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ABSTRACT Hyperdimensional computing (HDC) is a computational paradigm that leverages the
mathematical properties of high-dimensional vector spaces to manipulate data as symbolic entities using
a set of neurally plausible operations. Although HDC has demonstrated remarkable success in cognitive
tasks, its potential in complex applications such as multi-label classificati has yet to be explored. In this
research paper, we introduce three approaches to multi-label classification that strike a balance between
computational efficiency and accuracy, based on the complexity of the problem. The first approach we
propose is Power Set HD, a transformation method that is ideal for small-scale multi-label classification
with label cardinality less than four and label set size less than ten. The second approach, One-vs-All HD, is
another transformation method that is suitable for slightly more complex tasks with higher label cardinality,
providing a better efficiency-accuracy trade-off over Power Set HD. However, due to the expensive linear
complexity scaling of One-vs-All HD, we propose a novel neural approach called TinyXML HD for extreme
scale tasks. This method learns hyperdimensional representations by decomposing the learning problem
into multiple sub-problems, which are solved neurally through gradient-based optimization. Importantly,
TinyXML HD fixes the output size of the model to the dimensionality of the hypervector, regardless of the
label size, thereby scaling only by a small constant when evaluated on datasets with extremely large label
spaces. Our approaches offer a valuable trade-off between computational efficiency and accuracy. We show
that our methods provide a speedup of 16-60x on state of the art datasets, while maintaining comparable
accuracy. Furthermore, our methods yield models that are 56x smaller on medium-scale tasks and up to
836x smaller on extreme-scale datasets, which is a significant reduction in model size while still achieving

high accuracy.

INDEX TERMS Hyperdimensional Computing, Multi-label classification, Deep Learning

l. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging
paradigm of computing that offers a promising alternative
to traditional machine learning approaches. In recent years,
HDC has garnered significant interest due to its low com-
putational overhead and hardware-friendly nature [1], [2].
HDC employs low-precision sparse representations and sim-
ple arithmetic operations to manipulate high-dimensional
vectors, making it amenable to hardware acceleration. The
independent and identically distributed (iid) nature of these
representations further enables efficient parallelization, lead-
ing to improved computational efficiency. There is a large
body of works showing benefits of HDC acceleration in hard-
ware for various applications in IoT [3]-[5] and Machine
Learning [6]-[8]. As a result, HDC has gained popularity in
various domains, including natural language processing [9],
[10], biomedical applications like DNA pattern matching
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[11] and protein alignment [12] and robotics [13]. Despite
its success, the applicability of HDC for complex tasks like
multi-label classification, which has real-world applications
in recommender systems and document classification, has not
been explored.

Our research presents the first comprehensive exploration
of multi-label learning problems utilizing HDC representa-
tions. We introduce three novel approaches that strike an opti-
mal balance between computational efficiency and accuracy.
Our first approach, Power Set HD, is a transformation method
that achieves exceptional accuracy and efficiency on datasets
with small label spaces and a limited subset of possible label
combinations. For small datasets with larger label cardinal-
ity (> 4), we propose One-vs-All HD, which reduces the
exponential complexity scaling of Power Set HD to a linear
scale on the label set size, making it ideal for datasets with
label sizes up to 30. In addition, we present TinyXML HD, a
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neural approach to learning mappings between hypervectors
by decomposing the problem into multiple sub-problems.
TinyXML HD fixes the output dimensionality of the model
independent of the label size or cardinality, making it an ideal
candidate for extreme multi-label classification problems.

HDC leverages neurally plausible representations of data
and associates abstract concepts with high-dimensional vec-
tors to perform complex cognitive tasks. The two funda-
mental operations of HDC are "bundling" and "binding"
[2]. Bundling (denoted by @) is used to represent multiple
symbolic entities (hypervectors) using a single hypervector,
while binding (denoted by ®) associates one entity with
another.

We leverage the Multiply Add Permute (MAP) archi-
tecture proposed by Gayler [14], which uses bipolar rep-
resentations for HDC. MAP represents data using high-
dimensional vectors X € {+1,—1}? called hypervectors.
Gayler demonstrated that by assigning hypervectors with a
conceptual meanin, we can represent conceptual relation-
ships using these operators. For example, the sentence "Yoda
is a Jedi and Leia is a princess" can be represented as
H = Yoda ® Jedi ® Leia ® princess. HDC also allows us
to query and reason about expressions. For instance, to find
who is a Jedi, using the inverse operator Jedi we can simply
compose H ® Jedi ~ Yoda, which results in a hypervector
that is approximately equal to Yoda.

Gradient-based neural methods have demonstrated
tremendous success in various learning tasks [15]. They
provide a systematic approach to finding the minima of a
function [16] and can be efficiently computed provided the
function is differentiable. The MAP framework uses element-
wise products or additions that are themselves differentiable,
however, the quantization step that follows is not differen-
tiable. There are other HDC models with fully differentiable
operations such as Holographic Reduced Representations
(HRR) [17] which have been studied by using a neural
gradient-based approach in the context of multi-label classifi-
cation like [18]. However, the HRR framework requires Fast
Fourier Transform (FFT) operations which increase com-
plexity. The MAP model in contrast, uses simple operations
that can be accelerated using efficient bit-wise operations.

In [18], the authors utilized symbolic hypervectors to
represent the labels and employed neural methods to learn
a mapping from the instance space to the label space. To
simplify the learning problem, we instead embedded both
inputs and labels in the same high-dimensional vector space,
which can be learned more easily than mapping across differ-
ent vector spaces [19]-[21]. This is because the model does
not need to learn complex transformations to map between
spaces, reducing the complexity of the learning problem.
After embedding inputs and labels as hypervectors in the
same vector space, TinyXML HD learns a mapping between
the two using a 1-D convolutional neural network designed
for processing hypervectors.

In this work we introduce three methods that show the
potential of HDC to solve multi-label classification problems
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across the entire spectrum of complexity - small, medium,
and large, as described below:

o The first approach, Powerset HD, is suitable for small-
scale multi-label classification, where each possible la-
bel combination is instantiated as a separate binary
learning problem, resulting in exponential scaling over
label size. This approach yields high-accuracy models
that scale well for datasets with a few label combina-
tions.

o The second approach, One-vs-All HD, is another trans-
formation method that relaxes the exponential scaling of
Powerset HD to linear scaling over label size, resulting
in models that are efficient and accurate for datasets with
a label set size of up to 30. Beyond this limit, the training
time increases significantly, making this method less
suitable.

o For extreme-scale multi-label problems, we propose
TinyXML HD, which utilizes a 1-D convolutional neu-
ral network to learn hypervector representations. By
having a fixed output dimensionality independent of the
label complexity, TinyXML HD achieves remarkable
speedups in training. However, due to the relatively ex-
pensive convolution operations, the first two approaches
provide a better trade-off between computational effi-
ciency and accuracy for smaller size datasets.

o Through rigorous evaluations on real-world datasets,
we demonstrate the superiority of our proposed meth-
ods. Powerset HD and One-vs-All HD offer up to
60x speedup on small-scale datasets, while TinyXML
HD is 56x smaller compared to the state-of-the-art
on medium-scale datasets and up to 836x smaller on
extreme-scale datasets, all while maintaining compara-
ble accuracy.

The rest of the article is organized as follows. We first re-
view related work in II, highlighting the differences between
our approach and existing methods. In section III, we provide
an overview of HDC helpful for understanding the rest of the
article. We split the problem into two variants: micro multi-
label classification and extreme multi-label classification. We
first tackle the micro multi-label classification in IV, where
we discuss two simple problem transformation techniques
and examine their performance on trivial learning problems
in VI-A. We provide an overview of the Extreme Multi-
Label Classification in V, followed by Section V-A where
we detail a new encoding method for representing text data
as hypervectors. We then present our novel HDC convolution
operator and neuro-symbolic approach in V-B, detailing its
formulation and demonstrating its effectiveness in Section
VI-B.

