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ABSTRACT

We develop a new globally convergent optimization method for solving a constrained
minimization problem underlying the minimum density power divergence estimator
for univariate Gaussian data in the presence of outliers. Our hybrid procedure com-
bines classical Newton’s method with a gradient descent iteration equipped with a
step control mechanism based on Armijo’s rule to ensure global convergence. Ex-
tensive simulations comparing the resulting estimation procedure with the more
prominent robust competitor, Minimum Covariance Determinant (MCD) estima-
tor, across a wide range of breakdown point values suggest improved efficiency of
our method. Application to estimation and inference for a real-world dataset is also
given.

KEYWORDS
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1. Introduction

Robustness of an estimator is a multifaceted statistical concept that does not have
universal definition. Martin (1979) defined an estimator to be robust if its performance
remains reasonably good when the actual distribution of the data deviates from the
assumed one. We will refer to an estimator as robust if it is not too sensitive to
outliers which means that the estimator draws a valid conclusion about underlying
population parameters even in the presence of outliers in the dataset. Due to this
attractive property, robust estimators have consequently been used successfully in
numerous applications. In fact, it is possible to tell if an estimator is heavily affected by
deviations based on the influence function (Hampel, 1974), which basically quantifies
the impact of an outlier on the estimator. Another measure developed by Hampel
(1971) (cf. also Donoho and Huber (1983)) is the breakdown point. Martin (1979)
defined the breakdown point of an estimator as the largest fraction of contaminated
data, over all combinations for each fraction, for which the bias remains bounded. See
also Fox et al. (2002).
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For non-robust estimators, such as sample mean x̄, even a single observation ap-
proaching infinity may cause the estimator to break down. A much more robust lo-
cation estimator is the sample median. An advantage of the sample median over the
sample mean is that it is not influenced by outlying observations. Just like the sample
mean, the sample standard deviation,

√
s2, which is supposed to measure how widely

spread a dataset is, faces the challenges posed by extreme values in the dataset. The
effect of outliers motivated some statisticians to completely eliminate them from the
data because of the risk of severely biased conclusions drawn from the analysis of
such datasets. This approach became very popular and many practitioners handled
outliers as such. It is acceptable to drop an outlier from the data if it is obvious that
it was entered wrongly. However, it is oftentimes unclear whether it is a true outlier
or a data instance entered incorrectly. Therefore, removing an observation from the
dataset typically results in information loss. Other data analysts perform “data cu-
ration” in the event that the supposed outlier is suspected to be an incorrect input.
Values used in lieu of this outlier are usually imputed, e.g., using the sample mean or
more sophisticated imputation approaches (van Buuren, 2012).

A wide variety of robust estimators have been developed over the past decades.
Typically, these estimators can be classified as M-, L-, R- or S-estimators, etc. (Hu-
ber, 2009). Vast portion of robust statistics literature specifically focuses on location
and/or scale estimation. The more prominent methodologies include Stahel-Donoho
estimator (Donoho, 1982; Stahel, 1981), Minimum Covariance Determinant (MCD)
estimator of Rousseeuw (1984) (see also Rousseeuw and van Driessen (1999); Hubert
et al. (2012) for FastMCD and DetMCD computational algorithms), Minimum Vol-
ume Ellipsoid (MVE) estimator (Rousseeuw, 1985), Constrained M-estimators (Kent
and Tyler, 1996), (generalized) S-estimators Croux and Hössjer (1994), (generalized)
τ -estimator Croux and Hössjer (1999), cluster-based estimators (Jobe and Pokojovy,
2015) and many others. See Maronna and Yohai (2006) for a more systematic review.
Many (if not most) algorithmic implementations of multivariate robust estimators are
based on “elemental concentration,” als known as “C-step,” which, in the presence of
outliers, can lead to inconsistency, even in moderate space dimensions (Hawkins and
Olive, 2002). Alternative procedures, which are computationally feasible, yet affine-
equivariant, were proposed by Peña and Prieto (2001a); Reyen et al. (2009). In higher
dimensions, the robustness is typically only maintained in large samples.

Other authors developed robust estimators for general continuous parametric mod-
els by paralleling the well-known maximum likelihood approach through adoption of
minimum distance (or, more generally, divergence) estimation. One of such approaches
was first proposed by Beran (1977). The author used Hellinger distance as a robust
approximation to Kullback-Leibler divergence associated with the ML-approach to put
forth his robust estimators. Under appropriate regularity conditions, the proposed es-
timators were shown to have full asymptotic efficiency at the model. The methodology
relies upon bandwidth selection and, thus, may be subject to some adverse effects in
continuous models in the sense that the estimators require utilization of nonparamet-
ric smoothing procedures, which are known to severely affect kernel-based procedures.
As a matter of fact, kernel density estimation is a nonparametric smoothing technique
that is relied upon to yield an estimate of the population density. A crucial amendment
to the original procedure of Beran (1977) was made by Basu and Lindsay (1994). To
alleviate the reliance on bandwidth selection, they smoothed both the model and the
data with the same kernel.

A class of minimum density power divergence estimators was introduced by Basu
et al. (1998) for robust estimation in general parametric models. They defined the
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divergence functional dα(f, g) between two p-variate probability density functions g(x)
and f(x) as

dα(f, g) :=

∫

Rp

(

f1+α(x)−
(

1 +
1

α

)

g(x)fα(x) +
1

α
g1+α(x)

)

dx (1)

for α > 0. On the strength of (Basu et al., 1998, Theorem 1), dα(·, ·) is a divergence
in the sense that it is a premetric satisfying the identity of indiscernibles. As α → 0,
the divergence function reduces to the usual Kullback-Leibler divergence function

d0(f, g) := lim
α→0

dα(f, g) =

∫

Rp

g(z)

(

log
g(z)

f(z)

)

dz. (2)

Assuming x1, . . . ,xn
i.i.d.∼ g(x) (with g(x) being unknown) and invoking the law of

large numbers, we get

∫

Rp

fα(x)g(x)dx ≈ 1

n

n
∑

i=1

fα(xi).

Further, observing that the latter term in Equation (1) does no depend on f(x),
one can easily conclude that minimizing dα

(

f(·|θ), g(·)
)

over θ ∈ Θ is asymptotically
equivalent with minimizing the density power divergence function

Hn(θ) =

∫

Rp

f1+α(x|θ)dx−
(

1 +
1

α

)

n−1
n
∑

i=1

fα(xi|θ). (3)

Thus, the minimum density power divergence (MDPD) estimator is given as

θ̂
DPD

n := argmin
θ∈Θ

Hn(θ). (4)

Note that minimizing Hn(·) does not require knowledge about actual distribution of
xi’s or involve kernel density estimation and, thus, in contrast to Basu and Lindsay
(1994), does not rely on bandwidth selection. Under appropriate conditions, Basu
et al. (1998) showed that the MDPD estimator has a number of attractive statistical
properties such as asymptotic normality, affine equivariance (in case of location and
scatter estimation), high breakdown point, high efficiency and so on (cf. Section 2).
Due to these and other attractive properties, the MDPD estimator is very useful for
robust inference (Basu et al., 2013, 2017, 2018; Ghosh et al., 2016).

