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Humanlike Inverse Kinematics for Improved Spatial

Awareness in Construction Robot Teleoperation:
Design and Experiment

Tianyu Zhou, Ph.D., S.M.ASCE'; Qi Zhu, Ph.D., Aff.M.ASCE?; Yang Ye, S.M.ASCE?;
and Jing Du, Ph.D., M.ASCE*

Abstract: The teleoperation of robotic arms is expected to play a key role in dangerous or inaccessible construction workplaces. Most robot
arms rely on mechanical designs that are completely different from human arms. It could lead to a risk that certain joints move with undesired
poses and cause collisions because of the mismatch between robot mechanical design and human operators’ egocentric perception of their
own arms. This paper proposes an innovative robotic control method that mimics the human shoulder-arm structure, enabling human oper-
ators to teleoperate with unfamiliar robotic arms intuitively. A two-tracker system is used to map human arm motions into a revised robotic
inverse kinematics (IK) algorithm called humanlike IK. One tracker controls the end effector of the robot, and the other tracker drives the
middle joint of the robot, analogous to how a human moves the arm. A seven-degree-of-freedom robotic arm was repurposed based on the
revised IK. A human-subject experiment (n = 26) was performed to test the effectiveness of the proposed humanlike IK method in a pipe
maintenance task. Results confirmed the performance and functional benefits of the proposed method. It can inspire the design of a new robot
teleoperation method for dexterous tasks in construction. DOI: 10.1061/JCEMD4.COENG-13350. © 2023 American Society of Civil

Engineers.

Author keywords: Inverse kinematics (IK); Robotic arm; Pipe skid; Human factors.

Introduction

Robot teleoperation, i.e., manipulating a robotic system from a dis-
tance, has been well explored by many industries to improve safety
and performance in human-unfriendly tasks including hazardous
materials handling (Qian et al. 2012), search and rescue (Cavallin
and Svensson 2009), confined area inspection (Kim et al. 2019),
and remote assembly and installation (Qin et al. 2016). It has been
found that robot teleoperation leverages the advantages of human
uncertainty in decision making and the physical capacities of ro-
botic systems in dynamic and dangerous tasks (Hirche and Buss
2012; Yang et al. 2016). Specifically, the use of industrial manip-
ulators, usually in the form of robotic arms, has demonstrated the
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potential to overcome complex tasks that require precise hand
operations or dexterous operations, while also satisfying the human
operator’s desired actions and maintaining the robot’s stability
(Mathew et al. 2015; Siciliano and Khatib 2016; Stanton et al.
2012). Regarding dangerous and difficult construction activities,
such as facility replacement and repair (R&R), teleoperating ro-
botic arms enable humans as the commander for tasks challenged
by complex procedures and dynamic environments (Hirche and
Buss 2012; Osawa et al. 2017; Rakita et al. 2018; Zhou et al.
2020), rather than completely relying on robotic intelligence, which
could be immature in the foreseeable future (Hitz et al. 2014).

Furthermore, future construction operations can happen in al-
tered workplaces with distinct contexts, requiring complex dexter-
ous coordination or relating to environments that are less accessible
or unsafe for human workers, such as underwater construction,
power plant turnaround maintenance, and offshore rig operations
(Shou et al. 2018; Shukla and Karki 2016; Vu et al. 2019). As such,
teleoperating robotic arms are considered more effective and safer
for these future construction operations (Chen et al. 2007; Niemeyer
et al. 2016; van Osch et al. 2014).

There are different ways for realizing the control of a remote
robotic arm, such as through the use of hand props (e.g., joysticks),
programmable inputs, and keyboards (Jiang et al. 2013; Thirumurugan
et al. 2010). Among all, bilateral control is considered the most in-
tuitive, which is critical to the scalable deployment of robot tele-
operation. Bilateral control enables a human operator to control the
movements of a distant robotic system via motion mirroring, for
directing the movement of a remote robot arm by moving the con-
trol device in a similar manner (Anderson and Spong 1988). Recent
human body motion-capture technologies have enabled human
operators to use their own body components, particularly the
hands, to guide the end effector (e.g., the tip of a robot arm) of the
remote robot in a mirrored way (Zhou et al. 2020; Zhu et al. 2022).
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The locations and poses of other robotic arm joints are then con-
trolled using inverse kinematics (IK), which involves recovering
the positions and rotations of each robot arm joint based on the
intended movement trajectory of a single end effector (Aristidou
et al. 2018).

However, because traditional IK focuses on the single-point es-
timate toward the end effector of the robot, it may result in un-
wanted and unanticipated movement of remaining joints, leading
to possible collision problems in confined areas. Specifically,
there are two potential problems with the traditional IK in practice.
First, most IK algorithms rely on approximating the solution of a
Jacobian matrix, and hence the solution is not unique (Aristidou
et al. 2018). With that said, for the same end-effector trajectory,
the recovered joint positions can be different at times. It is therefore
difficult for human operators to predict the movements of robotic
arm joints other than the end effector. For work in restricted places,
if only the end effector of the remote robot follows human move-
ments, the remaining joints may engage in unintended motions that
are not expected by the human operator, inducing problems such as
a collision between the robotic arm and the surrounding objects
(Ikuta et al. 2003; Kanehiro et al. 2004).

