Among all modalities that VR can integrate,
augmented visual cues are the most widely considered form of
guidance for trainees (Clarke et al. 2018; Zhu et al. 2022b). In the
context of motor training, visual information plays an important
role to instruct (such as visualizing instructions) and alert (such
as visual feedback on performance) trainees in knowledge-based
components (Schiiler et al. 2015). Ricca and colleagues found that
the visual representation of hands and tools could facilitate motor
performance during learning, potentially due to embodied feelings
(Ricca et al. 2021). Wierinck et al. (2005) conducted motor skill
training for dental students and found that augmented visual feed-
back in VR could significantly improve surgical task performance
during training. In addition to the abundant training information
in VR, VR can provide distributed and emancipated training expe-
rience such that trainees can initiate, pause, end, or repeat training
according to their needs (Thielbar et al. 2014; Ye et al. 2022a).
Meanwhile, motor training in VR can be designed as game-like
exercises that promote enjoyment, motivation, and more attention
to motor training tasks, ultimately leading to better training out-
comes (Wenk et al. 2021). VR has become a widely implemented
motor training tool in rehabilitation, manufacturing, and military
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applications (Faria et al. 2018; Gallegos-Nieto et al. 2014; Maxwell
et al. 2018).

Haptic feedback can be integrated with VR (Lelevé et al. 2020)
or standalone (Hirano et al. 2020) to provide an important soma-
tosensory experience, which is considered beneficial for motor skill
training. In the context of training, haptic feedback can be generally
categorized into vibrotactile feedback and force feedback. Vibro-
tactile feedback is typically imposed on individuals through vibra-
tion motors or electric pulses (Ye et al. 2022b; Yem et al. 2012) to
instruct motion or convey hidden information like gravity and force
(Lieberman and Breazeal 2007; Zhu et al. 2022b). Force feedback
can be delivered through force feedback devices such as the Touch
series (3DSystems 2022) and Falcon (anarkik3d 2022), creating a
force interaction like push and resistance. Multiple studies have dis-
cussed the potential benefits of using haptic feedback in motor
training, such as (Bark et al. 2015). However, as discussed earlier,
the vibrotactile sensation is not a direct perception modality related
to kinematic and kinesthetic experience and still needs a mental
remapping process. Meanwhile, existing force feedback systems
are typically designed to provide high fidelity for task simulation,
such as creating like-real contact force when touching a virtual ob-
ject (Zhu et al. 2021). Most existing off-the-shelf force feedback
systems don’t support playback of prerecorded force information
and are limited by the scale for mostly hand-level dexterous tasks.
Using haptic devices in motor training still heavily relies on the
trial-and-error approach where a trainee uses the system to explore
proper strategies for executing the task, instead of feeling the kines-
thesia features of the expert. The abstraction of real-world physical
processes and the lack of direct transfer of expert data might sig-
nificantly deteriorate the learning processes (Eck et al. 2015). There
is still a lack of haptic feedback methods that can instruct trainees
on how to intuitively and properly conduct motor tasks, especially
related to force learning.

There is a growing interest in the integrated use of VR and robotic
systems for multiple applications in construction. These existing
works have set a solid methodological foundation for the proposed
work. For example, You et al. (2018) explored a VR system for
safety perception in human-robot collaboration tasks. They found
that VR systems provided an immersive environment for increasing
the safety awareness of human workers in human—robot collabo-
ration. Du and coworkers tested VR methods as an immersive train-
ing system for professional workers such as crane operators (Zhu
et al. 2022a), firefighters (Ye et al. 2022c¢), and building inspectors
(Xia et al. 2022b). In addition, VR has been actively explored as a
testbed to understand workers’ physiological and psychological
status at work. Habibnezhad et al. (2021) created an unsafe virtual
working scenario of standing at an elevated surface and found that
VR could trigger significant changes in the subjects’ gait pattern.
In a simulated virtual environment, Kim et al. (2015) found work-
ers’ trust and team identification could be largely impacted by the
presence of robotic coworkers. Recently the literature has also ad-
vanced robotic perception and control methods for specific con-
struction operations. Asadi et al. (2021) proposed a vision-based
system for instant scene understanding for object manipulation in
complex construction tasks. The work of Chen and Cho (2022) pro-
moted computer vision algorithms for scan-to-building information
modeling (BIM) solutions, which set the basis for the semantic
understanding of construction robotics applications. Liu and Jebelli
(2021) tested natural body motion capture techniques for robotic
bilateral controls. Liang et al. (2022) and Wang et al. (2021) ex-
plored digital twinning methods for robotic controls in construction
tasks. Specifically, Zhou et al. (2020b) proposed and tested a work-
flow for exchanging data between Robot Operating System (ROS)
and Unity, which was suited well for construction teleoperation
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applications. These methods have validated the efficacy of immer-
sive simulated environments, such as VR, as a potential control
system for robots. Inspired by these researchers, we found that in-
tegrating VR with a robotic haptic system could be a potential sol-
ution for difficult motor learning in construction.

System Design

System Architecture

The objective of this study was to design a motor skill training
framework capable of transferring the kinematic and kinesthetic
experience from an expert to novice trainees. Fig. 1 shows the over-
view of the proposed system architecture. The system consisted of
hardware, software platform, supportive function, and algorithm
layers. The hardware layer included the VR and robotic systems.
The VR system provided the training scenarios, creating immersive
training environments with coordinated visual-motor experience
(Carlson et al. 2013). The robotic system was used to guide trainees
in complex motor tasks actively, allowing them to perceive (feel) the
motion kinematics and expert egocentric kinesthetic experiments
through intuitive proprioception. The robotic system here is a col-
lective term, referring to various mechanical devices such as exo-
skeletons (Chiyohara et al. 2020), sliding motors (Sakamoto and
Kondo 2015), and robot arms that can sense force and exert torque.
The robotic system consisted of one robotic device or several col-
laborative robotic devices, depending on the motor task specifica-
tions. For instance, arc welding can be trained with one robot arm;
two-handed surgery training might involve several sliding motors
that can move two hands; pianist training can be assisted by one
to two powered exoskeleton arms. The hardware layer was enabled
and supported by software platforms as well as the underlying func-
tions and algorithms. A game engine platform, a Robot Operating
System platform, and data exchange system were developed and
integrated with the software platform layer (Zhou et al. 2020a). This
layer not only presented an immersive virtual environment with hap-
tic feedback but also synchronized and processed data in real time to
create a digital twin of the robotic system. The functions layer broke
down the control and simulation into individual problems, whereas
the algorithm layer solved the problem. The following sections de-
scribe the platforms and the communications between them as well
as the functions and algorithms.