Computing the MDPD estimator θ̂
DPD

n amounts to solving the optimization prob-
lem in Equation (4) or, under very liberal smoothness conditions, solving the asso-
ciated estimating equations (viz. (Basu and Lindsay, 1994, Equation (2.3))). Either
approach requires numerical optimization or nonlinear equation solving. In maximum
likelihood estimation, these problems are typically tackled with Newton–Raphson
method or Fisher scoring algorithm (Avriel, 2003; Small and Wang, 2003). Further
approaches include various quasi-Newton methods, sequential linear-quadratic pro-
gramming (SLQP), etc. (Hinze et al., 2008; Boyd and Vandenberghe, 2004). All of
these methods exhibit local superlinear (typically, quadratic) convergence but heavily
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rely on good “warmstarts” or initial guesses to converge. In fact, (undamped) (quasi-
)Newton-like methods are known to induce chaotic dynamics or may “escape” the
parameter set Θ if the initial guess is selected too far from a local minimum (see Sup-
plemental Section S1.4). While a good warmstart may be relatively easy to come up
with in non-robust estimation, the problem becomes challenging, if not unfeasible, in
the presence of multivariate outliers. Due to the very nature of “masking” through
outliers, the chance to randomly come up with a good “warmstart” (especially when
simultaneously estimating multivariate scatter parameters) becomes virtually zero.
Cf. Hawkins and Olive (2002); Peña and Prieto (2001b). Therefore, it is crucial to
adopt optimization methods that never fail to converge to (at least) a local optimum.
One of the mechanisms behind the compromised convergence of (quasi-)Newton-type
methods is the lack of a step control mechanism. A wide variety of numerical opti-
mization methods with step control are known in the literature. The more prominent
ones include multiple variants of gradient descent schemes, accelerated gradient meth-
ods, Frank-Wolfe-type iterations, etc. (Boyd and Vandenberghe, 2004; Varadhan and
Roland, 2008). In various scenarios, square-root up to quadratic convergence can be
achieved. Step control mechanisms for (quasi-)Newton methods have also been investi-
gated (Grippo et al., 1986; Potschka, 2014). These and other locally-adaptive Newton-
type methods can fail to converge when the objective becomes locally non-convex as
it is typically the case with Hn(·) in Equation (3).

We propose a new hybrid method that implements a switching mechanism between
a gradient descent method with monotone step control based on Armijo’s rule and
undamped Newton’s method. Starting in the gradient descent mode, the algorithm
switches to full-step Newton’s method in a vicinity of a “convex” minimum. Addition-
ally, a convex projector is implemented to incorporate constraints on θ. To illustrate
the advantage of our hybrid method over the plain gradient descent with Armijo’s rule,
we apply it to DPD minimization in connection with robust estimation of univariate
Gaussian location and scale parameters.

Two major considerations motivated the development of our new hybrid optimiza-
tion method. Firstly, there is a wide variety of optimization methods in the literature
that do not always converge. Unlike our new method, the convergence of these meth-
ods depends on how close the initial value is chosen to the true solution. In most
practical scenarios though, we do not know the true solution to guide our choice of
the initial value. Hence, an optimization procedure, like ours, that always converges at
least to a local minimum, regardless of how close the initial value is to the true solu-
tion, is necessary. Secondly, practitioners prefer optimization techniques that exhibit
a rapid convergence speed. Therefore, we equipped our proposed method with a step
control mechanism that takes the largest step size at each iteration, rather than using
a constant step size. To further improve the convergence speed and render it locally
quadratic, our proposed method transitions from the step-controlled gradient descent
to the Newton’s method once the objective becomes locally convex, which typically
happens in a vicinity of a local minimum. This switch mechanism is implemented as to
adapt to local convexity of the objective in the interior of the feasible set and ensure
a generalized form of Armijo’s condition remains true. Intuitively, at every iteration,
our optimization method checks if the eigenvalues of the objective’s Hessian matrix
are all positive and satisfy appropriate smallness/largeness constraints. In this case, a
full Newton step is made provided the iteration does not escape the feasible set. If any
of the previous checks fail, the usual projected gradient descent with Armijo’s rule is
performed instead. This typically happens either when the objective becomes locally
non-convex or if the minimum is attained at the boundary of the feasible set. Being
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both theoretically justified (viz. Section 4) and extensively tested empirically (viz. Sec-
tion 5), our new hybrid method (viz. Algorithm 4.1) offers an excellent alternative to
conventional optimization techniques used in statistics.

The rest of the paper is structured as follows. Section 2 gives a summary of theo-
retical properties of the MDPD estimator. Section 3 provides an overview of robust
statistical inference about the location and scale parameters via robustified test statis-
tics, including rejection regions, p-values and robust confidence intervals. In Section 4,
our proposed optimization method is presented and protocoled along with appropri-
ate theoretical results. An empirical run-time analysis of our proposed method using
simulated data, with and without contamination, is provided in Section 5. Also, the
empirical convergence rate of our proposed method as well as the empirical break-
down point of the MDPD estimator are analyzed and reported. Additionally, three
families of contaminated models are considered to benchmark the performance of our
proposed method against several state-of-the-art competitors. Section 6 presents an
application example of our proposed otpimization method in the context of analyzing
and forecasting monthly chlamydia case numbers in El Paso, Texas, USA.

2. Theoretical Properties of the MDPD Estimator

Suppose the data x1,x2, . . . ,xn are independently sampled from a common population
with a cumulative distribution function G(x) and a propability density function g(x),
not necessarily belonging to the family

{

f(·|θ̃)
}

θ̃∈Θ
. Further, suppose

θ = arg min
θ̃∈Θ

dα
(

g, f(·|θ̃)
)

for some α ≥ 0

exists uniquely. In case g(·) belongs to the family
{

f(·|θ̃)
}

θ̃∈Θ
, one trivially has g(·) =

f(·|θ). Introducing the score function u(x|θ̃) := ∂ log f(x|θ̃)/∂θ̃, Basu and Lindsay
(1994) derived the estimating equations

Un(θ̃) ≡
1

n

n
∑

i=1

u(xi|θ̃)fα(x|θ)−
∫

Rp

u(x|θ̃)f1+α(x|θ̃)dx = 0 (5)

for the MDPD estimator. Interpreting θ̂
n

MDPD as an M-estimator, the following asymp-
totic consistency and normality result was further established.

Theorem 2.1 ((Basu and Lindsay, 1994, Theorem 2)). Under appropriate conditions,

the estimator θ̂
n

MDPD is well-defined. Further, as n→ ∞,

(i) θ̂
n

MDPD is a consistent estimator of θ,

(ii) n1/2
(

θ̂
n

MDPD − θ
) D→ Np(0,J

−1KJ), where

J =

∫

Rp

(

u(x|θ)⊗ u(x|θ)
)

f1+α(x|θ)dx

+

∫

Rp

(

i(x|θ)− αu(x|θ)⊗ u(x|θ)
)(

g(x)− f(x|θ)
)

fα(x|θ)dx,

K =

∫

Rp

(

u(x|θ)⊗ u(x|θ)
)

f2α(x|θ)g(x)dx− ξ ⊗ ξ
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with ξ =
∫

Rp u(x|θ)fα(x|θ)g(x)dx and the information function

i(x|θ̃) := −∂u(x|θ̃)/∂θ̃.

Basu and Lindsay (1994) also derived the influence function of the MDPD estimator
and discussed sufficient conditions for it to be bounded. It was further shown that the
estimator is equivariant with respect to reparametrization. For α > 0, the estimator
is also invariant under non-singular affine-linear transformations of the data.

Since we chose the univariate Gaussian model to illustrate our proposed hybrid
optimization method, the rest of this section presents a discussion of MDPD estimation
of univariate Gaussian location and scale parameters. Consider the univariate Gaussian
location-scale family

(

f(x|µ̃, σ̃)
)

(µ̃,σ̃)∈Θ
consisting of univariate probability densities

f(x|µ̃, σ̃) = 1

σ̃
√
2π

exp
(

− (x− µ̃)2

2σ̃2

)

for x ∈ R and (µ̃, σ̃) ∈ Θ

with Θ :=
{

θ̃ ≡ (µ̃, σ̃) ∈ R2 | σ̃ > 0
}

. In this case, performing an obvious substitution
to evaluate the first integral in Equation (3), the density power divergence function
can be explicitly expressed as

Hn(µ̃, σ̃) = ψα(σ̃)−
(

1 +
1

α

)

n−1
n
∑

i=1

fα(xi|µ̃, σ̃) (6)

where ψα(σ̃) = cασ̃
−α with cα := (2π)−α/2(1 + α)−1/2.