Second, the robot arm’s mechanical designs often differ from
that of a human arm (e.g., additional joints); thus, it is challenging
for the human operator to coordinate activities that may require far-
reaching movements of the robotic arm in a safe manner, such as
stretching the entire robotic arm to reach an object. This is particu-
larly serious for robot arms with a large number of degrees of free-
dom (DOFs). For example, because most IK algorithms aim to
minimize the movement distance (economic consideration), the
middle joint of 7-DOF robotic arms (i.e., the elbow position) does
not always follow the motion of the elbow of the human operator,
resulting in an ungainly chicken wing posture that is rarely seen in
humans (Reddivari et al. 2014). The difference between robotic
arms and a human arm can impair the natural spatial awareness
of the human operator in dexterous tasks, making the bilateral con-
trol in restricted areas more difficult.

This work presents a novel IK method for the teleoperation of
robot arms that is humanlike. The so-called humanlike IK is a pro-
posed algorithm that uses motion trackers on key joints of a human
arm to track human motions in terms of the pose of the arms, adds
additional IK inputs for more natural recovery of the robot arm el-
bow positions and rotations, and drives the robot arm to move in a
more natural, humanlike manner. The interactive virtual reality (VR)
system was developed based on our previous systems (Du et al.
2016, 2018a, b, 2017; Shi et al. 2018; Zhou et al. 2022; Zhu et al.
2021). The humanlike IK is also adapted to be compatible with
the Robot Operating System (ROS) (Quigley et al. 2009). To
quantify the effectiveness of humanlike IK versus the traditional IK
methods, we performed a human-subject experiment using the
Franka Emika Panda robot simulation. The remainder of the paper
will introduce the relevant literature, the system design, and the
findings of the human-subject experiment.

Literature Review

Human-Robot Interaction

Effective robot teleoperation relies on a carefully designed human—
robot interaction (HRI). The concept of HRI is rooted in research in
the area of manufacturing robotic platforms, which “extends a per-
son’s sensing and/or manipulating capabilities to a position remote
from that person” (Sheridan 1992). Existing research, such as that
by Yanco and Drury (2002), asserts that HRI is a subset of wider
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human—computer interaction (HCI) issues because robots are com-
puter systems, whereas HCI is concerned with the design, assessment,
and implementation of interactive computing systems. Nonethe-
less, it is important to emphasize that the concepts of teleoperated
robot interface design diverge significantly from normal HCI les-
sons learned in these dimensions, including the physical specifica-
tions and morphologies of robots, the number of systems a user
may be called to interact with simultaneously interaction roles;
the dynamic nature of the robot platform, and the roles of interac-
tion where human agents play (Scholtz 2003). According to this
definition, teleoperation HRI is defined as the interaction between
a single human and a single robot in which the person (operator)
issues orders to one robot and the robot responds with sensor data
(Yanco and Drury 2004). A sufficient amount of human conscious-
ness is required to ensure a working HRI, particularly for teleopera-
tion duties (Doisy et al. 2017). The human operator must be aware of
the robot’s environment and status, and the robots must respond to
human directions in a natural manner (Drury et al. 2003).

However, maintaining accurate and up-to-date situational
awareness is a challenging problem in construction tasks subject
to changing and unpredictable environments that can potentially
impair platform and perceptual capabilities (Murphy 2004). In ad-
dition, given the noncollocated condition, the lack of synchronized
awareness can result in improper commands from the operator and
unexpected executions by the robot. Recent advances in interfaces
motivate the research for a new solution for developing trustworthy,
safe, and efficient teleoperation control methods to achieve an en-
hanced HRI (Bonci et al. 2021). On the one hand, the development
of sensor technologies significantly advances robot capabilities to
perceive the environment and also to monitor human behavior, and
plan appropriate robot responses in different phases of collaborative
tasks (Ishida et al. 2018; Peternel et al. 2017). More modalities,
including visual, aural, and haptic input, are used, on the other
hand, to increase human situational awareness of what is going
on throughout the collaborative job (Casalino et al. 2018). One
of the ways that have been demonstrated to be beneficial for in-
creased awareness of robot teleoperation is the bilateral control
(Opiyo et al. 2021). Bilateral control leverages a master-subordinate
architecture, where the operator controls the master system and the
subordinate system mirrors the motion data from the master
(Yokokohji and Yoshikawa 1994). Usually, the motion mirroring
does not require the reproduction of the complete master system.
IK is used to recover the motion dynamics of the subordinate
system based on only incomplete data from the master system
(Aristidou et al. 2018). The following section explains the IK meth-
ods for robotic arm control.

Inverse Kinematics for Robotic Manipulator Controls

To move the end effector to the desired position, IK, or the use of
kinematic equations to determine the joint parameters of a manipu-
lator (Aristidou et al. 2018), is utilized. Numerous IK methods have
been developed, such as the analytical method (Craig 2009),
numerical method (Buss 2004), and artificial neural network
(El-Sherbiny et al. 2018). The mathematic efficiency and reliability
of IK have been well validated in the robotics (Sciavicco and
Siciliano 2012) and computer science literature (Aristidou et al.
2018). Analytical approaches are designed to determine all feasible
solutions based on the lengths of the mechanism, the starting pos-
ture, and the rotation constraints, and they are usually dependent on
some assumptions (Aristidou et al. 2018).