ROS-VR Data Exchange

Per the proposed design, VR and robotic systems need to be seam-
lessly connected. Specifically, the mechanical response of the robotic
system needs to be synchronized with the interaction events in VR in
real time. When seeing an interaction in VR, a trainee expects to feel
the corresponding force feedback with the assistance of the robotic
system. In our proposed system, VR and robotic systems can be op-
erated on two separate devices under a local network. Both VR and
robotic systems had relatively independent functions while closely
connected. ROS was used to facilitate the robot state calculation, con-
trol, and communication (Zhou et al. 2020b). On the one hand, the
robot’s current status, including joint positions, joint torques, and
other abstractions of current robot status, could be published via ROS
topics, allowing other processes to access the status data. On the other
hand, robot control algorithms subscribed to ROS topics to fetch
robot state features and complete calculations (Xia et al. 2022a). Cal-
culated control commands, like the desired position and desired
torque portfolio, were streamed to robotic devices for execution.
Meanwhile, bidirectional communication was established be-
tween the game engine and the robotic system: the robot state was
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Fig. 1. Overall architecture of the proposed motor skill training system.

subscribed by a game engine such as Unity to construct a digital
twin model of the robotic system (Hussein et al. 2018). The game
engine also streamed data to ROS to trigger the robot control com-
mands according to the current task context. The data exchange
infrastructure for the game engine and ROS data synchronization
is based on our previous works (Xia et al. 2022b; Zhou et al.
2020b). ROS# (Siemens 2019) facilitated the communication
between the game engine and ROS. ROS# is a collection of open-
source libraries in C# that provides compatible application pro-
gramming interface (APIs) for both the game engine and ROS sides
to facilitate bidirectional communication. ROS# has been applied
in construction-related studies. In the proposed system, ROSbridge,
one of the ROS# libraries, was used to stream data in JSON format
via a public network between ROS and the game engine (Crick
etal. 2017). The ROS server converted robot dynamics to and from
JSON messages via ROSbridge and sent and received messages
from the internet (Quigley et al. 2009). On the game engine side,
ROS# established WebSocket nodes that could subscribe to the data
from.Net applications (GitHub 2019), enabling the game engine to
publish and receive data from ROS topics. The ROS server and
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game engine’s WebSocket can be managed under the same IP
address so that the data can be exchanged seamlessly.

The game engine platform received robot state data to synchron-
ize a digital twin model and sent parameters as well as events to
ROS to update the robot control methods. A digital model of a ro-
botic system was built based on a Unified Robot Description Format
(URDF) file (Whitney et al. 2018), which describes the structure and
configuration of the real robotic system. The digital model was com-
patible to read robot status messages such as joint positions and
orientations so that the digital model could follow the same robot
behavior. Following this method, a digital twin model of the robotic
system can be created in VR to realize the digital replica of the real
robot, duplicating the properties, behavior, and status of the real
robotic system. By using the digital twin model, users can see the
actions of the robotic system and thus coordinate visual and per-
ceptual information. In addition, the motion and torque matrices of
the robotic system can be used to trigger interactions in VR such as
collisions, pushing, and penetration. The VR interactions not only
provide visual information to trainees for higher-fidelity visualiza-
tion of the task and system but also trigger the physics simulations
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empowered by the game engine to facilitate complex physics cal-
culations and further enhance the fidelity of robotic controls. The
game engine is inherently powerful in simulating the interactions in
three-dimensional (3D) space. For instance, in maxillofacial sur-
gery training, instead of describing the 3D geometry of the face by
complex tensors, the game engine could define the geometry using
a graphical interface and capture the collision accurately (Ayoub and
Pulijala 2019). When a virtual scalpel collided with virtual skin, the
force from the haptic device or robotic systems could be used to
determine whether the upcoming interaction would be a light touch
or a deep cut. After physics rendering in the game engine, the data
from the robotic system can be transformed into new commands and
sent back to the robotic system.

Training Pipelines and Algorithms

Fig. 2 illustrates the training pipeline. The training consisted of two
phases: the expert kinematics and kinesthetic recording and novice
perceptual learning phases, whereas the novice perceptual learning
phase can be further divided into force and trajectory perceptual
learning. First, in the expert kinematics recording phase, the expert
demonstrates how to properly conduct the motor task, assisted by
VR and the robotic system haptic feedback. The robotic system
functions as a haptic controller. The expert’s motion kinematics and
kinesthetics are recorded and decomposed into spatial trajectories
and force patterns; In the perceptual learning phase, trainees can
learn the expert’s motion kinematics kinesthetics by VR visualiza-
tion and robot-assisted perceptual learning. The robotic system
functions as a virtual tutor. The proposed system used VR for three
purposes: (1) creating high-fidelity graphical rendering for immer-
sion, (2) simulating the physical processes of the interactions to
enhance kinesthetics, and (3) providing visual feedback as an op-
tional training modality. Depending on the specific task context, the
physics simulation in the game engine needs to be customized and
fine-tuned to create high-fidelity interactions.

The robot arm provides encountered and prerecorded haptic
feedback (Mercado et al. 2021) for the trainees to physically expe-
rience. The purpose of using the robotic system varies depending
on the training stage: the robotic system facilitates haptic feedback
during the expert demonstration, creating like-real physical feeling
to engage the experts in recreating their motor kinematic and kin-
esthetic experience; during the trajectory perceptual learning stage,
the robotic system drags and moves trainee’s limb through a trajec-
tory tracking; during force perceptual learning, the robotic system
aims to exert proper force to trainees for the enhanced kinesthetic
experience. Finally, with the robotic system in haptic controller
mode, trainees can test their gained skills.

