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Abstract—In this work, we address the lossy quantum-classical
(QC) source coding problem, where the task is to compress the
classical information about a quantum source, obtained after
performing a measurement, below the Shannon entropy of the
measurement outcomes, while incurring a bounded reconstruc-
tion error. We propose a new formulation, namely, "rate-channel
theory", for the lossy QC source coding problem based on the
notion of a backward (posterior) channel. We employ a single-
letter posterior channel to capture the reconstruction error in
place of the single-letter distortion observable. The formulation
requires the reconstruction of the compressed quantum source to
satisfy a block error constraint as opposed to the average single-
letter distortion criterion in the rate-distortion setting. We also
develop an analogous formulation for the classical variant with
respect to a corresponding posterior channel. Furthermore, we
characterize the asymptotic performance limit of the lossy QC
and classical source coding problems in terms of single-letter
quantum mutual information and mutual information quantities
of the given posterior channel, respectively. We provide examples
for the above formulations.

I . INTRODUC T I ON

We consider a fundamental task of compressing the classical
information about a quantum source while suffering a bounded
error between the source and its reconstruction, namely, the
lossy quantum-classical (QC) source coding problem [1]. In
this setting, the sender performs a collective measurement on
several copies of the quantum source, creating a classical
sequence that is compressed and sent to the receiver over
a noiseless classical channel. The receiver then outputs a
classical sequence, stored in a quantum register, using a decod-
ing map while incurring a bounded reconstruction error. The
authors in [1] considered the additive single-letter distortion
observable as a reconstruction error criterion and obtained a
single-letter expression for the asymptotic QC rate-distortion
function in terms of minimal quantum mutual information.
The minimization is done over all POVMs that satisfy the
distortion constraint.

In QC setup, considering the average single-letter distortion
criterion draws inspiration from Shannon’s formulation of
lossy classical source coding problem [2], where a single-
letter characterization is available for the additive single-letter
distortion criterion. In Shannon’s formulation, the motivation
for an average single-letter error criterion emanates from the
strong converse of the lossless classical source coding theorem.
The theorem states that the entropy bound cannot be breached

This work was supported by NSF grants C C F  2007878 and C C F  2132815.

even when the asymptotic probability of block error is relaxed
to any number in (0, 1) [3, Theorem 1.1].

In addition to Shannon’s work on the rate-distortion problem
[2], there have been several works discussing the lossy source
compression problem [4]. A  concept that has received signifi-
cant attention in the lossy regime is the notion of a backward
channel [3, Problem 8.3], which characterizes the posterior
distribution of the source given the reconstruction. The struc-
ture of this channel has been studied in [5]–[7]. Moreover,
the rate-distortion achievability result in [3, Theorem 7.3]
is shown by constructing a channel code for a backward
channel with a large probability of error and by using the
encoder of the latter as a decoder of the former and vice
versa. For further developments on this concept, see [8]–[13].
Highlighting this further, the posterior or backward channel (a
posteriori probability) can be defined for any information
processing system, and it has been widely used in Bayesian
decision theory [14], detection and estimation theories such as
MAP estimation. [15]. On the other hand, in many applications
such as speech processing and inference in machine learning,
defining a suitable and well-behaved distortion function that
can capture the loss incurred in compression is a difficult task
[16]. Therefore, to encompass a broader set of applications,
our motivation is to bring the Bayesian perspective to the
lossy compression problem without using a distortion function.
Furthermore, we aim to use a more information-theoretic
object, such as a channel, to capture the loss in lossy source
coding problems. The lossy compression scheme can now be
interpreted as providing a rate-limited representation of the
source with a pre-specified a posteriori probability distribution
of the source given its reconstruction.

