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SUMMARY

The accurate estimation of prediction errors in time series is an important problem. It immediately
affects the accuracy of prediction intervals but also the quality of a number of widely used time series
model selection criteria such as AIC and others. Except for simple cases, however, it is difficult or even
infeasible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one
of the reasons that, unlike in the independent case (see Efron, 2004), until today there has been no fully
established methodology for time series prediction error estimation. Starting from an approximation to
the bias-variance decomposition of the squared prediction error, this work is therefore concerned with
the estimation of prediction errors in both univariate and multivariate stationary time series. In particular,
several estimates are developed for a general class of predictors that includes most of the popular lin-
ear, nonlinear, parametric and nonparametric time series models used in practice, where causal invertible
ARMA and nonparametric AR processes are discussed as lead examples. Simulation results indicate that
the proposed estimators perform quite well in finite samples. The estimates may also be used for model
selection when the purpose of modeling is prediction.

Some key words: Accumulated prediction error; ARMA models; Cross-validation; Multi-step ahead prediction; Mul-
tivariate time series; Nonparametric autoregressive processes; Univariate time series

1. INTRODUCTION

In this paper, the problem of estimating the prediction error of a univariate or multivariate stationary
time series is considered in a general setup that can accommodate both linear or nonlinear and parametric
or nonparametric specifications. In the literature, many models are available for estimating a series of
dependent observations, for example through ARMA, hidden Markov, threshold, fractional ARMA, bilin-
ear and nonparametric autoregressive processes. Most of these can be subsumed under the general model
introduced in Priestley (1980). Corresponding multivariate methods are available if more than one feature
is recorded over time. More details on many of these models and their respective estimation procedures
can be found in the comprehensive books by Shumway and Stoffer (2010) and Fan and Yao (2005).

The estimation of the prediction error is important in itself, since it allows for the construction of pre-
diction intervals. Prediction error estimates are also often used to obtain reasonable models for fitting
the data. Rissanen Rissanen (1986) proposed an estimate, the accumulated prediction error (APE), that
was designed as a model selection criterion. In addition, there are many other criteria for model selec-
tion such as AIC (Akaike, 1974), AICC (Hurvich and Tsai, 1989), BIC (Schwartz, 1978), HQIC (Hannan
and Quinn, 1979) and MDL (Rissanen, 1984), among others. These model selection criteria involve es-
timating a measure of divergence, often the Kullback—Leibler distance or the prediction error, between
the true model and the estimated model. If the purpose is to select the “correct” model assuming that a
low dimensional “correct” model is available, then BIC or APE are suitable, while AIC and AICC tend
to produce biased estimates of the divergence. If the purpose is prediction, AIC and AICC may be more
suitable when the existence of a correct model of low dimension is uncertain because they seek to obtain
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unbiased estimates of the divergence. Detailed information on model selection methods can be found in
the monographs Claeskens and Hjort (2008) and Burnham and Anderson (2002).

In order to motivate the results put forward, the APE criterion for the univariate case is briefly discussed
and related to the proposed methods. If Y7, ..., Y,, is the observed stationary time series data and Yn+1|n
the predictor of Y,,;1 on the basis of this data, then the prediction error is given by PE,, = F[{Y,4+1 —
Ynﬂ‘n}Q]. Rissanen’s APE seems to have been based on the idea of cross-validation. If f’tHH is the
predictor of Y;; based on the first ¢ observations Y7, ..., Y;, then the APE estimate of the prediction error

PE, is given by ISES =(n—m) ' 0 (Vi1 — Yigue)? wherem = [6n],0 < § < 1, is a fraction
of the sample size and |- | denotes integer part. This has been called one-sided cross-validation by Hart
and co-workers in a series of papers; see Hart and Lee (2005) and the references therein. Other cross-
validation type approaches in time series may be found in Burman et al. (1994); Racine (2000) as well
as in the references cited in these papers. APE is not necessarily a good estimate of PE,,: If m is small,

F/’I\Es may have non-negligible bias in estimating PE,,, while if m is close to n, the bias may be low, but
the estimate may have high variability instead. There are many papers dealing with prediction and model
selection aspects of APE, for example Ing (2007), Hemerly and Davis (1989), Wei (1992), Speed and Yu
(1993) and Findley (2005). In a fairly detailed analysis, it is pointed out in Ing (2007) that APE may not
always select the best predictive model unless m is close to n.

This paper does not directly address the issue of model selection. Rather it is concerned with the esti-
mation of the prediction error for univariate and multivariate stationary processes using the idea of cross-
validation for time series. It is perhaps surprising that, unlike for independent, identically distributed
(i.i.d.) observations (see Efron, 2004), there is not yet a fully developed methodology for the estimation
of prediction errors for observations dependent in time. This work is seeking to fill in this gap. In the
case of i.i.d. data for which the size of the learning set (on which the estimate is based) is considerably
smaller that the sample size, correction terms are needed to produce approximately unbiased estimates of
the prediction error (see Burman, 1989, 1990). Similar issues arise in the time series context. However,
they require different methods because of the dependence inherent in the observations. Unbiased estima-
tion of prediction errors requires correction as will be seen in Section 3. Establishing these corrections is
the main contribution of this paper. The general results will be discussed more specifically for causal and
invertible ARMA processes and nonparametric AR processes. It will be shown in a simulation study that
the suggested methods work well in finite samples and particularly that it can provide significant improve-
ments on Rissanen’s APE. The proposed estimates may also be used for model selection if the purpose of
modeling is prediction, but that issue is not investigated further in this paper.