Haptic Controller Mode: Using the Robotic System

as an Impedance Controller

When an expert is using the robotic system and trying to record his
or her motion and force data, the robotic system needs to function as
a haptic controller, simulating the physical contact and interactions.
To be more specific, the robot end effector can be moved freely in
space with no resistance in all directions when no interaction with a
virtual object is happening. When interaction happens, such as col-
liding with a metal panel, stiffness and damping need to be changed
in a certain direction, creating a resisting or touching haptic feeling.
The robot arm under haptic controller mode functions similarly to
existing haptic devices such as Touch (3DSystems 2022): a virtual
geometry is defined in space, and the interaction between the robot
arm and the geometry is haptically enabled to create a like-real in-
teraction experience. The fidelity of such interaction directly im-
pacts whether experts can perform the motor task with their motor
skill capability. Experts can hold the robot arm tip as if holding the
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operation tools (such as a lancet in surgery and electrode in welding)
to conduct the motor task (see Fig. 3). The expert’s motion can be
recorded both in terms of how the expert moves and how much force
the expert is applying to the operation surface.

Exploring the task with haptic force feedback can be considered
a classical human-robot interaction problem. In general, it is ex-
pected that the user who holds the end effector feels resilience or
damping resistance while pressing toward an object. From the ro-
botic control perspective, the robotic system exerts force and torque
on the human operator in response to spatial changes at the end
effector due to environmental interaction (i.e., human motion). As
a classic robot control algorithm, the impedance control algorithm
can facilitate the robotic force and torque output in response to
external environment-induced robot position changes. The imped-
ance controller simulates a virtual spring—damper coupling system
(Hogan 1984) between the environment and robot end eftector, cre-
ating stiffness and damping resistance when the position of the ro-
bot end effector deviates from the desired position (Abu-Dakka and
Saveriano 2020). The solid line part in Fig. 4 shows the impedance
control method. The model can be described in Eq. (1)

T, = MX, + D%, + K(x, — x) (1)

where T, = external torque matrix; X,, X,, X, € R" refer to the posi-
tion, velocity, and acceleration of all joints in the Cartesian space at
time point 7; X, = desired position in the Cartesian space at time ¢;
and M, D, K € R"™ denote the desired inertia, damping, and stiff-
ness in the joint space, respectively.

The impedance control maintains the robot through the de-
sired trajectory. However, in the context of haptic exploration, the
force and torque matrices are subject to the geometric relationship
(i.e., normal vectors at contact points) and environmental features
(i.e., stiffness and damping of the environment, mass change). The
geometric relationship defines the direction of the robot’s response
torque, whereas environmental features define the derivative of
torque amplitude to the positional changes. In addition, impedance
control in Eq. (1) restores the robot position to a predefined desired
position X,, which is not the case in this study. In haptic controller
mode, the desired position is defined by the interaction events as
well: when a user pushes the end effector toward an object, the
desired position should be the contact point position at the original
space. As such, the impedance behavior needs to be calibrated with
the virtual environment and contact events. A modified version of
impedance control, spatial variable impedance control (SVIC), is
deployed to facilitate these challenges, as shown in Fig. 4.

The SVIC model can be described as Eq. (2)

Te = Mx, % + Dy X, + Ky (X, — X)) (2)

where x, = end effector position; the inertia My, ,), damping D, ,
and stiffness K, matrices vary according to time and end effector
position; inertia M, , is a function of the current position and
time, coping with mass change of virtual tools. Inertia matrix
change is not significant in most cases. The values D, and K, are
the damping and stiffness matrices distributed in Cartesian space.
Because the game engine provides a convenient 3D graphical inter-
face, it can perform geometry analysis to map the spatial position
with damping and stiffness matrices. Eq. (3) describes the general
form of such a mapping process

G, =A, -M' (3)

G,,) is a vector of
1....0.0]eR"

where G = material properties; M = [G}, G,, ...
all predefined material property; and A = [0,0, ...
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interaction and learning with a
trial-and-error approach

Fig. 2. Training pipeline of the proposed system.

is a vector indicating the spatial relationship between the robot end
effector and m types of materials. Each type of material corre-
sponds to a specific material property (i.e., stiffness and damping).
The values of A are all zeros except at the index for which the robot
end effector is colliding with the corresponding material, and A is
calculated by the graphical processor in the game engine in real
time. Depending on the material properties, the game engine can
fine-tune the damping and stiffness of objects. For example, a rigid
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virtual surface in the game engine can be tagged with high damping
and stiffness, which practically maps a Cartesian space with stiffness
and damping matrices. The geometry analysis block returns the
corresponding high-value D, and K, matrices when the robot end
effector collides with the virtual rigid geometry, creating haptic
feedback of rigid contact. The parameter X, in Eq. (2) is updated
by the geometry analysis at each time frame with inverse kinematics
following Eq. (4)
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s_bag/ Welding

(b)

Fig. 3. Robotic system under expert kinematics recording phase. (a) Expert is holding the robot end effector to reproduce the motor task; and (b) ROS
provides force feedback to the expert while it processes, transmits, and records the real-time kinematics.

Y +
+
ymao>) Impedance Inverse Robot and
! Control Kinematics Environment
5 A A 7
: ) Forward
E : Kinematics

Kx, Geometry
i Analysis

Fig. 4. SVIC block chart. Dashed lines and blocks show the modified
sections based on the impedance control method.