In light of this, we develop a new formulation of the
lossy QC and classical source coding problems based on the
notion of a posterior channel that produces the source from its
reconstruction, which we called as "rate-channel theory". We
use a single-letter posterior channel to characterize the nature
of the loss incurred in the encoding and decoding
operations, instead of a single-letter distortion function. In the
QC setup, we use posterior classical-quantum (CQ) channel
to describe the relationship between the source’s reference and
its reconstruction. Furthermore, motivated by the probability
of error (block error) constraint in Shannon’s lossless com-
pression, we consider a block error constraint instead of the
average symbol-wise error criterion. We want to construct an
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encoder and a decoder such that the joint effect of producing a
reconstruction sequence from the source sequence is close to
the effect of the n-product posterior channel acting on the non-
product reconstruction sequence, manifesting as a block error
constraint. The closeness is measured using the trace distance
the total variation in the QC and the classical case,
respectively.

As the main contribution of our work, we provide a
single-letter characterization of the asymptotic performance
limit using the minimal quantum mutual information and the
minimal mutual information of the posterior channel in the
QC and classical setup, respectively, where the minimization
is over all reconstruction distributions (see Theorem 1 and
2). As for the achievability of Theorems 1 and 2, we use
Winter’s measurement compression protocol [17] to construct
the encoding POVM, and the likelihood encoder as discussed
in [18], [19] to construct the randomized encoder, respectively.
Proof of the converse of Theorem 1 uses inequalities such
as the concavity of conditional quantum entropy, and the
continuity of quantum mutual information. Similar tools are
used for the converse of Theorem 2. Moreover, this work opens
up an opportunity to investigate the application of the notion of
the posterior channel in other quantum source coding problems
where a single-letter characterization is not available.

I I . P R E L I M I N A R I E S AND NOTAT I ON S

The set of density operators on H B  is denoted by D ( H B ) .
We denote H B as the Hilbert space associated with the
reference space of H B ,  with dim H B =  dim HB . We
denote the finite alphabet of a source as X, and the set of
probability distributions on the finite alphabet X  as P (X) .  Let
[Θ] =  {1, 2, · · · , Θ}.

Definition 1: (Classical-Quantum (CQ) Channel) Given a
finite set X  and a Hilbert space H ,  a CQ channel W is specified
by a collection (Wx � D ( H )  : x  � X )  of density operators.

I I I . MAIN R E S U LT S

A. Lossy Quantum-Classical Source Coding
Consider a memoryless quantum source ρB  � D ( H B ) .
Definition 2: (QC Source Coding Setup) A  QC source

coding setup is characterized by a triple (ρB , X, W ) where
ρB  is the source density operator acting on H B ,  X  is the
reconstruction alphabet, and W : X  → D ( H B )  is a single-
letter posterior classical-quantum (CQ) channel.

Fig. 1. Illustration of Lossy QC Source Compression Protocol.

Definition 3: (Lossy QC Compression Protocol) For a given
source density operator ρB  and a reconstruction alphabet X,
an (n,Θ) lossy QC compression protocol is characterized by
(i)  a POVM Γ ( n )  =  { A m } Θ and ( i i )  a decoding map f  :
{1, 2, · · · , Θ} → Xn ,  as shown in Fig. 1.

Definition 4: (Achievability) For a given QC source coding
setup (ρB , X, W ), a rate R  is said to be achievable if for all
ϵ >  0 and all sufficiently large n, there exists an (n,Θ) QC
lossy compression protocol such that log Θ/n ≤  R  +  ϵ, and
Ξ (Γ ( n ) , f )  ≤  ϵ, where Ξ (Γ ( n ) , f )  =

X
M x n  � |xn⟩⟨xn| −  

X
P X n  ( x n )W x n  � |xn⟩⟨xn| , x n

x n q                  q
for all x n  � X  , M x n  �|xn⟩⟨xn| = ρ�n A f − 1 ( x n ) ρ�n �
|xn⟩⟨xn|, is the unnormalized system-induced density op-
erator on systems B R B ,  P X n  (x n )  =  Tr (A f − 1 ( x n ) ρ�n )  is the
probability of observing the reconstruction sequence x  , W x n

� |xn⟩⟨xn| is the approximating density operator on systems
B R B ,  and W x n  = i = 1  Wx i  .

