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SUMMARY

The accurate estimation of prediction errors in time series is an important problem. It immediately
affects the accuracy of prediction intervals but also the quality of a number of widely used time series
model selection criteria such as AIC and others. Except for simple cases, however, it is difficult or even
infeasible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one
of the reasons that, unlike in the independent case (see Efron, 2004), until today there has been no fully
established methodology for time series prediction error estimation. Starting from an approximation to
the bias-variance decomposition of the squared prediction error, this work is therefore concerned with
the estimation of prediction errors in both univariate and multivariate stationary time series. In particular,
several estimates are developed for a general class of predictors that includes most of the popular lin-
ear, nonlinear, parametric and nonparametric time series models used in practice, where causal invertible
ARMA and nonparametric AR processes are discussed as lead examples. Simulation results indicate that
the proposed estimators perform quite well in finite samples. The estimates may also be used for model
selection when the purpose of modeling is prediction.

Some key words: Accumulated prediction error; ARMA models; Cross-validation; Multi-step ahead prediction; Mul-
tivariate time series; Nonparametric autoregressive processes; Univariate time series

1. INTRODUCTION

In this paper, the problem of estimating the prediction error of a univariate or multivariate stationary
time series is considered in a general setup that can accommodate both linear or nonlinear and parametric
or nonparametric specifications. In the literature, many models are available for estimating a series of
dependent observations, for example through ARMA, hidden Markov, threshold, fractional ARMA, bilin-
ear and nonparametric autoregressive processes. Most of these can be subsumed under the general model
introduced in Priestley (1980). Corresponding multivariate methods are available if more than one feature
is recorded over time. More details on many of these models and their respective estimation procedures
can be found in the comprehensive books by Shumway and Stoffer (2010) and Fan and Yao (2005).

The estimation of the prediction error is important in itself, since it allows for the construction of pre-
diction intervals. Prediction error estimates are also often used to obtain reasonable models for fitting
the data. Rissanen Rissanen (1986) proposed an estimate, the accumulated prediction error (APE), that
was designed as a model selection criterion. In addition, there are many other criteria for model selec-
tion such as AIC (Akaike, 1974), AICC (Hurvich and Tsai, 1989), BIC (Schwartz, 1978), HQIC (Hannan
and Quinn, 1979) and MDL (Rissanen, 1984), among others. These model selection criteria involve es-
timating a measure of divergence, often the Kullback–Leibler distance or the prediction error, between
the true model and the estimated model. If the purpose is to select the “correct” model assuming that a
low dimensional “correct” model is available, then BIC or APE are suitable, while AIC and AICC tend
to produce biased estimates of the divergence. If the purpose is prediction, AIC and AICC may be more
suitable when the existence of a correct model of low dimension is uncertain because they seek to obtain
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unbiased estimates of the divergence. Detailed information on model selection methods can be found in
the monographs Claeskens and Hjort (2008) and Burnham and Anderson (2002).

In order to motivate the results put forward, the APE criterion for the univariate case is briefly discussed
and related to the proposed methods. If Y1, . . . , Yn is the observed stationary time series data and Ŷn+1|n
the predictor of Yn+1 on the basis of this data, then the prediction error is given by PEn = E[{Yn+1 −
Ŷn+1|n}2]. Rissanen’s APE seems to have been based on the idea of cross-validation. If Ŷt+1|t is the
predictor of Yt+1 based on the first t observations Y1, ..., Yt, then the APE estimate of the prediction error

PEn is given by P̂E
R

n = (n−m)−1
∑n−1

t=m+1(Yt+1 − Ŷt+1|t)
2 wherem = bδnc, 0 < δ < 1, is a fraction

of the sample size and b·c denotes integer part. This has been called one-sided cross-validation by Hart
and co-workers in a series of papers; see Hart and Lee (2005) and the references therein. Other cross-
validation type approaches in time series may be found in Burman et al. (1994); Racine (2000) as well
as in the references cited in these papers. APE is not necessarily a good estimate of PEn: If m is small,

P̂E
R

n may have non-negligible bias in estimating PEn, while if m is close to n, the bias may be low, but
the estimate may have high variability instead. There are many papers dealing with prediction and model
selection aspects of APE, for example Ing (2007), Hemerly and Davis (1989), Wei (1992), Speed and Yu
(1993) and Findley (2005). In a fairly detailed analysis, it is pointed out in Ing (2007) that APE may not
always select the best predictive model unless m is close to n.

This paper does not directly address the issue of model selection. Rather it is concerned with the esti-
mation of the prediction error for univariate and multivariate stationary processes using the idea of cross-
validation for time series. It is perhaps surprising that, unlike for independent, identically distributed
(i.i.d.) observations (see Efron, 2004), there is not yet a fully developed methodology for the estimation
of prediction errors for observations dependent in time. This work is seeking to fill in this gap. In the
case of i.i.d. data for which the size of the learning set (on which the estimate is based) is considerably
smaller that the sample size, correction terms are needed to produce approximately unbiased estimates of
the prediction error (see Burman, 1989, 1990). Similar issues arise in the time series context. However,
they require different methods because of the dependence inherent in the observations. Unbiased estima-
tion of prediction errors requires correction as will be seen in Section 3. Establishing these corrections is
the main contribution of this paper. The general results will be discussed more specifically for causal and
invertible ARMA processes and nonparametric AR processes. It will be shown in a simulation study that
the suggested methods work well in finite samples and particularly that it can provide significant improve-
ments on Rissanen’s APE. The proposed estimates may also be used for model selection if the purpose of
modeling is prediction, but that issue is not investigated further in this paper.

