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Abstract—In this work, we address the lossy quantum-classical
(QC) source coding problem, where the task is to compress the
classical information about a quantum source, obtained after
performing a measurement, below the Shannon entropy of the
measurement outcomes, while incurring a bounded reconstruc-
tion error. We propose a new formulation, namely, "rate-channel
theory", for the lossy QC source coding problem based on the
notion of a backward (posterior) channel. We employ a single-
letter posterior channel to capture the reconstruction error in
place of the single-letter distortion observable. The formulation
requires the reconstruction of the compressed quantum source to
satisfy a block error constraint as opposed to the average single-
letter distortion criterion in the rate-distortion setting. We also
develop an analogous formulation for the classical variant with
respect to a corresponding posterior channel. Furthermore, we
characterize the asymptotic performance limit of the lossy QC
and classical source coding problems in terms of single-letter
quantum mutual information and mutual information quantities
of the given posterior channel, respectively. We provide examples
for the above formulations.

I. INTRODUCTION

We consider a fundamental task of compressing the classical
information about a quantum source while suffering a bounded
error between the source and its reconstruction, namely, the
lossy quantum-classical (QC) source coding problem [1]. In
this setting, the sender performs a collective measurement on
several copies of the quantum source, creating a classical
sequence that is compressed and sent to the receiver over
a noiseless classical channel. The receiver then outputs a
classical sequence, stored in a quantum register, using a decod-
ing map while incurring a bounded reconstruction error. The
authors in [1] considered the additive single-letter distortion
observable as a reconstruction error criterion and obtained a
single-letter expression for the asymptotic QC rate-distortion
function in terms of minimal quantum mutual information.
The minimization is done over all POVMs that satisfy the
distortion constraint.

In QC setup, considering the average single-letter distortion
criterion draws inspiration from Shannon’s formulation of
lossy classical source coding problem [2], where a single-
letter characterization is available for the additive single-letter
distortion criterion. In Shannon’s formulation, the motivation
for an average single-letter error criterion emanates from the
strong converse of the lossless classical source coding theorem.
The theorem states that the entropy bound cannot be breached
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even when the asymptotic probability of block error is relaxed
to any number in (0, 1) [3, Theorem 1.1].

In addition to Shannon’s work on the rate-distortion problem
[2], there have been several works discussing the lossy source
compression problem [4]. A concept that has received signifi-
cant attention in the lossy regime is the notion of a backward
channel [3, Problem 8.3], which characterizes the posterior
distribution of the source given the reconstruction. The struc-
ture of this channel has been studied in [5]-[7]. Moreover,
the rate-distortion achievability result in [3, Theorem 7.3]
is shown by constructing a channel code for a backward
channel with a large probability of error and by using the
encoder of the latter as a decoder of the former and vice
versa. For further developments on this concept, see [8]—[13].
Highlighting this further, the posterior or backward channel (a
posteriori probability) can be defined for any information
processing system, and it has been widely used in Bayesian
decision theory [14], detection and estimation theories such as
MAP estimation. [15]. On the other hand, in many applications
such as speech processing and inference in machine learning,
defining a suitable and well-behaved distortion function that
can capture the loss incurred in compression is a difficult task
[16]. Therefore, to encompass a broader set of applications,
our motivation is to bring the Bayesian perspective to the
lossy compression problem without using a distortion function.
Furthermore, we aim to use a more information-theoretic
object, such as a channel, to capture the loss in lossy source
coding problems. The lossy compression scheme can now be
interpreted as providing a rate-limited representation of the
source with a pre-specified a posteriori probability distribution
of the source given its reconstruction.