Theorem 1: (Lossy QC Source Compression Theorem) For
a (ρB , X, W ) QC source coding setup, a rate R  is achievable
if and only if A(ρB , W ) is non-empty, and

R  ≥ min I ( X ; B  )  ,
P X �A ( ρ B , W )

where     the     quantum     mutual     information     is     computed
with respect to the classical-quantum state, σ X B R            =

PX (x)|x⟩⟨x|X �Wx , {|x⟩}{ x�X }  is an orthonormal basis
for the Hilbert space H X  with d im (H X )  =  |X|, and A  is
the set of reconstruction distributions defined as A(ρB , W ) =
{ P X  � P ( X )  : P X ( x ) W x  =  ρB } .
Proof.     A  proof of the achievability is provided in Section
V-A, and a converse proof is provided in Section V-B.         □

B. Lossy Classical Source Coding
Consider a discrete memoryless source (DMS) X  charac-

terized by a source distribution P X  over a finite alphabet X.
Definition 5: (Source Coding Setup) A  source coding setup

is characterized by a triple (P X , X , W X | X )  where P X  is the
source distribution over a finite alphabet X, X  is the recon-
struction alphabet, and W ˆ  : X  → X  is the single-letter
posterior (backward) channel, i.e., the conditional distribution
of source given the reconstruction.

Fig. 2. Illustration of Lossy Classical Source Compression Protocol.

Definition 6: (Lossy Source Compression Protocol) For a
given source distribution P X  and a reconstruction alphabet
X, an (n,Θ) lossy source compression protocol consists of
( i )  a randomized encoding map E : X n  → [Θ] and ( i i )  a
randomized decoding map D  : [Θ] → Xn ,  as shown in Fig. 2.

Definition 7: (Achievability) Given a source coding setup
(PX , X, W      ̂  ), a rate R  is said to be achievable if for all
ϵ >  0 and all sufficiently large n, there exists an (n,Θ) lossy
source compression protocol such that 1 log Θ ≤  R  +  ϵ, and
Ξ(E , D) ≤  ϵ, where Ξ(E , D) =

1 X  
P X n X n  ( x  , x̂ n ) − P X n  ( x̂n )W n

| X (xn |x̂n ),
x n x̂ n
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P X n X n  ( x  , x̂ n ) = P n  ( x n )
P

m �[ Θ ]  E (m|xn)D(x̂n|m), for all
(xn , x̂ n )  � X n  ×  Xn ,  is the system-induced joint distribu-
tion, P  ˆ n  W n 

ˆ  is the approximating joint distribution, i.e.,
the n−product posterior channel acting on the non-product
reconstruction and W n

| X
(xn |x̂n ) = i = 1  WX | X (x i |x̂ i ) .

Theorem 2: (Lossy Source Compression Theorem) For a
(PX , X, W ˆ  )  source coding setup, a rate R  is said to be
achievable if and only if A ( P X , W X | X )  is non-empty, and

R  ≥ min I ( X ; X ) , (1)
P X �A ( P X , W X | X )

where A ( P X , W       ̂  )  =  { P  ˆ       � P ( X )  : for all x  � X,
P  ˆ  ( x̂)W      ̂  (x|x̂) =  P X ( x ) } ,  is the set of reconstruction

distributions.
Proof.     A  proof of the achievability is provided in Section
VI-A, and a converse proof is provided in Section VI-B.     □

Remark 1 (Comparison with Shannon’s noiseless source
compression): Noiseless source compression requires
l imn→∞  P ( X n  =  X n )  =  0. In the current formulation,
if one chooses the identity     posterior channel, i.e.,
W      ̂  (x|x̂) =  1 { x = x̂ } ,  for all (x, x̂)  � X  ×  X, we require
l imn→∞  �P X n X n  −  P X n  W n 

ˆ  �TV = 0.  We can easily see that
the two conditions are equivalent, and both formulations yield
the same asymptotic performance limit of Shannon’s entropy.
However, the standard source coding formulation using the
average single-letter distortion criterion at zero distortion
level is not equivalent to noiseless source compression.