Il. RELATED WORK

Hyperdimensional computing (HDC) is an emerging field
that aims to address the limitations of traditional computing
paradigms by leveraging high-dimensional vector represen-
tations to perform complex cognitive and machine learning
tasks. This section presents a brief summary of various HDC
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works, highlighting their contributions to both cognitive tasks
and machine learning tasks. We also present a brief survey of
gradient based algorithms and multi-label classification for
the readers benefit.

A. HDC FOR COGNITIVE & LEARNING TASKS

Kanerva introduced the foundational concept of a "hyperdi-
mensional computer”, which efficiently stores and retrieves
information using large, sparse binary vectors [22]. This
model exhibited robustness and efficiency in cognitive tasks,
inspiring further research in HDC. Gallant et al. explored
HDC in natural language understanding and reasoning, suc-
cessfully capturing semantic relations in text and showcasing
its potential for large-scale knowledge representation [23].
Rachkovskij expanded HDC’s application to image process-
ing and recognition, demonstrating pattern recognition capa-
bilities with high accuracy and noise robustness [24]. In [25]
Anthony et al. develops a theoretical framework for HDC
and details the mathematical properties of HDC encoding
methods.

In recent years, hyperdimensional computing (HDC) has
emerged as a promising paradigm for machine learning,
such as classification, regression, and reinforcement learning.
Lai et al. employed HDC for classification tasks, devel-
oping a high-dimensional classifier that achieved compet-
itive performance with reduced computational complexity
[26]. Imani et al. applied HDC to regression problems,
proposing a high-dimensional computing framework that
provided accurate and efficient regression models with mini-
mized computational overhead [27]. Goudarzi et al. explored
HDC in reinforcement learning, developing a state repre-
sentation and policy learning approach that demonstrated
effectiveness in various environments [28]. Imani et al.
proposed HDCluster, an accurate clustering algorithm for
high-dimensional datasets using hyperdimensional comput-
ing [29]. In GENERIC [3], Khaleghi et al. proposed a
novel and efficient method for learning on edge devices using
hyperdimensional computing for a wide range of applica-
tions. The method utilizes hardware-friendly hyperdimen-
sional vector representations and an optimized training algo-
rithm to reduce computation and storage requirements while
maintaining high accuracy. Guo et al. [7] proposed using
hypervectors to represent users and items and performs a
set of associative and distributive operations on these vectors
to compute recommendations. The paper presents three dif-
ferent methods for generating recommendations, including
one that combines hyperdimensional computing with matrix
factorization. Asgarinejad et al. [30] developed a method for
epilepsy detection using EEG signals. They demonstrate us-
ing real-world data that HDC approaches outperforms state-
of-the-art methods like Support Vector Machines (SVM)
[31] and Convolutional Neural Networks (CNN) [32].

B. GRADIENT BASED HDC METHODS
Gradient-based methods in hyperdimensional computing
(HDC) have garnered interest due to their potential for ad-
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dressing optimization challenges in high-dimensional spaces.
These methods extend the capabilities of HDC by incorpo-
rating gradient information to guide the learning process.
For instance, Frady and Sommer introduced a gradient-based
HDC framework, which allowed the use of optimization
algorithms such as gradient descent and backpropagation
in HDC settings [33]. In a subsequent work, Frady et al.
proposed a method for gradient-based learning in HDC that
utilized iterative projections and local linearizations to facili-
tate learning in high-dimensional spaces [34]. Building upon
these developments, Wang et al. presented a gradient-based
HDC algorithm for clustering and classification tasks, which
employed a convex optimization formulation to enhance
HDC’s performance in these applications [35]. Moreover,
Su et al. developed a gradient-based HDC algorithm for
deep learning, illustrating the potential of gradient-based
methods in improving the robustness and expressiveness of
HDC models [36]. Recently, Zhou et al. presented a gradient-
based HDC framework for unsupervised learning, focusing
on clustering and dimensionality reduction tasks [37]. These
studies highlight the increasing importance of gradient-based
methods in HDC and their potential in addressing various
learning tasks in high-dimensional spaces.

While these methods have shown promise in addressing
optimization challenges in high-dimensional space, they in-
troduce additional complexity in order to facilitate backpro-
pogation through the HDC operations. For example, Frady
and Somer’s work involves iterative projections and local
linearizations which can be expensive. Similarly Wang’s con-
vex optimization formulation for clustering and classification
tasks can result in increased computational overhead [35]

Prior works have also explored the use Holographic Re-
duced Representations (HRR), a family models for gradient
based learning tasks. A notable attempt to capitalize on the
symbolic properties of HRR was made by Nickel et al. [38],
who utilized binding operations to link elements within a
knowledge graph. Their approach served as an embedding
mechanism that merged two vectors of information with-
out increasing the dimensionality of the representation, as
opposed to concatenation which doubles the dimension. In
a more recent study, Liao and Yuan [39] employed cir-
cular convolution as a substitute for standard convolution
to decrease model size and inference time, albeit without
leveraging the symbolic properties inherent to HRRs. Al-
though Danihelka et al. [40] claimed to incorporate HRR into
an LSTM, their methodology simply augmented an LSTM
with complex weights and activations, and did not genuinely
implement HRR due to the absence of circular convolution.

C. MULTI-LABEL CLASSIFICATION

The seminal works of multi-label classification emerged in
the early 2000s with the introduction of the problem and
initial approaches [41]. Since then a wide range of algorithms
and techniques have been proposed to tackle this problem
such as problem transformation methods [42], and ensemble
methods [43], [44].
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Among the various methods for multi-label classification,
problem transformation methods have gained considerable
attention. These techniques transform the multi-label prob-
lem into one or more single-label problems, which can then
be addressed using traditional machine learning classifiers.
One popular approach is the Binary Relevance (BR) method
[45], which independently trains a binary classifier for each
label. Another problem transformation method is the Label
Powerset (LP) method [45], which treats each unique com-
bination of labels as a single class in a multi-class problem.
To address the shortcomings of BR and LP, researchers have
proposed various ensemble and hybrid techniques. These
include the Random k-Labelsets (RAKEL) method [46],
which constructs multiple LP classifiers on random label
subsets, and the Classifier Chains (CC) method [47], which
constructs a chain of binary classifiers while preserving label
correlations. Apart from problem transformation methods,
other multi-label classification techniques include algorithm
adaptation methods, which modify single-label algorithms to
handle multi-label data directly. Examples of such methods
are the Multi-Label k-Nearest Neighbors (ML-kNN) algo-
rithm [48], and the Multi-Label Decision Trees (MLDT) [49].

Extreme multi-label classification (XML) is a specialized
form of multi-label classification, characterized by a large
number of labels and instances. XML has attracted significant
research attention due to its relevance in numerous real-
world applications, such as large-scale document classifica-
tion [50], image annotation [51], and gene function predic-
tion [52]. Early approaches for XML include the FastXML
algorithm [53], PfastreXML algorithm [54], and the Para-
bel algorithm [55]. Embedding-based methods, such as the
SLEEC algorithm [50] and the AnnexML algorithm [56],
have also been proposed for XML.

Deep learning approaches have shown considerable
promise in XML tasks. Convolutional Neural Networks
(CNNs) [57], Recurrent Neural Networks (RNNs) [58], and
Transformer models [59] have been adapted for XML prob-
lems, demonstrating improved performance compared to tra-
ditional methods. Specifically, BERT [59] and its variants
have been successfully applied to large-scale text classifica-
tion tasks.

D. MOTIVATION AND OUR CONTRIBUTIONS

In the existing literature on hyperdimensional computing
(HDC), the majority of studies have focused on small-scale
learning problems. Ganesan et al. [18] examined the extreme
multi-label text classification task, but other works have yet
to explore the scalability of HDC techniques in addressing
large-scale machine learning problems in real-world applica-
tions. Our research aims to bridge this gap by investigating
the application of HDC to a demanding, industrial-scale
learning problem.