X :J_l(fe -X,) + X, (4)

where J = Jacobian matrix (Aristidou et al. 2018; Buss 2004),

defined by
0x,
1= (o) o

The value of x, is the position of the virtual contacting point at
the original space without deformation. In practice, X, can be ac-
quired by either the labeling or geometry normal vector method.
The labeling method marks the position of initial contact as X,
which is more straightforward but prone to being problematic, es-
pecially when the contact point is moving (e.g., scraping on the
surface) or the contact geometry is complex (e.g., uneven surface).
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The geometry normal vector method collects the mesh vertices
around the contact area and generates a normal vector. The inter-
section point between the normal vector and the original geometry
before deformation can be marked as X,. Assuming constant
stiffness and damping matrices, the normal vector [(x, —x,)/
(Ix, — x.|)] and material deformation (|x, — x,|) determine the di-
rection and amplitude of resilience, respectively. When no contact
occurs, X, = X,, making X, = X,, in which the robot is considered
to have no positional error and can be moved freely. Combining
the adaptive virtual mass, damping, and stiffness matrices in Eq. (2)
with the real-time evaluation of the desired position in Eq. (4), the
robotic system can be repurposed as a haptic controller to interact
with virtual objects.

The kinematic and kinesthetic data in haptic controller mode can
be recorded in real-time and exported as bag files using rosbag,
following previous studies (Jeong et al. 2017; Koo and Kim 2019;
Lakshminarayana 2019). Rosbag is a ROS library widely used to
record and play back ROS topics and messages. The recorded ros-
bag files need to be processed with offline data cleaning pipelines
to trim the idling or noisy data at the beginning and end of recorded
motion, depending on the task context. This general design and
model can be fitted in multiple motor training tasks with customized
adaptation in parameters, especially the geometry analysis block.
For instance, welding training or simulation might involve more in-
teraction with a rigid surface. Surgery operation training might have
a more variable range of stiffness and damping to create the sense of
scrabbing, cutting, and penetration.

Virtual Tutor Mode: Using the Robotic System

as a Virtual Tutor

The expert’s motion kinematics can be recorded under haptic con-
troller mode and replayed to train novice trainees. Except for visual
guidelines or feedback augmented by VR, trainees can learn from
kinematic and kinesthetic experiences for both motion trajectory
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Fig. 5. Robotic system simulates a virtual tutor grabbing a trainee’s
hand/limb, creating an embodied training experience.

and force patterns with the assistance of a robotic system during the
novice perceptual learning phase. The robotic system functions as a
virtual tutor in the novice perceptual learning phase. Under virtual
tutor mode, the robotic system actively moves through a spatial tra-
jectory and applies forces to the environment (the trainee’s hand).
As shown in Fig. 5, the robotic system working under this mode
simulates a virtual tutor holding a trainee’s hand to show how to
correctly perform the motor task. In other words, the trainee can
feel how the expert moves and applies force and thus can compre-
hend the motor task from the expert’s egocentric view in an embod-
ied manner.

Virtual tutor mode can be decomposed into two components:
spatial trajectory and force pattern learning. Spatial trajectory
learning with perception has been studied in previous studies
(e.g., Chiyohara et al. 2020) and is relatively straightforward. From
the robotic control perspective, spatial trajectory learning is the pro-
cess in which the robotic device maintains a predefined trajectory
under external disturbance. The impedance control model in Eq. (1)
can effectively facilitate such a process when stiffness (K) and damp-
ing (D) are configured as relatively high values. The high D and K
matrices impose high counterforce in response to the minor posi-
tional mismatch between the desired trajectory and current trajec-
tory, making x, — X,. Thus, the positional error can be eliminated
promptly, creating a scenario in which the robot arm strictly follows
a certain spatial trajectory. As such, impedance control can move
the trainee’s hand without the user initiating any motion.

However, although impedance control with high stiffness and
damping can facilitate accurate motion replay in space, the under-
lying algorithm indeed uses force (t,) to compensate for the posi-
tional error. This becomes problematic if the force pattern learning is
to be conducted at the same time: the desired force T, and positional
compensation force T, are added together at the end effector. It is
unrealistic to distinguish between t, and T, unless in an extreme
condition that T, and 7, at the end effector are perpendicular to each
other (t, * t; = 0) in Cartesian space. This extreme condition is
equivalent to (x, — X;) * T, = 0, in which the direction of the posi-
tional error is always perpendicular to the desired force direction. It
is merely possible to maintain such a condition constantly.

To solve this problem, the proposed system disentangles force
perceptual training from trajectory perceptual training as a work-
around. To be more specific, when training the force pattern of a
specific motor task, the robotic system solely exerts desired force
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and does not follow the desired trajectory. No desired positional
data are passed to the robot arm. Instead, the VR system can play
a role here to visualize the desired trajectory and establish a map-
ping between the desired force and desired position. In other words,
while learning the force pattern, the robot arm is not guiding the
trainee’s hand through a trajectory but applying force toward the
trainee’s hand to let the trainee perceive. The robotic control can be
by a force control loop algorithm, in which the summed torque at
the end effector of the robotic system maintains the same as desired
force, imposing constant output to the external environment (in the
current context, imposes a force on the trainee’s hand). The control
model is described in Eq. (6)

T, = J_ltde =+ A(Tm - Tg) (6)

where T, € R" is the output torque of all joints; t,, € R" is the mea-
sured torque of the current robot state; T, € R" is the torque matrix
counting for gravity at joint space; and t,, = desired force at the end
effector which is also the counterforce recorded when the expert
applies force toward a virtual object. This equation yields the output
torque profile of the robotic system, and trainees can feel the same
force as the expert. For example, when an expert in the recording
stage applied straight down force toward a horizontal rigid virtual
plane, the robotic system (haptic controller) counterbalanced such a
force by generating upward force with the same amplitude (assume
the system is in a steady state with X, = 0 and X, = 0). The counter-
balancing force at the end effector was recorded as t,,. During the
force pattern learning stage, the robotic system under the force con-
trol algorithm could generate the same force t,, pushing upward to
the external environment. Trainees need to push straight down to
counterbalance such a robotic output and thus could feel the same
muscular force as the expert.