I V. I L L U S T R AT I V E  E X A M P L E S

Example 1: (Lossy QC Source Coding for Binary Quantum
Source with Binary Symmetric Posterior CQ Channel) We
develop an example similar to that studied in [1]. Consider
a quantum source ρB  that generates the state |+⟩ and |0⟩ with
probability p and (1 −  p), respectively, where p � [0, 1/2],
i.e., ρB  =  p|+⟩⟨+| + (1 − p)|0⟩⟨0|, the reconstruction set X  =
{0, 1}, and the posterior CQ channel Wx =  (1 − q )  ωx  + q  ω x̄ ,
where q � [0, 1/2], ω0 =  (1/4)|+⟩⟨+| +  (3/4)|0⟩⟨0|, ω1 =
(3/4)|+⟩⟨+| + (1/4)|0⟩⟨0|, and x̄  =  x�1. Toward identifying
the set A ,  we assume P X ( 0 )  =  r, which characterizes the set
A,  and solve the following: ρB  =  rW0 +(1−r )W1 , 0 ≤  r  ≤  1.
This gives, if 0 ≤  q ≤  2 min{(3/4 −  p), (p −  1/4)}, q <  1/2
then A(ρB , W ) =  {1/2 + (1 −  2p)/(1 −  2q)}, if q =  p =  1/2
then A(ρB , W ) =  [0, 1], otherwise A(ρB , W ) =  ϕ, where
ϕ denotes the empty set. We now compute the asymptotic
performance described in Theorem 1. We have,

I ( X ; B R ) σ  =  S (ρB ) − r S (W0 ) − (1  −  r)S (W1 ), (2)

where σ X B R  =  r|0⟩⟨0| � W0 +  (1 −  r)|1⟩⟨1| � W1. Figure 3
shows the lossy QC source compression rate curve for source
ρB  with p =  0.4 and 0.5. Note that the curve decreases
monotonically with q, as expected.

Example 2: (Lossy Classical Source Coding for Binary
Source with Binary Symmetric Channel (BSC) as Posterior
Channel) Consider a source P X  � Bernoulli(p), X  =  {0, 1},
W X | X      � BSC(q ), and p, q � [0, 1/2]. Toward identifying

Fig. 3. Example for Lossy QC Source Coding for Binary Quantum Source
with Binary Symmetric Posterior CQ Channel.

the set A ,  we assume P  ˆ  (0) =  r, which characterizes the
set A ,  and solve the following system of linear equations: p
=  r(1 −  q) +  (1 −  r )q , (1 −  p) =  rq +  (1 −  r )(1 −  q). This
gives, if 0 ≤  q ≤  min{p, (1 −  p)}, q <  1/2 then
A ( P X , W ˆ  )  =  {(p −  q)/(1 −  2q)}, if q =  p =  1/2 then
A ( P X , W ˆ  )  =  [0, 1], otherwise A ( P X , W ˆ  )  =  ϕ, where
ϕ denotes the empty set. We now compute the asymptotic
performance described in Theorem 2. We have,

I ( X ; X )  =  H ( X )  −  H ( X | X )  =  hb(p) −  hb(q). (3)

Observe that the rate in (3) is identical to the rate-distortion
function for a Bernoulli(p) source with Hamming distortion
criterion for D  <  p [20, Theorem 10.3.1].

V. PROOF OF TH E O R E M 1
A. Proof of Achievability

Let Ω = ρ�n .  For a given (ρB , X, W ) QC source coding
setup, we choose a reconstruction distribution P X  �A(ρB , W ).
Codebook Design: We generate a codebook C consisting of
n-length codewords by randomly and independently selecting
2 n R  sequences { X n ( m ) } n R        according to the following
pruned distribution:

P(X n (m) =  x n )  =  
�

(1 −  ε)
for x n  � T ( n ) ( X ) (4)

0                   otherwise,

where P n  (x n )  =  
Q n P X ( x i ) ,  T ( n ) ( X )  is the δ-typical

set corresponding to the distribution P X  on the set X, and
ε(δ, n) � n ( n )                P X ( x n ) .  Note that ε(δ, n) ↘ 0 as
n → ∞ and for all sufficiently small δ >  0.