Much robotic research uses analytical IK solutions to control
end effectors, such as solving general 6R manipulators (Manocha
and Canny 1994; Raghavan and Roth 1993) and multibody
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mechanisms (Gan et al. 2005; Paul and Shimano 1979). IKFast
(Diankov 2010) is an analytical tool for solving robot IK equations
and deploying motion planning algorithms in real-world robot ap-
plications. Movelt! is a suite of software packages for mobile
manipulation that includes motion planning and collision avoid-
ance and is connected with ROS (Chitta et al. 2012). Based on
IKFast, this popular Movelt! plugin offers analytic solvers for
robotic arms like Baxter, Franka Panda, and Universal Robots
(Chitta 2016).

Analytical IK solutions are reliable and rarely experience singu-
larity difficulties because they provide a global solution. However,
the nonlinear nature and lack of scalability of kinematic equations
make them unsuitable for redundant systems (Aristidou et al.
2018). The Movelt! package is reliable for real robot control but
it is time-consuming for digital twin (DT) simulation.

Cyclic coordinate descent inverse kinematics (CCDIK)
(Luenberger and Ye 1984; Wang and Chen 1991) is an iterative
heuristic technique for controlling an articulated body interactively.
CCDIK has been implemented for a variety of robotic applications
in humanlike manipulation (Lander and Content 1998). The viabil-
ity for creating and controlling highly articulated characters of
CCDIK has been examined by Kenwright (2012). CCDIK provides
a numerically stable solution with linear-time complexity in the
number of degrees of freedom, resulting in a minimal computa-
tional cost for each iteration (Welman 1993). However, due to the
redundancy of the robot, the CCDIK algorithm may return different
trajectories: because most robotic arms have more than six degrees
of freedom, CCDIK allows an infinite number of different solutions
to the inverse kinematics problem for the same target position
(Canutescu and Dunbrack 2003).

Numerical methods require a set of iterations to achieve a sat-
isfactory solution. Iterative techniques define the problem by min-
imizing a cost function (Aristidou et al. 2018). The Jacobian J is a
matrix of partial derivatives of the entire chain system with respect
to the angle parameters 6. The IK issue can be approximated lin-
early using Jacobian solutions. An excellent review of the Jacobian
methods has been given by (Buss 2004). Jacobian methods tackle
the IK problem iteratively by modifying the configuration of a com-
plete chain so that the end-effector position and orientation move
closer to a target position and orientation at each stage.

Existing IK research, on the other hand, has focused on how to
improve IK efficiency rather than how to better produce humanlike
movements. Because most robot arms have different joint struc-
tures from those of human arms, if a human operator teleoperates
the robot based on personal own motor experience, the two agents’
actions may cause misunderstanding or collision. Most modern ro-
bots are controlled by a single-target IK solver like Panda IK solver,
Movelt!, IKFast, or CCDIK, which is based on the positioning in-
formation of the end effector. Instead of analytical solutions, these
IK algorithms typically provide numerical responses by approxi-
mating the desired locations. This means that the recovered pose
of the robot arm’s other joints may differ from case to case at the
same end-effector position. It makes the bilateral control of a re-
mote robot arm more unpredictable from a human perspective.

Humanlike IK for Construction Tasks

Robot Control Architecture

The first step toward realizing humanlike robot teleoperation in
confined construction workplaces is to enable a seamless motion
data exchange between human operators and the remote robot.
ROS and the Unity game engine were utilized to achieve robotic
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control and human motion data capturing and processing. The
game engine was used because it is robust in the real-time rendering
of motion data. In addition, the game engine provides a platform for
developing the entire robot teleoperation system in VR, which
offers immersive and intuitive working spaces for human oper-
ators (Freina and Ott 2015). The arm kinematic data of human
operators can be captured, transferred, and processed in Unity
and then streamed seamlessly to ROS to enable real-time robotic
control. The Unity-ROS data synchronization infrastructure is
realized based on previous works (Pu et al. 2021; Xia et al. 2022;
Zhou et al. 2020). The Emika Panda robot (Emika 2022) was se-
lected as a functional example to validate the proposed architec-
ture. Fig. 1 shows the system architecture of the ROS-Unity data
synchronization.

As illustrated in Fig. 1, the robot control system mainly con-
sists of three functions: ROS-based robot control, digital twin
reconstruction and rendering in the game engine, and human me-
chanics capturing and conversion. ROS is used to subscribe to the
input commands and control the robot’s motion based on the de-
sired pose. ROS also publishes the current state of the robot as an
output to establish two-way communication. The communication
between Unity and ROS can be established by ROS#. ROS# is
a collection of open-source software libraries in C#, which provides
compatible application programming interfaces (APIs) to facilitate
bidirectional communication between ROS and Unity (Siemens
2019). In the context of robot teleoperation, data transmission
among distributed working stations is necessary. We utilized ROS-
bridge to provide a JSON data stream between ROS and Unity
(Crick et al. 2017), which enables data transmission via a public
network, such as the internet. ROSbridge provides a WebSocket
server for Unity to interact with, serving as a connection between
ROS and the network (Crick et al. 2017). The ROS server converts
robotic dynamics data into JSON messages via ROSbridge and
publishes it to or receives it from the internet, then converts it to
ROS messages (Crick et al. 2017; Quigley et al. 2009), which are
further utilized to control the robot.