2. NOTATIONS AND PRELIMINARIES

Suppose that observations Y7, ..., Y,, have been obtained from the univariate stationary time series
Y = e + e, 9]

where p; is the conditional mean of Y; given the past, £; are mean zero i.i.d. and € is independent of js;.
Suppose that a model {u:(6)} has been employed to estimate {y; }. It is important to point out that the
means {x; } may or may not belong to the proposed class {y(#)}. No assumptions are made regarding
the linearity or nonlinearity and parametric or nonparametric form of model (1). For instance, an AR(2)
model could be fit to the data, in which case u+(0) = 61Y;_1 + 02Y;_o, but the data generating process
may be an AR(co) autoregression and then pi; = Z;il c¢;Y;_; instead. If f, is the estimate of § on the

basis of the first s observations, then the estimate of p; is given by p(6) and the corresponding residual

is denoted by £,(05) = Y; — ,ut(és). In the AR(2) case, one gets
ﬂt(és) = éslyvtfl + ésQY;Ef%

Et(és) =(c1 — ésl)y;&—l + (c2 — ész)Yt—Q + ZCjYi—j + &t
=3
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and the bias-variance trade-off guiding the development of the proposed methods emerges. For more
general time series the residuals et(és) may have to be understood as approximations, since the infinite
past is not available for the computations. In all standard cases, these approximations are justified by an
exponentially decaying dependence on the past. Following standard practice in time series, no explicit
distinctions are made here. Further examples follow in Section 2.3.

The variance for predicting Y}, 1, when the model has been estimated on the basis of the entire available
dataYy,...,Y,, isgivenby PE, = E[e2 (0,,)]. Suppose that n. — k residuals are available (this happens
for ARMA fits when the first few estimates may not be available), then an empirical estimate of PE,, is

n—1

—~ emp ]_ ~
PE, " = — gefﬂ(an).

It is well known that ﬁ)imp may not be a good estimate of PE,, (see Efron, 2004). If the model is

estimated on the basis of the first s observations Y7, ...,Y;, then PE; = E[e? _H(és)} and ISEZmp =

(s = k) Yt €2(0,). Form = |én] with 0 < § < 1, Rissanen’s APE estimate of PE,, is defined as

n—1
~R 1 R
PE, = § et 1(0r).
t=m

n—m

—~R
When m is small (¢ is close to 0), the bias in estimating PE,, by PE, may not be small. On the other

~R

hand, if m is close to n (¢ is close to 1), PE,, is almost unbiased for PE,,, but it may not be stable (that is,
may have higher variability) since it is based on few residuals. A more detailed discussion on these issues
is given below.

2.1.  Properties of PE,,

At the outset, we state that mean and variance expressions used in the following are understood to be
in the asymptotic sense; see Efron (1982) and (Rao, 1973, Chapter 6). For simplicity of exposition, the
discussion is focused on the case when the method of estimation is least squares. However, the arguments
given are valid for other methods of estimation. In order to obtain estimates of the conditional means
{i¢, one often uses a parametric or nonparametric model 1;(6) and then minimizes the sum of squares
of deviations y ;" [Y; — 11¢(6)]? to derive the estimates of §. In the case of penalty methods (see, for
example, the approaches via regularization methods in Gerencser, 1992; H. Wang and Tsai, 2007), one
adds a penalty term to the sum of squared deviations and then carries out the minimization procedure.
Whatever the procedure, there is a tuning parameter, say, p associated with it. The tuning parameter p
may be the dimension of # or a function of the penalty parameter. Typically, the larger the value of p, the
smaller the bias in estimating ;. However, the larger the value of p, the larger the variance associated
with estimating ;.

Let  be the minimizer of F[{u; — p1¢(6)}2], and denote By = E[{ttns1 — itns1(6)}?]. Note that 3o,
which does not depend on n, is the square of the model bias and it decreases as p increases. Using
the arguments given in Section 2 of the Supplementary Material to the paper one may write PE,, ~
02 + By +n~1py, or, more generally,

PEn~a§+ﬁo+@+B—§, )
n n

where the values of 3, 51 and S5 depend on the tuning parameter p in such a way that 3y decreases and
(1 increases as p increases. Underlying (2) is a common asymptotic expansion of mean square errors (for
example of Hoffding or von Mises type) which holds under reasonable smoothness conditions on fi;(6)
as a function of #. The interested reader is referred to the informative book by Taniguchi (1991).
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—~ emp —~R
2.2. Properties of PE,,  and PE,,
First, the expected value of @Zmp is approximated. From the arguments given in Section 2 of the

Supplementary Material, it follows that E[P/’E:np] ~ 02 + By + n~1 B3, or, more generally,

E|PE,"| %o§+ﬁo+%+%, 3)

noting that the constants associated with the n~! and n~2 terms are not the same as in the case of PE,,.
— emp
Oberve that PE,, and F[PE,, ] have the same constant term O’? + Bo. Therefore, from (2) and (3),

PE, - E {IFE:“"} ~ 5 28 4)

n  n2

R
In the second part of this section, the expected value of the APE estimate PE,, of PE,, is approximated.
The following notation will be helpful for later discussions. For any real number z, let

n—~¢

1 n\~
0:(0) = n—i—m+1 Z (t> . ®)

t=m

where / is a positive integer. Note that g, (¢) depends also on m and n, but for notational simplicity this is
suppressed. Since the case ¢ = 1 will frequently appear, denote o, (1) by o,. Arguing as in Section 2.1, it
follows that

E{ﬁER]: L SPEt

n—mt
<a§+5o+ﬂtl+f§)

Pa

n?’