Following this general system design, trainees can perceive the
expert’s kinematic and kinesthetic experience with the assistance
of a robotic system. As mentioned in previous sections, the robotic
system can be robotic arm(s), exoskeletons, or other customized
devices. The algorithms described previously are suitable for motor
tasks that focus on end effector interactions instead of linked kin-
ematics. In other words, the algorithms focus on recording and re-
playing the kinematics at the experts’ end effector (typically the
hand). Although it is possible to extend the previously mentioned
algorithms to multiple key points to restore the kinematics of the
entire limb or even whole body, first hand-scale and arm-scale mo-
tor skill proficiency training is still the most common scenario. Sec-
ond, this paper aimed to design this system to facilitate motor skill
training; it is out of the scope to list the detailed algorithms and
device setups for motor training tasks with all possible purposes
and focuses. Instead, the following section describes the implemen-
tation of such a system architecture in welding skill training.

Safety Measures

The robot and human share the same working space in the pro-
posed training system, which raises safety concerns. Safety measures
should be developed in accordance with the ISO 15066:2016 stan-
dard. This session describes some key measures that need to be put in
place in the context of the proposed system. For detailed require-
ments, please refer to BSI (2016).

All operation modes in the proposed system involve human—
robot collaboration problems and need to be secured with safety-
rated monitored functions such as speed and space in accordance
with the ISO 10218-1:2011 standard (BSI 2011). These func-
tions avoid overspeeding or moving beyond the safety range. In the
context of this study, the robot’s speed depends on the human op-
erator’s movement speed and typically will not lead to safety risks.
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However, it is recommended to set a speed limit and instruct the op-
erators not to move too quickly. The robot’s range of motion should
be limited to avoid collision with the environment or the robot itself.
A stop switch needs to be used to allow emergent stops (BSI 2016).

The haptic controller mode is a hand-guiding collaboration type
in which only the human operator initiates the motion. The posi-
tion, speed, and force are controlled by the human operator, which
involves minimum safety risks. The speed and space limit function
described previously can further reduce the potential risks.

Compared with haptic controller mode, both trajectory and force
perceptual learning modules involve a human—robot collaboration
scenario in which the robot and human move simultaneously. Addi-
tional safety measures need to be put in place in accordance with
the ISO 15066:2016 standard to ensure safe operation. It is recom-
mended to enforce the strictest safety criteria. According to the ISO
15066:2016 standard, no transient contact with the skull, forehead,
and face is allowed. In the proposed system, the robot’s spatial po-
sition should be limited in height such that no collision with the
operator’s head could happen. Furthermore, the most critical area
(except the skull, forehead, and face) is the operator’s abdomen, for
which the quasistatic contact force must not exceed 110 N, and the
transient contact force must not exceed 220 N (BSI 2016). Quasi-
static contact refers to the situation in which the human operator’s
body part is being clamped or entrapped. In the trajectory percep-
tual learning context, although the risk for quasistatic contact is
minimum, it is also recommended to enforce a force limit strictly
lower than 70 N, allowing around 60% redundancy in the most
critical collision situation.

System Demonstration and Validation

We deployed the system with a keyhole welding training task. In
manual keyhole welding, a welder needs to join two separate pieces

(d) (e)

of metal such as two pipes or two plates. These two pieces of metal,
however, are apart from each other with a hollow gap (WeldGuru
2022). The welder should maneuver welding electrodes to fill the
gap and create a binding. Specifically, the welder needs to push the
welding tip toward the unfilled gap, stop the heat, exert a certain
pressure toward the gap, and drag the electrode with appropriate
velocity to fill the gap with the melted welding electrode. The
pressing force should be neither too high, which might penetrate the
material or weaken the binding, nor too weak, in which the temper-
ature cannot be effectively brought down or the molten electrode
cannot adhere well to the material (Weldtube 2019). As such, manual
keyhole welding requires precise motor control for coordinated spa-
tial trajectory motion and force exertion. A demonstration video can
be found at Ye (2002). An expert welder and 15 novice participants
who have no prior welding experience were recruited to validate the
system.

Game Engine for Welding Visual and
Physics Simulation

To create an immersive training experience, we created a welding
training room with tools [see Fig. 6(a)] in a game engine (Unity
engine) and used filmbox (FBX) renderings and computer graph-
ics algorithms to simulate the welding process, including welding
torch, surface deformation, and flames (Kim et al. 2018). Manual
keyhole welding uses molten electrodes to fill the gap and create a
binding. This process creates surface deformation such as the for-
mation of welding beads and weld metal, which can provide impor-
tant visual feedback to welders. As shown in Fig. 6(b), we simulated
the surface geometry change using the marching cubes algorithm
(Lorensen and Cline 1987). Any collision between the welding tip
and surface would create new triangle vertices using linear interpo-
lation, such that the welding surface geometry could be modified by
the welding tip, simulating welding surface change. A new layer of

Fig. 6. VR welding simulation. (a) Welding training room; (b) the deformation of welding material was simulated by the marching cubes algorithm.
The texture of the welded seam was created by triplanar projection; (c) the irradiance of molten metal was simulated by a customized shader that
updated the material emission continuously; (d) spatial distribution of stiffness and damping. The shaded area shows the working area with material
properties. The green block had zero stiffness and damping. The red block had high stiffness and damping, which corresponded to a rigid welding
surface; (e) we used a robot end effector to simulate a real welding torch; and (f) the robot end effector and virtual welding scenario were well aligned

for a coordinated visual-motor experience.
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texture was then projected to the deformed surface using triplanar
nodes (Unity 2022). The projected texture was configured according
to the welded seam comparable with real-world applications. Bring-
ing marching cubes and triplanar projection together, the formation
of a weld joint was simulated. In addition to the geometry deforma-
tion, we also created an emission shader to render the weld seam
material [see Fig. 6(c)], simulating the irradiance of molten metal.
The shader calculated emission as a linear function of time since
initialization to simulate a gradual-fading effect. This gradual fading
effect corresponded to the molten metal cooling process. The VR
simulation of the welding visual effect could provide a reference for
welding expert to properly apply their welding motor skills. Apart
from visual effects, we configured the material properties (stiffness
and damping) in the Unity engine to provide high-fidelity interac-
tion, as described in Eq. (2). Fig. 6(d) shows the spatial distribution
of stiffness and damping matrices. The metal pieces were assumed
to be rigid objects and thus to have high damping and stiffness.