See Supplemental Section S1.1 for gradient vector and Hessian matrix of Hn.
Evaluating the integrals in Theorem 2.1, Basu and Lindsay (1994) obtained the fol-

lowing asymptotic normality and efficiency results for the univariate Gaussian location
and scale MDPD estimators:

n1/2
(

µ̂MDPD
n − µ

) D→ N
(

0,
(

1 +
α2

1 + 2α

)3/2
σ2

)

, (7)

n1/2
(

σ̂MDPD
n − σ

) D→ N
(

0,
(1 + α)2

(2 + α2)2

{2(1 + α)3(1 + 2α2)

(1 + 2α)5/2
− α2

}

σ2
)

(8)

as n → ∞. Equations (7)–(8) allow for a Wald-style asymptotic inference theory for
µ̂MDPD
n and σ̂MDPD

n presented in Section 3 below.
Basu and Lindsay (1994) investigated the gross-error breakdown point of the MPDP

estimator for univariate Gaussian location and scale parameters under what is referred
to as “point” contamination. For the density g(x) of a N (µ, σ2) random variable and
some ε > 0, they considered the contaminated model

q(x) = (1− ε)g(x) + εδx0
(x) (9)

with a point contamination supported at some x0 ∈ R, where δx0
(x) denotes Dirac’s

delta-“function.” Note that δx0
(x) is a generalized function (i.e., a continuous func-

tional) and not an actual integrable function. Nonetheless, since positive powers of
Gaussian densities are elements of Schwartz space S(R) of rapidly decaying smooth
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functions, the integrals in Equation (1) can be continuously extended to accommodate
for Dirac’s δx0

(x).
According to Hampel et al. (1986), the breakdown occurs if the location estimate

goes to infinity and/or the scale estimate goes to 0 or positive infinity as |x0| → ∞.
Following this definition and assuming the model in Equation (9), the asymptotic
breakdown of the MDPD estimator was shown to occur if

ε > α/(1 + α)3/2 for any α > 0 (10)

with the maximum of 2/(3
√
3) ≈ 0.385 attained at α∗ = 2. No results about other

types of contaminations (such as cluster or “radial” contamination) are presently
known in the literature and require future investigation.

The maximal breakdown point in Equation (10) (which can be attained at the
price of reduced efficiency) exceeds that of classical estimators such as winsorized
mean and standard deviation. Other comptetitors such as the univariate version of the
MCD estimator (Rousseeuw, 1984) can attain the “optimal” asymptotic breakdown
point of 50%. Nonetheless, when adjusting MDPD and MCD for equal breakdown
points up to 38.5%, our simulations in Section 5 show that the efficiency of MDPD
estimators (of both location and scale) is typically significantly higher than that of
“raw” (unreweighted) MCD across all sample sizes which futher legitimizes practical
applicability of MDPD.

3. Robust One-Sample Statistical Inference

We present a concise summary of robust inference theory based on the MDPD estima-
tors subsequently used in empirical estimation of breakdown point in Section 5.3 and
real-world example in Section 6. Consider a sample x1, x2, . . . , xn from a univariate
normal population with some unknown location parameter µ and scale parameter σ,
possibly containing a certain fraction ε of outlers. Let µ̂MDPD and σ̂MDPD be the MDPD
location and scale estimates, respectively, computed from the data x1, x2, . . . , xn.

3.1. Robust Inference About the Location Parameter

The usual two-sided hypothesis testing framework for the location parameter µ is

H0 : µ = µ0 vs. Ha : µ ̸= µ0

for some given null-value of the location parameter µ0. Since the normality assumption
can be severely compromised due the presence of outliers, the power of usual z- and
t-tests can be rendered virtually zero. Therefore, instead of relying on conventional
test statistics, we consider the robust z-statistic

zrob =
µ̂MDPD − µ0

(

1 + α2

1+2α

)3/2
σ̂MDPD

n1/2

,

where the constant in the denominator is given by the asymptotic variance in Equa-

tion (7). Under the null hypothesis, zrob
d→ N (0, 1) as n→ ∞.
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Thus, for a test size γ ∈ (0, 1) of interest, the rejection region is given by

|zrob| > z1−γ/2 (11)

where z1−γ/2 is the (1 − γ/2)-quantile of a standard normal random variable z. (To
avoid confusion with the exponent α in the DPD function definition, we employ a less
common notation γ to denote the test size/type-I error.) The associated p-value is
computed as p = 2P

{

z > |ẑrob|
}

where ẑrob is the observed statistic. Similarly, the
two-sided asymptotic (1− γ)-confidence interval for µ is given by

µ̂MDPD ± z1− γ

2

(

1 +
α2

1 + 2α

)3/4
σ̂MDPD

n1/2
. (12)

The presence of outliers typically “shifts” the location estimate while inflating the scale
and causing skewness. MDPD estimators do not suffer from these type of assumption
violations rendering the interval in Equation (12) significantly tighter for contaminated
samples compared to non-robust counterparts.

3.2. Robust Inference About the Scale Parameter

The two-sided hypothesis testing framework for the scale parameter σ is given by

H0 : σ = σ0 vs. Ha : σ ̸= σ0

for some given null-value σ0. The robust χ2-like test statistic we consider is

d2rob =
σ̂2MDPD/σ

2
0

(1+α)2

(2+α2)2

{

(1+α)4(1+4α2)
(1+2α)3 − α2

}

1
n .

Under the null hypothesis, d2rob
d→ χ2

1 as n→ ∞.
For a prescribed test size γ ∈ (0, 1), the rejection region is given by

d2rob < χ2
1,γ/2 or d2rob > χ2

1,1−γ/2

where χ2
γ/2 and χ2

1,1−γ/2 are respective lower/upper quantiles of the χ2
1-distribution.

The respective p-value is

p = 2min
{

P
{

χ2
1 < d̂2rob

}

,P
{

χ2
1 > d̂2rob

}

}

(13)

whith he observed statistic d̂2rob. The two-sided asymptotic confidence interval for σ is

σ̂MDPD

n1/2

√

(1 + α)2

(2 + α2)2

{

(1 + α)4(1 + 4α2)

(1 + 2α)3
− α2

}

×
(

√

χ2
1,γ/2,

√

χ2
1,1−γ/2

)

. (14)

Similar to Equation (12), the confidence interval in Equation (14) is likely to be tighter
for contaminated data than the one obtained with conventional non-robust approach.
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4. New Hybrid Optimization Method

“The” gradient descent method (Hinze et al., 2008, Algorithm 2.1, p. 99) is a first-
order iterative optimization procedure that is used to compute or locate minima of a
scalar objective function. The method takes steps proportional to the negative gra-
dient (anti-gradient) of the function as the (locally) steepest descent direction. To
assure convergence, a typical gradient descent implementation without step control
takes “baby steps” of size k

k+1 in the descent direction at the k-th iteration which
may take a considerably long amount of time to achieve desired accuracy. To acceler-
ate convergence and enforce convex constraints, we employ the well-known projected
Armijo’s rule (Hinze et al., 2008, Algorithm 2.5, p. 107) which provides an effective
step selection mechanism. Plainly speaking, Armijo’s rule selects the largest step size
at each iteration as to guarantee a “uniformly linear” decay of the objective func-
tion which speeds up the convergence, while maintaining a monotonic decrease in the
objective, and reduces the amount of gradient function evaluations.