=m
n—1

1

Q

t=m

B
~o2+fo+ o= + 0
n

with

n—1

n Zl
= 1 = —
o= ei(l) n—m =t

1 1 1
=— logd + — — .
1-6 % Jr2n+0<n2>
Note that the constant p; is larger than 1 for any 0 < § < 1. It is about 1.72 when é = 0.3 and is equal to

1.39 when § = 0.5. Also, o1 ~ 1 when § =~ 1. So 15]\33 is almost unbiased for PE,, when 6 ~ 1, but it is
not expected to be stable (that is, it is likely to exhibit higher variability) since this estimate is averaged
over few squared residuals. When § is of order n !, then the factor o; behaves like log n and this explains
APE’s ability to select the correct model when there is indeed a correct model of low dimension (see
Hemerly and Davis, 1989). The preceding gives, in analogy to (4), that

1

n

+(1—@2>§§. ©)

—~ R
PE, — E{PER} ~ (1— o1)

The considerations in this section help set up improved estimators for the prediction error. Two specific
. . . —=emp .
proposals will be part of Section 3, where corrections based on (3) for PE,, ~ and the corresponding

—~R
expression for PE,, in (6) are introduced.
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2.3.  Examples

Example 1 (Linear prediction with AR processes). Let {Y;} be an arbitrary stationary time series and
suppose that AR(p) models

}/2:91}/15—1+"'+9p}/;5—p+€t

are fitted to the data. If {Y;} is invertible, it admits an AR(c0) representation from which one can deduce
the form p; = ZOO ¢;Y;_; for the conditional mean, the sequence {c; } being the invertibility weights.

Signifying transposition by / and denoting by 0, = (6,1, .. ., é,,,p)’ the LSE of 6 = (64, ...,6,)’, it fol-

lows that AR fits aim to predict yin41 by fing1(6n) = 27 i1 énj Y, +1—;. The corresponding prediction
residual is given by

ent1(0n) = Vi1 — png1(0n)

p
= E - nj n+1 ]+ E cj n+1— j+€n+1
j=1 j=p+1

If the data generating process is causal and invertible, computations for the bias-variance decomposition
of the prediction error PE,, are somewhat simpler. This will be part of the next example.

Example 2 (Linear prediction with ARMA processes). Let the data generating process {Y;} be spec-
ified as a stationary, causal and invertible time series in an i.i.d. sequence {e;} with zero mean and
variance o2, Causality and invertibility ensure the existence of sequences {c;} and {d;} such that the
AR(00) representation Y; = Z?‘;l ¢jY;—j + €, and the MA(oo) representation Y; = Z;io djei—j ex-
ist. Using the MA(oco) representation, it follows immediately that the autocovariance function is given
by v(h) = E[Y;11 Y] = o > i djdj+n. Using the AR (co) representation, the conditional mean in (1)
becomes i, = 372 Vi ;.

Assume that causal and invertible ARMA(p, q) models

th = a1Y2_1 + - +apYPt—p+5t +b15t—1 +"'+bq€t_q, (7)

are entertained as fits to the data. Necessary and sufficient conditions on the parameter 6 =
(a1,...,ap,b1,...,b,)" ensuring causality and invertibility of (7) can be found in Shumway and Stof-
fer (2010). These lead to respective coefficient sequences {c;(#)} and {d;(6)} which can be computed
in an iterative fashion (see Box et al., 2008). With these, bias and variance of the prediction error can be
analyzed.
To compute the model bias By = E[{tni1 — fins1(0)}?] if ¢ = 0 and AR(p) models Y; = 6,Y; | +
4+ 0pYip + &y are fitted, let ¢ = (¢;)72, and I' = (y(h — 1'))7%,, - Let further I';, be the leading
p X p principal submatrix of I' and I')° the p X oo matrix consisting of the first p rows of I". It can now
be shown that § = ', 'T'>°c and

Bo=c (L =TP'T,'T)F)e

The magnitude of the bias is determined by the decay of the AR(co) weights {c;}, the decay of the
covariances y(h) (thus the MA(oo) weights {d;}) and the order p of the fitted AR process. Clearly 3y
becomes smaller if the AR model order p gets larger. Further technical details on the expansion in (2) are
offered in the Supplementary Material to the paper.

Example 3 (Nonlinear prediction with nonparametric AR processes). Suppose the goal is to model p;
in (1) as a function f(X;) of past observations X; = (Y;_1,...,Y;—,)’, where the function f is to be
estimated from the data. This general model was considered by Lewis and Stevens (1991) and includes
important subclasses, namely additive models: f(X;) = f1(Yi—1) + -+ fp(Yi—,) (see Chen and Liu,
2001); threshold AR models: f(X,) = f1(Yi—p)Yi—1 + -+ + fp(Yi—p)Yi—, (see Tong, 1983); and single
index models: f(X;) = fo(81Yi—1 + -+ + B,Y;—p) (see Xia et al., 2002). A good account of additive
models for independent data appears in Hastie and Tibshirani (1990). A discussion on many nonparametric
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time series models is available in Fan and Yao (2005). Functional autoregressive and other models for
vector time series as well as references to earlier work on many nonlinear time series models can be found
in Jiang (2014).