2. NOTATIONS AND PRELIMINARIES

Suppose that observations Y1, . . . , Yn have been obtained from the univariate stationary time series

Yt = µt + εt, (1)

where µt is the conditional mean of Yt given the past, εt are mean zero i.i.d. and εt is independent of µt.
Suppose that a model {µt(θ)} has been employed to estimate {µt}. It is important to point out that the
means {µt} may or may not belong to the proposed class {µt(θ)}. No assumptions are made regarding
the linearity or nonlinearity and parametric or nonparametric form of model (1). For instance, an AR(2)
model could be fit to the data, in which case µt(θ) = θ1Yt−1 + θ2Yt−2, but the data generating process
may be an AR(∞) autoregression and then µt =

∑∞
j=1 cjYt−j instead. If θ̂s is the estimate of θ on the

basis of the first s observations, then the estimate of µt is given by µt(θ̂s) and the corresponding residual
is denoted by εt(θ̂s) = Yt − µt(θ̂s). In the AR(2) case, one gets

µt(θ̂s) = θ̂s1Yt−1 + θ̂s2Yt−2,

εt(θ̂s) = (c1 − θ̂s1)Yt−1 + (c2 − θ̂s2)Yt−2 +

∞∑
j=3

cjYt−j + εt
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and the bias-variance trade-off guiding the development of the proposed methods emerges. For more
general time series the residuals εt(θ̂s) may have to be understood as approximations, since the infinite
past is not available for the computations. In all standard cases, these approximations are justified by an
exponentially decaying dependence on the past. Following standard practice in time series, no explicit
distinctions are made here. Further examples follow in Section 2.3.

The variance for predicting Yn+1, when the model has been estimated on the basis of the entire available
data Y1, . . . , Yn, is given by PEn = E[ε2n+1(θ̂n)]. Suppose that n− k residuals are available (this happens
for ARMA fits when the first few estimates may not be available), then an empirical estimate of PEn is

P̂E
emp

n =
1

n− k

n−1∑
t=k

ε2t+1(θ̂n).

It is well known that P̂E
emp

n may not be a good estimate of PEn (see Efron, 2004). If the model is
estimated on the basis of the first s observations Y1, . . . , Ys, then PEs = E[ε2s+1(θ̂s)] and P̂E

emp

s =

(s− k)−1
∑s

t=k+1 ε
2
t (θ̂s). For m = bδnc with 0 < δ < 1, Rissanen’s APE estimate of PEn is defined as

P̂E
R

n =
1

n−m

n−1∑
t=m

ε2t+1(θ̂t).

When m is small (δ is close to 0), the bias in estimating PEn by P̂E
R

n may not be small. On the other

hand, if m is close to n (δ is close to 1), P̂E
R

n is almost unbiased for PEn, but it may not be stable (that is,
may have higher variability) since it is based on few residuals. A more detailed discussion on these issues
is given below.

2.1. Properties of PEn

At the outset, we state that mean and variance expressions used in the following are understood to be
in the asymptotic sense; see Efron (1982) and (Rao, 1973, Chapter 6). For simplicity of exposition, the
discussion is focused on the case when the method of estimation is least squares. However, the arguments
given are valid for other methods of estimation. In order to obtain estimates of the conditional means
µt, one often uses a parametric or nonparametric model µt(θ) and then minimizes the sum of squares
of deviations

∑n
t=1[Yt − µt(θ)]

2 to derive the estimates of θ. In the case of penalty methods (see, for
example, the approaches via regularization methods in Gerencser, 1992; H. Wang and Tsai, 2007), one
adds a penalty term to the sum of squared deviations and then carries out the minimization procedure.
Whatever the procedure, there is a tuning parameter, say, p associated with it. The tuning parameter p
may be the dimension of θ or a function of the penalty parameter. Typically, the larger the value of p, the
smaller the bias in estimating µt. However, the larger the value of p, the larger the variance associated
with estimating µt.

Let θ̄ be the minimizer of E[{µt − µt(θ)}2], and denote β0 = E[{µn+1 − µn+1(θ̄)}2]. Note that β0,
which does not depend on n, is the square of the model bias and it decreases as p increases. Using
the arguments given in Section 2 of the Supplementary Material to the paper one may write PEn ≈
σ2
ε + β0 + n−1β1, or, more generally,

PEn ≈ σ2
ε + β0 +

β1
n

+
β2
n2
, (2)

where the values of β0, β1 and β2 depend on the tuning parameter p in such a way that β0 decreases and
β1 increases as p increases. Underlying (2) is a common asymptotic expansion of mean square errors (for
example of Hoffding or von Mises type) which holds under reasonable smoothness conditions on µt(θ)
as a function of θ. The interested reader is referred to the informative book by Taniguchi (1991).
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2.2. Properties of P̂E
emp

n and P̂E
R

n

First, the expected value of P̂E
emp

n is approximated. From the arguments given in Section 2 of the
Supplementary Material, it follows that E[P̂E

emp

n ] ≈ σ2
ε + β0 + n−1β3, or, more generally,

E
[
P̂E

emp

n

]
≈ σ2

ε + β0 +
β3
n

+
β4
n2
, (3)

noting that the constants associated with the n−1 and n−2 terms are not the same as in the case of PEn.
Oberve that PEn and E[P̂E

emp

n ] have the same constant term σ2
ε + β0. Therefore, from (2) and (3),

PEn − E
[
P̂E

emp

n

]
≈ β5

n
+
β6
n2
. (4)

In the second part of this section, the expected value of the APE estimate P̂E
R

nof PEn is approximated.
The following notation will be helpful for later discussions. For any real number z, let

%z(`) =
1

n− `−m+ 1

n−∑̀
t=m

(
n

t

)z

, (5)

where ` is a positive integer. Note that %z(`) depends also on m and n, but for notational simplicity this is
suppressed. Since the case ` = 1 will frequently appear, denote %z(1) by %z . Arguing as in Section 2.1, it
follows that

E
[
P̂E

R

n

]
=

1

n−m

n−1∑
t=m

PEt

≈ 1

n−m

n−1∑
t=m

(
σ2
ε + β0 +

β1
t

+
β2
t2

)
≈ σ2

ε + β0 + %1
β1
n

+ %2
β2
n2
,

with

%1 = %1(1) =
n

n−m

n−1∑
t=m

1

t

= − 1

1− δ
log δ +

1

2n
+O

(
1

n2

)
.