In light of this, we develop a new formulation of the
lossy QC and classical source coding problems based on the
notion of a posterior channel that produces the source from its
reconstruction, which we called as "rate-channel theory". We
use a single-letter posterior channel to characterize the nature
of the loss incurred in the encoding and decoding
operations, instead of a single-letter distortion function. In the
QC setup, we use posterior classical-quantum (CQ) channel
to describe the relationship between the source’s reference and
its reconstruction. Furthermore, motivated by the probability
of error (block error) constraint in Shannon’s lossless com-
pression, we consider a block error constraint instead of the
average symbol-wise error criterion. We want to construct an
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encoder and a decoder such that the joint effect of producing a
reconstruction sequence from the source sequence is close to
the effect of the n-product posterior channel acting on the non-
product reconstruction sequence, manifesting as a block error
constraint. The closeness is measured using the trace distance
the total wvariation in the QC and the classical case,
respectively.

As the main contribution of our work, we provide a
single-letter characterization of the asymptotic performance
limit using the minimal quantum mutual information and the
minimal mutual information of the posterior channel in the
QC and classical setup, respectively, where the minimization
is over all reconstruction distributions (see Theorem 1 and
2). As for the achievability of Theorems 1 and 2, we use
Winter’s measurement compression protocol [17] to construct
the encoding POVM, and the likelihood encoder as discussed
in [18], [19] to construct the randomized encoder, respectively.
Proof of the converse of Theorem 1 uses inequalities such
as the concavity of conditional quantum entropy, and the
continuity of quantum mutual information. Similar tools are
used for the converse of Theorem 2. Moreover, this work opens
up an opportunity to investigate the application of the notion of
the posterior channel in other quantum source coding problems
where a single-letter characterization is not available.

Il. PRELIMINARIES AND NOTATIONS

The set of density operators on Hg is denoted by D(Hg).
We denote Hg_ as the Hilbert space associated with the
reference space of Hg, with dimHgs, = dimHs. We
denote the finite alphabet of a source as X, and the set of
probability distributions on the finite alphabet X as P (X). Let
O]2 {1,2,---,0}

Definition 1: (Classical-Quantum (CQ) Channel) Given a
finite set X and a Hilbert space H, a CQ channel W is specified
by a collection (Wx B D(H) : x @ X) of density operators.

IIl. MAIN RESULTS

A. Lossy Quantum-Classical Source Coding

Consider a memoryless quantum source pg @ D(Hg).

Definition 2: (QC Source Coding Setup) A QC source
coding setup is characterized by a triple (ps, X, W) where
ps is the source density operator acting on Hg, X is the
reconstruction alphabet, and W : X = D(Hg) is a single-
letter posterior classical-quantum (CQ) channel.

Qn
PBg By

L
p8n Me 0] X"

Fig. 1. lllustration of Lossy QC Source Compression Protocol.
Definition 3: (Lossy QC Compression Protocol) For a given
source density operator pg and a reconstruction alphabet X,
an (n, ©) lossy QC compression protocol is characterized by
(i) a POVM T(n) & {Am}e_1 and (ii) a decoding map f :
{1,2,:---,0} > X", as sthnV\;n in Fig. 1.

Definition 4: (Achievability) For a given QC source coding
setup (ps, X, W), a rate R is said to be achievable if for all
€ > 0 and all sufficiently large n, there exists an (n, @) QC
lossy compression protocol such that log®/n < R + €, and
=(rm, f) < €, where =(rt", f) 2

X M xn B[X")x"]| - X Pxan (X")Wyxn B [X"WX"] , xn
X" a___ q_ !
for all X" BX " M B [x")X"| =8 pZ"Af-i(xn)  pg"
[x"}{x"|, is the unnormalized system-induced density op-
erator on systems BrRB, Px.(x") = ATr(Affl(xn)an is the
probability of observing the reconstruction sequence x , W&a
[X"}{x"| is the approximﬂing density operator on systems
BrB, and Wyxn = a n, Wy,

Theorem 1: (Lossy QC Source Compression Theorem) For
a (ps, X, W) QC source coding setup, a rate R is achievable
if and only if A(ps, W) is non-empty, and

R > min 1(X;Bg),,
PxBA(ps, W)
where the quantum mutual information is computed
ith respect to the classical-quantum state, ocXBr 4

« Px(x)x){x|x BWx, {|x)}xnx} is an orthonormal basis
for the Hilbert space Hx with dim (Hx) = |X|, and A is
the set of recorptruction distributions defined as A(pg, W) &
{Px P(X) : <X Px(X)Wx = pB}-

Proof. A proof of the achievability is provided in Section
V-A, and a converse proof is provided in Section V-B. m]

B. Lossy Classical Source Coding

Consider a discrete memoryless source (DMS) X charac-
terized by a source distribution P x over a finite alphabet X.