The discussion here is carried out for additive models, even though all arguments are valid for the gen-
eral nonparametric class with appropriate modifications. For the class of additive models, some restrictions
on fo,..., fp (such as E[f;(Y;—;)] = 0 for j =2,...,p) are needed for identifiability (see Stone, 1986;
Burman, 1990). Suppose f;(-) is being modeled as 1;(-)'8;, where the 1); are some k; dimensional func-
tions, often regression splines or their modifications for the purpose of identifiability (Burman, 1990).
Let B be the n X p matrix whose ¢-th row is given by ¥(X,)" = [11(Y;—1)’, ..., ¥p(Yi—p)']. Then p is
modeled as

1e(0) = V1 (Y1) 01+ -+ 10y (Yiop) 0, = (X,)'6,

where 0 is the k = k1 + - - - + k,, dimensional column vector of 6y, ..., 8,,. This leads to the linear model
Y = B0 + ¢ with corresponding least squares estimate

6, = (BB')"'B'Y,

assuming temporarily for the ease of discussion that Y, s = —p +1,...,0, are available for the estima-
tion. Hence the prediction of fi,, 41 18 fin+1(6n) = ¥(Xn+1) 0. The Supplementary Material to the paper
gives arguments on why the prediction error expansion in (2) holds for these additive models.

3. PROPOSED ESTIMATES OF PE,,
3.1. The modified empirical estimate
Consider the empirical estimate ﬁ)imp of PE,,. Even though it may not be a good estimate of PE,,,
equation (4) suggests that it may be used as initial estimate in a first step. In a second step, one then obtains
an estimate of the bias in estimating PE,, by P/’]\E:np to adjust the empirical estimates. An estimate of the
expected bias F[PE,, — lgﬁimp] can be set up as

n—1

Culw) = —— > wn (2,0 ™),
t=m

where the weights {w; } need to be chosen appropriately to estimate E[PE,, — lgflzmp] well. The modified
empirical estimate is then given by

ME — emp

PE, (w)=PE, = + Cyh(w). 8)

n

It follows from equations (4) and (8) that

PE, - B[P, ()] = (1 - )2 + 1 - o) 5

where

1 n—1 n k
gr(w) = > (> w, k=12 ©9)

n—m t
t—=

The first-order bias correction requires that g;(w) = 1, whereas the second-order bias correction re-
quires g1 (w) = 1 and go(w) = 1. First-order bias correction can for example be achieved with the simple
weights wy; = n~'t, since in this case g; (w;) = 1, and thus an approximate unbiased (first-order) esti-

mate o n — PE. s given by C,, (wy).
f E[PE PE,

Example 4 (First-order bias correction for AR processes). Suppose an AR(p) model is fitted to the
data. Let 6, = (041, . .., th) be the estimates of the autoregressive parameters on the basis of observations
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Yi,...,Ye In this case, e,(0r) = Yo — 30 0yYe g s > p+ 1 PE, - = (¢ —p) " 2020 €2, (6r)
and consequently the bias is estimated as

C(w1) = n(%_m) S:lt(stﬂ 0y — ZESH >

t=m
where m = |dn | can be chosen roughly as a quarter of the sample size, that is, § = .25.

A reasonable way would be to select those weights that minimize the variance of the estimate of PE,,.
Unfortunately, this may not be feasible in general since the estimates are complicated quantities and their
variances depend on the unknown (conditional) mean function {s;}. However, one may aim at a less
ambitious criterion for weight selection utilizing the following lemma whose proof is given in Section 2
of the Supplementary Material.

LEMMA 1. Let {Y:} be a stationary time series according to model (1) in an i.i.d. sequence {c;}. Let

S i(w)edy, be the collection of the squares of €, terms in the expression for ISEZIE(U)) Let gy and go
be as in (9). Then the following statements hold.

(a) The minimum of >, 1 (w)? with respect to the sequence {w;} subject to the constraint g, (w) = 1
is attained at w; = g;lt_ln, where ps ~ 1/6.

(b) The minimum of y_, 1 (w)? with respect to the sequence {w;} subject to the constraints g;(w) =
and ga(w) = 1 is given by w; = M\t~ n + \ot~2n?, where Ay = (0204 — 03) (04 — 03) and \; =
05 (1 — 03)\2), and p3 =~ (1 +6)/(26%) and py =~ (1 + 6 + 62)/5°.

Note that
n—1
= Z Ye(w)ed, + R,
t=0

where the term R involves the model bias terms by 11 = f1141 — ft¢+1(6) and terms of the form d; | | (ét) =
pes1(0y) — pre41(A), diy1(6,), recalling that @ is the minimizer of E[{y; — p1¢(6)}2]. If the remainder
term R is ignored and the variance of tho Y (w)e?, 1, which is proportional to Z?:—Ol i (w)?, is min-
imized, then the selection of weights can be based on Lemma 1. The following remark summarizes the
main findings.

Remark 1. (1) The results of Lemma 1 do not depend on the type of stationary time series consid-
ered. This means in particular that the weights selected through minimization of Zj;_ol Py (w)e? 1 do not
depend on the underlying data generating process.

Elimination of first-order bias. The minimization of the criterion function Zt 0 ¢t( )2 subject to the
constraint g; (w) = 1 leads to the weight sequence {ws;} given by wo; = 05 't~ 'n

(ii) Elimination of second-order bias. The minimization of the criterion function Z;lz_ol s (w)? subject
to the constraints g1 (w) = 1 and go(w) = 1 leads to the weight sequence {ws; } given by ws; = A\t~ 1n +
Aot ~2n2, where A1 and \, are constants specified in Lemma 1.