Note that the constant %1 is larger than 1 for any 0 < δ < 1. It is about 1.72 when δ = 0.3 and is equal to

1.39 when δ = 0.5. Also, %1 ≈ 1 when δ ≈ 1. So P̂E
R

n is almost unbiased for PEn when δ ≈ 1, but it is
not expected to be stable (that is, it is likely to exhibit higher variability) since this estimate is averaged
over few squared residuals. When δ is of order n−1, then the factor %1 behaves like log n and this explains
APE’s ability to select the correct model when there is indeed a correct model of low dimension (see
Hemerly and Davis, 1989). The preceding gives, in analogy to (4), that

PEn − E
[
P̂E

R

n

]
≈ (1− %1)

β1
n

+ (1− %2)
β2
n2
. (6)

The considerations in this section help set up improved estimators for the prediction error. Two specific
proposals will be part of Section 3, where corrections based on (3) for P̂E

emp

n and the corresponding

expression for P̂E
R

n in (6) are introduced.
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2.3. Examples

Example 1 (Linear prediction with AR processes). Let {Yt} be an arbitrary stationary time series and
suppose that AR(p) models

Yt = θ1Yt−1 + · · ·+ θpYt−p + εt

are fitted to the data. If {Yt} is invertible, it admits an AR(∞) representation from which one can deduce
the form µt =

∑∞
j=1 cjYt−j for the conditional mean, the sequence {cj} being the invertibility weights.

Signifying transposition by ′ and denoting by θ̂n = (θ̂n1, . . . , θ̂np)′ the LSE of θ = (θ1, . . . , θp)′, it fol-
lows that AR fits aim to predict µn+1 by µn+1(θ̂n) =

∑p
j=1 θ̂njYn+1−j . The corresponding prediction

residual is given by

εn+1(θ̂n) = Yn+1 − µn+1(θ̂n)

=

p∑
j=1

(cj − θ̂nj)Yn+1−j +

∞∑
j=p+1

cjYn+1−j + εn+1.

If the data generating process is causal and invertible, computations for the bias-variance decomposition
of the prediction error PEn are somewhat simpler. This will be part of the next example.

Example 2 (Linear prediction with ARMA processes). Let the data generating process {Yt} be spec-
ified as a stationary, causal and invertible time series in an i.i.d. sequence {εt} with zero mean and
variance σ2

ε . Causality and invertibility ensure the existence of sequences {cj} and {dj} such that the
AR(∞) representation Yt =

∑∞
j=1 cjYt−j + εt and the MA(∞) representation Yt =

∑∞
j=0 djεt−j ex-

ist. Using the MA(∞) representation, it follows immediately that the autocovariance function is given
by γ(h) = E[Yt+hYt] = σ2

ε

∑∞
j=0 djdj+h. Using the AR(∞) representation, the conditional mean in (1)

becomes µt =
∑∞

j=1 cjYt−j .
Assume that causal and invertible ARMA(p, q) models

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q, (7)

are entertained as fits to the data. Necessary and sufficient conditions on the parameter θ =
(a1, . . . , ap, b1, . . . , bq)′ ensuring causality and invertibility of (7) can be found in Shumway and Stof-
fer (2010). These lead to respective coefficient sequences {cj(θ)} and {dj(θ)} which can be computed
in an iterative fashion (see Box et al., 2008). With these, bias and variance of the prediction error can be
analyzed.

To compute the model bias β0 = E[{µn+1 − µn+1(θ̄)}2] if q = 0 and AR(p) models Yt = θ1Yt−1 +
· · ·+ θpYt−p + εt are fitted, let c = (cj)

∞
j=0 and Γ = (γ(h− h′))∞h,h′=0. Let further Γp be the leading

p× p principal submatrix of Γ and Γ∞p the p×∞ matrix consisting of the first p rows of Γ. It can now
be shown that θ̄ = Γ−1p Γ∞p c and

β0 = c′(Γ− Γ∞p
′Γ−1p Γ∞p )c.

The magnitude of the bias is determined by the decay of the AR(∞) weights {cj}, the decay of the
covariances γ(h) (thus the MA(∞) weights {dj}) and the order p of the fitted AR process. Clearly β0
becomes smaller if the AR model order p gets larger. Further technical details on the expansion in (2) are
offered in the Supplementary Material to the paper.

Example 3 (Nonlinear prediction with nonparametric AR processes). Suppose the goal is to model µt

in (1) as a function f(Xt) of past observations Xt = (Yt−1, . . . , Yt−p)′, where the function f is to be
estimated from the data. This general model was considered by Lewis and Stevens (1991) and includes
important subclasses, namely additive models: f(Xt) = f1(Yt−1) + · · ·+ fp(Yt−p) (see Chen and Liu,
2001); threshold AR models: f(Xt) = f1(Yt−p)Yt−1 + · · ·+ fp(Yt−p)Yt−p (see Tong, 1983); and single
index models: f(Xt) = f0(β1Yt−1 + · · ·+ βpYt−p) (see Xia et al., 2002). A good account of additive
models for independent data appears in Hastie and Tibshirani (1990). A discussion on many nonparametric
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time series models is available in Fan and Yao (2005). Functional autoregressive and other models for
vector time series as well as references to earlier work on many nonlinear time series models can be found
in Jiang (2014).

The discussion here is carried out for additive models, even though all arguments are valid for the gen-
eral nonparametric class with appropriate modifications. For the class of additive models, some restrictions
on f2, . . . , fp (such as E[fj(Yt−j)] = 0 for j = 2, . . . , p) are needed for identifiability (see Stone, 1986;
Burman, 1990). Suppose fj(·) is being modeled as ψj(·)′θj , where the ψj are some kj dimensional func-
tions, often regression splines or their modifications for the purpose of identifiability (Burman, 1990).
Let B be the n× p matrix whose t-th row is given by ψ(Xt)

′ = [ψ1(Yt−1)′, . . . , ψp(Yt−p)′]. Then µt is
modeled as

µt(θ) = ψ1(Yt−1)′θ1 + · · ·+ ψp(Yt−p)′θp = ψ(Xt)
′θ,

where θ is the k = k1 + · · ·+ kp dimensional column vector of θ1, . . . , θp. This leads to the linear model
Y = Bθ + ε with corresponding least squares estimate

θ̂n = (BB′)−1B′Y,

assuming temporarily for the ease of discussion that Ys, s = −p+ 1, . . . , 0, are available for the estima-
tion. Hence the prediction of µn+1 is µn+1(θ̂n) = ψ(Xn+1)′θ̂n. The Supplementary Material to the paper
gives arguments on why the prediction error expansion in (2) holds for these additive models.