We programmed a seven-degrees-of-freedom (7-DOF) Franka
Emika robot arm to be our welding robotic assistant. A specialized
end effector was acquired. As shown in Fig. 6(e), the end effector
was installed on the robot arm, and an aluminum tube was fastened
onto the end effector. This end effector set mimicked the handle of
the welding torch. Meanwhile, we calibrated the position of the
virtual welding torch in VR with the robot end effector [Fig. 6(f)].
The virtual welding torch and “real” torch were well aligned to co-
ordinate users’ visual-motor experience: as they were holding the
robot end effector, they could see in VR that they were holding a
virtual welding torch.

Robot Arm for Haptic Feedback

Whereas VR established visual feedback for welding training, the
7-DOF robot arm was programmed as a haptic controller and pro-
vided haptic feedback for the welding experts. While holding the
robot arm end effector, the welding expert could move the virtual
welding torch in space and perceive the resistance during the inter-
action. The robot arm was controlled by the SVIC algorithm. Con-
stant mass was assumed. The robotic end effecter position was
streamed to the Unity engine to synchronize the welding torch
behavior. The Unity engine provided geometry analysis, as shown
in Fig. 4. The Unity engine detected collisions between the welding
tip and surface and streamed the corresponding desired position,
stiffness matrix, and damping matrices to the robot arm. Specifically,
when no collision was happening, the Unity engine streamed stiff-
ness and damping matrices with all zeros to the robot arm, creating
free motions. Although the desired position in this context was triv-
ial, we streamed the desired position the same as the input current
location (X; = x,) for consistent data transmission. When the virtual
welding tip collided with the virtual welding surface, the streamed
stiffness and damping matrices became much higher. The desired
position was calculated based on the contact geometry and streamed
to ROS. The robotic system received the stiffness and damping ma-
trices as well as the desired position as inputs and solved Eq. (2) to
calculate the corresponding torque output. This process generated
haptic feedback of touching a rigid surface. Thus, the expert could
feel a similar haptic feeling as welding in real life.

Fig. 7 shows the haptic feedback in a simulated welding inter-
action and the change of robot torque summed at the end effector
under different welding table stiffness. The positional change at
the contacting point directly led to responsive haptic feedback for
compensation. Higher stiffness corresponded with smaller posi-
tional error and thus higher surface rigidness. In this demonstration
session, we configured the welding table stiffness as 3,000 N/m
and damping at O referring to existing welding simulation studies
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(Brosque et al. 2021; Roozbahani and Handroos 2019; Wang et al.
2006). After some pilot tests, we found that the haptic feedback
under this parameter configuration was stable and safe. Thus, we
constructed a specialized spatial mapping function

s [ [ o]

3000 - I, T
[o g {

or)
0-1I,

= Axg '

o-IJ’
(7)

Because we only considered the end effector position here, K
and D were the stiffness and damping matrices at the end effector in
the Cartesian space counting for translation and rotation. The pre-
vious equation was used to map the spatial position and the robot
control parameters. Only translational stiffness in the same direc-
tion was set to 3,000 N/m when touching the welding table.

Robot Arm for Perceptual Learning

After completing the expert kinematic and kinesthetic recording
phase, the expert’s motion data was replayed to novice trainees who
have no prior welding knowledge. We leveraged the advantage of
VR to visualize the desired motion including trajectory and force to
acquaint trainees with the necessary knowledge. Other knowledge-
based welding training methods (Ipsita et al. 2022; Shankhwar et al.
2022) can be conducted in this session as a supplementary. Before
each training trial, the robot arm was initialized with the same be-
ginning pose as it was in the expert recording stage. Trajectory per-
ceptual learning was conducted by executing the impedance control
algorithm with high damping and stiffness and then replaying the
recorded rosbag file. Once played, the rosbag file wrote ROS topics
and messages. Robotic control algorithms received the messages
from corresponding topics and updated the desired values, such as
T4, and X;, and thus controlled and updated the robot status. When
in trajectory perceptual learning, the robotic algorithm subscribed
to rosbag topics containing positional data as the desired position
X;. Then, the robot arm could follow the same trajectory as the de-
sired position (expert trajectory). The values of K and D deter-
mined the robustness toward the external disturbance. We tested
the system stability and accuracy with two stiffness settings: 1,000
and 3,000 N/m. We found that higher stiffness for trajectory per-
ceptual learning could reduce positional error tolerance, providing
more accurate instruction. However, higher stiffness properties might
lead to oversensitivity to positional error, leading to potential un-
stable mechanical jittering, as shown in the high stiffness condi-
tion in Fig. 8. With reference to previous studies (Roozbahani and
Handroos 2019), we used K = (3,000 x I5) N/m to guide the tra-
jectory perceptual learning during the system validation. For other
tasks with specialized motion (speed and force), the control param-
eters need to be justified and tested under safety considerations.
Similar to trajectory perceptual learning, the initial position of
the robot arm was reset before the force perceptual training. Under
the robotic force control loop, ROS received the force data from the
replayed rosbag file as the desired force (t,,). Eq. (6) facilitated
the torque output calculation at current robot states. In the learning
process, the robot arm exerted force toward the trainee’s hand. As
shown in Fig. 9(a), the trainee could see the desired position of the
welding tip at the time of force perceptual learning. It depended on
the training protocol and trainee’s preference whether the trainee ob-
served the trajectory in place or followed the trajectory. The trainee
stabilized the robot end effector, in either case, to counterbalance the
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Fig. 7. Positional change and output force change when the virtual welding tip collided with the virtual welding table under the same external load.

force exerted by the robot arm and perceive the appropriate force
levels. Fig. 9(c) shows the statistics during the force perception
training.