Simulations have not revealed much of a difference in the estimates using w; and ws. It can be shown
that the use of wy leads to a slightly inflated second-order bias term. The weights given in (ii) lead to
the elimination of first-order and second-order bias terms, but this seems to come at the cost of higher
variability of the estimate. These findings are in line with those in Efron (1982), who recommends against
correcting second-order bias for independent data. We reiterate Efron’s recommendation and recommend
only a first-order bias correction when estimating the prediction error for time series. For completeness,
we also report the second-order bias correction and linear combinations of weights aiming for first- and
second-order bias correction. Their properties might be considered in future research. For example, it

—— ME —~ ME
is reasonable to consider linear combinations of estimates of the form PE  (w;) and PE  (w3) or

—~ ME — ME
linear combinations of PE (w;) and PE  (w3), so that the second-order bias term is reduced but not
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_— ME —~ ME
completely eliminated. Here a linear combination of PE (w;) and PE  (ws) is given. First note that
—~ ME Bs
PE,, — E[PE,L (wl)} ~ (- o),

and
_~ ME 1
PE, — E[PEn (wg)] - 0(3).
n
Let therefore wi3 = aw; + (1 — a)ws for some 0 < v < 1. Hence the estimate of the form
_ ME _~ ME _~ ME
PE, (wi3) =aPE, (w1)+ (1 —a)PE, (ws),
with 0 < « < 1, has bias

—~ ME B

PE, — E[PEn (wm)} ~a(l— o).

It should be pointed out that as « increases the bias is reduced but the variance becomes bigger. Based
on simulations, we recommend the use of o = 0.3 balances the trade-offs between bias and variance
reasonably well. A theoretical study of the properties of these estimators of prediction error is, however,

beyond the scope of the present paper.

3.2. The modified Rissanen estimate

The original Rissanen estimate uses simple averages of 7 +1(9t) to compute the prediction error, but
one may instead consider weighted averages as well. These give rise to the modified Rissanen estimate

~MR 1
PE, (v)=

n—m

n—1
Z Uts?—&-l(ét)v (10)
t=m

where the weights {v; } average to 1. In order to answer the question of how to choose the weights, notice
that

n—1

E[P/’]\E,I\IAR(U)}% ! Z(J?—F[D’o—kﬂtl—i—f;)vt

n—m &
_ 2 B1 B2
= fo(v)(oZ + Bo) + fl(”); + fQ(U)E7

where

fr(v) =

1 n—1 n k
> (> v,  k=0,1,2. an
n—m = t

Approximate (first-order) unbiasedness requires that fo(v) = f1(v) = 1. There are many sequences {v; }
that satisfy these conditions and this issue will be discussed further below. First, the focus will be briefly
on the particular weights vy, = Ao + A1n~1t. Some calculations show that first-order unbiasedness can
be achieved by choosing

-1
A = 01

*m, Ao =1-0_1)\,

with constants ¢p_; and p;. Simulations revealed that the modified Rissanen estimates tend to have small
bias. However, they also seem to have higher variability than the corresponding modified empirical es-

_—~ ME
timates PE,, (w); see Section 5. Turning to the general weight selection, the following lemma is the
counterpart to Lemma 1. Its proof is given in the Supplementary Material.
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LEMMA 2. Let {Y;} be a stationary time series according to model (1) in an i.i.d. sequence {£,}. Let
fo(v), f1(v) and f2(v) be as in (1 1). Then the following statements hold.

(a) The minimum of y " vt with respect to {vs} sub]ect to the constraints fo(v) = 1 and f1(v) =
is attained at v, = \g + Alt 1n where \1 = (02 — 03)1(1 — p1) and \g = 1 — o1 )\1.

(b) The minimum of 3", v? with respect to {v;} subject to the constraints fo(v) =1, f1(v) = 1 and
fo(v) = 1is attained at v; = N\ + At~ 'n + Aot =2n2, where Ao, A1 and \o are solutions of the equation

1 0102 Ao 1
01 02 03 M =11
02 03 04 A2 1

Similar arguments as in the previous section applied to the modified Rissanen estimate show that the

MR
leading term of PE, (v)isequal to (n —m) 137! . V€741 and the variance of this term is propor-
tional to vt Let fo(v), f1(v) and f2(v) be as in dlsplay (11). The following remark summarizes

the findings of Lemma 2.

Remark 2. (iv) The results of Lemma 2 do not depend on the type of statlonary time series considered.
This means in particular that the weights selected through minimization of Zt o v do not depend on the
underlying data generating process.

(v) Elimination of first-order bias: The minimization of the criterion function Z?;ri v subject to the
constraints fo(v) = 1 and f;(v) = 1 leads to the weight sequence {va;} given by vo; = Ao + At n,
where \o and \; are constants specified in Lemma 2.

(vi) Elimination of second-order bias: The minimization of the criterion function E;:Ti v? subject to
the constraints fo(v) =1, f1(v) = 1 and fo(v) = 1 leads to the weight sequence {vs;} given by vs; =
Ao + Mt + Aot —2n2, where A\g, A and )\ are constants specified in Lemma 2.

Simulations indicate that there are only minor differences between the estimates using v; and vy. The
estimate using vs gives almost unbiased estimates, but it comes with the cost of higher variability.

4, EXTENSION TO MULTIVARIATE SETTINGS AND MULTI-STEP PREDICTIONS
4.1. The multivariate setting

The model in (1) is now understood to be d-dimensional. While in the univariate case PE,, (and also its
estimate) is a real number, it has to be replaced by a variance-covariance matrix for predicting the vector
Y, +1 in the multivariate setting. If the model has been estimated on the basis of the entire available data
Y1, ..., Y,, the prediction error matrix is given by

PE, = Elent1(0n)ent1(02)']-

Now following along the lines of the arguments introduced in Section 2.1 and supposing that n — k
residuals are available (e.g., VARMA fits), the empirical estimate of PE,, becomes

—~ emp 1 - ~ A~
PE = 2 ;8,54_1(9”)6,54_1(9”)/.

n n —

In order to introduce Rissanen’s APE estimate in d dimensions, write similarly, if the model is esti-
mated on the basis of the first s observations, that PE, = Ele,41(fs)es41(6,)] and PE, P = (s —
k)=t €t(0s)e(0s). With m = [dn], 0 < § < 1, Rissanen’s APE estimate of PE,, is then given
by

Et+1 0 )
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If one wishes to obtain a numerical measure of the prediction error in the multivariate case, then one
may use the trace of PE, H (that is,E[€] |, HE, 11)n]) when H is some d x d positive definite matrix.
Choices for H include the inverse of the variance-covariance matrix V, of €; and the diagonal matrix
diag(V-) 1. One may also take H to be the identity matrix if all the component series are equally scaled,
and the determinant of the matrix PE,, as a numerical measure. The performance of P/’Ezmp and P/’ES is
worse when a numerical/@ce:ﬁlgure is /tglg:n as/gal\t/}é)e seeE\frl\(/)[g the simulation results in Section 5.