3. PROPOSED ESTIMATES OF PEn

3.1. The modified empirical estimate

Consider the empirical estimate P̂E
emp

n of PEn. Even though it may not be a good estimate of PEn,
equation (4) suggests that it may be used as initial estimate in a first step. In a second step, one then obtains
an estimate of the bias in estimating PEn by P̂E

emp

n to adjust the empirical estimates. An estimate of the
expected bias E[PEn − P̂E

emp

n ] can be set up as

Cn(w) =
1

n−m

n−1∑
t=m

wt

(
ε2t+1(θ̂t)− P̂E

emp

t

)
,

where the weights {wt} need to be chosen appropriately to estimateE[PEn − P̂E
emp

n ] well. The modified
empirical estimate is then given by

P̂E
ME

n (w) = P̂E
emp

n + Cn(w). (8)

It follows from equations (4) and (8) that

PEn − E
[
P̂E

ME

n (w)
]
≈ [1− g1(w)]

β5
n

+ [1− g2(w)]
β6
n2
,

where

gk(w) =
1

n−m

n−1∑
t=m

(
n

t

)k

wt, k = 1, 2. (9)

The first-order bias correction requires that g1(w) = 1, whereas the second-order bias correction re-
quires g1(w) = 1 and g2(w) = 1. First-order bias correction can for example be achieved with the simple
weights w1t = n−1t, since in this case g1(w1) = 1, and thus an approximate unbiased (first-order) esti-
mate of E[PEn − P̂E

emp

n ] is given by Cn(w1).

Example 4 (First-order bias correction for AR processes). Suppose an AR(p) model is fitted to the
data. Let θ̂t = (θ̂t1, . . . , θ̂tp) be the estimates of the autoregressive parameters on the basis of observations
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Y1, . . . , Yt. In this case, εs(θ̂t) = Ys −
∑p

j=1 θ̂tjYs−j , s ≥ p+ 1, P̂E
emp

t = (t− p)−1
∑t−1

s=p ε
2
s+1(θ̂t)

and consequently the bias is estimated as

Cn(w1) =
1

n(n−m)

n−1∑
t=m

t

(
ε2t+1(θ̂t)−

1

t− p

t−1∑
s=p

εs+1(θ̂t)
2

)
.

where m = bδnc can be chosen roughly as a quarter of the sample size, that is, δ = .25.

A reasonable way would be to select those weights that minimize the variance of the estimate of PEn.
Unfortunately, this may not be feasible in general since the estimates are complicated quantities and their
variances depend on the unknown (conditional) mean function {µt}. However, one may aim at a less
ambitious criterion for weight selection utilizing the following lemma whose proof is given in Section 2
of the Supplementary Material.

LEMMA 1. Let {Yt} be a stationary time series according to model (1) in an i.i.d. sequence {εt}. Let∑
ψt(w)ε2t+1 be the collection of the squares of εt terms in the expression for P̂E

ME

n (w). Let g1 and g2
be as in (9). Then the following statements hold.

(a) The minimum of
∑
ψt(w)2 with respect to the sequence {wt} subject to the constraint g1(w) = 1

is attained at wt = %−12 t−1n, where ρ2 ≈ 1/δ.
(b) The minimum of

∑
ψt(w)2 with respect to the sequence {wt} subject to the constraints g1(w) =

and g2(w) = 1 is given by wt = λ1t
−1n+ λ2t

−2n2, where λ2 = (%2%4 − %22)−1(%4 − %3) and λ1 =
%−12 (1− %3λ2), and ρ3 ≈ (1 + δ)/(2δ2) and ρ4 ≈ (1 + δ + δ2)/δ3.

Note that

P̂E
ME

n =

n−1∑
t=0

ψt(w)ε2t+1 +R,

where the termR involves the model bias terms bt+1 = µt+1 − µt+1(θ̄) and terms of the form dt+1(θ̂t) =

µt+1(θ̂t)− µt+1(θ̄), dt+1(θ̂n), recalling that θ̄ is the minimizer of E[{µt − µt(θ)}2]. If the remainder
term R is ignored and the variance of

∑n−1
t=0 ψt(w)ε2t+1, which is proportional to

∑n−1
t=0 ψt(w)2, is min-

imized, then the selection of weights can be based on Lemma 1. The following remark summarizes the
main findings.

Remark 1. (i) The results of Lemma 1 do not depend on the type of stationary time series consid-
ered. This means in particular that the weights selected through minimization of

∑n−1
t=0 ψt(w)ε2t+1 do not

depend on the underlying data generating process.
Elimination of first-order bias. The minimization of the criterion function

∑n−1
t=0 ψt(w)2 subject to the

constraint g1(w) = 1 leads to the weight sequence {w2t} given by w2t = %−12 t−1n;
(ii) Elimination of second-order bias. The minimization of the criterion function

∑n−1
t=0 ψt(w)2 subject

to the constraints g1(w) = 1 and g2(w) = 1 leads to the weight sequence {w3t} given byw3t = λ1t
−1n+

λ2t
−2n2, where λ1 and λ2 are constants specified in Lemma 1.