Whereas gradient descent with Armijo’s rule proves efficacious at initial stages (also
due to potentially compromised regularity in a vicinity of the boundary making higher-
order methods pointless), the convergence speed can be significantly improved if a
second-order method is applied in a vicinity of a (convex) local minimum. To this
end, we developed a new hybrid optimization scheme involving both gradient descent
with step control and Newton’s method. The procedure starts with gradient descent
and then switches to Newton’s method – provided the Hessian matrix remains uni-
formly convex and the induced sequence in the feasible set starts exhibiting numerical
“Cauchy convergence.” Based on simulations reported later in this section, this hybrid
procedure takes significantly less time to run compared to the gradient descent with
Armijo’s rule as baseline.

We first formulate a general version of the proposed method as Algorithm 4.1 and
prove a global convergence Theorem 4.2. Adopting the usual terminology in numerical
optimization, when referring to a globally convergent scheme, we mean the ability to
converge to a stationary point from any warmstart, but not necessarily to a global
minimum. We later apply this general result to the univariate Gaussian DPD function
Hn(·) by verifying the conditions of Theorem 4.2. Based on simulation results reported
in Section 5, the local minimum our algorithm converges to is either a global minimum
or is located remarkably close to the former, as measured by the empirical breakdown
point and mean square error. In contrast to the convential approach used in robust
statistics that involves sampling of multiple warmstarms, a single warmstart originat-
ing from nonrobust estimation (sample mean and standard deviation in this case) was
employed to illustrate the power of the proposed approach. If more robust “pivot” es-
timators (such as sample median and σ̂Qn

-estimator of Rousseeuw and Croux (1993))
are employed, the runtime can further be reduced.

Being local optimization methods, the projected gradient descent algorithm, New-
ton’s method and our proposed hybrid optimization scheme do not necessarily converge
to the global minimum. This naturally holds for other state-of-the-art “gradient-based”
competitors such as interior point, sequential quadratic programming (SQP) and ac-
tive set methods implemented in the fmincon function of Matlab➤. Despite this
“shortcoming,” local optimization methods, most notably expectation maximization
(EM)-type techniques, are still among the most commonly used ones in computational
statistics for a variety of reasons. On the one hand, in many situations, global optimiza-
tions algorithms are known to be at least NP-hard as the number of variables increases
making them computationally prohibitive. See, e.g., Bernholt and Fischer (2004) for
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multivariate MCD estimator of Rousseeuw (1984). On the other hand, rigorous large-
sample theories can be established for estimators computed as local minimizers of
non-convex objectives (see, e.g., (McLachlan and Peel, 2000, Chapter 2) for Gaus-
sian mixtures) so that “good” local minimizers are sufficient for both theoretical and
practical purposes.

Let H be a Hilbert space endowed with some inner product ⟨·, ·⟩H. Typically, H is
chosen isomorphically isometric (or identical) to Rm endowed with the usual Euclidean
norm (Johnson and Wichern, 2007, Section 5.3). Let Θ ⊂ H denote the parameter set.
Usually, Θ is an open, convex set, e.g., Θ :=

{

θ̃ ≡ (µ̃, σ̃) ∈ R2 | σ̃ > 0
}

for robust uni-

variate Gaussian estimation. Given a sample x1, . . . ,xn, letHn(θ) ≡ Hn(θ|x1, . . . ,xn
)

denote a smooth objective function (viz. DPD function in our paper). Select a closed,
convex set Θn ⊂ Θ (which may vary from sample to sample) such that all local min-
ima are (likely) contained in Θn. Such choice is possible for robust univariate Gaussian
parameter estimation on the strength of Theorem 4.3. Following (Hinze et al., 2008,
p. 67), we further define the orthogonal projector

ΠΘn
: H → Θn, θ̃ 7→ argmin

˜̃
θ∈Θn

∥θ̃ − ˜̃
θ∥H. (15)

According to Hinze et al. (2008), θ∗ ∈ Θn is a local minimizer of Hn : Θn ⊂ H → R if
and only if

ϵ(θ∗) = 0 with ϵ(θ̃) := θ̃ −ΠΘn

(

θ̃ −∇Hn(θ̃)
)

. (16)

We are now in position to state our proposed hybrid algorithm.

Algorithm 4.1. Let ε > 0, γ > 0 and ϑ > 0 be chosen small. e.g., ε := 10−8,
γ := 10−4, and ϑ := 10−6.

0. Choose θ(0) ∈ Θn.

For k = 0, 1, 2, 3, . . . , iterate the steps:

(1) Compute the Hessian matrix H(k) := ∇2Hn(θ
(k)). If

λmin

(

H(k)
)

≥ ϑ and λmax

(

H(k)
)

≤ 1/ϑ,

compute the (undamped) Newton’s descent direction

dNk = −
(

H(k)
)−1∇Hn(θ

k).

(2) If ΠΘn
(θ(k) + dNk ) = θ(k) + dNk (or, equivalently, θ(k) + dNk ∈ Θn)

λmin

(

H(k)
)

≥ ϑ, λmax

(

H(k)
)

≤ 1/ϑ and

Hn

(

θ(k) + dNk
)

−Hn

(

θ(k)
)

≤ −ϑ
∥

∥∇Hn(θ
(k))

∥

∥

2

H
,

update θ(k+1) := θ(k) + dNk . Otherwise,

(a) Compute the alternative descent direction dGk = −∇Hn(θ
(k)).
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(b) Choose the largest step size sk ∈
{

1, 12 ,
1
4 , . . .

}

, for which

Hn

(

θ(k) + skd
(k)
G

)

−Hn

(

θ(k)
)

≤ − γ

sk

∥

∥ΠΘn

(

θ(k) + skd
(k)
G

)

− θ(k)
∥

∥

2

H
.

(c) Update θ(k+1) := ΠΘn

(

θ(k) + skd
G
k

)

.

(3) Practically, the algorithm is terminated as soon as

Hn

(

θ(k+1))−Hn

(

θ(k)
)

< ε or ∥θ(k+1) − θ(k)∥H < ε.

The warmstart θ(0) can be obtained with another robust or non-robust pivot estima-
tor of choice. We explored both options. See Section 5 for details. The convergence of
Algorithm 4.1 in given in Theorem 4.2 below. See proof in Supplemental Section S1.2.

Theorem 4.2. Let Θn ⊂ Θ ̸= ∅ be an open set and let Hn : Θ ⊂ H → R be

a) twice continuously (Fréchet-)differentiable in Θ,
b) bounded from below over Θn and
c) possess a Lipschitz continuous gradient ∇Hn over Θn i.e., for some L > 0

∥

∥∇Hn(θ1)−∇Hn(θ2)
∥

∥

H
≤ L∥θ1 − θ2∥H for any θ1,θ2 ∈ Θ.

For any sequence (θ(k))k∈N ⊂ Θn generated by Algorithm 4.1, the following holds true:

(1) The method is globally convergent for any choice of the “warmstart” θ(0), i.e.,

ε(θ(k)) → 0 as k → ∞.

(2) If the sequence (θ(k))k∈N converges to some internal point θ∗ ∈ Θn such that

λmin

(

∇2Hn(θ
∗)
)

≥ 2ϑ and λmax

(

∇2Hn(θ
∗)
)

≤ 1/(2ϑ),

then there exists k0 ∈ N so that Algorithm 4.1 switches to the usual Newton’s
method for k ≥ k0 and the superlinear convergence holds

∥θ(k+1) − θ∗∥H = o
(

∥θ(k) − θ∗∥H
)

as k0 ≤ k → ∞.

If additionally ∇2Hn(·) is Lipschitzian, the convergence becomes quadratic

∥θ(k+1) − θ∗∥H = O
(

∥θ(k) − θ∗∥2H
)

as k0 ≤ k → ∞.

We turn now to the DPD function (viz. Equation (6)) in the univariate Gaussian
case. In this situation, H := R2 and Θ := R× (0,∞). We select

Θn :=
{

(µ̃, σ̃) ∈ R2 | σ̃ ≥ σ̃n
}

for some small σ̃n = σ̃n(x1, . . . , xn) > 0. (17)

The orthogonal projector ΠΘn
: H → Θn (cf. Equation (15)) reads then as

ΠΘn
: (µ̃, σ̃) 7→

(

µ̃n,max{σ̃n, σ̃n}
)

.