In the demonstration test, it was seen that the desired force could
be properly replayed to trainees regardless of the current pose of the
robot arm. A delay between the robot output and trainee’s response
force can be observed in Fig. 9(c). This implies that trainees could
compensate and adapt to sudden force field changes.

User Study

We recruited an expert welder to test the welding simulation and
recorded the kinematics of him performing keyhole welding. The
welder was asked to perform simulated welding, and we alternated
the material to trigger different motions. The motions were all based
on keyhole welding. Fig. 10(a) shows some trials of the expert mo-
tion. The recorded motions were used in the training session to val-
idate the system design.

A total of 15 participants who had no prior knowledge of welding
were recruited to learn the welding motion. We selected a within-
subject design (Charness et al. 2012) to remove the impact of indi-
vidual variations and improve the statistical power (Montoya 2022).
In the within-subject design, participants were asked to learn the
welding motion through all conditions: a control and perceptual
learning condition. The objective was to learn the motion as close
to the expert motion as possible. Both conditions were conducted in
VR to ensure experiencing the same visual environment. In the con-
trol condition, participants were given a chance to understand the
correlation between their muscular tensions and the force that they
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were applying: participants were asked to grab the robot end effector
and press toward the welding table while the pressure was shown to
them in real time. Then, participants were instructed to learn and
practice the motion following the demonstration videos and force
diagrams, simulating learning with traditional media. Afterward, a
test trial was conducted to measure participants’ understanding of
such a motion, in which participants did the welding motion by
themselves without the provision of any learning media. In the per-
ceptual learning condition, participants went through the trajectory
and force perceptual learning sequentially without the provision of
any learning media. Then, participants’ motor skills were measured
by the same method as the test trial in the control condition. This
learning—testing combination was repeated three times to enable po-
tential learning in both conditions. To mitigate the potential learn-
ing effect of the within-subject experiment design, we randomly
shuffled the sequence of control and perceptual learning condition.
The motions were randomly assigned for each condition and each
participant.

Because the task was a keyhole welding and the target motion
was to weld the gap between two metal plates, the spatial trajectory
was predetermined and fixed. Thus, we measured the spatial mo-
tion performance by comparing the welding completion time dif-
ference between the novice participant and expert welder. The force
control accuracy was evaluated by the average pressing force.
Fig. 10(b) shows the results. The data were not normally distributed
[p <0.001 for both spatial movement and force, according to
D’ Agostino and Pearson’s normality test (1973)]. Wilcoxon (1992)
tests showed that the control condition was significantly different
from the perceptual learning condition, both in terms of spatial
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Fig. 8. Replayed trajectory. A consistent external disturbance (a weight) was applied at the time point indicated by the vertical line.

movement (p = 0.018) and force exertion (p < 0.001). From the
average performance perspective, perceptual learning improved
the welding motor skill training effectiveness by 10% in terms of
spatial motion trajectory and 56% in terms of force control accu-
racy. We also performed a dynamic time wrapping analysis to com-
pare the trajectory similarity; no significant difference was found
between the control condition and perceptual learning condition,
potentially due to the simplicity of the keyhole welding motion
trajectory.

Discussion and Limitations

The proposed system was validated with welding training because
welding is a particularly challenging scenario in terms of training
skillful workers due to the high labor demand (AWS 2022; Miller
2022) and changing welding requirements (i.e., diversiform mo-
tion and force) (Nair 2022). We used rendering algorithms such as
marching cube, triplanar, and fading shader to simulate the visual
effect of the formation of welding metal and surface deformation.
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The visuals provided important references for welders. In the game
engine, we assigned different objects different stiffness and damp-
ing properties. To be more specific, the metals to be welded were
assumed to be rigid. In general, we essentially simulated and re-
produced the over-the-shoulder welding experience as a virtual ex-
pert welder holding a trainee’s hand. The simulated virtual tutor had
more capability than an actual human tutor in terms of accuracy and
customization and the ability to transfer force-using experience. In
contrast, human tutors cannot directly teach or demonstrate force
motor skills other than indirect measures such as verbal instructions
and hand gripping tightness. We invited an experienced welder to
record data via the system. We found that the expert recording stage
in our system could effectively provide haptic feedback. The pro-
posed SVIC method could facilitate haptic force feedback accurately
and timely in response to the interactions in the simulated virtual
environment. The stiffness configurations in the SVIC method could
impact the haptic feedback patterns. We selected 3,000 N/m re-
ferring to existing studies, and the simulated haptic feedback was
optimal according to the recruited welder.
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Fig. 9. Force perceptual learning. (a) While the robotic tutor exerted force for the trainee to perceive, VR visualized the desired welding tip position to
create a mapping. To coordinate the trajectory and force pattern knowledge, the trainee can either observe the trajectory while holding the robot end
effector in space or follow the trajectory; (b) robotic desired force as a function of time, compared with trainee’s counterforce in response to the output
force of the robotic tutor; and (c) trainee’s perceived force level, visualized on the same scale as (b).
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Fig. 10. (a) Example of expert motion with variations; and (b) user study results.

The perceptual training modules were evaluated by the system
performance and user study. In terms of hardware performance, the
recorded expert kinematics could be accurately replayed during
perceptual training in general. The robot’s resilience toward external
disturbance was determined by the stiffness configurations in the
trajectory perceptual learning module. Although a larger stiffness
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configuration induced a quicker mechanical response and a higher
accuracy, we found that the safety risks increased along with the
higher stiffness. Referring to Eq. (1), the trajectory perceptual train-
ing module considers the recorded expert motion the desired posi-
tion x, and exerts a force (t,) to reduce such a spatial difference
(x; — X;). The value of x, — X, can approach the value of x,_; — X;.
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However, x; is a set of discrete points, which means x,_, — X; are
not zero. Thus, large stiffness values amplified by the positional
difference may lead to a larger exerted force (t,) and can poten-
tially lead to a huge acceleration. It might overcorrect the spatial
difference and even potentially hurt the operators. We visualized
this effect by showing the minor jittering behavior in the high stiff-
ness condition in Fig. 8, in which large t, led to quick positional
change, and then t, reduced quickly, leading to unstable robotic
reactions. Thus, high stiffness settings in the trajectory perceptual
learning module can increase accuracy but lead to higher instability
if the motion is quick. In this welding experiment demonstration,
we explicitly instructed the expert not to move too quickly in order
to reduce the x,_, — Xx; values and thus increase system stability.
For other training tasks, careful justification and tests need to be
made to determine the control parameters under the consideration
of safety and system performance.