State-of-the-art deep learning models for multi-label clas-
sification, such as X-Transformer [60] and LightXML [61],
comprising millions of parameters, necessitate days of train-
ing to achieve optimal performance. Our objective in this

4

work is to examine HDC’s potential for reducing this training
time, thereby offering a more balanced trade-off between
computational efficiency and accuracy.

Ganesan et al. [18] proposed a method for extreme multi-
label text classification that replaces the final classification
layer of AttentionXML [62] and XML-CNN [63] with a fully
connected layer that outputs a hypervector encoding the
relevant label information for an instance. While they demon-
strated that their proposed method achieves accuracy similar
to the baseline implementations of AttentionXML and XML-
CNN, there are two key areas to improve upon. First, their
method uses the HRR binding operation, which is a circular
convolution requiring Fast Fourier Transform [64], an ex-
pensive operation. Second, their method learns a mapping
from the instance space (represented as one-hot encoding)
to the label space (represented as HRR hypervectors), which
is a harder learning problem requiring learning the projection
across the vector spaces.

In contrast, our approach is based on the Multiplica-
tive Addition Perturbation (MAP) model introduced by
Gayler [9], which uses bi-polar representations with simple
element-wise arithmetic operations that can be easily accel-
erated and parallelized on hardware. Additionally, we embed
the inputs and labels both in the same high-dimensional
vector space, thereby avoiding the need to learn complex
transformations across vector spaces. Our proposed neural
approach for learning high-dimensional representations not
only avoids increased computational complexity but also
reduces the compute cost by a factor of 200.

lll. HYPERDIMENSIONAL COMPUTING BACKGROUND
Hyperdimensional computing (HDC) is an emerging
paradigm of computing that describes a family of represen-
tations and operations using high-dimensional vectors called
hypervectors [14], [17], [22]. The basic idea behind HDC is
to represent structured or symbolic data using hypervectors
and then provide a set of mathematical operations to manip-
ulate these vectors like symbolic objects. These operations
are associative, commutative, and distributive [65], they op-
erate element-wise, allowing them to be performed in par-
allel, making HDC an attractive approach for implementing
hardware-accelerated, energy-efficient computing.

Hypervectors are typically represented as binary or bipolar
vectors in a high-dimensional space. Mathematically, a hy-
pervector is represented by a vector X € {+1, —1}¥ where
D is the dimensionality of the vector space. The dimension-
ality of the hypervector is often much larger than the number
of dimensions required to represent the data, enabling the
vector to encode many concepts or attributes in a single
representation. For instance, a hypervector representing an
object might contain attributes such as color, shape, texture,
and position.

A. HDC OPERATIONS
HDC provides three fundamental operations: bundling, bind-
ing and similarity check. These operations are implemented
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differently in various HDC models, and we will briefly
explain their usage under the Multiply-Add-Permute (MAP)
model. In the MAP framework, hypervectors are bipolar and
can be represented as X = {+1, —1}7.

1) Bundling

The bundling operation is used to represent multiple sym-
bolic entities using a single hypervector. This operation is
denoted by the & symbol and can be expressed as:

bundle(Xl,Xg, veey X’n) = X1 D X2 D...D Xn

where X, X, ..., X,, are hypervectors representing the
symbolic entities. The result of the bundling operation is a
new hypervector that represents the combination of all the
input entities. For MAP the bundling operation is a simple
element-wise sum of the hypervectors. Under the similarity
check metric defined below, the resultant hypervector is
similar to its constituent hypervectors.

2) Binding

The binding operation is used to associate one entity with
another and is denoted by the ® symbol. The binding op-
eration is defined as the element-wise multiplication of two
hypervectors and can be expressed as:

bind(X,Y) =X 0V

where X and Y are the hypervectors representing the two
entities to be associated. The result of the binding operation
is a new hypervector that encodes the relationship between
the two input entities. By the similarity metric, the resultant
hypervector is orthogonal to the input hypervectors.

3) Similarity check

Finally, the similarity check operation is used to determine
the degree of similarity between two hypervectors. The sim-
ilarity check operation is defined as the dot product between
two hypervectors and can be expressed as:

similarity(X,Y) =X -Y

where X and Y are the two hypervectors to be compared.
The result of the similarity check operation is a scalar value
that represents the degree of similarity between the two
hypervectors, with higher values indicating greater similarity.

Together, these operations provide a powerful and flexible
approach to representing and manipulating symbolic data in
a distributed and parallel fashion, enabling the development
of novel machine learning algorithms and cognitive models.

B. HDC LEARNING

The HDC learning process involves the encoding of data
and its inherent relationships within hypervectors. These vec-
tors are then subjected to a set of mathematical operations,
enabling the extraction of useful patterns and relationships
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within the data. Learning in HDC involves three steps: en-
coding the data, learning on the encoded data and inference.
Encoding: The first step in learning with HDC involves
encoding the input data into high-dimensional hypervectors.
The goal of this step is to create a distributed representation
of the input data that can capture its semantic properties.
Previous literature have proposed various techniques for en-
coding data into hypervectors each with different mathemati-
cal properties. One key distinction among these techniques
is the way in which distance metrics are preserved within
the encoded data when mapping to hypervectors. Here we
provide a brief overview of our chosen encoding scheme,
namely Random Projection Encoding (RPE) [25], which uti-
lizes Gaussian distribution to generate the encoding vectors.
Given an input vector X € R, we generate a set of
random projection vectors Rq, Ro,..., Rx € RP, where
D >> d. The projection of X onto the k" random projec-
tion vector is given by the dot product X - Rj. The resulting
set of K projections can be represented as a hypervector
H € {+1,-1}X, where H; = sign(X - R;). Random
projection encoding in HDC has been shown to preserve
Euclidean distance in the original vector space, mapping it
to angular distance in the high-dimensional space [25]. This
similarity-preserving nature makes it suitable for encoding
data by retaining complex relationships between them.
Training: In HDC, training typically involves two steps:
one-shot training followed by iterative retraining. One-shot
training involves representing each class with a centroid
hypervector that is the average of hypervectors representing
the training examples for that class. Retraining involves up-
dating the centroid hypervectors using a simple perceptron-
style algorithm [66] in an iterative process that runs until
convergence. During retraining, the centroid hypervectors are
updated when a sample is mispredicted, with updates applied
to both the correct label and the mispredicted label.
Inference: The centroid vectors can be used to classify
new data by measuring the similarity of the new data to each
centroid vector. The class with the highest similarity measure
is chosen as the predicted class for the new data point.
Hamming distance similarity is used for binary hypervectors,
while cosine similarity can be used for any other type of data.

IV. MULTI-LABEL OVA & POWERSET HD
Multi-label classification is a machine learning problem
where an instance can belong to multiple classes simultane-
ously. Mathematically, it can be defined as follows: Let x be
a feature vector representing an instance and y be a binary
vector indicating the presence or absence of L possible class
labels, where y; = 1 indicates the instance belongs to the i*"
class and y; = 0 indicates otherwise. The goal of multi-label
classification is to learn a mapping function f(-) that takes as
input an instance x and outputs a binary vector of length L
indicating the classes the instance belongs to.

The complexity of this task can be influenced by various
factors, such as the number of labels, the label dependencies,
and the label cardinality. To distinctly refer to the class of
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problems with relatively small label spaces, we define a small
scale variant of multi-label learning. This variant deals with
datasets where the label space is simple and the number of
instances is relatively small, resulting in label set sizes of
less than 100. In Section V we discuss the characteristics
of the most challenging variant of multi-label classification
that focuses on very large problem sizes. Our prior work
[67] laid the foundations of hyperdimensional multi-label
classification by combining HDC with two well studied prob-
lem transformation techniques, One-vs-All [68] and Label
Powerset [69], to solve micro size problems.