Definition 5: (Source Coding SeAtup) A source coding setup
is characterized by a triple (Px, X, W, |)g) where Py is the

source distribution over a finite alphabet X, X is the recon-
struction alphabet, and WX|>2 : X = X is the single-letter
posterior (backward) channel, i.e., the conditional distribution

of source given the reconstruction.

bed [8(”) | Mo

)‘(n
D@
Fig. 2. IIIustratioLH—Uf‘msé Classical So ression Protocol.

Definition 6: (Lossy Source Compression Protocol) For a
given source distribution Px and a reconstruction alphabet
X, an (n, ©) lossy source compression protocol consists of
(i) a randomized encoding map E : X" = [O] and (ii) a
randomized decoding map D : [®] = X", as shown in Fig. 2.

Definition 7: (Achievability) Given a source coding setup
(Px, X, Wx )2), a rate R is said to be achievable if for all
e€e> 0and ail sufficiently large n, there exists an (n, ©) lossy
source compression protocol such that £ log©® < R + ¢, and
Z(E, D) < €, where Z(E, D) 2 "

1 X ngn on n njgn
E A Pxnx‘h(x » X )_PX’h(X )W X|X(X |X )’

xnxn
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Pynyn (X0, X") = P (x™) Pm[e] E(m|[x")D(Xx"|m), for all
(x", x") X" x X", is the system-induced joint distribu-
tion, PXA n WX“| S is the approximating joint distribution, i.e.,
the n-product posterior channel a%ing on the non-product
reconstruction and W; IX(x” [x")& Wy x (Xi [ %i).

Theorem 2: (Lossy Source Compression Theorem) For a
(Px, X, W, )Z) source coding setup, a rate R is said to be
achievable i} and only if A(Px, Wx|x) is non-empty, and

R > min 1(X; X), (1)

PyBA(Px, Wy x)

Pwhere A(Px, W )&= {P- P(X) : forall x X,
2 Py (X)W, |X”)U<)ff<) = Py (3(<) }, is the set of reconstruction

distributions.

Proof. A proof of the achievability is provided in Section

VI-A, and a converse proof is provided in Section VI-B. 0O

Remark 1 (Comparison with Shannon’s noiseless source
compression):  Noiseless source compression requires
limpse P(X™ = X") = 0. In the current formulation,
if one chooses the identity posterior channel, i.e.,
Wx < (x]X) = 1(x=x3, for all (x,%) B X x X, we require
limpsee BPyagn = Py WX” < By =0. We can easily see that
the two conditions are equivaient, and both formulations yield
the same asymptotic performance limit of Shannon’s entropy.
However, the standard source coding formulation using the
average single-letter distortion criterion at zero distortion
level is not equivalent to noiseless source compression.

IV. ILLUSTRATIVE EXAMPLES

Example 1: (Lossy QC Source Coding for Binary Quantum
Source with Binary Symmetric Posterior CQ Channel) We
develop an example similar to that studied in [1]. Consider
a quantum source pp that generates the state |+) and |0) with
probability p and (1 - p), respectively, where p @ [0, 1/2],
i.e., pg = p|+){+]|+(1-p)|0){0]|, the reconstruction set X =
{0, 1}, and the posterior CQ channel Wy = (1-q) wx+ g wx,
where q @ [0, 1/2], wo = (1/4)[+)(+]| + (3/4)|0)0], w1 =
(3/4)|+){+] +(1/4)]0){0], and x & x@1. Toward identifying
the set A, we assume Px(0) = r, which characterizes the set
A, and solve the following: pg = rWo+(1-r)W1,0< r < 1.
This gives, if 0< g < 2min{(3/4- p),(p- 1/4)},q < 1/2
then A(ps, W) = {1/2+(1 - 2p)/(1- 2q)},ifq=p= 1/2
then A(ps, W) = [0, 1], otherwise A(ps, W) = @, where
¢ denotes the empty set. We now compute the asymptotic
performance described in Theorem 1. We have,