The threshold σ̃n should be selected sufficiently small. We use σ̃n = 10−20 in our
simulations reported in Section 5. Practically, this choice can be assessed (and if nec-
essary adjusted a posteriori): unless the iteration in Algorithm 4.1 converges at some
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θ∗ = (µ∗, σ∗) with σ∗ = σ̃n, the threshold σ̃n was likely chosen sufficiently small. On
the strength of Theorem 4.3 below conditions a)–c) of Theorem 4.2 are satisfied im-
plying our hybrid Algorithm 4.1 is applicable. See proof in Supplemental Section S1.3.

Theorem 4.3. The univariate Gaussian DPD function Hn(·) in Equation (6) satisfies
the conditions of Theorem 4.2.

5. Simulation and Comparisons

The goals of this section are two-fold. First, we compare the runtime of our new
hybrid Algorithm 4.1 with that of the “usual” gradient descent with Armijo’s rule
to show a speed-up of up to 10 times (cf. Section 5.1). Next, we empirically verify
the n−1/2-convergence rate and empirical breakdown point of the resulting algorith-
mic implementation of the MDPD estimator. As pointed out by some authors (see,
e.g., Hawkins and Olive (2002)), algorithmic implementations of “brand-name” robust
estimators can exhibit severe departures from their theoretical counterparts so that
various desirable statistical properties theoretically established for the latter may fail
to be true for the numerical algorithm implementing respective estimators. In this
sense, the algorithmic implementation and not its theoretical prototype is the esti-
mator. Sections 5.2 and 5.3 demonstrate that the MDPD implementation based on
Algorithm 4.1 “inherits” the aforementioned theoretical properties. Finally, in Sec-
tion 5.2 we compare the empirical MSE of the algorithmic MDPD with that of the
univariate “raw” (i.e., unreweighted) MCD estimator ruling in favor of the former.

We implemented Algorithm 4.1 in Matlab➤. The set of codes are provided in
Supplement. For the MCD estimator of Rousseeuw (1984), we used the algorithmic
implementation provided in the FSDA toolbox (Riani et al., 2012) in Matlab➤. For
fairness reasons, only the raw (unreweighted) MCD was used for comparisons reported
throughout this section. (Iterative) reweighting is generally known to increase the
efficiency of robust estimators. It was successfully applied to boost the performance of
the MCD estimator and can also be adopted for the MDPD estimator. This is beyond
the scope of the present work and will be part of future investigations.

5.1. Run-Time Analysis

We considered the following uncontaminated and contaminated scenarios:

1) clean (uncontaminated) standard Gaussian data: xi
i.i.d.∼ N (0, 1),

2) standard Gaussian data subject to a point contamination of size ε > 0 concen-
trated at x0 = 300 (cf. Equation (9)):

xi
i.i.d.∼ N (0, 1) for i = 1, . . . , ⌈(1−ε)n⌉, xi

i.i.d.∼ δx0
for i = ⌊εn⌋+1, . . . , n. (18)

Throughout this subsection, we used α = 0.5 in the definition of the MDPD estima-
tor. We also considered two sets of warmstarts for both algorithms: a non-robust one
given by sample mean and sample variance as well as a robust warmstart given by the
sample median and ˆIQR/1.349. To compare the runtime of Algorithm 4.1 (denoted
“GD/NM”) to that of the gradient descent method with Amijo’s step control (abbre-
viated as “GD”), we performed extensive simulations with 50,000 replications for the
first scenario (clean data) across various samples size (n = 50, 100, 500, 1,000, 5,000,
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Robust warmstart Non-robust warmstart
n MDPD (GD) MDPD (GD/NM) MDPD (GD) MDPD (GD/NM)

50 0.00074 (<1E-5) 0.00025 (<1E-5) 0.00070 (<1E-5) 0.00020 (<1E-5)
100 0.00080 (<1E-5) 0.00028 (<1E-5) 0.00076 (<1E-5) 0.00024 (<1E-5)
500 0.00383 (<1E-5) 0.00067 (<1E-5) 0.00364 (<1E-5) 0.00056 (<1E-5)

1,000 0.00470 (<1E-5) 0.00075 (<1E-5) 0.00454 (<1E-5) 0.00062 (<1E-5)
5,000 0.00711 (<1E-5) 0.00121 (<1E-5) 0.00678 (<1E-5) 0.00117 (<1E-5)

10,000 0.01564 (<1E-5) 0.00255 (<1E-5) 0.01512 (<1E-5) 0.00239 (<1E-5)
20,000 0.02059 (<1E-5) 0.00358 (<1E-5) 0.02000 (<1E-5) 0.00374 (<1E-5)
50,000 0.03559 (<1E-5) 0.00605 (<1E-5) 0.03496 (<1E-5) 0.00603 (<1E-5)

Table 1. Runtime (in seconds) for MDPD (GD) and hybrid MDPD (GD/NM) on uncontaminated data (with
N = 50,000 replications).

Robust warmstart Non robust warmstart

n MDPD(GD) MDPD(GD/NM) MDPD(GD) MDPD(GD/NM)

50 0.00122 (1E-5) 0.00041 (<1E-5) 14.83865 (0.25340) 12.81805 (0.05992)
100 0.00142 (1E-5) 0.00051 (<1E-5) 16.32262 (0.31518) 14.94859 (0.20328)
500 0.00791 (1E-5) 0.00141 (<1E-5) 80.82424 (0.27504) 37.97573 (0.29705)
1,000 0.01000 (1E-5) 0.00168 (<1E-5) 101.50674 (0.21162) 46.86788 (0.30575)
5,000 0.01658 (1E-5) 0.00308 (<1E-5) 169.16763 (0.43474) 92.81577 (0.38869)
10,000 0.03768 (1E-5) 0.00651 (<1E-5) 392.46923 (0.69275) 204.26582 (0.75015)

20,000 0.05216 (1E-5) 0.00980 (<1E-5) 538.58643 (0.59402) 307.16256 (0.89321)
50,000 0.09782 (3E-5) 0.01775 (0.00025) 989.95375 (2.68287) 555.75601 (0.99069)

Table 2. Average runtime and runtime standard deviation (in parentheses), both in seconds, for MDPD (GD)
and hybrid MDPD (GD/NM) applied to contaminated data (with N = 50,000 and N = 50 replications for

robust and non-robust warmstarts, respectively).

10,000, 20,000 and 50,000) for both non-robust and robust warmstarts (cf. Table 1).
For the second scenario (point contamination), we used N = 50,000 replications for
robust warmstarts and N = 50 replications for non-robust warmstarts due to sub-
stantially longer runtimes of GD (cf. Table 2). In view of this empirical evidence, it
can be seen from Tables 1 and 2 that GD/NM runs up to 10 times faster than GD
demonstrating the advantage of our proposed algorithmic MDPD implementation.
Thoughout the rest of this paper, the latter will be used in lieu of the usual gradient
descent (GD) method.

5.2. Empirical Convergence Rate

We analyzed the empirical convergence rate of the algorithmic MDPD estimator in
terms of empirical MSE decay rate, which is theoretically expected to be O(n−1)
(cf. Section 3). The MCD estimator, being probably one of the toughest robust com-
petitors, was used as reference in all simulations. To ensure adequate comparison, we
matched nominal breakdown points (abbreviated as “bdp” in tables below) for both
estimators using the asymptotic Equation (10) to express the breakdown point of the
MDPD estimator for given α.