Simulations have not revealed much of a difference in the estimates using w1 and w2. It can be shown
that the use of w2 leads to a slightly inflated second-order bias term. The weights given in (ii) lead to
the elimination of first-order and second-order bias terms, but this seems to come at the cost of higher
variability of the estimate. These findings are in line with those in Efron (1982), who recommends against
correcting second-order bias for independent data. We reiterate Efron’s recommendation and recommend
only a first-order bias correction when estimating the prediction error for time series. For completeness,
we also report the second-order bias correction and linear combinations of weights aiming for first- and
second-order bias correction. Their properties might be considered in future research. For example, it

is reasonable to consider linear combinations of estimates of the form P̂E
ME

(w1) and P̂E
ME

(w2) or

linear combinations of P̂E
ME

(w1) and P̂E
ME

(w3), so that the second-order bias term is reduced but not
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completely eliminated. Here a linear combination of P̂E
ME

(w1) and P̂E
ME

(w3) is given. First note that

PEn − E
[
P̂E

ME

n (w1)
]
≈ (1− %1)

β6
n2
,

and

PEn − E
[
P̂E

ME

n (w3)
]

= O

(
1

n3

)
.

Let therefore w13 = αw1 + (1− α)w3 for some 0 < α < 1. Hence the estimate of the form

P̂E
ME

n (w13) = αP̂E
ME

n (w1) + (1− α)P̂E
ME

n (w3),

with 0 < α < 1, has bias

PEn − E
[
P̂E

ME

n (w13)
]
≈ α(1− %1)

β6
n2
.

It should be pointed out that as α increases the bias is reduced but the variance becomes bigger. Based
on simulations, we recommend the use of α = 0.3 balances the trade-offs between bias and variance
reasonably well. A theoretical study of the properties of these estimators of prediction error is, however,
beyond the scope of the present paper.

3.2. The modified Rissanen estimate

The original Rissanen estimate uses simple averages of ε2t+1(θ̂t) to compute the prediction error, but
one may instead consider weighted averages as well. These give rise to the modified Rissanen estimate

P̂E
MR

n (v) =
1

n−m

n−1∑
t=m

vtε
2
t+1(θ̂t), (10)

where the weights {vt} average to 1. In order to answer the question of how to choose the weights, notice
that

E
[
P̂E

MR

n (v)
]
≈ 1

n−m

n−1∑
t=m

(
σ2
ε + β0 +

β1
t

+
β2
t2

)
vt

= f0(v)(σ2
ε + β0) + f1(v)

β1
n

+ f2(v)
β2
n2
,

where

fk(v) =
1

n−m

n−1∑
t=m

(
n

t

)k

vt, k = 0, 1, 2. (11)

Approximate (first-order) unbiasedness requires that f0(v) = f1(v) = 1. There are many sequences {vt}
that satisfy these conditions and this issue will be discussed further below. First, the focus will be briefly
on the particular weights v1t = λ0 + λ1n

−1t. Some calculations show that first-order unbiasedness can
be achieved by choosing

λ1 =
%1 − 1

%−1%1 − 1
, λ0 = 1− %−1λ1,

with constants %−1 and %1. Simulations revealed that the modified Rissanen estimates tend to have small
bias. However, they also seem to have higher variability than the corresponding modified empirical es-

timates P̂E
ME

n (w); see Section 5. Turning to the general weight selection, the following lemma is the
counterpart to Lemma 1. Its proof is given in the Supplementary Material.
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LEMMA 2. Let {Yt} be a stationary time series according to model (1) in an i.i.d. sequence {εt}. Let
f0(v), f1(v) and f2(v) be as in (11). Then the following statements hold.

(a) The minimum of
∑n−1

m=t v
2
t with respect to {vt} subject to the constraints f0(v) = 1 and f1(v) = 1

is attained at vt = λ0 + λ1t
−1n, where λ1 = (%2 − %21)−1(1− %1) and λ0 = 1− %1λ1.

(b) The minimum of
∑n−1

m=t v
2
t with respect to {vt} subject to the constraints f0(v) = 1, f1(v) = 1 and

f2(v) = 1 is attained at vt = λ0 + λ1t
−1n+ λ2t

−2n2, where λ0, λ1 and λ2 are solutions of the equation 1 %1 %2
%1 %2 %3
%2 %3 %4

λ0
λ1
λ2

 =

1
1
1

 .

Similar arguments as in the previous section applied to the modified Rissanen estimate show that the

leading term of P̂E
MR

n (v) is equal to (n−m)−1
∑n−1

t=m vtε
2
t+1 and the variance of this term is propor-

tional to
∑n−1

t=m v2t . Let f0(v), f1(v) and f2(v) be as in display (11). The following remark summarizes
the findings of Lemma 2.

Remark 2. (iv) The results of Lemma 2 do not depend on the type of stationary time series considered.
This means in particular that the weights selected through minimization of

∑n−1
t=0 v

2
t do not depend on the

underlying data generating process.
(v) Elimination of first-order bias: The minimization of the criterion function

∑n−1
t=m v2t subject to the

constraints f0(v) = 1 and f1(v) = 1 leads to the weight sequence {v2t} given by v2t = λ0 + λ1t
−1n,

where λ0 and λ1 are constants specified in Lemma 2.
(vi) Elimination of second-order bias: The minimization of the criterion function

∑n−1
t=m v2t subject to

the constraints f0(v) = 1, f1(v) = 1 and f2(v) = 1 leads to the weight sequence {v3t} given by v3t =
λ0 + λ1t

−1n+ λ2t
−2n2, where λ0, λ1 and λ2 are constants specified in Lemma 2.

Simulations indicate that there are only minor differences between the estimates using v1 and v2. The
estimate using v3 gives almost unbiased estimates, but it comes with the cost of higher variability.

4. EXTENSION TO MULTIVARIATE SETTINGS AND MULTI-STEP PREDICTIONS

4.1. The multivariate setting

The model in (1) is now understood to be d-dimensional. While in the univariate case PEn (and also its
estimate) is a real number, it has to be replaced by a variance-covariance matrix for predicting the vector
Yn+1 in the multivariate setting. If the model has been estimated on the basis of the entire available data
Y1, . . . , Yn, the prediction error matrix is given by

PEn = E[εn+1(θ̂n)εn+1(θ̂n)′].

Now following along the lines of the arguments introduced in Section 2.1 and supposing that n− k
residuals are available (e.g., VARMA fits), the empirical estimate of PEn becomes

P̂E
emp

n =
1

n− k

n−1∑
t=k

εt+1(θ̂n)εt+1(θ̂n)′.