Problem transformation methods [45], [70], [71] have
been proposed where the original multi-label problem is
transformed into multiple single-label problems. Each trans-
formed problem corresponds to one of the L class labels and
involves training a binary classifier to distinguish instances
that belong to that class from those that do not. The output
of each binary classifier is then combined to obtain the
final multi-label prediction. These methods can be further
classified into three categories: 1) One-vs-All [68], 2) Label
Powerset [69], and 3) Classifier Chains [70], each with their
own advantages and disadvantages. We consider the first two
methods due to their simpler nature which is appropriate for
the micro size problems.

PowerSet & OvA HD involve learning multiple binary
classifiers, and hence, share a common implementation strat-
egy. The difference between the two approaches lies in the
way the class hypervectors are set up. We begin by encoding
each instance in the dataset into a symbolic hypervector using
Random Projection Encoding [25] as explained in Section III.
We then perform one-shot learning, which involves learning
the centroid hypervectors, followed by iterative fine-tuning,
as detailed in Section III. The specific differences between
the powerset and OvA approaches in this implementation are
explained below.

A. POWERSET HD
The label powerset transformation method defines each
unique combination of labels as a distinct class, represented
by a binary class vector. This makes it possible to use stan-
dard single-label classification algorithms to train models on
multi-label data. Formally, given an instance x with L possi-
ble class labels, this method creates a new binary class vector
y of length 2%, representing all possible label combinations.
For each unique combination of labels C, a binary label is
assigned based on whether the combination is a subset of the
original class labels of the instance x, as shown in Equation
I:

yi{l S € G (1)

0 otherwise

where C; C y indicates that the class combination C is
a subset of the original class labels of the instance x. For
example, if an instance has three possible class labels A, B,
and C, then there are 23 = 8 possible combinations of labels:

{0, A,B,C,AB, AC, BC, ABC'}.
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While the label powerset method is simple and easy to
understand, it suffers from the issue of class imbalance
and scaling with the number of class labels, making it less
practical for problems with large numbers of class labels.
Nevertheless, it is still widely used as a baseline method for
evaluating the performance of other more advanced multi-
label learning methods.

To implement power set transformation with HDC, We
create a centroid hypervector for every label combination
resulting in 2% centroid hypervectors. Retraining is done on
each centroid hypervector individually as an independent bi-
nary classifier. During inference, we encode the test instance
and compare it with each of the centroid hypervectors using
a similarity check function. The closest centroid indicates the
relevant label combination.

Compute Realization Cost of PowerSetHD: To estimate
the storage size of the HDC model, we need to calculate
the total number of hypervectors required to represent all
possible label combinations, and then multiply that by the
size of each hypervector in bits. The number of possible label
combinations for a dataset with L labels is 22, since each
label can either be present or absent in a given combination.
Let’s consider the case of Delicious dataset where number
of labels is L = 983, then the number of possible label
combinations is 2°83. To represent each hypervector as a
16-bit integer, we need 16 bits or 2 bytes per element.
Since each hypervector has 1024 elements, the size of each
hypervector in bytes is 2 x 1024 = 2048 bytes. Multiplying
the number of hypervectors by the size of each hypervec-
tor gives us the total storage size required for the HDC
model: 2983 x 2048 bytes/hypervector, which is equivalent to
1.4 x 10?9 Terabytes. This is an enormous amount of storage,
far beyond what is currently feasible with modern computing
technology. It highlights the scalability issues of the label
powerset method, which becomes impractical for problems
with large numbers of class labels. In addition to this high
RAM requirements, to get the full ranking we would have to
evaluate 2%%3 classifiers which would take many CPU cycles
for even a single data point.

B. ONE-VS-ALL (OVA) HD

One-vs-all is a problem transformation method used in multi-
label classification where the problem is transformed into
multiple binary classification problems. In this method, a
separate binary classifier is trained for each label, where
each classifier predicts whether the instance belongs to the
corresponding label or not. Formally, given an instance x
with L possible class labels, the one-vs-all method creates
L separate binary class vectors yi,¥ys,...,yr of length 2
that represent the presence or absence of each class label.
For each binary classification problem ¢, a binary label is
assigned as follows:

1 ify; =14
i = 2
Y {O otherwise @
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where y; is the label vector of the instance x. Given an
instance x with L possible class labels, the OVA method
creates L binary class vectors yi,¥ya2, ..., ¥, where y; indi-
cates whether the instance belongs to the i*" class or not.
The i'" classifier is trained using the binary class vector y;
as the target variable, and the output of the i*" classifier is
interpreted as the probability of the instance belonging to the
ith class.

The one-vs-all method is computationally efficient and
scales well with the number of class labels, making it suitable
for larger-scale multi-label classification problems. However,
it suffers from the issue of label correlation as it treats each
label independently, ignoring any correlations that may exist
between them.

OvA HD approach involves the creation of two centroid
hypervectors for each label, resulting in 2L labels. The two
hypervectors for each class denote the positive and negative
associations of that label. Together, the pair of hypervectors
represent the binary classifier for a single label. During
inference, we encode the test instance and evaluate it using
our L binary classifiers, each of which predicts the relevance
of its corresponding label. The predictions of all classifiers
are then combined to give the final inferred label vector.

Compute Realization Cost of OvA HD: For the OvA
HD approach, we need to create two centroid hypervectors
for each label, resulting in 2L labels. For the example of
Delicious dataset, there are 983 labels, so we need to create
1966 hypervectors in total. For a hypervector dimensionality
of 1024, each hypervector will require 256 bytes of storage.
Therefore, the total storage required for loading the HDC
model can be calculated as 1966 hypervectors x256 bytes
which is 491.5 kilobytes, which is significantly smaller than
PowerSetHD.

The complexity analysis for classifying a single data point
using HDC depends on the number of labels and the dimen-
sionality of the hypervectors. Since we are using the OvA HD
approach with 983 labels and a hypervector dimensionality
of 1024, the time complexity for classifying a single data
point can be expressed as O(LD), where L is the number of
labels and D is the hypervector dimensionality. In practice,
the complexity may be higher due to the need to compute
distances between the test instance and all hypervectors, as
well as the need to combine the predictions of all binary
classifiers. However, the OvA HD approach is computa-
tionally efficient and scales well with the number of class
labels, making it more suitable for larger-scale multi-label
classification problems compared to PowerSet HD.

V. TINYXML HD:

EXTREME MULTI-LABEL CLASSIFICATION

Extreme multi-label classification (XMLC) [72], [73] rep-
resents a challenging variant of multi-label classification,
where the task involves predicting a large number of labels
for each instance in a dataset. The scale of the label space
in XMLC can range from thousands to millions, making it
extremely challenging for traditional multi-label classifiers
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to handle efficiently. This presents significant scalability and
computational challenges, particularly compared to small
multi-label classification problems, such as those described
in the previous section, where the label set is relatively small.
One specific variant of XMLC that has gained traction in
various real-world applications, such as text categorization
[41] and recommendation systems [74], is Extreme Multi-
Label Text Classification (XMTC) [75]. The goal of XMTC
is to classify documents into a potentially large number of
labels. In the rest of this paper, we describe TinyXML HD,
which solves XMTC problem by leveraging hyperdimen-
sional representations.

A. HYPERVECTORS FOR TEXTUAL DATA

The XMTC datasets offer text data in two forms: bag-of-
words representation or raw-text. The bag-of-words (BoW)
is a widely used text representation approach in natural
language processing (NLP) that represents a document as a
collection of words with the frequency of their occurrences,
disregarding the order of the words. In our TinyXML HD, if
raw-text data is available, we leverage the Word2Vec [76],
[77] embeddings for representing text; otherwise, we use
bag-of-words. TinyXML HD BoW encoding projects BoW
feature vector into a hypervector using Random Projection
Encoding [25], as described in Section III.