The modification of PE,, = and PE,, to PE,, and PE,, in the multivariate case is exactly the same
as in the univariate case except that, for any residual vector e, one needs to write ee’ instead of e2. The
details are therefore skipped to conserve space.

4.2.  Multiple-step predictions

It is often of interest to analyze the performance of longer-term predictions, say, h-steps ahead. Observe

that the optimal forecast of Y,,;, on the basis of observations Y5, s < n, is given by the conditional mean
,ugfg n = EYnin|Ys, s <nl. Let ﬂgh)(és) be the estimated value of ugh) when the model has been fitted

on the basis of the observations Y7, . . ., Y, and denote the h-step ahead residual Y; — [Lgh) (0,) by sgh) ().
The prediction variance-covariance matrix, its empirical and Rissanen estimates are then

R 5 \.(h) (4
PE,(h) = E [5;42}1(971)5512;1(9”)/] ;

n—h

ST o 1 M) 5\ (4
PE. () = g1 2 enOneiin0n)'
R 1 (SROITRG)

_ o s
PE, (h) = P R—— > eiin (e (61

t=m

where the formulation is given in the multivariate form. All discussions and issues addressed in this
work are valid also for h-step ahead predictions and do not require any special treatment. Arguments for
obtaining modified estimates of the h-step ahead prediction error matrix PE,, (k) mirror those used for
the one-step ahead case and are briefly discussed here.

The modified h-step ahead empirical estimate is defined as

—~ MEFE —~ em
PE, (w;h)=PE, " (h)+ Cy(w;h),

where the form of the correction term is similar to the one-step ahead case. The correction term has the
form

n—h
—~ emp

N S e
Culwih) = e gwt(mh(et) PE (),

where the weights {w, } satisfy the condition gy (w; h) = (n — h — k +1)~* 377 ¢~ 'naw, = 1 in order
to correct for first-order bias. To correct also for second-order bias, the weights must additionally satisfy
go(w;h) =(n—h—k+1)7! f;kh t~2n2w; = 1. The rest of the discussion in Section ?? on choosing
different weights applies here, too.

The modified h-step ahead Rissanen estimate is defined as

n—h
_~ MR 1 h h
PE, (h) = ot 2 v (e ()
t

=m

with weights {v;} satisfying fo(v) = 1 and f;(v) = 1 to achieve first-order bias correction and fo(v) =
1, fi(v) = 1and fa(v) = 1 to achieve second-order bias correction, where the functions fy(v), ¢ = 0,1, 2,
are defined in display (11). All the discussion on choosing weights are similar to the one-step ahead case.
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5. NUMERICAL RESULTS

Simulations were carried out in order to investigate the performances of Rissanen’s APE and the pro-
posed biased-corrected estimators for one-step prediction errors. Suppose that observations Y7,...,Y,
are obtained from a d-dimensional stationary time series following (1). As numerical measure for the
variance-covariance matrix the trace

-1 -1
tr(PE, V") = Elens+1(n) Vo enta(n)]

€

is used, where V is the variance-covariance matrix of the centered innovation sequence {e;}. It should
be noted that tr(PE, V1) = d + D?, where D? = E[(fin+1(n) — pint1) Vo (fins1(n) — pins1)]. For
any generic estimate ISEn of PE,,, mean and standard deviation of P/’En — PE,, were obtained. More
specifically, they were computed based on the following estimates.

_~R
® Rissanen’s APE: PE, — PE,;
_~ ME
* Modified empirical estimates: PE,, (w) — PE,, with three choices of weights: (i) w1 = n~'¢, (ii)
w3y as defined in Section 3.1, and (iii) the linear combination w13 = 0.3w14 + 0.7Tw3;;
MR
* Modified Rissanen estimate: PE,, (v1) — PE,,, where v;; = \g + A\;n "'t as given in Section 3.2.

All results presented here have been based on 10,000 simulation runs. However, PE,, itself was estimated
based on 25,000 simulation runs to achieve greater accuracy.

The following time series models were considered.

Univariate setting: For d = 1, the ARMA(1,1) model

Yi=aY;_ 1+ +bes_q, t=1,...,n,

was simulated with {¢;} ii.d. N(0,1) innovations and n = 100. In each case, the fitted models were
AR(p) using Yule-Walker estimation with p = 2, 12. As in Ing (2007), various combinations of parameters
(a, b) were considered, namely (a, b) = (0.5,0.5) (model 1), (0.95,0.5) (model 2) and (0.5, 0.95) (model
3). Model 1 is rather simple, since the dependence dies rather rapidly, but the other two are extreme cases.
In model 2, the AR root is close to the unit circle and thus it is close to non-stationarity. For this case,
the variance part of PE,, can often be large. The third case is close to non-invertibilty of the MA part and
predicting future values requires a large number of past observations. Therefore the bias may not be small
when fitting an AR(p) model.