On the Unity side, ROS# facilitates the construction of Unity
nodes that are compatible to publish and receive data from ROS
topics. ROS# establishes a WebSocket that subscribes to data from
NET applications (GitHub 2019) so that Unity can connect to a
computer with a specified internet protocol (IP) address and ex-
change data through a network. We granted the ROS server and
Unity’s WebSocket the same IP address so that Unity and ROS
can share data seamlessly: the ROS server publishes/subscribes
to the processed ROS topics, and Unity subscribes to all ROS topics
and publishes commands in specific ROS topics. The subscribed
ROS topics stream robot state data to Unity and control the behav-
ior of a digital robot arm replica in Unity. The digital replica, or
digital twin of the robot arm, was built from a Unified Robot De-
scription Format (URDF) file of the robot (Wiki 2019). The URDF
digital twin model has the same digital configurations and param-
eters as the real robot arm such that it is compatible to receive data
from subscribed ROS topics and behaves the same as the real robot.
Unity can subscribe to the joint_states ROS topic, which includes
the real-time location and orientation of each robot joint. The pose
and state of the robot arm’s digital twin then can be synchronized
with the real robot arm.

For human operators, the robot’s digital twin model and virtual
pipe skid model are shown in the immersive virtual environment.
When holding the VR controller in their hands and wearing the VR
tracker on their elbow, human operators’ arm poses can be tracked
and processed as command inputs for the robot arm. Human oper-
ators can complete the tasks naturally utilizing their spatial aware-
ness and collision-avoiding path planning strategy. The natural
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Fig. 1. System architecture of ROS-Unity data synchronization.

posture of human kinematics can be abstracted and transferred as
two key points: hand posture and elbow posture, which are further
used as robot end effectors and intermediate joint commands. The
abstracted human kinematics are then transferred to Unity for
further processing. An IK solver is utilized to recover the entire
desired robot state from the poses of the start joint (base joint) and
the abstracted human kinematics. The desired robot pose can be
transmitted to ROS based on ROS# to control the behavior of the
real robot. Furthermore, the converged real robot state will be sub-
scribed by Unity to update the digital twin model of the robot arm
and visualize it to users, which forms a closed loop.

Motion Tracking and Mapping

The proposed system focuses on controlling the locomotion of ro-
botic arms via human arm motions. The following stage is to design
motion tracking on the human operator’s arm and map the data to
the corresponding joints of the robotic arm. Without loss of gen-
erality, we propose to generate humanlike robot arm motions by
focusing on the robot elbow constraints. The literature has shown
that the human elbow joint shares the biggest degree of freedom in
upper-limb movements (Buckley et al. 1996). Reproduction of the
human elbow joint’s dynamics is critical to the cyclic voluntary
movements (Bennett et al. 1992). As a result, numerous active sys-
tems, such as exoskeletons, focus on modeling the elbow joint
movements (Lenzi et al. 2011; Li et al. 2020).

To capture precise human motion features as inputs to IK solv-
ers, a retrofitted version of the HTC Vive headset (HTC Corpora-
tion, New Taipei City, Taiwan) (Tobii Pro VR Integration, Tobii
Pro, Danderyd, Stockholm, Sweden), a VR controller, and a VR
tracker, are used in this study. As illustrated in Fig. 2, the human
operator needs to wear the HTC Vive headset on their head, hold
the VR controller in their hand, and wear the VR tracker on
their elbow.

The mapping between a human arm and the robotic arm de-
pends on the design of the IK method. Specifically, instead of using
one IK solver to control the robot arm based on the pose of the end
effector directly, our proposed humanlike IK adds a pose constraint
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to the robot elbow joint based on the tracker attached to the human
operator’s elbow. Therefore, the robot arm is divided into two seg-
ments. The lower segment from the base to the middle joint of the
robot corresponds to the upper arm of the human operator, whereas
the upper segment from the middle joint to the end effector of
the robot matches the forearm and hand of the human operator.
However, different robots may have different selections of the in-
termediate joint. In this research, the 7-DOF Emika Panda robot
was selected as the functional example.

Fig. 2. Human operator wears the Vive headset, tracker, and controller.
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Fig. 3. Robot specification, human arm motion tracking, and mapping to the robotic arm.

As illustrated in Fig. 3(a), the locations and movement features
of robot Joints 3, 4, and 5 are, respectively, similar to the shoulder
yaw rotation, elbow pitch rotation, and wrist yaw rotation of the
human arm joint, we selected Joint 4 as the intermediate joint for
the proof of concept. Joint 4 is the middle part of the robot arm,
which can be intuitively mapped to the human elbow, and the end
effector is mapped to the human hand. This is sufficient for driv-
ing the motion of a robotic arm close to that of a human arm.
Figs. 3(b and c) illustrate how human arm motions were tracked
and mapped onto corresponding joints of the Emika Panda ro-
botic arm.

Additionally, we configured a robot start mechanism for remote
operation. The trigger button on the VR controller was configured
to activate and deactivate the robotic arm. The operator can use the
button to initiate the end effector of the robotic arm to follow the
controller’s trajectory or to stop the robot and maintain its posture.
The start mechanism can only be activated if the distance between
the controller and the end effector is less than 20 cm. The purpose
of this mechanism is to prevent errors caused by the operator press-
ing the button while the controller was still distant from Panda’s
arm. This could prevent Panda’s arms from moving too quickly
in an undesirable direction, resulting in collisions. During the ex-
periment, the human operators were allowed to change the operat-
ing location. When the operators want to observe the situation of
the workspace, they can inactivate the control of the robot, walk
around to have a better understanding of the state of the robot,
and go to a suitable location to continually activate and control the
robot.