Raw text data poses a challenge. A simple and meaning-
ful strategy is to consider the compositional distributional
semantics approach. Compositional distributional semantics
is a method of representing the meaning of a sentence as
a function of the meanings of its constituent words. This
approach is based on the distributional hypothesis, which
posits that words that appear in similar contexts tend to have
similar meanings [78]. Given a sentence S consisting of n
words, represented as d-dimensional vectors wi, wa, ..., Wy,
we can combine these vectors using a composition function
f to obtain a sentence vector s:

S:f(w17w27"'7wn) (3)

The composition function f takes the word vectors as input
and returns a single vector representing the meaning of the
sentence. There are various ways to define the composition
function, such as averaging the word vectors and concatenat-
ing them [79], [80].

One approach for representing a sentence as a composition
of words is to assign random symbolic hypervectors to each
word in the dataset and then use compositional distributional
semantics to obtain a sentence vector. Previous studies [1],
[10] have employed this approach with varying degrees of
success in various NLP tasks. However, a key issue with
this approach is that it ignores the structural relationships
between words. Models like word2vec [76], [77] address
such issues by generating vector representations that capture
semantic relationships between words in a meaningful way.

Word2Vec embeddings for TinyXML HD: We leverage
Word2Vec with Hyperdimensional encoding for learning in
TinyXML HD. Word2Vec is a powerful method for creating
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distributed vector representations of words that capture se-
mantic and syntactic aspects of natural language processing
tasks [76], [77]. Traditional approaches to representing words
rely heavily on sparse one-hot vector representations, which
are high-dimensional and lack the ability to capture the
subtle nuances of word meanings. In contrast, Word2Vec’s
distributed vector representations encode semantic relation-
ships between words by placing words with similar meanings
closer together in the vector space [76], [77].

To encode an instance in TinyXML HD, we first obtain
the Word2Vec embeddings of all its constituent words. We
then project these embeddings into hypervector using Ran-
dom Projection encoding described in Section III. Finally,
to employ compositional distributional semantics, we bundle
(6p) the resultant hypervectors into a single hypervector that
represents an instance. As mentioned in Section III, Random
Projection Encoding preserves the euclidean distance, so this
enables the generation of symbolic hypervectors that capture
semantic information between words through their cosine
similarity scores, resulting in expressive high-dimensional
representations. Consequently, hypervectors for words that
are similar will be proportionally similar and those of se-
mantically dissimilar words would be dissimilar. In this way
we are able to capture the complex relationships between
words and obtain a richer representation that conveys more
information about their semantic context.

TinyXML HD Label Representation: We leverage HDC
algebra to map and combine multiple labels in hyperdimen-
sional space. Let L be the number of labels or symbols in the
dataset, and H” be a D-dimensional hyperdimensional space
with H = {41, —1} for the MAP HDC model. We map each
label to a hypervector in this space. The initialization of the
label space )); ... involves assigning a random hypervector
from a Binomial distribution to each label. Specifically, we
initialize each label ); by sampling from B(0.5) - 2 — 1.
To obtain a high-dimensional representation of a label, we
bundle the corresponding hypervectors of the labels present
for an instance, denoted by }*. We then combine these hy-
pervectors using the hyperdimensional operator & to obtain
a single hypervector representation for the instance x;, given
by Eq. (V-A). This operator is commutative, which allows us
to bundle the hypervectors in any order without affecting the
final result. y; = P ey Vi

B. LEARNING WITH TINYXML HD

With both the inputs and outputs embedded in the same
high-dimensional space, the next step is to learn a mapping
f:xi € H = yi € H, where x; is the input hyper-
vector and f outputs the hypervector that represents all the
labels present for that instance. In this section, we present
our proposed neural network based approach to learn this
mapping function f. Our proposed approach presents a linear
formulation over the HDC operators of binding and bundling,
which allows for effective and efficient optimization using
gradient-based methods.

8

Objective formulation: We decompose the original learn-
ing problem into multiple sub-problems to enhance its learn-
ability. Let’s consider an example where we break down the
learning problem into two sub-problems, which we rewrite as

fHyeHP - Hy e HP “4)
[ =h(f2) 5)
fi:H;y e HP? - H, ¢ HP (6)
fo Hy e HP — Hy e HP @)

where f1 maps the input instance to an intermediate hyper-
vector H,, and f; maps H, to the output label hypervector
H,.

We define f; and f> using the HDC arithmetic operations
of binding and bundling. In particular, we parameterize f as

fl :Hl & Hconvl (8)

where Ho,y is a hypervector to be learned. Similarly, we
define f5 as

f2 :Hx by Hconv2 (9)

This approach considers the mapping between two hyper-
vectors as a series of geometric transformations where the
input hypervector is bound sequentially with the intermediate
hypervectors induced by the sub-problems. The hyperpa-
rameters of the number of sub-problems to induce and the
dimensions of the learned hypervectors are chosen based on
the complexity of the dataset.

1D Convolutions as Hypervector Operators: In devel-
oping a neural architecture, it is crucial to adhere to the prin-
ciples of high-dimensional computing (HDC), which dictate
that representations should be distributed, with individual
coordinates devoid of semantic information. Consequently,
our neural architecture should interpret inputs as distributed
representations rather than feature vectors containing discrete
semantic entities. To achieve this, we use one-dimensional
convolutional operators as hypervector operators. A one-
dimensional convolution involves applying a filter across an
input, using a single set of weights to process the entire hy-
pervector. This operation treats each vector region indepen-
dently with the filter, synthesizing a vector that encapsulates
information from the input. In contrast, a fully connected
(FC) network utilizes an interconnected network of connec-
tions to process all coordinates of the input vector, treating
the coordinates as dependent entities, which contravenes the
principles of HDC representations.

Figure 1 details the architecture and operations of our
proposed ConvHD block. Our ConvHD block consists of
three layers parameterized by C, which represents the ex-
pansion factor and F', the filter size. The block consists of
three convolutional layers: the first layer (X7) takes input
hypervectors and generates C' hypervectors, the second layer
(X>2) processes these C' hypervectors to produce C'/2 hyper-
vectors, and the third layer (X3) combines these C'/2 vectors

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299881

IEEE Access

1-D Conv

1-D Conv

Input
hypervectors

/ HDC
binding

Output
hypervectors

FIGURE 1: ConvHD Operator

into a single hypervector. A single convolutional unit can be
defined as follows:

g :HP — HP (10)
g =X3 ® tanh (X2 ® tanh (tanh (X ® Hippu))) (11)
The ConvHD block is be represented by:

ConvHD = g(Hinput) ® Hinput (12)
Hence a model f using 2 ConvHD blocks is represented by:
f=HP = HP (13)
f =ConvHD (ConvHD(Hjypy()) (14)

We formulate the sub-problems as a single learning prob-
lem, where we optimize the parameters X, X2, X3 using
gradient-based methods. To enhance our architecture, we
incorporate the idea of dilated convolutions [81] to increase
the receptive field of the convolutional layers [82]. We also
set the filter size F' to be large, approximately a quarter of
the hypervector dimensionality D. These details are crucial,
as they increase the effective receptive field with every 1-
D convolution operation. That is, they increase the number
of hypervector coordinates in the input that influence the
synthesis of a single coordinate in the output of the last
convolution layer. By using a large filter size, we increase
the number of coordinates in the input hypervector that are
considered to produce a single coordinate in the resultant
hypervector. Similarly, dilation helps to increase the receptive
field by allowing deeper layers to infer coordinates based on
a larger area of the input hypervector. Since the ConvHD
operator uses three 1-D convolutional layers, the receptive
field increases progressively with each layer looking at a
larger section of the input hypervector to make a decision.
The expansion factor C' spawns more sub-problems paral-
lely. For instance, in the above example of breaking down
the learning problem into 2 parts, if we set C' = 2, then
each layer estimates 2 sets of sub-problems. The first layer
will parallely solve two sub-problems similar to Equation 8
and similarly the second layer will solve two sub-problems
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similar to Equation 9. The results of the 2 sub-problems will
then be combined through the bundling operation.