Multivariate setting: For d = 4 four independent copies of the univariate ARMA(1,1) model were
simulated with n = 100 and VAR(p) models of order p = 2,7 were fitted to the data. In practice one
would perhaps not use a VAR(7) model for this four-dimensional time series, since there are other methods
available for such cases; for example, reduced rank regression. The purpose here, however, is to investigate
how easy or difficult it is to estimate the prediction error and how the proposed estimates perform under
different modeling conditions.

The simulation results are summarized in Figures 1-4 and also given in Tables 1-4. The results show
that APE is not a good estimate of PE,, except when ¢ is close to one, which is expected. All the proposed

-~ ME
estimates seem to have small biases for any §. Among the four proposed estimates, the bias of PE,, (w1)
appears to be the highest. As expected, the standard deviation of all estimates increases with §. It should

_— ME

also be noted that PE,, (w1) (followed by APE) seems to have the smallest standard deviation for any 4.
—~ ME _~ MR —~ ME

The variability of PE,, (ws3) and PE,, (v1) are higher than the others. The hybrid estimate PE,, (ws)

—~ ME
appears to have a lower bias than PE,, (w;), but it has a higher variability. For the four-dimensional
case, the inadequacy of APE as an estimate of the prediction error becomes evident. The performances of

_—~ ME _~ME
PE, (wi)and PE,, (ws3) are the most satisfactory of the proposed estimates.
The simulation results seem to indicate that one should operate with a small § such as 0.3 and use either

—~ ME _— ME
PE, (wi1) or PE, (ws3) as an estimate of PE,,. Overall, the proposed estimates offer a significant
improvement over Rissanen’s classical APE method.
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Plot of Bias: model 1, D?=0.068 Plot of SD: model 1
Olbe=s=—%t=—— ) ——
0.4 0.6 0.8 0.4 0.6 0.8
Delta Delta
Plot of Bias: model 2, D?=0.178 Plot of SD: model 2
0.15
» 01
Ry
@ 0.05
(0] %8 SE === b
0.4 0.6 0.8 0.4 0.6 0.8
Delta Delta
Plot of Bias: model i, D%=0.411 Plot of SD: model 3
0.06
0.04
8 0.02
= 0.0
0
-0.02 x —
0.4 0.6 0.8 0.4 0.6 0.8
Delta Delta

Fig. 1. Bias (left) and standard deviation (right) of esti-

mates of PE,, for the univariate ARMA(1,1) data gener-

ating process Y; = aY;—1 + €+ + bes—1 and fitted AR(2)

processes: Rissanen’s APE P/’I\ES ( -); modified empir-
—~ ME — ME

ical estimates PE,, (w1) (—+—+-), PE, (w13) (—o—o—

—~ ME
) and PE,, (w3) (—x-x-); modified Rissanen estimate
MR

PE, (v1) -+ ).

6. DISCUSSION

Two novel methods are introduced to tackle the difficult problem of estimating the (h-step ahead) pre-
diction error of a stationary time series, which may be univariate or multivariate, linear or nonlinear and
parametric or nonparametric. The model in (1) allows explicitly for the case of model misspecification of-
ten encountered in practice. The proposed method utilizes a bias-variance decomposition of the prediction
error to suggest correction terms to modify an empirical estimate and Rissanen’s classical APE, including
guidelines for weight selection. Two examples, linear causal and invertible ARMA processes and nonlin-
ear AR processes, highlight the usefulness of the methodology. Simulations confirm bias reductions of
about an order of magnitude compared to APE and, for certain weight choices, an overall reduction in
prediction error.
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Plot of Bias: model 1, D?=1.289 Plot of SD: model 1

@
o 05
N - =
0.4 0.6 0.8 0.4 0.6 0.8
Delta Delta
Plot of Bias: model 2, D?=7.190 Plot of SD: model 2

0.4 0.6 0.8
Delta
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Fig. 4. Same as in Figure 1 but for the multivariate
VARMA(1,1) model with fitted VAR(7) processes.
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(a,b)  estimate 0=.3 5 7 9

—~R

PE, 0.033 0017 0009  0.003
(0.20)  (0.23)  (0.29)  (0.50)

—~ ME

PE, (w:) 0.003  0.001  0.002  0.001
(0.20)  (0.23)  (0.29)  (0.50)
— ME

(5.5) PE, (w;) 0001 —0.000 0.002  0.004
024)  (0.31)  (0.43)  (0.80)
—~ ME

PE, (ws) —0.000 —0.001 0002  0.005
0.26)  (0.36)  (0.52)  (1.01)

PE, (1) —0.002 —0000 0002  0.004
030)  (0.39) (055  (1.03)

PE 0.141 0.072 0.032 —0.003
(0.31) (0.35) 042)  (0.64)

PE, (w;) 0017 0010 0003 —0.011
026)  (031)  (0.40)  (0.63)

(95.5) PE, (wis) 0.009 0002 —0.006 —0.012
0.34)  (043)  (0.56)  (0.96)

PE, (ws) 0005 —0002 —0.009 —0.012
0.38)  (0.50)  (0.68)  (1.19)

PE, (v1) —-0.008 —-0.008 —0.011 —0.013
(0.46) (0.56) 0.72)  (1.21)

—~R

PE, 0.055 0030 0018 0015
0.29)  (0.33) (042)  (0.71)

— ME

PE, (w;) 0009 0007 0.007 0011
029)  (033)  (0.42)  (0.71)

(5,950 PE, (wi3) 0007 0004  0.007 —0.008
035)  (0.44)  (0.60)  (1.10)

PE, (ws) 0.005  0.003  0.008 —0.017
038)  (0.51) (0.73)  (1.39)