In order to introduce Rissanen’s APE estimate in d dimensions, write similarly, if the model is esti-
mated on the basis of the first s observations, that PEs = E[εs+1(θ̂s)εs+1(θ̂s)

′] and P̂E
emp

s = (s−
k)−1

∑s
t=k+1 εt(θ̂s)εt(θ̂s)

′. With m = bδnc, 0 < δ < 1, Rissanen’s APE estimate of PEn is then given
by

P̂E
R

n =
1

n−m

n−1∑
t=m

εt+1(θ̂t)εt+1(θ̂t)
′.



10 A. AUE AND P. BURMAN

If one wishes to obtain a numerical measure of the prediction error in the multivariate case, then one
may use the trace of PEnH (that is,E[ε̂′n+1|nHε̂n+1|n]) when H is some d× d positive definite matrix.
Choices for H include the inverse of the variance-covariance matrix Vε of εt and the diagonal matrix
diag(Vε)

−1. One may also take H to be the identity matrix if all the component series are equally scaled,

and the determinant of the matrix PEn as a numerical measure. The performance of P̂E
emp

n and P̂E
R

n is
worse when a numerical measure is taken as can be seen from the simulation results in Section 5.

The modification of P̂E
emp

n and P̂E
R

n to P̂E
ME

n and P̂E
MR

n in the multivariate case is exactly the same
as in the univariate case except that, for any residual vector e, one needs to write ee′ instead of e2. The
details are therefore skipped to conserve space.

4.2. Multiple-step predictions

It is often of interest to analyze the performance of longer-term predictions, say, h-steps ahead. Observe
that the optimal forecast of Yn+h on the basis of observations Ys, s ≤ n, is given by the conditional mean
µ
(h)
n+h = E[Yn+h|Ys, s ≤ n]. Let µ̂(h)

t (θ̂s) be the estimated value of µ(h)
t when the model has been fitted

on the basis of the observations Y1, . . . , Ys and denote the h-step ahead residual Yt − µ̂(h)
t (θ̂s) by ε(h)t (θ̂s).

The prediction variance-covariance matrix, its empirical and Rissanen estimates are then

PEn(h) = E
[
ε
(h)
n+h(θ̂n)ε

(h)
n+h(θ̂n)′

]
,

P̂E
emp

n (h) =
1

n− h− k + 1

n−h∑
t=k

ε
(h)
t+h(θ̂n)ε

(h)
t+h(θ̂n)′,

P̂E
R

n (h) =
1

n− h−m+ 1

n−h∑
t=m

ε
(h)
t+h(θ̂t)ε

(h)
t+h(θ̂t)

′,

where the formulation is given in the multivariate form. All discussions and issues addressed in this
work are valid also for h-step ahead predictions and do not require any special treatment. Arguments for
obtaining modified estimates of the h-step ahead prediction error matrix PEn(h) mirror those used for
the one-step ahead case and are briefly discussed here.

The modified h-step ahead empirical estimate is defined as

P̂E
ME

n (w;h) = P̂E
emp

n (h) + Cn(w;h),

where the form of the correction term is similar to the one-step ahead case. The correction term has the
form

Cn(w;h) =
1

n− h−m+ 1

n−h∑
t=k

wt

(
ε̂t+h(θ̂t)

2 − P̂E
emp

t (h)
)
,

where the weights {wt} satisfy the condition g1(w;h) = (n− h− k + 1)−1
∑n−h

t=k t
−1nwt = 1 in order

to correct for first-order bias. To correct also for second-order bias, the weights must additionally satisfy
g2(w;h) = (n− h− k + 1)−1

∑n−h
t=k t

−2n2wt = 1. The rest of the discussion in Section ?? on choosing
different weights applies here, too.

The modified h-step ahead Rissanen estimate is defined as

P̂E
MR

n (h) =
1

n− h−m+ 1

n−h∑
t=m

vte
(h)
t+h(t)e

(h)
t+h(t)′,

with weights {vt} satisfying f0(v) = 1 and f1(v) = 1 to achieve first-order bias correction and f0(v) =
1, f1(v) = 1 and f2(v) = 1 to achieve second-order bias correction, where the functions f`(v), ` = 0, 1, 2,
are defined in display (11). All the discussion on choosing weights are similar to the one-step ahead case.
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5. NUMERICAL RESULTS

Simulations were carried out in order to investigate the performances of Rissanen’s APE and the pro-
posed biased-corrected estimators for one-step prediction errors. Suppose that observations Y1, . . . , Yn
are obtained from a d-dimensional stationary time series following (1). As numerical measure for the
variance-covariance matrix the trace

tr(PEnV
−1
ε ) = E[en+1(n)′V −1ε en+1(n)]

is used, where Vε is the variance-covariance matrix of the centered innovation sequence {εt}. It should
be noted that tr(PEnV

−1
ε ) = d+D2, where D2 = E[(µ̂n+1(n)− µn+1)′V −1ε (µ̂n+1(n)− µn+1)]. For

any generic estimate P̂En of PEn, mean and standard deviation of P̂En − PEn were obtained. More
specifically, they were computed based on the following estimates.r Rissanen’s APE: P̂E

R

n − PEn;r Modified empirical estimates: P̂E
ME

n (w)− PEn with three choices of weights: (i) w1t = n−1t, (ii)
w3t as defined in Section 3.1, and (iii) the linear combination w13,t = 0.3w1t + 0.7w3t;r Modified Rissanen estimate: P̂E

MR

n (v1)− PEn, where v1t = λ0 + λ1n
−1t as given in Section 3.2.

All results presented here have been based on 10,000 simulation runs. However, PEn itself was estimated
based on 25,000 simulation runs to achieve greater accuracy.