We performed a Monte Carlo simulation by drawing N = 1,000,000 univariate stan-
dard Gaussian samples (“clean” data) of size n = 30, 50, 100, 200, 300, 400. We intro-
duced outlying values into randomly generated datasets to evaluate the performance of
the estimators. For each sample, we computed the MDPD and MCD estimates µ̂MDPD,
σ̂MDPD (using robust warmstarts) with α = 0.1, 0.25, 0.5, 0.75, 1.0 and µ̂MCD, σ̂MCD

adjusted to have identical breakdown points across all α’s considered. Averaging over
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N replications, we obtained the empirical MSE values

ˆMSE(µ̂MDPD) =
1

N

N
∑

i=1

µ̂2MDPD,i,
ˆMSE(µ̂MCD) =

1

N

N
∑

i=1

µ̂2MCD,i,

ˆMSE(σ̂MDPD) =
1

N

N
∑

i=1

(

log(σ̂MDPD,i)
)2
, ˆMSE(σ̂MCD) =

1

N

N
∑

i=1

(

log(σ̂MCD,i)
)2
,

where µ̂i and σ̂i denote respective estimates obtained from the i-th sample. The nat-
ural logarithm was applied to tranform scale estimators in order to account for the
Riemannian nature of the variance space (Pourahmadi, 2013). Regression lines were
fitted using ordinary least squares for each of the models

log
(

ˆMSE(θ̂)
)

= β0,θ̂ + β1,θ̂ log(n) + ε,

with θ being µ̂MDPD, σ̂MDPD, µ̂MCD or σ̂MCD. The slope β1,θ corresponds to estimated

convergence rate of respective estimator θ̂.
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(a) µ̂MDPD vs. µ̂MCD
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(b) σ̂MDPD vs. σ̂MCD

Figure 1. Empirical MSE vs. sample size n in log-log-coordinates.

Figure 1 displays the empirical MSE vs sample size n for respective location (panel
(a)) and scale estimators (panel (b)) in the log-log-coordinates for α = 0.5 (nominal
breakdown point of 0.272). Table 1 documents estimated convergence rates for selected
values of α.

MDPD MCD
Robust warmstart Non-robust warmstart Robust warmstart Non-robust warmstart

α Nominal bdp β̂0µ̂ β̂1µ̂ β̂0µ̂ β̂1µ̂ β̂0µ̂ β̂1µ̂ β̂0µ̂ β̂1µ̂
0.10 0.087 0.0051 -0.9985 0.0051 -0.9985 0.4294 -0.9863 0.4294 -0.9863
0.25 0.179 0.0528 -0.9987 0.0528 -0.9987 0.6785 -0.9566 0.6785 -0.9566
0.50 0.272 0.1834 -1.0012 0.1834 -1.0012 0.7709 -0.8986 0.7709 -0.8986
0.75 0.324 0.3293 -1.0043 0.3293 -1.0043 0.8842 -0.8786 0.8842 -0.8786
1.00 0.354 0.4660 -1.0058 0.4660 -1.0058 0.7473 -0.8292 0.7473 -0.8292

Table 3. Estimated convergence rates for both methods applied to location estimation with matched nominal
breakdown point values for various α’s.

For two estimators with identical convergence rates β1, the one with a smaller β0
value has higher relative efficiency. Refer to Table 3 and Table 4. As expected, all esti-
mated slopes are close to −1 confirming theoretical n−1/2-convergence (in root-MSE)
of respective estimators. At the same time, the estimated intercepts for the MDPD
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MDPD MCD
Robust warmstart Non-robust warmstart Robust warmstart Non-robust warmstart

α Nominal bdp β̂0σ̂ β̂1σ̂ β̂0σ̂ β̂1σ̂ β̂0σ̂ β̂1σ̂ β̂0σ̂ β̂1σ̂
0.10 0.087 -0.43640 -1.03912 -0.43640 -1.039120 1.07914 -1.0288 1.07914 -1.02880
0.25 0.179 -0.32901 -1.04148 -0.32901 -1.04148 1.26577 -1.02650 1.26577 -1.02650
0.50 0.272 0.01571 -1.06732 0.01533 -1.06725 1.36584 -1.00766 1.36584 -1.00766
0.75 0.324 0.35483 -1.09579 0.35456 -1.09574 1.47279 -1.00689 1.47279 -1.00689
1.00 0.354 0.60271 -1.11609 0.60279 -1.11611 1.41822 -0.98520 1.41822 -0.98520

Table 4. Estimated convergence rates for both methods applied to scale estimation with matched nominal
breakdown point values for various α’s.

estimator are typically smaller than their counterparts from the MCD estimator im-
plying higher relative efficiency of the former. The efficiency of both estimator pairs
can be graphically compared using Figure S(3) and Figure S(4) in the Supplement.
The latter display boxplots for empirical MSE values for both location estimators
(Supplemental Figure S(3)) and scale estimators (Supplemental Figure S(4)). In most
cases, it can be observed the boxplots for the MDPD estimator are contained in those
for the MCD estimator suggesting advantage of MPDP over MCD.

5.3. Empirical Breakdown Point

Plainly speaking, the breakdown point of an estimator is defined as the maximal
proportion of “bad” points an estimator can handle before it becomes uninformative
due to bias “explosion.” Since algorithmic implementations of robust estimators can
oftentimes exhibit suboptimal breakdown points, our goal is to empirically verify the
nominal breakdown point. Again, the MDPD estimator will be compared side-by-
side with the MCD estimator with the same nominal breakdown point. To alleviate
undue advantages of the MDPD estimator, (non-robust) sample mean and sample
standard deviation were used as a warmstart for Algorithm 4.1. We arbitrarily chose
α = 0.5 and used Equation (10) to compute the asymptotic breakdown point of DPD

as 0.5/((1 + 0.5)
3

2 ) = 0.272.
Motivated by the theoretical definition of breakdown, we declare a location estimator

µ̂ or a scale estimator σ̂ of population parameters µ and σ to breakdown if

|µ̂− µ| ≤ kσ or (1/k) ≤ |σ̂/σ| ≤ k (19)

fails for some large k, respectively. We chose k = 10 in our simulations. Due to affine
equivariance, we let µ = 0, σ = 1.

µ̂n σ̂n
n Nominal bdp MCD MDPD MCD MDPD

30 8 9 10 9 10
50 13 15 16 15 16
100 27 28 31 28 31
200 54 56 61 55 61
300 81 85 91 83 91

400 108 112 121 110 121

Table 5. Empirical breakdown point comparisons.

For this simulation, a total of N = 5,000 standard normal samples of different
sizes n = 30, 50, 100, 200, 300, 400 were drawn. “Bad” points were then introduced to
each sample under the point contamination model (viz. Equation (18)). Both DPD
(with α = 0.5) and MCD (with a nominal breakdown point of 0.272) estimators to
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estimate the mean and the standard deviation for each sample. If for a given number of
outliers 0.1% or more estimates failed to satisfy the empirical no-breakdown condition
in Equation (19), the estimator was declared to breakdown in respective situation.
The results are displayed in Table 5. See also Supplemental Figure S(5). In sum, both
estimators pairs empirically performed close to their theoretically predicted behavior
with MDPD allowing for more outliers before breakdown occurs as compared to MCD.

5.4. Additional Comparisons

We present additional simulation studies to benchmark the performance of our hybrid
algorithm against that of projected gradient descent (GD), Newton’s method and the
three state-of-the-art local optimizers (i.e., interior point, SQP and active set methods)
from the fmincon routine of Matlab➤. In Section 5.4.1 below, we report extensive
simulations for three contaminated statistical models where the global minimizer is
unknown so that the average objective value is the sole metric available. In contrast, in
Sections 5.4.2 and 5.4.3, Rosenbrock’s banana and Mishra’s bird functions with known
global minima are considered allowing for evaluating global convergence properties.
As expected, unless the problem is convex, no convergence to global minimum can be
guaranteed in general.