Construction of POVM: We use Winter’s POVM construction
[17]. Let πρ and π x n      denote the δ-typical and conditional
δ-typical projectors defined as in [21, Def. 15.1.3] and [21,
Def. 15.2.4], with respect to ρB  and W, respectively. Let π̂ be
the cut-off projector onto the subspaces spanned by the
eigenstates of ξ with eigenvalues greater than ϵd, where d =
2 − n ( H ( ρ B ) + δ 1 )  and δ1 will be specified later. Consider the
following positive operators with a trace of less than one, and
we exploit the random selection of these operators to construct
the sub-POVM { A x n  } .  For all x n  � T ( n ) ( X ) ,  define

ρ̃ x n  =  π̂πρB  π x n  W x n  π x n  πρB  π̂ and ρ̃  =  EP [ρ̃ xn  ], (5)

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 02,2023 at 18:52:14 UTC from IEEE Xplore. Restrictions apply.
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and ρ̃ x n      =  0 for x n  � T ( n ) ( X ) .  Using the Average Gentle
Measurement Lemma [21, Lemma 9.4.3], for any given ϵ �
(0, 1), and all sufficiently large n and all sufficiently small δ,
we have

X  
     X  ( x  )

�ρ̃ xn  −  W x n  �1 ≤  ϵ, (6)
x n �X n

Detailed proof of the above statement can be found in [22,
Eq. 35]. Using the above definitions, for all x n  � Xn ,  we

construct the operators,A n       =  γ n       Ω−1/2 ρ̃  n  Ω−1/2 , where
γ x n  =  2 − n R  ( 1−ε )  |{m : X n ( m )  =  xn }| and η � (0, 1). Let
1{sP}  denote the indicator random variable corresponding to

the event that { A x n  : x n  � T ( n ) ( X ) }  forms a sub-POVM. If
1{sP}  =  1, then construct sub-POVM Γ ( n )  as follows: Γ ( n )

=  { A x n  : x n  � T ( n ) ( X ) } .  We then add an extra operator
A x n  =  I  − x n �T  ( n ) ( X )  A x n        , associated with an arbitrary

sequence x n  � Xn \T ( n ) ( X ) ,  to form a valid POVM Γ ( n )

with at most (2 n R  + 1 )  elements. If 1{sP}  =  0, then we define

Γ ( n )  =  { I }  and associate it with xn .  This defines the POVM
and the associated decoder. We now provide a proposition from
[17], which will be helpful later in the analysis.

Proposition 1: For all ϵ, η � (0, 1), for all sufficiently
small δ i >  0, and for all sufficiently large n, we have

E  1{sP}       ≥  1 −  ϵ, if R  >  I ( X ; B R ) σ ,  where the quantum
mutual information is computed with respect to the CQ state,
σ X B R  ∆ PX (x)|x⟩⟨x|X � Wx, and {|x⟩} is an orthonor-
mal basis for the Hilbert space H X  with d im (H X )  =  |X|.
Error Analysis: We begin by splitting the error Ξ (Γ ( n ) )  into
two terms using the indicator function 1{sP}  as

Ξ (Γ ( n ) )  =  1 {sP} Ξ (Γ ( n ) )  +  1 −  1{sP}  Ξ (Γ ( n ) ) ,

≤  1 { sP} Ξ (Γ ( n ) )  +  2 1 −  1{sP} , (7)

where (7) follows from upper bounding the trace distance
between two density operators by its maximum value of two.
Using the triangle inequality, we now expand Ξ (Γ ( n ) ) .  Under
the condition 1{sP}  =  1, Ξ ( Γ ( n ) )  ≤  ζ  +  2ζ , where ζ  =

x n �T  ( n ) ( X )  � ΩA x n        Ω − Tr ( A x n  Ω)Wxn� , ζ =  Tr ( A x n  Ω).
The error terms ζ  and ζ  capture the error induced by covering

and by not covering the n-tensored posterior reference state,
respectively. The analysis of these error terms is provided in
[23]. Below, we summarize the results obtained from bounding
these error terms. For all ϵ � (0, 1), for all sufficiently small
δ >  0, and sufficiently large n, we have E[1{sP} ζ ]  ≤  ϵ,
for all sufficiently small η >  0, and E[1{sP} ζ ]  ≤  2ϵ,

for all η � (0, 1). Now, we bound E  Ξ ( Γ ( n )  , for all ϵ �
(0, 1), E [Ξ (Γ ( n ) ) ]  ≤  E [1{sP} Ξ (Γ ( n ) ) ]  +  2ϵ ≤  6ϵ. Since E