[(X;Br)o = S(ps)-rS(Wo)-(1-r)S(W1), (2)

where 6XBr & r|O)O| B Wo + (1 - r)|1)1] @ W;. Figure 3
shows the lossy QC source compression rate curve for source
ps with p = 0.4 and 0.5. Note that the curve decreases
monotonically with g, as expected.

Example 2: (Lossy Classical Source Coding for Binary
Source with Binary Symmetric Channel (BSC) as Posterior
Channel) Consider a source Px @ Bernoulli(p), X = {0, 1},
Wy x BSC(q), and p,q [0, 1/2]. Toward identifying

0 0.1 0.2 0.3 0.4 0.5
parameter ¢

Fig. 3. Example for Lossy QC Source Coding for Binary Quantum Source
with Binary Symmetric Posterior CQ Channel.

the set A, we assume P, (0) = r, which characterizes the
set A, and solve the following system of linear equations: p
=r(l-9g)+(1-r)g,(1-p)=rg+ (1- r)(1- qg).This
gives, if 0 < g < min{p,(1 - p)},qg < 1/2 then
A(Px, W, o) = {(p- a)/(1-2q)}, if a = p = 1/2 then
A(Px, Wx -~ ) = [0, 1], otherwise A(Px, Wx X ) = @, where
¢ denotes me empty set. We now compute éqe asymptotic
performance described in Theorem 2. We have,

1(X;X) = H(X) = H(X|X) = ho(p) - ho(a). (3)

Observe that the rate in (3) is identical to the rate-distortion
function for a Bernoulli(p) source with Hamming distortion
criterion for D < p [20, Theorem 10.3.1].

V. PROOF OF THEOREM 1
A. Proof of Achievability

Let Q =p”. For a given (pg, X, W) QC source coding
setup, we choose a reconstruction distribution P x BA(ps, W).
Codebook Design: We generate a codebook C consisting of
n-length codewords by randomly and independently selecting
2"R sequences {X”(m)}m[an] according to the following
pruned distribution:

PQ(’:‘) for x" Tén)(X)

P(X"(m) = x") = (4)

0 otherwise,

n

where P;(x“) = L Px(xi), TS(”)(X) is the 6-typical
set corresponding to thé distribution Px on the set X, and
£(6, n) P W) Pa(x"). Note that €(5,n) N 0 as

n - oo and for3lt sifflciently small 6 > 0.

Construction of POVM: We use Winter’'s POVM construction
[17]. Let mp  and mx. denote the §-typical and conditional
8-typical projectors defined as in [21, Def. 15.1.3] and [21,
Def. 15.2.4], with respect to pg and W, respectively. Let ftbe
the cut-off projector onto the subspaces spanned by the
eigenstates of § with eigenvalues greater than ed, where d &
2-n(H(ps)+81) and §; will be specified later. Consider the
following positive operators with a trace of less than one, and
we exploit the random selection of these operators to construct

the sub-POVM {Ayn }. For all x" Té")(X), define

ﬁxn é ﬁannonxnnxnanﬁ and §=A EP[ﬁX"]; (5)
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and gxn = 0 for x" Té(n)(X). Using the Average Gentle
Measurement Lemma [21, Lemma 9.4.3], for any given €
(0, 1), and all sufficiently large n and all sufficiently small §,
we have
Xoopp(xn) o
X B - WaaBr <€ €,
- €