Revised IK Solver

As mentioned previously, the humanlike IK divides the robot arm
into two segments. We used two IK solvers to obtain the positions
of the joints, respectively. As illustrated in Fig. 3(a), using the
Emika Panda robot as the example, the arm was divided into Joints
0—4 and Joints 4-7. Each part was regarded as a robot arm with four
DOFs. The IK solvers of two segments of the robot arm were built
based on the Jacobian solutions in Unity. Because the IK solvers
with four DOFs may not yield a stable result, we set a tolerance of
5° for each joint. The desired pose of each IK solver was defined by
the VR tracker and VR controller, as shown in Fig. 3(b). The VR
tracker on the operator’s elbow provided the desired pose of Joint 4,
and the controller on the operator’s hand provided the desired
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position of Joint 7. Because the pose of Joint 1 is fixed, IK solvers
can rely on the target poses of Joints 4 and 7 to find the rotation of
each joint.

We used the Jacobian Moore-Penrose pseudoinverse (Penrose
1955) algorithm to calculate the IK. The Appendix illustrates the
details of the Newton-Raphson IK method used in this study. For
the traditional IK with only inputs from the end effector, the angle
vector is

{6} = {61792?93794795’96’97}7- (l)

In contrast, the proposed humanlike IK considers two vectors of
the two IK solvers

{0’} =1{0,.0,.65.0,}" and {©"} = {04.65.06.607} (2)

The robot can be remotely controlled to complete the task based
on the desired rotation of each joint.

Human-Subject Experiment

Overview

To further test the effectiveness of the proposed humanlike IK
method in construction robot teleoperation, we performed a human-
subject experiment based on the proposed system. We selected a
pipe skid facility R&R task as the test case. The objective of this
task was to control the industrial robot to trigger the target valve
while avoiding collisions. The pipe skid was chosen because of its
high appearance in particularly confined workspaces. We modeled
a 7-DOF Emika Panda robot mounted on a base for maintenance
tasks and recorded the occurrence of all three-dimensional (3D)
regions containing collisions in an immersive virtual environment,
as shown in Fig. 4.

To evaluate the control algorithm, unwanted collision events be-
tween the robot and the pipe needed to be recorded. We recognized
and agreed that the control mechanism, once established, would
require validation of real-world data before it could be deployed
in real-world circumstances. However, a collision between a real
robot and a real pipe can be hazardous and potentially cause robot
damage. Therefore, the immersive virtual robot and pipe were built
to replicate the real-world interaction. To ensure two robots have
identical poses, we utilized URDF to construct a virtual robot and
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Virtual Pipe Skid

A — [y =

Virtual Panda Robot

Fig. 4. Pipe skid and robot for the human-subject experiment.

transferred the joint_states data to VR. The VR environment was
designed to elicit similar behavioral responses to those observed in
real-world work contexts, and so was suitable for pipe skid main-
tenance tasks. Given the ease of data collection and experiment
manipulation, the use of VR for human behavioral data gathering
has gained favor in the cognitive and behavioral literature (Kinateder
et al. 2014).

Data Collection System

For data collection, we used an interactive VR system with motion-
tracking functions to collect participants’ behavior data. A virtual
working scenario of maintenance of a pipe skid in a confined space
was designed as the task. In the experiment, participants were asked
to control the robot to trigger three valves. The pipe skid was within
the operating range for the robot’s end effector to manipulate three
rotary valves. Once the system detected a collision between the ro-
bot’s end effector and the valve, this valve was tagged as triggered,
and the mission status was recorded as complete. When all valves
were triggered (i.e., the task is complete), the system automatically
stopped data recording and ended the task trial.

To achieve the motion tracking and documentation functions
in the VR, several C# scripts were developed based on Tobii Pro
Software Development Kit (SDK) version 1.11.0 and the API in
Unity. The system collected data on participants’ hand movement,
elbow movement, robot joint movement, task complete states, and
collision times at a frequency of 90 Hz. After each VR experiment,
the developed VR system automatically recorded the raw data and
streamed it into a CSV file.

Experiment Setting

To investigate the influence of embodiment control on task perfor-
mance, two control algorithms were developed: (1) the traditional
IK solver, i.e., the robot was controlled based on the target pose of
the end effector, defined as the control condition; and (2) the pro-
posed humanlike IK solver, i.e., the target poses of end effector and
elbow joint were used to control the robot, defined as the test con-
dition. As a control condition, we evaluated the control of the Panda
robot based only on the traditional IK with input from the control-
ler. As illustrated in Figs. 5(a—c), the pose of the Panda’s end ef-
fector can be controlled to reach each valve. However, Joint 5 of
the Panda robot is close to the pipe and prone to collisions when
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performing pipe maintenance. We also tested the Panda control
based on the humanlike IK with inputs from the controller and
the tracker as the test condition. As illustrated in Figs. 5(d—f),
the operator could control the end effector to complete the tasks
while keeping Joint 5 away from the pipe skid to prevent a colli-
sion. This could be because the humanlike IK could assist the human
operator in controlling Panda’s arms in a more humanlike manner,
hence preventing collisions in this cramped work environment.