Ξ (Γ ( n ) )  ≤  6ϵ, there exists a codebook C and the associated
POVM Γ ( n )  such that Ξ ( Γ ( n ) )  ≤  6ϵ. This completes the
achievability proof.

B. Proof of Converse

Let R  be an achievable rate. Then from Definition
4, given a triple (ρB , X, W ), for all ϵ     >      0, and all
sufficiently large n, there exists (n,Θ) QC lossy com-
pression protocol with a POVM Γ ( n ) = { A m }
and a decoding map f  that satisfies the following con-
straint: n  � ΩA f − 1 (xn )      Ω −  Tr ( A f− 1 ( x n )Ω )W x n  �1     ≤  ϵ,
and       log Θ ≤  R  +  ϵ. Let M denote the transmit-
ted message, and define the following classical-quantum
state: ω X n B n

= n  |xn⟩⟨xn| � ΩA f− 1 (xn )      Ω and τ X

B R  =         n  Tr(Af − 1 ( x n )Ω)|xn ⟩⟨xn | �Wx n  . Here ω X  B R  and τ X

B R        are the resulting CQ-states of the QC lossy
compression protocol and the ideal QC lossy compression
protocol according to Definition 4, respectively. By triangle
equality, we have �ω X n B n  

− τ X n B n  
�1 ≤  ϵ. We now provide a

lower bound on the rate R .  We have the following inequalities:

nR =  log Θ −  nϵ ≥  H (M ) −  nϵ ≥  I (M ; B n )ω  −  nϵ
n

≥  I ( X n ; B n )ω  −nϵ  ≥  nS (B R )ω  − S ( ( B R ) i | X i )ω−  nϵ
i = 1

≥  n I ( X ; B R )ω Q  −  nϵ ≥  n I ( X ; B R ) τ Q  −nϵ̃ (ϵ)−nϵ,

where inequalities are argued as follows: (a) follows from
the quantum data processing inequality [21, Section 11.9.2],
(b) follows from the fact that conditioning does not in-
crease quantum entropy, (c) follows from the concav-
ity of conditional quantum entropy [21, Ex. 11.7.5] and
by defining ω X Q ( B R ) Q        =  1 n T r X n \ i ( B  ) n \ i  (ω X n B n  

),
and noting that ω ( B R ) Q =      ρB , and (d) follows from
the continuity of quantum mutual information (AFW in-
equality) [21, Ex. 11.10.2], by defining τ X Q ( B R ) Q =

n i = 1  T r X n \ i ( B R ) n \ i  ( τ X n B n  
)  = x  P X Q  (x)|x⟩⟨x| � Wx ,

ϵ̃ = 2 ϵ log(dim HB ) +  (2 +  ϵ)hb     2 +ϵ      , and observing

�ρB −
X

P X Q  (x)Wx�1 ≤  �ω X Q ( B R ) Q  −  τ X Q ( B R ) Q  �1
x

≤  �ω X n B n  
−  τ X n B n  

�1 ≤  ϵ, (8)

where P X      (x )  =  ( 1 P n        P  
n \ i  Tr { A f − 1 ( x n ) } Ω ) .  We note

that      x P X Q  (x) = 1.  So far, we have shown that R  �     ϵ> 0  Iϵ ,
where we have defined for all ϵ ≥  0, Iϵ (ρB , W ) =  { R  :
� P X  � A ϵ  such that R  ≥  I ( X , B R ) σ  − g (ϵ)} ,  Aϵ (ρB , W ) =
{ P X  � P ( X )  : �         P X ( x ) W x  −  ρB�1 ≤  ϵ}, and σ X B R      =
PX (x)|x⟩⟨x|X � Wx, g(ϵ) =  ϵ̃ + ϵ. Equation (8) ensures that

the set A ϵ  is non-empty for ϵ >  0. Using the continuity of
rate-regions I ϵ  at ϵ =  0 (similar to [23, Lemma 5]), we

obtain R  � I0 .  This concludes the converse proof.