5.4.1. Gaussian, Laplace and Exponential Contaminated Models

Consider three families of contaminated models:

(I): (1− ε)N (0, 1) + ε1N (−
√
50, ψ2) + ε2N (

√
50, ψ2) + ε3N (

√
100, ψ2),

(II): (1− ε)Laplace(0, 1) + ε1Laplace(−
√
50, ψ)

+ε2Laplace(
√
50, ψ) + ε3Laplace(

√
100, ψ),

(III): (1− ε)Exp(1) +
(

50 + ε1Exp(1/0.02) + ε2Exp(1/0.05) + ε3Exp(1/0.1)
)

,

where ε = 0.2, 0.3, ψ = 0.1, 3.0 and ε1, ε2, ε3 are randomly selected non-negative
numbers summing up to ε. The number 50 in (III) shifts the mean of the three latter
exponential distributions by 50 to the right. Models (I), (II) and (III) correspond to
standard Gaussian, Laplace and exponential “bulks” contaminated by three clusters
of distant outliers. While Gaussian and exponential distributions have smooth density
functions and, thus, are allowed by our convergence theory, the Laplace density is
not differentiable at the origin, yet semismooth. Therefore, the generalized gradient
was considered instead. Our hybrid optimization method worked properly despite this
assumption violation.

Selecting α = 0.25, 0.5, 0.75, in each of these scenarios, we generated 50,000 inde-
pendent samples of size n = 50, 100, 200, 300, 500 from respective model and compared
the performance of our hybrid optimization method to the aforementioned competi-
tors in terms of the Hn objective value at respective numerical (local) minimum using
usual MLE estimators as warmstarts. The active set method was excluded for the con-
taminated Laplace model since the routine produced sporadic exceptions and failed
to converge (probably, due to semismoothness of Laplace density). Sample means and
standard deviations were recorded. A total of 12 + 12 + 6 = 30 tables were obtained.
See Supplemental Sections S3.1, S3.2 and S3.3. One of these supplemental tables,
namely Supplemental Table S3.1.3, is reproduced below as Table 6. Analyzing esti-
mated average objective function values, our hybrid optimization algorithm performed
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head-to-head with projected GD, interior point, SQP and active set methods across
all scenarios considered, while Newton’s method performed worst.

Method n = 50 n = 100 n = 200 n = 300 n = 500

Hybrid -0.3405 (0.0314) -0.3362 (0.0216) -0.3342 (0.0149) -0.3336 (0.0121) -0.3332 (0.0094)
NM -0.2102 (0.0026) -0.2127 (0.0020) -0.2147 (0.0014) -0.2137 (0.0011) -0.2142 (0.0009)
GM -0.3405 (0.0314) -0.3362 (0.0216) -0.3342 (0.0149) -0.3336 (0.0121) -0.3332 (0.0094)
fmcIP -0.3405 (0.0314) -0.3362 (0.0216) -0.3342 (0.0149) -0.3336 (0.0121) -0.3332 (0.0094)
fmcSQP -0.3405 (0.0314) -0.3362 (0.0216) -0.3342 (0.0149) -0.3336 (0.0121) -0.3332 (0.0094)
fmcAS -0.3405 (0.0314) -0.3362 (0.0216) -0.3342 (0.0149) -0.3336 (0.0121) -0.3332 (0.0094)

Table 6. Hn objective estimated averages and standard deviations (in parentheses) with α = 0.75, ε = 0.20
and ψ = 0.10

5.4.2. Rosenbrock’s Banana Function

As a test example, we considered the “banana function” of Rosenbrock (1960)

f(x, y) = (a− x)2 + b(y − x2)2 with a = 1, b = 100.

The function attains a unique global minimum of 0 over (x, y) ∈ R2 at (1, 1), but has a

Method Avg Hn Std Hn Convergence %

Hybrid 0 0 100
NM 0.0074 0.58 99.98

GD 0.16 8.99 99.92

fmcIP 1.81 49.70 99.85
fmcSQP 1271.23 9818.66 7.60
fmcAS 360.59 5787.10 25.78

Table 7. Estimated mean and standard deviations of Hn along with convergence percentages

parabolic flat “valley” making the minimization problem challenging for non-adaptive
optimization techniques. Based on 50,000 replications with random warmstarts (uni-
form over [−50, 50]2), Table 7 reports estimated average and standard deviation values
along with percentages of cases for respective estimators to converge to the (global)
minimum. The first four methods performed very well with respect to all metrics with
the hybrid method exhibiting perfect performance.

5.4.3. Mishra’s Bird Problem

The constrained optimization problem of Mishra (2006) reads as

f(x, y) → min over (x, y) with (x+ 5)2 + (y + 5)2 ≤ 25,−10 ≤ x ≤ 0,−6.5 ≤ y ≤ 0

where f(x, y) = sin (y) exp (1− cos (x))2 + cos (x) exp (1− sin (y))2 + (x − y)2. Pos-

Method Avg Hn Std Hn Convergence %

Hybrid -41.48 47.55 34.63

NM 1.81 24.96 1.96

GD -43.85 47.57 36.12
fmcIP -46.54 51.04 41.44
fmcSQP -41.88 49.47 36.52
fmcAS -40.91 49.64 36.01

Table 8. Estimated mean and standard deviations of Hn along with percentages of convergence to global

mininum
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sessing multiple local minima, the function attains a global minimum at (x∗, y∗) ≈
(−3.1302468,−1.5821422) with f(x∗, y∗) ≈ −106.7645367. Based on 50,000 replica-
tions with random warmstarts (uniform over [−10, 0]2), Table 8 reports estimated
average and standard deviation values along with percentages of cases for respective
estimators to converge to the (global) minimum. All methods perform fairly poorly
with Newton’s method exhibiting the worst performance. In sum, as expected, none of
the local optimizers considered, including our hybrid technique, is consistently able to
converge at global minimum. Nonetheless, in situations where the objective function
is nearly convex, as it is the case in Supplemental Figures S(1) and S(2) in the con-
text of DPD minimization, our hybrid scheme as well as other state-of-the-art local
optimization techniques are expected to converge to the global minimum.

6. Example

Our real-world data illustration is based on an excerpt from the notifiable conditions
report provided by the City of El Paso Department of Public Health (2021) containing
monthly records of the total number of new cases of various notifiable conditions in El
Paso, Texas (USA) starting from January 2004. All 2004–2017 records were manually
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Figure 2. Reported monthly new chlamydia cases from 2004 to 2017.

tabulated as part of a student research project supervised by the second author in 2018.
Focusing on Sexually Transmitted Diseases (STDs), we chose to analyze the recorded
chlamydia cases because the associated time series appeared to exhibit anomalous
peaks and the counts were sufficiently large to be treated as a continuous variable.
Figure 2 is a plot of monthly new chlamydia cases recorded during this time period
where the red circles show some “suspicious” peaks.

Figure 2 suggests the variability in the dataset changes across the recorded time
frame. As the number of chlamydia cases increase, volatility increases and vice versa.
To account for this (potential) heteroscedasticity, we chose to adopt the well-known
Geometric Brownian Motion (GBM) model given by stochastic differential equation

dS(t) = rS(t)dt+ σS(t)dW (t), S(0) = S0, (20)

where S0 is typically constant and
(

W (t)
)

t≥0
is a standard Wiener process. The scalar

parameters, r ∈ R and σ > 0, are referred to as drift and volatility, respectively.
Being probably the simplest heteroscedastic continuous-time model widely applied
in quantitative finance (Brigo et al., 2009), Equation (20) is well-suited for modeling
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continuous non-negative quantities as the solution process (verified using Itô’s calculus)

S(t) = S0 exp

{

(

r − 1

2
σ2

)

t+ σW (t)

}

(21)

(almost surely) remains positive as long as the initial value S0 is selected positive.
Our process dataset contains 14 years’ worth of montly observations adding up to

168 ordered data points. We used the first 12 years (144 observations) to calibrate
the model using three different sets of location/scale estimators (viz. MDPD, MCD
and usual) and performed a post hoc model diagnostic (Section 6.1), while the latter
2 years (24 observations) served for “backtesting” purposes to assess the performance
for each of the three methods in terms of empirical MSE (Section 6.2). The usual risk
neutrality requirements typical for financial forecasting are not relevant in our context.
Therefore, both estimation and prediction can be performed under the physical mea-
sure associated with the Wiener process

(

W (t)
)

t≥0
instead of the martingale measure

widely employed in quantitative finance (Matlsev and Pokojovy, 2021).