In order to learn the mapping to solve these sub-problems,
we use the loss function detailed in [18], which aims to min-
imize the cosine distance between the predicted hypervector
and the ground-truth label hypervector.

VI. EVALUATION OF OVA, POWERSET & TINYXML HD
This section of our research paper presents the results of
our proposed multi-label classification approach on various
real-world datasets. Through a series of experiments, we
demonstrate the trade-off between compute efficiency and
accuracy of our approach across a range of complexity
levels, from small-scale (less than 20 labels) to extreme-
scale (greater than 5000 labels). Our findings indicate that,
in low-complexity scenarios with datasets of low cardinality,
the One-vs-All HDC approach achieves high accuracy and
efficiency. Conversely, the PowerSet HDC approach provides
poor trade-offs, yielding benefits only when the label cardi-
nality is very low, with efficiency degrading exponentially as
complexity increases.

We evaluate the effectiveness of our proposed approach,
TinyXML HD, on extreme size datasets. Our experiments
demonstrate that TinyXML HD produces models that are
231x-836x smaller than state-of-the-art models while still
achieving reasonable accuracy. Furthermore, our approach
can efficiently train on large text datasets in just a few hours
providing a speed up of up to 16x. These results highlight the
potential of our proposed approach for solving extreme-scale
multi-label classification problems while greatly reducing the
computational resources required.

We evaluate the small scale problems on an Intel Xeon 24-
core CPU while for the larger datasets we use a single Nvidia
V100 GPU.

A. EVALUATION OF OVA & POWERSET HD

OvA and PowerSet HD Experimental Setup: We tested
our OvA HD and PowerSet HD multi-label methods on
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FIGURE 2: Efficiency of training

smaller size datasets by running on an optimized C++ imple-
mentation on an Intel Xeon 24-core CPU. We compare our
HDC-based methods with multi-label versions of k-nearest
neighbors (kNN) [48], Sequential Minimal Optimization —
SMO [83], C4.5 [84], and Naive Bayes — NB [48], all of
which are appropriate for smaller datasets. We utilized Java-
based open-source Mulan [85] multi-label package with 3
small datasets for comparison:

Genbase [86] contains protein classes of 27 most important
protein families, with 662 samples, each with 1186 attributes.
Scene [87] contains images with their characteristics and
classes. One image can belong to up to 6 categories. It has
2407 samples, each with 294 attributes.

Yeast [88] has information about a set of yeast cells. The task
is to determine the localization site of each cell amongst 14
possible sites. It has 2417 samples, each with 103 attributes.

OvA and PowerSet HD Accuracy: Figure 2 shows that
OvA and PowerSet HD achieve comparable accuracy to
state-of-the-art multi-label classifiers. PowerSet HD con-
sistently outperforms state-of-the-art methods on all three
datasets. OvA HD is slightly less accurate on the Genbase
dataset but performs better on the Scene and Yeast datasets,
likely due to their better separability of HD space compared
to low-dimensional space.

OvA and PowerSet HD Performance & Efficiency:
While PowerSet HD achieves higher accuracy, Figure 2
demonstrates that this comes at a significant cost in terms
of execution time. This is due to the exponential increase in
class hypervectors as discussed earlier. Figure 2 also shows
that both OvA and PowerSet HD training are significantly
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faster than most other multi-label classifiers, with OvA HD
being 60.8 times faster on average. PowerSet HD is only
3.5 times slower than OvA HD on datasets with a large
portion of label combinations. Power Set HD is 24 times
faster than state-of-the-art multi-label classifiers on average,
or approximately two times slower than OvA HD, but offers
13% higher accuracy. For small datasets, where only a small
subset of possible label combinations appear in the dataset,
PowerSet HD can potentially be more efficient and accurate.
However, for datasets with more number of possible label
combinations, OvA HD is the clear choice as it offers a
trade-off between compute efficiency and accuracy compared
to PowerSet HD. These results indicate that the OvA HD
approach is an ideal candidate for small scale multi-label
classification tasks.

B. EXPERIMENTAL SETUP FOR TINYXML HD

We evaluated TinyXML HD HD on real-world, large-
scale datasets from Extreme Multi-Label Text Classification
(XMTC). Our objective is to maximize the compute effi-
ciency of learning while achieving comparable precision to
the state-of-the-art. For the XMTC dataset, we evaluate our
proposed TinyXML HD on Nvidia V100 GPU.

Evaluation metrics: We consider Precision@k with k =
1,3,5 as our metric for evaluating the performance of
TinyXML HD on multi-label classification, where &k repre-
sents the top k predictions. This is a widely accepted and
used evaluation metric by other works in literature [60], [61].
In addition, we evaluate the computational efficiency of
TinyXML HD against the following start-of-the-art models:
XT [89], Bonsai [90], SLEEC [50] and Parabel [91] for
BoW datasets. For Raw text datasets, we consider these
SoA models: AttentionXML [62], LightXML [61] and X-
Transformer [60]. Given that previous research has not given
a comprehensive account of the compute cost associated with
these models, it is difficult to establish a standardized metric
for comparison. To address this issue, we have considered
two distinct metrics: the count of trainable parameters and
the training time. The former serves as an indicator of the
cost of training, since a model with a higher parameter count
requires more gradients to be calculated and optimized, and
is also indicative of greater model size. The latter is a direct
measure of the time required to train the model. These two
metrics offer a meaningful evaluation of compute cost in the
context of real-world applications.

Datasets: In order to evaluate the expressiveness of our
high-dimensional representations of text data, we select
six datasets from Extreme Multi-Label Text Classification
(XMTC) dataset, a widely accepted benchmark in literature
[18], [72], [75], [98]. The datasets are described in Table 1.
In addition to the scalability and computational challenges,
the XMTC dataset poses an additional challenge which is
the label sparsity issue. Bhatia et al [72] divided the datasets
according to the number of labels per sample into small scale
and large scale. Small scale datasets contain at most 5000
labels. Although pre-processed BoW features are available
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TABLE 1: Dataset Metadata

Dataset Feature type # Labels # Training points  # Testing points  Avg. Points per Label
Mediamill [92] BoW 101 30,993 12,914 1902.15
Bibtex [93] BoW 159 4,880 2,515 111.71
Delicious [94] BoW 983 12,920 3,185 311.61
Eurlex-4K [95] Text 3,993 5,000 3,993 25.73
Wikil0-31K [96]  BoW & Text 30,938 14,146 6,616 8.52
Amazon-13k [97]  Text 13,330 1,186,239 306,782 448.57

for all datasets, the original text is not. Consequently, we use
the original text when available and BoW for all others.

TinyXML HD HD Architecture Specifics: We use Ran-
dom Projection Encoding as discussed in Sec. III for Bow
feature representations, while for raw text datasets, we uti-
lize the combination of Random Projection Encoding with
Word2Vec as described in Sec. V. We employ ConvHD
blocks with expansion factor C' = 128, filter size F' = 255
with dilation set to 7 and a hypervector dimensionality of
1024. To optimize the model, we use the loss function pro-
posed by Ganesan et al. [18] but we remove the negative loss
component, which was intended to ensure that the output hy-
pervector from the model f(.) is orthogonal to the labels that
are not present for that instance. Since all labels are initialized
with random hypervectors that are orthogonal to each other,
enforcing the similarity to the present labels alone will auto-
matically satisfy the orthogonality condition with the labels
not present. Therefore, we only retain the positive component
in the loss function, and we discard the additional positive p
vector used in [18] as it does not improve results. The final
loss function is as follows: £ = >~ v, (1 — cos(yi, c?))
where y; is the final hypervector output by our model f(x;)
for the ¢-th instance, and c” represents a present label. The
loss function aims to minimize the cosine distance between
y; and all present labels, thereby encouraging the model to
produce a hypervector that is more similar to the labels that
are present in the instance.