The following time series models were considered.
Univariate setting: For d = 1, the ARMA(1,1) model

Yt = aYt−1 + εt + bεt−1, t = 1, . . . , n,

was simulated with {εt} i.i.d. N(0, 1) innovations and n = 100. In each case, the fitted models were
AR(p) using Yule-Walker estimation with p = 2, 12. As in Ing (2007), various combinations of parameters
(a, b) were considered, namely (a, b) = (0.5, 0.5) (model 1), (0.95, 0.5) (model 2) and (0.5, 0.95) (model
3). Model 1 is rather simple, since the dependence dies rather rapidly, but the other two are extreme cases.
In model 2, the AR root is close to the unit circle and thus it is close to non-stationarity. For this case,
the variance part of PEn can often be large. The third case is close to non-invertibilty of the MA part and
predicting future values requires a large number of past observations. Therefore the bias may not be small
when fitting an AR(p) model.

Multivariate setting: For d = 4 four independent copies of the univariate ARMA(1,1) model were
simulated with n = 100 and VAR(p) models of order p = 2, 7 were fitted to the data. In practice one
would perhaps not use a VAR(7) model for this four-dimensional time series, since there are other methods
available for such cases; for example, reduced rank regression. The purpose here, however, is to investigate
how easy or difficult it is to estimate the prediction error and how the proposed estimates perform under
different modeling conditions.

The simulation results are summarized in Figures 1–4 and also given in Tables 1–4. The results show
that APE is not a good estimate of PEn except when δ is close to one, which is expected. All the proposed

estimates seem to have small biases for any δ. Among the four proposed estimates, the bias of P̂E
ME

n (w1)
appears to be the highest. As expected, the standard deviation of all estimates increases with δ. It should

also be noted that P̂E
ME

n (w1) (followed by APE) seems to have the smallest standard deviation for any δ.

The variability of P̂E
ME

n (w3) and P̂E
MR

n (v1) are higher than the others. The hybrid estimate P̂E
ME

n (w3)

appears to have a lower bias than P̂E
ME

n (w1), but it has a higher variability. For the four-dimensional
case, the inadequacy of APE as an estimate of the prediction error becomes evident. The performances of

P̂E
ME

n (w1) and P̂E
ME

n (w3) are the most satisfactory of the proposed estimates.
The simulation results seem to indicate that one should operate with a small δ such as 0.3 and use either

P̂E
ME

n (w1) or P̂E
ME

n (w3) as an estimate of PEn. Overall, the proposed estimates offer a significant
improvement over Rissanen’s classical APE method.
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Fig. 1. Bias (left) and standard deviation (right) of esti-
mates of PEn for the univariate ARMA(1,1) data gener-
ating process Yt = aYt−1 + εt + bεt−1 and fitted AR(2)

processes: Rissanen’s APE P̂E
R

n (——-); modified empir-

ical estimates P̂E
ME

n (w1) (–∗–∗–), P̂E
ME

n (w13) (–◦–◦–
) and P̂E

ME

n (w3) (–×–×–); modified Rissanen estimate

P̂E
MR

n (v1) (–+–+–).

6. DISCUSSION

Two novel methods are introduced to tackle the difficult problem of estimating the (h-step ahead) pre-
diction error of a stationary time series, which may be univariate or multivariate, linear or nonlinear and
parametric or nonparametric. The model in (1) allows explicitly for the case of model misspecification of-
ten encountered in practice. The proposed method utilizes a bias-variance decomposition of the prediction
error to suggest correction terms to modify an empirical estimate and Rissanen’s classical APE, including
guidelines for weight selection. Two examples, linear causal and invertible ARMA processes and nonlin-
ear AR processes, highlight the usefulness of the methodology. Simulations confirm bias reductions of
about an order of magnitude compared to APE and, for certain weight choices, an overall reduction in
prediction error.
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Fig. 3. Same as in Figure 1 but for the multivariate
VARMA(1,1) model with fitted VAR(2) processes.
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(a, b) estimate δ = .3 .5 .7 .9

P̂E
R

n 0.033 0.017 0.009 0.003
(0.20) (0.23) (0.29) (0.50)

P̂E
ME

n (w1) 0.003 0.001 0.002 0.001
(0.20) (0.23) (0.29) (0.50)

(.5,.5) P̂E
ME

n (w13) 0.001 −0.000 0.002 0.004
(0.24) (0.31) (0.43) (0.80)

P̂E
ME

n (w3) −0.000 −0.001 0.002 0.005
(0.26) (0.36) (0.52) (1.01)

P̂E
MR

n (v1) −0.002 −0.000 0.002 0.004
(0.30) (0.39) (0.55) (1.03)

P̂E
R

n 0.141 0.072 0.032 −0.003
(0.31) (0.35) (0.42) (0.64)

P̂E
ME

n (w1) 0.017 0.010 0.003 −0.011
(0.26) (0.31) (0.40) (0.63)

(.95,.5) P̂E
ME

n (w13) 0.009 0.002 −0.006 −0.012
(0.34) (0.43) (0.56) (0.96)

P̂E
ME

n (w3) 0.005 −0.002 −0.009 −0.012
(0.38) (0.50) (0.68) (1.19)

P̂E
MR

n (v1) −0.008 −0.008 −0.011 −0.013
(0.46) (0.56) (0.72) (1.21)

P̂E
R

n 0.055 0.030 0.018 0.015
(0.29) (0.33) (0.42) (0.71)

P̂E
ME

n (w1) 0.009 0.007 0.007 0.011
(0.29) (0.33) (0.42) (0.71)

(.5,.95) P̂E
ME

n (w13) 0.007 0.004 0.007 −0.008
(0.35) (0.44) (0.60) (1.10)

P̂E
ME

n (w3) 0.005 0.003 0.008 −0.017
(0.38) (0.51) (0.73) (1.39)

P̂E
MR

n (v1) 0.002 0.004 0.007 −0.018
(0.44) (0.56) (0.77) (1.41)

Table 1. Bias (variance) of estimates of P̂En − PEn for the univariate ARMA(1,1) data gener-
ating process Yt = aYt−1 + εt + bεt−1 and fitted AR(2) processes.
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(a, b) estimate δ = .3 .5 .7 .9

P̂E
R

n 0.092 0.051 0.027 0.014
(0.23) (0.26) (0.33) (0.54)

P̂E
ME

n (w1) −0.006 −0.002 0.000 0.006
(0.22) (0.26) (0.32) (0.54)