(6)

xn@EXn

Detailed proof of the above statement can be found in [22,
Eq. 35]. Using the above definitions, for all x" X", we
construct the operators,A » 2 y . Q12p .Q71/2, where
Vo & 27RO 1y o xn(m) = x"}| and n B (0, 1). Let
é1+n). . . .
1 denote"the indicator random variable corresponding to
{sP}
the event that {A,. : x" B T'")(X)} forms a sub-POVM. If
1(spy = 1, then construct sub-POVM (") as follows: (")

= {A4. : x" T(”)(Xé)}. We then add an extra operator
A

Axg - I - X"NET gn)(x) Axn

sequence x) B X"\T é”’(x), to form a valid POVM (")

with at most (2"R +1) elements. If 1{sP} = 0, then we define

r(m = {1} and associate it with x7. This defines the POVM
and the associated decoder. We now provide a proposition from
[17], which will be helpful later in the analysis.

, associated with an arbitrary

Proposition 1: For all €,n (0,1), for all sufficiently
small 6 ;> 0, and for all sufficiently large n, we have

E lespy 2 1-¢ if R > I(X; Br)s, Where the quantum
mutual information is computed with respect to the CQ state,
oXBr & Py(x)|x){x|x BWy, and {|x)} is an orthonor-

mal basis for the Hilbert space Hx with dim (Hx) = |X|.

Error Analysis: We begin by splitting the error =(I{")) into
two terms using the indicator function 1/5py as

=(r(n)

1{SP}E(F("))+ 1- 1{SP} E(F(n)),

lspy=(M™) + 2 1- 146py

IN

(7)

where (7) follows from upper bounding the trace distance
between two density operators by its maximum value of two.
Using the triangle inequality, we now expand =(r‘"). Under
the condition 1 = 1, =Z(r'™) < 7+ 27, where T &
f LisPy % ( ) ¢ ¢ ¢

oot () B QAxn Q-Tr(Aw QW T8 Tr(AxQ).
8
The error terms T and { capture the error induced by covering

and by not covering the n-tensored posterior reference state,
respectively. The analysis of these error terms is provided in
[23]. Below, we summarize the results obtained from bounding
these error terms. For all € @ (0, 1), for all sufficiently small
6 > 0, and sufficiently large n, we have E[l{sp 7] < ¢
for all sufficiently small n > 0, and E[l{sp}l}] < 2

for all n (0,1). Now, we bound E =(r(") , for alle®
(0,1), E[Z(r™)] < E[L1;5py=(I™)] + 2¢ < 6e. Since E
=(rtn)) < 6¢, there exists a codebook C and the associated

POVM (") such that (")) < 6e. This completes the
achievability proof.

B. Proof of Converse

Let R be an achievable rate. Then from Definition
4, given a triple (ps,X, W), for all € > 0, and all
sufficiently large n, there exists (n,®) QC lossy com-

pression protocol with a POVM rf{n) = {Am} e

and a decoding map f tQaL satisfies the following con-
straint: o QAf-10) Q= Tr(Aeci(xn)Q)WxnB1 < g,
and log® < R + e Let M denote the transmit-
ted message, and dPefine the foIIowi\r)g classical—guantum
state: anB; a o |Xn)(Xn| ﬁAHm Q andt*
B n

R =

"oa r&Af-l(xn)Q)lx”)(x” | BWyn. Here w* Br and t*

" dre the resulting CQ-states of the QC lossy
compression protocol and the ideal QC lossy compression
protocol according to Definition 4, respectively. By triangle
equality, we have Bw*"Br - tX"Br @; < €. We now provide a
lower bound on the rate R. We have the following inequalities:

B

NR = log®- nex H(M) - ne2 I(M;B})w - ne

n
b

I(X"; BRlw-Nn€e> nS(Br)w~- S((Br)i|Xi)w— ne
i=1

Vo

AVArSY

d
NI(X;Br)wa — NE= nl(X; Br)ra —NE(€)-neg,

where inequalities are argued as follows: (a) follows from
the quantum data processing inequality [21, Section 11.9.2],
(b) follows from the fact that conditioning does not in-
crease quantum entropy, (c) follows from the concav-
ity of conditional quantum eBtropy [21, Ex. 11.7.5] and
by defining wXa(Bala 2 150 Tryg (X B),
and noting that w(Brla = pg, and (d) follows from
the continuity of quantum mutual information (AFW in-
quaIity) [21, Ex. 11.10.2], by defining tTXa(Brla 4
XTBR) = L Pxa (x) 1] B Wy,
%elog(dim Hg) + (2+ €)hy 5§, , and observing

X
pB—

n
i=1 Trxn\l(BR)n\i (T
A

™ S|

Pxa (X)WxB1< BoXelBrla - ¢Xa(Brlap,
X

n n n n
< RAwX Br - X Bals €,

(8)

where Px _(x)# (nl P r::l P v Tr{A¢-1(xn)}0). We note
that” , Pxa (x)=1. So far, we have shown that R >0 le,
where we have defined for all € 2 0, l<(ps, W) & {R :
Px B Ae¢ suchthat R 2 I (X, Br)s —g(€)}, Ac(ps, W) =
{Px BP(X):BP Px(x)Wy - psl; < €}, and o XBr =
Bx (x) | x)(x|x BW,* g(€) = € +ae. Equation (8) ensures that

the set Ac is non-empty for € > 0. Using the continuity of

rate-regions l¢ at € = 0 (similar to [23, Lemma 5]), we
obtain R @ lg. This concludes the converse proof.

VI. PROOF OF THEOREM 2

A. Proof of Achievability

For a given (Px, X, Wy x ) source coding setup, we choose
a reconstruction distribution P, B A(Px, WX|X")' From now

on, we let @ = 2R + 1,
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Codebook Construction We construct a codebook C &

{(xX"(1), X"(2), -+, X"(2"R)}, by choosing each codewords
randomly and independently according to the following
“pruned” distribution:

if %" Tén)()(),

otherwise.

. Q . i .
where P; (X")= "Ly Py(Xi), Ts(n)()f) is the &-typical set
and (6, n) £ x"ng‘”'(X)R(n (xM).
Encoder Description For an observed source sequence x",
construct a randomized encoder that chooses an index m

[2"R] according to @ sub-PMF Ew|xn (m|x") , which is anal-
ogous to the likelihood encoders used in [18], [19]. We now

specify Ewmjxn (m[x") for x" TS(”)(X) and m @ [2"R],
where § = §(|X| + [X|). For a n @ (0,1) (to be specified
later), and 6 > 0, define

corresponding to P -,

we TR
P)[‘(x“)
1

1 (1- s)
2nR (1 + n)

1,

EM|x"(m|Xn) 4

xn

x 1,.n

(et (%)} lT mx N (X" (m)=gn}’

Let 1{sPMF denotes the indicator random variable corre-
sponding to {he event that {Ewmjxn (M|X" )}maie; forms a

sub-PMF for all x" 8 T."(X). If 1;5ppm"} = 1, then
construct the sub-PMF Pujxa (m[Xx") =2Em|xa (Mm|x"), forall
X" T (X) and m @ [©]. We then add an addi-
tional PMF5e|ement Pmixn(0[x") = Emx(0]x") & 1-
P maiz f Evixs (mx") for all x™ T."(X), associated
with m = 0, to form a valid PMF Pw|xn(m|x") for all
X" ST‘”’(X) and m B {0} B [2"R]. If x" TS(")(X),
then we define Pujx» (M[x") = 1im-o}. If 1 sF}MF
= 0, then Pmjx~(m[x") = X",
We
provide a proposition from [19], which will be helpful later in

the analysis.
Proposition 2: For all ,n @ (0, 1), for gl sufficienfly small

1{m=0y, for all x"

6 > 0, and sufficiently large n, we have E 1{sPMF } > 1-¢,
ifR > 1(X;X).