V I . PROOF OF TH E O R E M 2

A. Proof of Achievability

For a given (P X ,  X, W ˆ  ) source coding setup, we choose
a reconstruction distribution P X  � A ( P X , W X | X ) .  From now
on, we let Θ =  2 +  1.
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Codebook Construction We construct a codebook C =
{X n (1), X n (2), · · ·  , X n ( 2 n R ) } ,  by choosing each codewords
randomly and independently according to the following
“pruned” distribution:

P(X n (m) =  x̂ n )  =  
�P

1 
(x̂
ε

)
if x̂ n  � T ( n ) ( X ) ,

0 otherwise.

where P n  ( x̂ n ) =
Q

i = 1  P X ( x̂ i ) ,  T ( n ) ( X )  is the δ-typical set
corresponding to P  ˆ  , and ε(δ, n) = x

ˆ n �T  ( n ) ( X )  P
n

 ( x̂n ) .
Encoder Description For an observed source sequence xn ,
construct a randomized encoder that chooses an index m �
[2nR ] according to a sub-PMF E M| X n  (m|xn) , which is anal-
ogous to the likelihood encoders used in [18], [19]. We now
specify E M| X n  (m|xn) for x n  � T ( n ) ( X )  and m � [2nR ],
where δ =  δ(|X| +  |X|). For a η � (0, 1) (to be specified
later), and δ >  0, define

W n (xn |x̂n )
E M | X n  (m|x )  =  

x̂ n       2 n R  (1 +  η) P n  (x n )

×  1 { x̂ n �T  ( n ) ( X ) } 1 { x n �T  ( n ) ( X | x̂ n ) } 1 { X n ( m ) = x̂ n } ,

Let 1{sPM
F

} denotes the indicator random variable corre-
sponding to the event that { E M | X n  (m|x )}m�[Θ ]  forms a
sub-PMF for all x n      � T ( n ) ( X ) .  If 1{sPM

F
} =  1, then

construct the sub-PMF P M| X n  (m|xn) =  E M| X n  (m|xn), for all
x n      � T ( n ) ( X )  and m � [Θ]. We then add an addi-

tional PMF element P M | X n  (0|xn) =  E M| X n  (0|xn) =  1 −
n R      E M| X n  (m|xn) for all x n  � T ( n ) ( X ) ,  associated

with m =  0, to form a valid PMF P M| X n  (m|xn) for all
x n  � T ( n ) ( X )  and m � { 0 }  � [2nR ]. If x n  � T ( n ) ( X ) ,

then we define P M| X n  (m|xn) =  1 { m = 0 } .  If 1  sPM
F

=  0, then P M| X n  (m|xn) =  1 { m = 0 } ,  for all x n      � Xn .
We

provide a proposition from [19], which will be helpful later in
the analysis.

Proposition 2: For all ϵ, η � (0, 1), for all sufficiently small
δ >  0, and sufficiently large n, we have E  1{sPM

F
} ≥  1−ϵ,

if R  >  I ( X ; X ) .

Decoder Description: For an observed index m � {0}�[2n R ]
communicated by the encoder, the decoder outputs X n ( m )  if
m =  0. Otherwise, decoder outputs a fixed x̂ n  � Xn \T ( n ) ( X ) ,
i.e., D(m) =  X n ( m )  if m =  0, otherwise D(m) =  x̂n .