6.1. Model Calibration and Diagnostic Plots

Assume the process
(

S(t)
)

t≥0
following Equation (20) is observed over an equis-

paced discrete time grid {t0, t1, . . . , tn} with tk − tk−1 ≡ ∆t > 0. Introducing the
log-differences

x(tk) := ln(S(tk))− ln(S(tk−1)) =
(

r − 1

2
σ2

)

∆t+ σ
(

W (tk)−W (tk−1)
)

,

we conclude

x(tk)
i.i.d.∼ N

(

(∆t)
(

r − 1

2
σ2

)

, (∆t)σ2
)

. (22)

Letting µ̂x and σ̂x denote location and scale estimates obtained from x(tk)’s, e.g.,

x̄ and
√
s2 or their robust MDPD or MCD counterparts, Equation (22) implies

µ̂x = (∆t)
(

r̂ − 1

2
σ̂2

)

and σ̂2x = (∆t)σ̂2

or, solving for r̂ and σ̂, the drift and volatility can be estimated via

r̂ =
µ̂x
∆t

+
1

2

σ̂2x
∆t

and σ̂ =
σ̂x√
∆t

.

Estimates µ̂x σ̂x drift r̂ volatility σ̂

MDPD(α = 0.5) -0.0142 0.1986 0.0055 0.1986
MCD -0.0245 0.0391 -0.0237 0.0391
Usual 0.0043 0.2697 0.0407 0.2697

Table 9. GBM parameter estimation based on 10 years of monthly chlamydia data (∆t = 1 month). MCD
and MDPD are matched to both have the breakdown point of 0.272.

19



Applied to 2004–2015 chlamydia time series data (with ∆t = 1 month), Table 9 lists

respective estimates obtained with the usual sample mean x̄/standard deviation
√
s2,

MDPD(α = 0.5) and MCD(bdp = 0.272) estimators. To assess the quality of fit, we
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(a) Kernel density estimate for x(tk)’s
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(b) Robust Gaussian Q-Q-plot for x(tk)’s

Figure 3. Diagnostic plots based on log-differences x(tk) = log
(

S(tk)
)

− log
(

S(tk−1)
)

.

prepared robust diagnostic plots using the estimates obtained with MDPD(α = 0.5).
As can be seen from Figure 3(a), the distribution of the log-differences is nearly normal
with some outliers on both tails. Likewise, the robust normal Q-Q plot in Figure 3(b)
(based on µ̂x,MDPD and σ̂x,MDPD) exhibits a good quality of fit over the “bulk region.”
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Figure 4. Outlier detection plot.

We adopted a formal two-stage testing procedure akin to Fisher’s protected test
to detect outlying x(tk)’s. Applying MDPD(α = 0.5) estimation (to 2004–2015 data),

robust z-scores zk = x(tk)−µ̂x,MDPD

σ̂x,MDPD

were computed and plotted in Figure 4. Assuming

indepedence amongst z(tk)’s, a family-wise test of size 0.05 for the presence of outlier
was performed using the cut-off values ±z0.09751/n = ±3.57 with n = 144 − 1 = 143
(cf. (Jobe and Pokojovy, 2015, p. 1543)). Since the family-wise test was statistically
significant, the sample was declared to contain outliers, which were then detected on a
per-comparison basis using a cut-off values±z0.975 = ±1.96. This resulted in 13 outliers
detected in historic data and another four outliers in backtesting data suggesting the
importance of robust estimation in our scenario. In sum, the GBM model with robustly
estimated parameters appears to be an appropriate choice for analyzing our dataset.
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6.2. Forecasting Future Cases

Having estimated r and σ over a time horizon [t0, T ], Equation (21) can be used to
simulate future paths of

(

S(t)
)

t≥0
setting S0 = S(T ). For computational convenience,

the Wiener process
(

W (t)
)

t≥0
is typically replaced with a random walk. Thus, the

discrete (recurrent) form of Equation (21) reads as

S(tk) = S(tk−1) exp

{

(

r − 1

2
σ2

)

(∆t) + σ(∆t)1/2εk

}

, S(t0) = S0 (23)

where εk
i.i.d.∼ N (0, 1). Note that

(

logS(tk)
)

k≥0
is an AR(1) process. Using Equa-

tion (23) with µ and σ replaced by respective empirical estimates µ̂ and σ̂, both point
estimates (via mean, median or other quantiles) and prediction regions for future S(tk)
values can be obtained based on a Monte-Carlo simulation.
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(a) Five possible future paths (b) Pointwise 90% prediction region

Figure 5. Predicting new chlamydia cases over an 24-month time horizon based on MDPD(α = 0.5) estima-
tors computed from 144 historical observations

In addition to historic observation over the first 150 months, Figure 5(a) displays
five possible future realizations of

(

S(tk)
)

k≥0
, while Figure 5(b) shows the pointwise

(i.e., non-simultaneous) 90% prediction region (shaded) and the expected number of
future new chlamydia cases E

[

S(tk)
]

vs. time tk estimated based on a Monte-Carlo
simulation of size N = 50,000 with the parameters r and σ robustly estimated using
MDPD(α = 0.5). The “innovations” εk’s were generated as i.i.d. standard Gaussian,
i.e., under the physical measure. It can be seen that the actually observed numbers
of new chlamydia cases were mostly contained in the prediction region for the whole
duration of the 24-month backtesting period suggesting reliability of the forecast.
Additionally, the upper limit of the prediction region provides information about the
severity of the “worst-case” scenario under the GBM model employed.

Another important aspect is a comparison between the prediction quality mea-
sured in terms of MSE amongst the forecasts obtained with MDPD(α = 0.5),
MCD(bdp = 0.272) and usual sample mean/standard deviation. With Sobs(tk) denot-
ing the observed number of new chlamydia cases over the backtesting period comprised
by the latter 24 months, the empirical MSE at time tk is computed as

M̂SE
[

S(tk)
]

=
1

N

N
∑

i=1

(

S(i)(tk)− Sobs(tk)
)2
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Figure 6. Empirical MSE comparison amongst predictions obtained based MDPD, MCD and usual loca-
tion/scale estimators.

based on N = 50,000 independent Monte-Carlo replications S(i)(tk), i = 1, 2, . . . , N .
The empirical MSE curves associated with MDPD and MCD estimators displayed
in Figure 6 are head-to-head (with a slight advantage for the MCD curve) but lie
way below the MSE curve for the usual estimator indicating the importance of robust
estimation under possible violations of model assumptions in the context of forecasting
new chlamydia cases.

7. Conclusions

Location and scale estimators are an indispensable instrument in any statistical tool-
box. A variety of nonrobust and robust estimators are available for estimating pa-
rameters of univariate Gaussian data. Focusing on MDPD estimation, we developed
a new hybrid optimization algorithm for proved a global convergence property and
demonstrated how our algorithm can be adopted to put forth an empirically robust
implementation of the MDPD estimator. We compared it to the more prominent MCD
estimator and showed how the MDPD estimator has higher efficiency when matched
for the breakdown point. Using a real-world biomedical dataset, we illustrated how
MDPD estimator can be applied to calibration, diagnostic and forecasting of a GBM
model. Our future work will include extending our methodology to robust estimation
of multivariate Gaussian parameters without relying on robust warmstarts.
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