The other variables are the same between the two conditions.
Participants’ operation time, motion velocity, and collision times
were collected during the experiment. In addition, we used a back-
ground questionnaire to collect participants’ demographic informa-
tion, and we applied three questionnaires [National Aeronautics and
Space Administration (NASA) task load index (TLX) questionnaire
(Hart and Staveland 1988), Situational Awareness Rating Technique
(SART) survey (Taylor 2017), and Trust Scale questionnaire (Merritt
2011)] at the end of the experiment to evaluate participants’ cognitive
load, situational awareness, and trust level to validate the results.

The experiment consisted of five sessions: (1) training; (2) oper-
ation task under Condition 1; (3) questionnaires about Condition 1;
(4) operation task under Condition 2; and (5) questionnaires about
Condition 2. The training session, Session 1, was designed to
familiarize participants with the robotic control mechanism and
interactions within the virtual environment. Each participant was
instructed to be acquainted with the VR devices (VR headset, VR
controller, and VR tracker) and the virtual environment. Then,
participants were given instructions about how to manipulate the
robot arm to interact with the virtual valves based on two control
algorithms. Participants were also instructed to avoid collisions as
much as possible.

After the training session, participants were asked to perform the
pipe maintenance task based on one control algorithm in the VR
environment (Session 2). Because the task of the pipe maintenance
was simple (triggering three valves), the participants were asked to
perform the task 10 times for each condition to get more solid data
because the repetition of the task could effectively reduce the im-
pact of random error. In Session 3, after completing the operation
session, participants were given questionnaires (NASA TLX,
SART, and Trust Scale) to provide comments and feedback. Then,
in Session 4, the participants were asked to perform the task based
on another robot control algorithm and provide feedback based on
questionnaires (Session 5). In order to eliminate the influence of
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Fig. 5. Pipe skid maintenance task with (a—c) humanlike IK; and (d-f) only one IK solver.

participants’ learning curve and environmental knowledge on the
experimental results, we shuffled the order of the control algo-
rithms in Session 2 and Session 4. The experimental procedure took
approximately 30 min for each participant.

During the experiment, human operators were required to wear a
VR headset, a VR tracker, and a VR controller to control the robot
and interact with the virtual environment. When the robot was ac-
tivated, the operator can control the end effector through the VR
controller to operate each valve.

We recruited a total of 26 subjects for this experiment
(12 females, average age of 27). All participants reported that
they were right-handed and did not have any known motor dis-
orders or a history of neurological abnormalities. The study was
approved by the ethical approval of the ethics committee at the
University of Florida. All subjects were required to give their
written informed consent before attending the experiment.

Task Performance Analysis

To capture human operator performance differences under the pro-
posed humanlike IK method and the traditional IK method in con-
struction robot teleoperation, we used both task completion time
and collision as evaluation metrics. We tracked performance data
from each trial of all subjects and performed a repeated-measure
(rm) ANOVA across two conditions. The horizontal line in the
box plots represents the median of the data.

The absolute time spent on the valve manipulation task of each
trial was counted as the task completion time. As shown in Fig. 6,
the results indicate that there is no significant difference (P =
0.908 and F = 0.013) between the humanlike IK condition and
the traditional IK condition in completion time.

In terms of operational accuracy, we measured the total amount
of the collision that happened under each trail as collision perfor-
mance. Fig. 7 compares collisions between the humanlike IK con-
dition and traditional IK condition. The points indicate the collision
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positions for different conditions. We found that the humanlike IK
outperformed the traditional IK with significantly low collision
numbers (P = 0.0001 and F = 20.673). Although there was no
significant difference between the humanlike IK condition and
traditional IK condition in task completion time, the operational
accuracy was dramatically increased based on the humanlike IK
control method; the average collision was reduced from 3.865
per trial (traditional IK) to 1.3 per trial (humanlike IK). However,
the median values shown as horizontal lines in the box plots
showed the opposite.

We also found out that the collisions in traditional IK condition
were significantly higher than that of the humanlike IK condition
when the y-axis was below 0.1. The points below 0.1 on the y-axis
were the collision between the robot and the bottom plate of the
pipe skid. It is possible that in the operation of controlling the robot
to move from the left valve to the right valve, the operator could not
control the other joints of the robot effectively using the traditional
control method. With the humanlike control method, the operator
could control other joints more effectively. We also compared the
number of collisions only beyond 0.1 on the y-axis. The average
number of collisions for the traditional IK was 3.587 per trial,
which remains significantly higher than the number of collisions
of the humanlike IK (1.3 per trial).

Regularity of Control Velocity

To quantify the controlling speed changes, in terms of velocity
regularity during teleoperation, entropy was widely used in pre-
vious studies (Pincus and Viscarello 1992). Higher entropy values
usually estimate more chaos or irregularity in signals. The Sample
Entropy (SampEn Index) (Richman and Moorman 2000) was used
in this study because the SampEn index is a predominant metric for
human motion or gesture studies to access velocity regularity. In
addition, the SampEn method has been shown to have a low bias
because its parameter is independent of the length of the records
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Fig. 6. Repeated-measure ANOVA of completion time across the
humanlike condition and the traditional condition.

(Yentes et al. 2013). We recorded the control velocity data in all
directions (X, Y, Z) of each trial and performed the Sample Entropy
calculation.