Error Analysis We begin by splitting the error Ξ(E , D) into
two terms using the indicator function 1{sPM

F
} as

Ξ(E , D) =  1{sPM
F

}Ξ(E , D) +  (1 −  1{sPM
F

} )Ξ(E , D),

≤  1{sPM
F

}Ξ(E , D) +  (1 −  1{sPM
F

} ), (9)

where (9) follows from upper bounding the total variation
between two PMFs by one. Using the triangle inequality, we
now expand Ξ(E , D). Under the condition 1{sPM

F
} =  1,

2 Ξ(E , D) ≤  ζ  +  2ζ +  3ϵ, for all sufficiently large n and all

δ >  0, where ζ  =
P n  (xn )E M| X n(m|x n )  −  P M  (m)W n

|X(xn |x̂n )
m�[2 n R ]

x̂  ,  x n �T  ( n ) ( X )

×  1 { X n ( m ) = x̂ n } , ζ  = P n  ( x n ) E M| X n  (0|xn).
x n �T  ( n ) ( X )

The error terms ζ  and ζ  capture the error induced by
covering and not covering the n-product source sequence,
respectively. Below, we summarize the bounds on these error
terms. For detailed analysis, we refer to [23]. For all ϵ � (0, 1),
for all sufficiently small δ >  0, and all sufficiently large n, we
have E[1{sPM

F
} ζ ]  ≤  ϵ, for all sufficiently small η >  0, and

E[1{sPM
F

} ζ ]  ≤  2ϵ, for all η � (0, 1). Therefore, we get, for
all ϵ � (0, 1), E [Ξ(E , D)] ≤ E [1{sPM

F
}Ξ(E , D )]  +  ϵ ≤  9ϵ/2.

Since E [Ξ(E , D)] ≤  9ϵ/2, there exists a code C such that the
associated Ξ(E , D) ≤  9ϵ/2. This completes the achievability
proof.

B. Proof of Converse
Let R  be an achievable rate. Then from Definition 7, given

a triple (PX , X, W ˆ  ), for all ϵ >  0, and for all sufficiently
large n, there exists (n,Θ) lossy compression protocol with an
encoding map E and a decoding map D  that satisfy the fol-
lowing constraints: Ξ(E , D) =  �P X n X n  −  P  ˆ n  WX | X

�T V  ≤

ϵ, and log Θ ≤  R  +  ϵ. Let M denote the transmitted
message. We now provide a lower bound on the rate R .  We
have the following inequalities:

nR =  log Θ −  nϵ ≥  H (M ) −  nϵ ≥  I ( X n , M )  −  nϵ

≥ I ( X n , X n ) − n ϵ  ≥
X

I ( X i ; X i ) − n ϵ  ≥  n I ( X Q ; X Q ) − n ϵ
i

=  n I ( P X  , P X Q | X Q  
)−nϵ  ≥  nI (P  ˆ  , WX |X )−n ϵ̃ (ϵ)−nϵ,

where (a) follows from the data processing inequality, (b)
follows from the property that conditioning reduces entropy,
(c) follows from the convexity of mutual information as the
function of varying channel for a fixed source, and by defining P

ˆ = 1 P ˆ       and noting that P X =  P X ,  (d)
follows from the change of notation of mutual information [3],
and (e) follows from the continuity of mutual information [20,
Theorem 17.3.3], by defining ϵ̃  =  −2ϵ log 4ϵ2/(|X|2|X|), and
observing [23, Lemma 6]: �P X  − x

ˆ
 P  ˆ      ( x̂)W      ̂  (·|x̂)�TV

≤ �P X Q X Q
− P X Q

W X | X �T V  ≤ �P X n X n −  P X nW X | X
�T V .

So far, we have shown that R  � ϵ
>

0  Iϵ ,  where we
have defined for all ϵ ≥  0, I ϵ (P X , W ˆ  )  =  { R  :
�P X  � A ϵ ( P X , W X | X )  such that R  ≥  I (P X , W X | X )−g (ϵ ) } ,
A ϵ ( P X , W X | X )  =  { P X  � P ( X )  : �      xˆ  PX ( x̂ )WX | X ( ·| x̂)  −
P X �T V  ≤  ϵ}, g(ϵ) =  ϵ̃ + ϵ. [23, Lemma 6] ensures that the
set A ϵ  is non-empty for ϵ >  0. Using the continuity of rate
regions similar to [23, Lemma 5], we obtain             I ϵ  =  I 0  and
A 0  is non-empty, and hence R  � I0 .  This concludes the
converse proof.
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