PE, (v1) 0.002 0004 0007 —0.018
0.44)  (0.56) (0.77)  (1.41)

Table 1. Bias (variance) of estimates of ﬁ)n — PE,, for the univariate ARMA(1,1) data gener-
ating process Yy = aYy_1 + €, + be,—1 and fitted AR(2) processes.
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(a,b)  estimate 0=.3 5 7 9
—R
PE,, 0.092 0.051 0.027 0.014
023)  (026) (0.33)  (0.54)
PE, () —0006 —0.002 0000  0.006
022)  (026) (0.32)  (0.54)
(5.5 DR (ws) —0001 0001 0008 0011
027) (034  (047) (0.85)
M
PE, (ws) 0001 0002 0011 0013
030)  (040) (0.57)  (1.07)
_ MR
PE, (v;) 0004 0004 0012 0014
(0.35)  (044)  (0.60)  (1.09)
PE 0.349 0.188  0.089  0.030
(0.48)  (0.53)  (0.63) (0.91)
—~ ME
PE, (w1) 0.020  0.014  0.007  0.005
0.36)  (044)  (0.57)  (0.89)
ME
(95,.5) PE, (wi3) 0.017 0.001 0.001 —0.003
(0.49) (0.62) (0.82)  (1.26)
_ ME
n (w3) 0.016 —0.004 —0.001 —0.006
0.56)  (0.74)  (0.99)  (1.54)
_ MR
PE, (v1) —0.001 —0.008 —0.001 —0.005
(0.70)  (0.84) (1.05) (1.57)
—R
PE, 0.158 0.084  0.040  0.008
0.28)  (0.32)  (0.39)  (0.63)
_— ME
PE, (w1) 0.000 —0.000 —0.002 —0.004
026)  (030) (0.38) (0.62)
(5.95) PE. (wis) 0000 —0000 —0.006  0.001
032)  (040) (0.54)  (0.98)
PE. (ws) 0001 0007 —0.008  0.004
036)  (047)  (0.66) (1.23)
PE. (1) 0002 —0.003 —0.008  0.004
042)  (052)  (0.70)  (1.25)

Table 2. Same as Table 1 but with fitted AR(12) processes.
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(a,b)  estimate 0=.3 5 7 9

R :
PE, 0.39 0.20 0.10 003

047)  (0.54) (0.68) (1.15)
—~ ME

PE, (w:) 0.04 0.02 002 0.0
0.45)  (0.52) (0.67) (1.14)
— ME

(5.5 PE, (ws) 0.02 0.01 001 —0.01
0.55)  (0.71)  (0.97)  (1.80)
—~ ME

PE, (ws) 001 0.01 000 —0.01
0.61) (0.82) (1.18)  (2.28)

PE, (v1) —001 000 —000 —0.01
0.72)  (091) (1.25) (2.32)

PE 2.33 1.18 0.56 0.12
(1.61) (1.51) (1.66) (2.32)

PE, (w;) 046 029 015 00l
0.97)  (L.14) (1.44) (2.24)

(95,5 PE, (wy3) 024 0.11 005 —0.05
(134)  (159)  (2.05) (3.19)

PE, (ws) 0I5 004 000 —0.07
(1.61)  (1.92) (2500 (3.91)

PE, (v1) —0.12 =005 —003 —0.07
(193)  (218) (267 (3.99)

0.60 0.31 0.15 0.05
0.68) (0.76)  (0.96)  (1.60)
— ME

PE, (w:) 0.07 0.04 002 001
0.63)  (0.73)  (0.94) (1.58)
— ME

(5.95) PE, (w3)  0.03 0.02 0.01 0.03
0.78)  (1.00) (1.38)  (2.50)
— ME

PE, (ws) 0.01 0.01 0.01 0.04
0.88) (1.17) (1.68) (3.15)
— MR

PE, (v) —0.02 0.00 0.00  0.04
(1.02) (129 (1.77) (321

Table 3. Same as in Table 1 but for the VARMA(1,1) model with fitted VAR(2) processes.
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(a,b)  estimate 6=.3 5 7 9
—~R
PE, 0.98 054 028  0.10
0.66)  (0.70)  (0.87)  (1.43)
PE, (w)  0.00 0.02 003  0.03
0.52)  (0.62) (0.81)  (1.40)
(5.5) PE, (w3) 003 002 003 001
0.67)  (0.87) (122) (2.19)
PR, (ws) 005 0.02 0.03  —0.00
077)  (1.04) (1500 (2.77)
—~ MR
PE, (v1)  0.03 002 003 —0.00
0.93)  (1.17)  (1.60)  (2.82)
PR, 9.9 507 237 071
1 (601) (5.14) (5.04) (6.10)
PE. “(w1) 216 140 075 026
(3.19)  (357)  (420) (5.79)
ME
(95.5) PE, (wy) 125 053 024 007
439 @71  (553) (742
PR “(ws) 086 016 003 —0.02
(532)  (5.69) (665 (8.77)
PE. () 042 024 007 —0.03
(6.16)  (6.40) (7.13)  (8.95)
—~R
PE, 1.83 094 045 0.3
0.95)  (0.98) (1.16)  (1.87)
PE, “(w) 017 011 006 001
069  (0.82) (1.06) (1.82)
(5.95) PE, (wz)  0.09 004 001 —0.02
0.93)  (1.16) (1.59) (2.85)
PR, (ws) 005 001 —000 —0.03
(1.10)  (1.39)  (1.96)  (3.59)
PE, (1) —007 003 —001 —003
(128)  (1.56) (2.10)  (3.67)

Table 4. Same as in Table 1 but for the VARMA(1,1) model with fitted VAR(7) processes.