Based on the frequency of VR data collection, we calculated the
velocity according to the position change of each frame

We could calculate the velocity for meters per second or meters
per frame because 1 frame = 1/90 s. The velocity of hand move-
ment, elbow movement, and movement of each robot joint was also
calculated.

For a given embedding dimension m, tolerance r, and the num-
ber of data points N, SampEn is the negative natural logarithm of
the probability that if two sets of simultaneous data points of length
m have distance <r, then two sets of simultaneous data points of
length m + 1 also have distance <r. Assume there is a time-series
data set of length N = {x;, x5, x3, ..., xy} with a constant time
interval 7. The template vector of length is defined as m, such that
X, () = {x;. x; 41, X042, - X;y w1} and the distance function
d[X,,(0),X,,(j)](i # j) is to be the Chebyshev distance (Cantrell
2000). The sample entropy can be defined as follows:

A
SampEn = _IHE (4)

where

A = number of template vector pairs having d [X,,, . (1), X1 ()]
<r (5)

B = number of template vector pairs having d [X,, (i), X,,(j)] < r
(6)

The results of the velocity regularity comparison are given in
Fig. 8. We observed a significant difference in sample entropy of
control velocity in all of the X-direction (P = 0.0048), Y-direction
(P =0.0189), and Z-direction (P < 0.0001) between the human-
like IK and traditional IK conditions. The results show that subjects
with humanlike IK control methods tended to have lower sample
entropy of controlling velocity, which indicates that they had more
constant controlling speed or regular patterns. This may be due to
the fact that individuals with a higher level of embodied cognition
were more confident in their ability to perform motion coordination
tasks and, as a result, exhibited smoother movement.

Human Operator Subjective Assessments

V, = P—Py (3) In addition to task performance, we also analyzed human operators’
T,—T,, reported feelings toward task workload, situational awareness, and
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Fig. 7. Collision point in 3D view and repeated-measure ANOVA of collision times across the humanlike condition and traditional condition.
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trust level of the control methods by different questionnaires. Three
surveys were taken when the subject finished 10 task trials of each
condition. In this way, they could report an overall evaluation of all
trials related to the corresponding control method. A rm ANOVA
was performed to test whether there were any significant differen-
ces between the humanlike IK condition and traditional IK condi-
tion in terms of operator subjective assessments.

Six subscale NASA TLX questionnaires (Hart and Staveland
1988) were used to evaluate the workload levels from different per-
spectives. The subject’s reported task workload was calculated as
the sum of all six subscales. The results (Fig. 9) revealed that there
is no significant difference (P = 0.316 and F = 1.043) between
the humanlike IK condition and traditional IK condition. Similarly,
we did not observe biases (P = 0.731 and F = 0.121) in reported
situational awareness levels, which were accessed by the SART
survey (Taylor 2017). To capture the human operator’s tendency
to trust the system and to contextual trust in automation (TiA)
behaviors (Kohn et al. 2021), we used a six-item Trust Scale

questionnaire (Merritt 2011) to measure the subject’s trust levels
corresponding to each IK control method. Compared with the tra-
ditional IK condition (mean = 32.769), subjects with the human-
like IK method reported significantly (P = 0.013 and F = 7.072)
higher trust scores (mean = 40.769). Even though the proposed
humanlike IK did not improve the operator’s perception of the re-
mote environment nor reduce the workload during the operation, it
did improve the operator’s confidence in the robotic system.

Discussion

The results of the human-subject experiments showed that the
proposed humanlike IK method could significantly improve robot
teleoperation task performance and human functions. The perfor-
mance data indicated that there is no significant difference between
the humanlike IK condition and the Traditional IK condition in
completion time. However, there seemed to be much fewer incidents

NASA TLX SART Trust
60 p=0.316 60 p=0.731 60 —‘7 p=0.013
50 50 50
40 40 40
[} [} (]
© © §
& 30 T & 30 l & 30
20 20 20
10 J_ —_— 10 10
0 r r 0 " T 0 ; :
Human-Like Traditional Human-Like Traditional Human-Like Traditional
Conditions Conditions Conditions

Fig. 9. Repeated-measure ANOVA of NASA TLX, SART, and Trust questionnaire across the humanlike condition and traditional condition.
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of collisions with the humanlike IK method [66.37% fewer (P <
0.0001)]. Humanlike conditions had fewer collisions when using
the same time, which could be attributed to the better embodied cog-
nition induced by the humanlike IK.

Embodied cognition refers to the cognitive process and physical
interactions of the human body with the world (Barsalou 1999;
Wilson 2002). It is the process whereby which a person uses their
sensory structures to create multisensory representations of the
surrounding environment and mentally reconstruct an object or
action (Barsalou 2003, 2008). Because the humanlike IK may
have facilitated faster modeling of a person’s own arm in mental
representation, especially with the first-person view created by the
VR environment, the sensorimotor process may be more effective.
It explains why there were fewer incidents of collisions because
humans are good at avoiding collisions of their own body parts
with obstacles.