Comparison baselines: Our evaluation comprises two
parts, with datasets divided by the type of features used.
We consider different baselines for each part. For BoW
datasets, we benchmark against other state-of-the-art models
that use the same features, such as Bonsai [90], Parabel
[91], and PFastreXML [99]. For raw-text datasets, we com-
pare TinyXML HD’s performance against state-of-the-art
deep learning approaches, including AttentionXML [62], X-
Transformer [60], and Light-XML [61]. These deep learn-
ing models employ powerful architectures like transformers,
with hundreds of millions of parameters, enabling them to
extract highly expressive embeddings from text data. As
a result, TinyXML HD is inherently disadvantaged due to
the significant disparity in parameter count. The primary
objective of this research is to optimize size, speed and accu-
racy tradeoffs of such constrained HDC models to evaluate
their viability as a lightweight paradigm. Hence, we aim to
achieve reasonable accuracy with respect to the state-of-the-
art, within a 10% margin.
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C. EVALUATION OF TINYXML HD HD

TinyXML HD, PowerSet & OvA HD Comparison: To
gain insight into the trade-off between performance and
accuracy, we have evaluated TinyXML HD on small-scale
multi-label classification tasks. In this study, we compare
the performance of TinyXML HD to that of PowerSet and
OvA HD on three small datasets, as described in Section
VI-A. Given the lower complexity of the task at hand, we
have scaled down TinyXML HD by utilizing a depth of 1,
a block size of 8, and a filter size of 255. As the datasets
used have low cardinality, we have evaluated our approaches
using overall accuracy since the precision@K metrics are
inapplicable for K = 3, 5, due to the limited number of labels
per instance. In addition, considering the low complexity of
the task, we evaluate performance only on CPU and do not
use any specialized hardware for acceleration.

Our results in Table 2 show that TinyXML HD achieves
100% accuracy on Genbase [86], whereas the performance
drops by 8% on Scene [87] and 3% on Yeast [88]. The most
likely reason for the lower accuracy on the two datasets is the
scarcity of training data. Problem transformation techniques
were trained faster than TinyXML HD, despite the latter’s
smaller size. The only exception to this was the Yeast [88]
dataset, on which TinyXML HD was significantly faster
(1.2x over OvA HD and 7.4x over Power Set HD). This is
due to the disparity in label cardinality across the datasets.
Genbase [86] and Scene [87] have label cardinalities of 1.25
and 1.07, respectively, meaning that only a single centroid
vector needs to be updated for Power Set HD and OvA HD.
However, the Yeast [88] dataset has a label cardinality of 4.2,
requiring OvA HD to update 4 centroid hypervectors while
Power Set HD needs to update 2* = 16 centroid hypervectors
for each instance, resulting in increased training time.

The higher training time of TinyXML HD can be attributed
to the convolution operations, which are computationally
intensive compared to the HDC operations of bundling,
binding, and similarity check used by the transformation
methods. These operations reduce to simple element-wise
additions and multiplications, making them easier to com-
pute. Consequently, Power Set HD and OvA HD can be
easily parallelized and accelerated in hardware, while the
convolution operation of TinyXML HD would be harder to
accelerate.

The dissimilarity in parameter count between the models
is attributed to their respective architectures. The parameter
count for PowerSet HD increases exponentially with the size
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TABLE 2: TinyXML HD on Small Scale Multi-Label Classification (normalized to TinyXML HD)

Model Genbase [86] Scene [87] Yeast [88]
Accuracy  #params  Training time  Accuracy # params  Training time  Accuracy #params  Training time
TinyXML HD 100 1 1 76.0 1 1 75.5 1 1
PowerSet HD 99.5 304K 0.54 84.2 1.99 0.14 78.4 510.6 7.4
OvA HD 89.1 1.677 0.6 81.9 0.03 0.12 51.7 0.869 1.26

of the label set. Conversely, the parameter count for the OvA
HD scales linearly with the label set size, resulting in a
parameter count that is twice the size of the label set for
our implementation of the one-vs-all classifier. In contrast,
TinyXML HD leverages only one hypervector to represent
each label, with the additional parameters solely correspond-
ing to convolution filters. These parameters are minimal in
comparison to the label set size, further underscoring the
efficiency of the TinyXML HD architecture.

The current study has revealed that the HDC-based prob-
lem transformation approaches offer a significantly superior
trade-off between training time and accuracy for small-scale
multi-label classification tasks compared to TinyXML HD.
Specifically, for datasets where only a limited subset of pos-
sible label combinations appear in the dataset, PowerSet HD
exhibits the potential to be both more efficient and accurate.
In contrast, for datasets with a larger number of possible label
combinations, albeit less than at the extreme scale, OvA HD
proves to be a more promising candidate. While TinyXML
HD boasts a smaller parameter count, the parameter count of
OvA HD remains comparable and is sufficiently small for the
complexity scale under investigation.

Due to linear and exponential scaling of PowerSet HD
and OvA HD, these methods are unsuitable for extreme-
scale multi-label classification tasks. PowerSet HD is too
large to implement, while OvA HD takes too long to train.
We next evaluate Tiny XML HD on extreme-scale multi-label
classification.

TinyXML HD Multi-label Accuracy: We investigate the
performance of TinyXML HD on extreme scale datasets next.
Table 3 presents the performance of TinyXML HD along
with its respective baselines on the BoW dataset. Our findings
reveal that for Mediamill and Wikil0-31K BoW, TinyXML
HD’s precision at top one (p@1) is within 5% of the state-
of-the-art (SoA). However, we note that barring Mediamill,
precision at top three (p@3) and precision at top five (p@5)
is lower across all datasets when compared to the SoA.

Table 4 shows the performance of TinyXML HD and its
respective baselines on the raw text datasets. Our findings
reveal that TinyXML HD’s precision is relatively lower for
these datasets. While we observe that TinyXML HD achieves
comparable performance on the Wikil0-31K dataset, the
precision drops for Amazon-13k by 9%. As we attempt to
retrieve more labels from the hypervector, the retrieval be-
comes less robust. Considering that Wiki10-31K has 31,000
labels with only 8 samples per label available, the perfor-
mance of TinyXML HD (83%) is remarkable. While the
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performance of TinyXML HD is not extraordinary compared
to the state-of-the-art, it is remarkable considering the fact
that TinyXML HD relies on a simple encoding scheme. In
contrast, the state-of-the-art models employ highly complex
architectures with millions of parameters. This observation
validates the potential of HDC to provide expressive rep-
resentations of data at extraordinarily low compute costs.
Moreover, unlike other models where the model size scales
almost linearly with label size, TinyXML HD ensures that
the output size of the model is fixed to the dimensionality of
the hypervector D independent of label set size.

TinyXML HD Convergence: Figure 3 showcases the
convergence plots of TinyXML HD on three distinct datasets:
Wikil0-31K (BoW) [96], Delicious [94], and Wikil0-31K
(Text) [96]. When examining the BoW datasets, namely
Wikil0-31K [96] and Delicious [94], a notable trend
emerges. The loss function exhibits a smooth decrease, punc-
tuated by a slight, yet discernible, initial drop for Wikil0-
31K. In stark contrast, the Wikil0-31K (Text) variant con-
verges in fewer than 30 epochs and seemingly starts to over-
fit, but, the precision plots provide further insights into this
phenomenon. While P@1 and P@3 seem to have converged,
a closer analysis reveals that P@5 continues to improve.
This observation suggests that the model is still assimilating
new information from the data. Although unable to enhance
P@1 and P@3 further, the model’s focus shifts to effectively
ranking two additional labels.