(.5,.5) P̂E
ME

n (w13) −0.001 0.001 0.008 0.011
(0.27) (0.34) (0.47) (0.85)

P̂E
ME

n (w3) 0.001 0.002 0.011 0.013
(0.30) (0.40) (0.57) (1.07)

P̂E
MR

n (v1) 0.004 0.004 0.012 0.014
(0.35) (0.44) (0.60) (1.09)

P̂E
R

n 0.349 0.188 0.089 0.030
(0.48) (0.53) (0.63) (0.91)

P̂E
ME

n (w1) 0.020 0.014 0.007 0.005
(0.36) (0.44) (0.57) (0.89)

(.95,.5) P̂E
ME

n (w13) 0.017 0.001 0.001 −0.003
(0.49) (0.62) (0.82) (1.26)

P̂E
ME

n (w3) 0.016 −0.004 −0.001 −0.006
(0.56) (0.74) (0.99) (1.54)

P̂E
MR

n (v1) −0.001 −0.008 −0.001 −0.005
(0.70) (0.84) (1.05) (1.57)

P̂E
R

n 0.158 0.084 0.040 0.008
(0.28) (0.32) (0.39) (0.63)

P̂E
ME

n (w1) 0.000 −0.000 −0.002 −0.004
(0.26) (0.30) (0.38) (0.62)

(.5,.95) P̂E
ME

n (w13) 0.000 −0.000 −0.006 0.001
(0.32) (0.40) (0.54) (0.98)

P̂E
ME

n (w3) 0.001 0.007 −0.008 0.004
(0.36) (0.47) (0.66) (1.23)

P̂E
MR

n (v1) −0.002 −0.003 −0.008 0.004
(0.42) (0.52) (0.70) (1.25)

Table 2. Same as Table 1 but with fitted AR(12) processes.
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(a, b) estimate δ = .3 .5 .7 .9

P̂E
R

n 0.39 0.20 0.10 0.03
(0.47) (0.54) (0.68) (1.15)

P̂E
ME

n (w1) 0.04 0.02 0.02 0.00
(0.45) (0.52) (0.67) (1.14)

(.5,.5) P̂E
ME

n (w13) 0.02 0.01 0.01 −0.01
(0.55) (0.71) (0.97) (1.80)

P̂E
ME

n (w3) 0.01 0.01 0.00 −0.01
(0.61) (0.82) (1.18) (2.28)

P̂E
MR

n (v1) −0.01 0.00 −0.00 −0.01
(0.72) (0.91) (1.25) (2.32)

P̂E
R

n 2.33 1.18 0.56 0.12
(1.61) (1.51) (1.66) (2.32)

P̂E
ME

n (w1) 0.46 0.29 0.15 0.01
(0.97) (1.14) (1.44) (2.24)

(.95,.5) P̂E
ME

n (w13) 0.24 0.11 0.05 −0.05
(1.34) (1.59) (2.05) (3.19)

P̂E
ME

n (w3) 0.15 0.04 0.00 −0.07
(1.61) (1.92) (2.50) (3.91)

P̂E
MR

n (v1) −0.12 −0.05 −0.03 −0.07
(1.93) (2.18) (2.67) (3.99)

P̂E
R

n 0.60 0.31 0.15 0.05
(0.68) (0.76) (0.96) (1.60)

P̂E
ME

n (w1) 0.07 0.04 0.02 0.01
(0.63) (0.73) (0.94) (1.58)

(.5,.95) P̂E
ME

n (w13) 0.03 0.02 0.01 0.03
(0.78) (1.00) (1.38) (2.50)

P̂E
ME

n (w3) 0.01 0.01 0.01 0.04
(0.88) (1.17) (1.68) (3.15)

P̂E
MR

n (v1) −0.02 0.00 0.00 0.04
(1.02) (1.29) (1.77) (3.21)

Table 3. Same as in Table 1 but for the VARMA(1,1) model with fitted VAR(2) processes.
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(a, b) estimate δ = .3 .5 .7 .9

P̂E
R

n 0.98 0.54 0.28 0.10
(0.66) (0.70) (0.87) (1.43)

P̂E
ME

n (w1) 0.00 0.02 0.03 0.03
(0.52) (0.62) (0.81) (1.40)

(.5,.5) P̂E
ME

n (w13) 0.03 0.02 0.03 0.01
(0.67) (0.87) (1.22) (2.19)

P̂E
ME

n (w3) 0.05 0.02 0.03 −0.00
(0.77) (1.04) (1.50) (2.77)

P̂E
MR

n (v1) 0.03 0.02 0.03 −0.00
(0.93) (1.17) (1.60) (2.82)

P̂E
R

n 9.9 5.07 2.37 0.71
1 (6.01) (5.14) (5.04) (6.10)

P̂E
ME

n (w1) 2.16 1.40 0.75 0.26
(3.19) (3.57) (4.20) (5.79)

(.95,.5) P̂E
ME

n (w13) 1.25 0.53 0.24 0.07
(4.39) (4.71) (5.53) (7.42)

P̂E
ME

n (w3) 0.86 0.16 0.03 −0.02
(5.32) (5.69) (6.65) (8.77)

P̂E
MR

n (v1) −0.42 −0.24 −0.07 −0.03
(6.16) (6.40) (7.13) (8.95)

P̂E
R

n 1.83 0.94 0.45 0.13
(0.95) (0.98) (1.16) (1.87)

P̂E
ME

n (w1) 0.17 0.11 0.06 0.01
(0.69) (0.82) (1.06) (1.82)

(.5,.95) P̂E
ME

n (w13) 0.09 0.04 0.01 −0.02
(0.93) (1.16) (1.59) (2.85)

P̂E
ME

n (w3) 0.05 0.01 −0.00 −0.03
(1.10) (1.39) (1.96) (3.59)

P̂E
MR

n (v1) −0.07 −0.03 −0.01 −0.03
(1.28) (1.56) (2.10) (3.67)

Table 4. Same as in Table 1 but for the VARMA(1,1) model with fitted VAR(7) processes.