We performed a user study with 15 participants who had no
prior welding experience. By comparing the retained motor skills
after training, the results indicated that the proposed perceptual
learning method outperformed the traditional video and diagram
demonstrations, both in terms of spatial motion (p = 0.018) and
force exertion (p < 0.001) training. The results showed that it was
effective to learn motor tasks through perceptual learning. Com-
pared to remote learning through traditional media-based instruc-
tions, the proposed perceptual learning method provided trainees
with embodied feelings of how to correctly conduct the motion,
thus enhancing motor skill acquisition.

Although the proposed system was tested only for the context of
welding, the system can be generally adapted to a much broader
range of applications. For instance, bone sawing training (Maliha
et al. 2018) requires deliciated force application and coordinated
motion-force control skills. The proposed system can simulate the
bone sawing process by creating multiple layers of materials with
varying properties corresponding to the organism structures to cre-
ate arm-scale haptic feedback. The kinematic experience of an ex-
pert physician can be recorded and transferred to a novice, creating
embodied egocentric perceptual learning experience. In addition,
this system can be extended to or integrated with more training pro-
tocols. Many existing studies discussed strategies to enhance com-
plex motor skill learning in VR (Levac et al. 2019), such as reduced
variability (Sternad 2015), magnifying variability (Ranganathan and
Newell 2010), and error amplification (Liu et al. 2018). Our pro-
posed system is versatile and flexible, with the potential to integrate
various training theories. Meanwhile, another cluster of research ex-
plored the feasibility and effectiveness of new training protocols in
VR such as virtual training courses (Ipsita et al. 2022). Our proposed
system facilitates motor skill training and thus can be a complement
to other knowledge-based training protocols, creating a complete
knowledge-and-practice training closed loop. In short, our paper
contributes to the development of the future education 4.0 era.

Several issues need to be addressed in future research. Although
evidence has indicated that perceptual learning can be beneficial
for motor skill acquisition as elaborated upon in the related works
section, uncertainties still exist. Neurobehavioral and psychologi-
cal studies generally consider motor task complexity (Donovan and
Radosevich 1999; Levac et al. 2019) and individual differences
(Anderson et al. 2021) important variables impacting the optimal
motor skill training methods. The proposed system in this paper can
capture the expert’s kinematics and kinesthetics for trainees’ per-
ceptual learning, but the data captured can be inherently less con-
sistent and subject to the expert’s individual differences such as arm
length and muscular performance (Chen et al. 2016; Yoshioka et al.
2015). Meanwhile, our proposed system requires the minimum par-
ticipation of expert trainers, which on the one hand contributes to
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remote, distributed, and ecofriendly training but on the other hand
lacks interpersonal interaction compared to traditional hands-on
in-person training. Human trainers can provide irreplaceable help
(Felix 2020) such as facial expression, body language, and emotion
(O’Connor 2008). A hybrid type of training protocol that includes
robot-assisted training and on-site training is recommended to lev-
erage the benefit of human trainers as well as to transfer motor skills
in practice. Furthermore, safety can also be an important concern,
especially for dexterous tasks and tasks that involve high force, sud-
den force changes, large acceleration, or quick motion. If a trainee
did not hold the robot arm tightly, a sudden desired motion or force
change in the trajectory or force perception learning stage could dis-
engage the robot arm, leading to a potential collision with the train-
ee’s body. Although we have described some key safety measures
with reference to BSI (2016), such as limitation functions on speed,
spatial position, and force, safety measures still need to be custom-
ized according to the practical context. In addition, higher safety
standards might on the other hand reduce the application scope of
the training system because motor tasks with high speed, high force,
and a large range of motion may exceed the safety limits.

Conclusion

The expertise of certain motor skills is important in many applica-
tions such as construction, manufacturing, and medical operations.
Traditional on-site hands-on training is challenged due to resource-
intensive and accessibility issues. A versatile motor skill training and
practicing platform that is free of expensive training sites and train-
ing personnel would largely accelerate motor skill training. This pa-
per proposed a generic robot-assisted motor skill training system
and tested this system by implementing it in a keyhole welding
training task. The proposed system is composed of two parts: expert
kinematic and kinesthetic data recording and novice perceptual
learning. VR and the robotic system work together to create seam-
less data sharing and interaction. VR facilitates visual feedback and
synchronizes the robot status with a digital twin model to create a
coordinated visual-motor experience. Meanwhile, the VR platform
(game engine) uses its graphical processing capability to simulate
physics and update contact-related parameters such as contact point
position at the original space and stiffness to control robot operation.
The robotic system uses SVIC to create haptic feedback, simulating
a high-fidelity motor task experience. The expert can conduct their
motion with the haptic feedback from the robotic system. The kin-
ematic process of an expert’s motor skill can be recorded and re-
played to novice trainees through perceptual learning. The proposed
system uses high stiffness impedance control to guide the trainee’s
hand through the expert’s trajectory, enabling trainees to understand
the motion pattern through proprioception. On the other hand, the
robotic system exerts a certain force toward the trainee’s hand to
acquaint the trainee with the amplitude and direction of the force
that the expert was applying. With this system, an expert’s motor
skill can be digitalized and used to instruct novice users with cus-
tomized training experience: repeat, pause, or vary the speed of
training as the novice trainee desires.

We demonstrated the system design with a welding training sim-
ulation. A system performance study and a user study on perceptual
learning showed that the proposed system is feasible and effective.
It is a future agenda to investigate whether there is a transition
barrier between the motor skill learned through the proposed system
and real-world operations.
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