TinyXML HD ROC and AUC For the readers’ benefit,
we also provide additional insights in the form of Receiver
Operator Characteristics (ROC) Curves in Fig. 4a and the
corresponding Area Under the Curve (AUC) values as shown
in Fig.4b. Although these metrics are typically employed
for evaluating multi-class classifiers, considering mutually
independent labels, we adapt them to our multi-label setting
by treating each label as an independent binary classification
problem. Due to computational constraints, we focus on the
Delicious dataset for these metrics, as it contains a large num-
ber of labels. To ensure plot coherence, we present the ROC
curve for 10 randomly selected labels. Furthermore, in order
to comprehend the AUC, we visualize the distribution of
AUC values obtained for each label across the dataset’s 983
labels. These results show expected accuracy when treating
multi-label problem as an independent binary classification
problem.

TinyXML HD Overfitting To address the issue of over-
fitting, we explored the utilization of BatchNorm-2D [104],
L1/L2 Regularization, and Dropout techniques [105]. How-
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TABLE 3: Multi-Label Classification Performance on BoW datasets: Comparison with State-of-the-Art

Dataset TinyXML HD  FastXML [100] Parabel [101] PfastreXML [102] SLEEC [50]
p@l1 82.1 83.5 84.2 84.0
Medialmill [92] p@3 64.4 65.7 Not Reported 67.3 67.2
p@5 50.0 49.9 53.0 52.8
p@1 62.7 69.6 67.4 67.1 67.5
Delicious [94] p@3 55.7 64.1 61.8 62.3 61.3
p@s 51.4 59.2 56.7 58.6 56.5
p@l 80.8 83.0 84.1 83.5 85.8
Wikil0-31K (BoW) [96] p@3 50.5 67.47 72.4 68.6 72.9
p@5 443 57.7 63.3 59.1 62.7
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FIGURE 3: Loss and Precision vs Iteration for Three Datasets

ever, neither of these approaches proved to be effective.
Additionally, we conducted experiments to further reduce
the parameter count, but since the model already consisted
of only 2.5M parameters, any additional reduction led to a
decrease in accuracy.

TinyXML HD Robustness To briefly examine the ability
of the method to perform when few labels are missing, for
every sample we dropped one label with probability p. Our
experiments show that up to p = 0.2 there is no accuracy
degradation, showing robustness of TinyXML HD.

TinyXML HD Computing Efficiency: We compare the
efficiency of TinyXML HD to the following state-of-the-art
models: XT [89], Bonsai [90], SLEEC [50] and Parabel

[91]. Table 6 compares the training time and model size of
TinyXML HD against the state-of-the art listed above on the
Wikil0-31K BoW dataset. Remarkably, TinyXML HD trains
in 10 mins with a minuscule model size of 19.8MB while
achieving comparable precision on the dataset. We observe
that TinyXML HD is 6.5x smaller than the smallest SoA
(Bonsai [90]) and 56x smaller than the largest SoA (SLEEC
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[50]). Methods such as Parabel [91], Bonsai [90] build
multiple probabilistic label trees and perform classification
on each node which becomes computationally expensive very
quickly. Consequently, TinyXML HD is 1.25x quicker than
the fastest SOA (Parabel [91]) and 4x quicker than the slowest
SoA (Bonsai [90]).

Raw text training time and the number of parameters
needed for Amazon-670K dataset is shown in Table 5. All the
deep learning models necessitate several days to train on this
extensive dataset. In stark contrast, TinyXML HD showcases
a remarkable training speed of merely six hours, even though
the dataset has over 670K labels and 130K training samples.
TinyXML HD provides a speedup of 4x over the fastest
SoA (AttentionXML [62]) and 16x over the slowest SoA (X-
Transformer [60]) This exceptional speedup can be attributed
to two crucial factors. First, the deep learning models rely on
complex transformer models like BERT and RoBERTza, to
extract highly expressive feature embeddings from data. In
contrast, TinyXML HD employs a simple encoding scheme,
that decomposes into highly parallelizeable operations. The
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TABLE 4: Multi-Label Classificaiton Performance on Real Text Datasets: Comparison with State-of-the-art

Dataset TinyXML HD  AttentioinXML [62] XTransformer [103] LightXML [98]
p@1 61.3 87.1 87.2 87.63
Eurlex-4K [95] p@3 51.8 73.9 75.1 75.89
p@5 43.7 61.9 62.9 63.36
p@1 83.3 87.4 88.5 89.5
Wikil0-31K [96] p@3 66.2 78.4 78.7 78.9
p@s 60.7 69.3 69.6 69.8
p@l 86.2 95.9 96.7 96.7
Amazon-13K [97] p@3 60.4 82.4 83.8 84.0
p@5 44.6 67.3 68.5 68.7
Label 3
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(a) ROC Curves for 10 different labels

(b) Probability distribution of AUC values of all Delicious labels

FIGURE 4: (Left) ROC plots for 10 different labels (Right) Density of AUC values across all labels from the Delicious dataset
considering each label as a binary classification problem

TABLE 5: Raw text model size & training time

Model Model size  Training time
AttentionXML [62] 16.56 GB 26.30 hrs

Xtransformer [60] >5GB > 35 hrs [61]
LightXML [61] 4.59GB 28.75 hrs
TinyXML HD 19.8MB 6 hours

bulky feature extractor is replaced by our lightweight HDC-
based encoding, which demonstrates the expressiveness of
these representations when used to encode relevant features.
Second, the output dimensionality of deep learning mod-
els typically scales with the label set size (L). However,
TinyXML HD ensures that the output size of the model is
fixed to the dimensionality of the hypervector (D), where
D << L, irrespective of the label size. This unique feature
allows for the reduction of the number of trainable parame-
ters, thereby improving training efficiency and reducing the
computational load.

These results clearly demonstrate the strength of HDC
when it comes to computational cost of learning. HDC has
enormous potential to make learning computations tractable
and to dramatically cut down on training time with good
accuracy. TinyXML HD is 836x smaller than the largest SOA
(AttentionXML [62]) and 231x smaller than the smallest SoA
(LightXML [61]). Considering that X-Transformer [60] uses
an ensemble of transformers we suspect that X-Transformer
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TABLE 6: BoW model compute efficiency

Model Train timeSize

Parabel [91] 0.20 hrs 180MB
SLEEC [50] 0.21 hrs 1.13GB
Bonsai [90] 0.64 hrs 130MB
XT [89] 0.39 hrs 370MB
TinyXML HD  0.16hrs 19.8MB

would be larger than 5GB and would require 100 hours of
effort to train [61] making it infeasible to compare with.

VIl. CONCLUSION

In this work, we have presented novel approaches to Multi-
Label classification using Hyperdimensional Computing
(HDC), addressing the entire spectrum of complexity. For
small scale Multi-Label classification, we proposed using
HDC to implement two problem transformation methods:
PowerSet transform and One-vs-All transform. Through rig-
orous evaluation, we demonstrated that in low complex-
ity scenarios, OvA HD can provide up to 60x speedup in
low cardinality datasets, while PowerSet HD can be up to
24x faster than SoA with comparable accuracy on datasets
where few labels occur together, especially in low cardinality
datasets. For the extreme multi-label classification problem,
where label size is very large, we proposed a neuro-symbolic
approach, TinyXML HD, that breaks down the learning

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299881

IEEE Access

problem into multiple sub-problems using hyperdimensional
arithmetic and then uses gradient optimization to solve these
sub-problems. Our results demonstrated that TinyXML HD
can dramatically compute the computational complexity of
multi-label learning on large-scale real-world datasets while
achieving good accuarcy. TinyXML is 836x smaller than
the largest SoA and 231x smaller than the smallest for text
datasets and up to 16x faster to train. Similarly, for BoW
datasets, TinyXML is 6.5x - 56x smaller than SoA models
while training being up to 4x quicker.
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