The trajectory analysis found that with the humanlike IK
method, the entropy of robot end-effector velocity was lower, or
more stable [10.21% lower than that of the traditional IK method
(P = 0.0048) in the x-axis, 3.46% lower than that of the traditional
IK method (P = 0.0189) in the y-axis, and 18.79% lower than that
of the traditional IK method (P < 0.0001) in the z-axis]. This could
be because with a better embodied cognition, participants were
more confident with the motion coordination tasks and hence dem-
onstrated a smoother movement. However, with the traditional 1K
method, because of the insufficient sense of ownership of the body
extension (i.e., the robotic arm as a surrogate of their own arms), the
spatial awareness may have been impaired. As a result, participants
had to slow down at critical decision points, such as approaching
a narrow gap for the far-reaching task. The instantaneous speed
changed substantially during the entire task. It was finally shown
as a higher entropy.

Subjective perception assessments also confirmed various
benefits of the proposed humanlike IK method. There was no sig-
nificant difference between the humanlike condition and the tradi-
tional condition in NASA TLX and SART. For the humanlike
condition, the human operators were able to control two poses of
the robot, allowing them to spend more effort controlling the robot
to the optimal pose to avoid collisions. For the traditional condi-
tion, human operators could only control the end effector of the
robot. When all the attention was focused on the end effector, it
was easier to make a decision. The results of the questionnaire
indicated that the participants who exerted greater effort in the
humanlike condition did not experience a significant increase
in cognitive load, but also improved the experimental outcomes
(fewer collisions). A possible explanation for the no significant
difference in the situational awareness questionnaire is that the
scenario and task for the experiment were simple enough to com-
prehend. All participants were capable of handling all variables
and had excellent situational awareness of both the robot’s pose
and mission targets. Finally, the use of the humanlike IK method
also improved the level of technology trust [24.41% better
(P = 0.013)]. All of these findings echoed our observation about
performance improvement.

Conclusions

Robot teleoperation has been widely used in various industrial
workplaces where the environment is inaccessible or hazardous
for human workers. Compared with fully autonomous robotic
applications, robot teleoperation combines the abilities of uncertain
decision making of human workers and the physical capabilities
of robotic systems in dynamic motor tasks. A key challenge for
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designing an effective teleoperation system is an intuitive control
mechanism that enables human operators to control the locomotion
of the robot in accordance with the instructed trajectory or the
bilateral control. The traditional bilateral control system uses a
single-solver IK method to recover the dynamics (i.e., positional
changes and rotation) of each joint based on the dynamics of the
end effector, which may cause the robotic arm to move in a way
undesired by the human operator, leading the robot arm to collide
with surrounding objects.

In this study, we proposed and tested an intuitive robot teleop-
eration IK method that controls the majority of robot arm joints
based on inputs from multiple joints of the human arm, called the
humanlike IK method. In recognition of the importance of the hu-
man elbow joint for upper-limb motions, the humanlike IK divides
the robot arm into two segments, marked by a middle joint
analogous to a human elbow. Then, it tracks human arm motions
based on motion trackers attached to the key arm joints and uses a
multivariate IK solver to recover the rotation of each robot joint,
especially the pose and position of the robot arm elbow. A
human-subject experiment showed that the proposed humanlike
IK helps human operators control the robot arm to move in a more
natural way similar to the manner of a human arm, reducing the
risks of collision and improving both performance and perceptions.

One of the limitations of this research is that we performed the
test in a pure simulation environment. This was due to the safety
consideration of using a real robot. Collisions with a real robot may
damage the robotic system and the structure we used. To demon-
strate the similarity between the simulated robotic system and the
real robot, we presented a pilot study. It confirmed that simulation
and real robotic systems were similar enough because they were
both controlled by ROS. But we could not confirm if a simulated
environment would trigger similar human behaviors. As a result,
one of our future agendas is to perform a system test with a real
robotic system in a safe way. Another activity we plan to pursue is
to test the differences among different forms of robotic arms. In this
test, we chose a 7-DOF robotic arm because of its representative-
ness in modern industrial applications. The use of more or fewer
DOF may cause different designs of the humanlike IK. Lastly, we
will also test the proposed method in more tasks with varying con-
texts and spatial configurations.

Appendix. Details of Newton-Raphson IK Method

The Appendix illustrates the Newton-Raphson IK method used in
this study. The function vector for the Newton-Raphson IK
method is

{G(O)} ={a (@)v92(@)793(@)»94(6)795(6)796(9)}T (7)

where ¢;(0), g,(0), and g3(0®) = translation functions based on
the position of the end effector; and g4(®), g5(0®), and g4(®) =
rotation functions based on the angles of the end effector. The
angle vector is

{0} = {01.0,.05,04.05,06,0,}" (8)
The following is the form of the given functions to solve:
{G(©)} = {0} )

Let [J] = [J(®)] as the Newton-Raphson Jacobian Matrix.
Make an initial guess to the solution {@,} and solve

VI{66:} = —{G({O:})} (10)
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where k = iteration counter. Update the current best guess for the
solution {@; .} = {O;} + {80} until ||{80,}| <e.

Data Availability Statement

All data are available upon request. The video link of the real and
virtual robots being controlled in the same pose can be found at
https://youtu.be/d6ainvm6sk0. The raw data collected by the sys-
tem on participants’ hand movement, elbow movement, robot
joint movement, task complete states, and collision times at a fre-
quency of 90 Hz can be found at https://www.dropbox.com/sh
/jbokwdrO6wbwecb/A ABIdESNJ5SWzRodvKI10Zut4ra?d1=0.
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