Decoder Description: For an observed index m & {0}&[2"R]
communicated by the encoder, the decoder outputs X" (m) if
m = 0. Otherwise, decoder outputs a fixed XJ' )A(“\Té(") ()2 ),
i.e, D(m) = X"(m) if m= 0, otherwise D(m) = X7,
Error Analysis We begin by splitting the error Z(E, D) into
two terms using the indicator function 1{sPMF } as

Z(E,D) = 1spm 3=(E, D) + (1= Lispm” 1)Z(E, D),

IN

1{SPMF}E(E'D)+ (1— 1{SPMF})' (9)
where (9) follows from upper bounding the total variation
between two PMFs by one. Using the triangle inequality, we
now expand Z(E, D). Under the condition 1{sPM y = L

2 Z(E, D) <
6> O,there (=

T+ 20 + 3¢, for all sufficiently large n and all
A

P (X" ) Empxo(m [x") = Pm (M)W (X" %)
mE[2"*]
£, x"aT (" (x)
¢ X
X Lixn(m)=sgns (4 P2 (x")Ewm xn(0]Xx").
an‘s”'(x)

The error terms T and { capture the error induced by
covering and not covering the n-product source sequence,
respectively. Below, we summarize the bounds on these error
terms. For detailed analysis, we refer to [23]. For all e @ (0, 1),
for all sufficiently small 6 > 0, and all sufficiently large n, we
have E[1spm” 4] <
E[l{sPM }(] < 2¢, for all n & (0, 1). Therefore, we get, for
all e@(0, 1), E[Z(E, D)]SE[l{SpMF 1Z(E, D)] + €< 9¢/2.
Since E[Z(E, D)] < 9¢/2, there exists ‘a code C such that the
associated Z(E, D) £ 9¢/2. This completes the achievability
proof.

€, for all sufficiently small n > 0, and

B. Proof of Converse

Let R be an achievable rate. Then from Definition 7, given
a triple (Px, X, W, for all e > 0, and for all sufficiently
large n, there exists (n ©) lossy compression protocol with an
encoding map E and a decoding map D that satisfy the fol-
lowing constraints: Z(E, D) = BP0 - P AHW)?I

lT <
X X v

R + €. Let M denote the transmitted

message. We now provide a lower bound on the rate R. We
have the following inequalities:

NR=1log®- nex HM)- ne= I(X",M) - ne

X
b N
SIX™, X")-ne> 1(Xi;X)-ne>

nl(Xq; Xa)-ne

2ni(P, ,P

e
%o Pxqixa)—ne2 nl(Py , Wy y)-né(e)-ne,

where (a) follows from the data processing inequality, (b)
follows from the property that conditioning reduces entropy,
(c) follows from the convexity of mutual information as the
function of varying channel for a fixed source, and by defining P

P 1p . and noting that Px = Px, (d)
foﬁl%ws from the changxe of notation of mutual information [3],
and (e) follows from the continuity of mutual information [20,
Theorem 17.3.3], by defining € &2 -2elog 4€%/(|X|?|X]), and
observing [23, Lemma 6]: BPx - © PX~ (X)W S ~ (-] X)Bry

?| - ?| 7| _
SEPy g Pxg W | x BTV SBP o o= PlaW n’ Biry.

T
So far, we have shown that R ¢ ole, where we

have defined for all € 2 O, IE(PX,WX“;) 8 (R
BPy B Ac(Px, Wy y) such that R 2 I(Py, W, ;)-g(€)},
Ac(Px, Wy g) 2 {Py BP(X) :B ", Py(R)Wy (- |R) -

PxBrty < €}, g(e) & € + €. [23, Lemma 6] ensures that the
set Ac¢ is non-empty for € > 0. Using the continuity of rate
regions similar to [23, Lemma 5], we obtain T le = lgpand
Ao is non-empty, and hence R lo. This c6Alludes the
converse proof.
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