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Abstract—Straggler nodes are well-known bottlenecks of dis-
tributed matrix computations which induce reductions in compu-
tation/communication speeds. A common strategy for mitigating
such stragglers is to incorporate Reed-Solomon based MDS
(maximum distance separable) codes into the framework; this
can achieve resilience against an optimal number of stragglers.
However, these codes assign dense linear combinations of subma-
trices to the worker nodes. When the input matrices are sparse,
these approaches increase the number of non-zero entries in the
encoded matrices, which in turn adversely affects the worker
computation time. In this work, we develop a distributed matrix
computation approach where the assigned encoded submatrices
are random linear combinations of a small number of submatri-
ces. In addition to being well suited for sparse input matrices,
our approach continues to have the optimal straggler resilience
in a certain range of problem parameters. Moreover, compared
to recent sparse matrix computation approaches, the search for
a “good” set of random coefficients to promote numerical sta-
bility in our method is much more computationally efficient. We
show that our approach can efficiently utilize partial computa-
tions done by slower worker nodes in a heterogeneous system
which can enhance the overall computation speed. Numerical
experiments conducted through Amazon Web Services (AWS)
demonstrate up to 30% reduction in per worker node compu-
tation time and 100x faster encoding compared to the available
methods.

Index Terms—Distributed computing, MDS codes, stragglers,
condition number, sparsity.

I. INTRODUCTION

ATRIX operations are the fundamental building blocks
Mof data-intensive algorithms (e.g., machine learning
modeling) executed on contemporary computing platforms.
The ever-increasing volumes of data generated by end users
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translates to high dimensional matrices for storage and pro-
cessing, underscoring the potential benefits of distributed
computation. The idea behind these schemes is to break down
the whole matrix computation into smaller tasks and distribute
them across multiple worker nodes. In these systems, it is well
known that the overall job execution time can be dominated
by slower (or failed) worker nodes, which are referred to as
stragglers.

Recently, a number of coding theory techniques [1], [2],
[31, [4], [5], [6], [7], [8], [9] have been proposed to mitigate
the effect of stragglers for distributed matrix multiplications.
For example, consider the computation of A’x (where A €
R™" and x € R’) across three nodes. A popular approach [1]
would partition A as A = [Ag | A1], and assign nodes Wy, W
and W, the job of computing Agx, AITX and (Ag + ADTx,
respectively. While each worker must carry half of the overall
computational load, we can recover ATx as soon as any two
out of three workers return their results. In other words, the
system is resilient to one straggler. The recovery threshold,
i.e., the minimum number of worker nodes (t) that need to
finish their respective jobs such that the result A7x can be
recovered from any subset of t worker nodes, has emerged as
an important optimization metric.

Similar to the matrix-vector case, coding theory techniques
have been developed for distributed matrix-matrix multiplica-
tion, i.e., to compute ATB, with the same goal: to minimize
the recovery threshold [4], [10]. Under the assumption of a
homogeneous system where each worker can store 1/k4 and
1/kp fraction of matrices A and B, respectively, and each
node is assigned a 1/ksp fraction (kap = kakp) of the overall
load of computing A”B, the achievable recovery threshold is
lower bounded by kskp [4]. Note that, with the assumption
ka = kp, the approach in [10] achieves a recovery threshold
of 2ky — 1 whereas the method in [4] provides a threshold
kf‘. However, for given matrices A € R™" and B € R™*", the
per worker node computational complexity of the approach
in [10] is O(%)’ which is around k4 times higher than the
corresponding computational complexity of every node for the
approach in [4], which is (’)(rkw—zt).

Several works based on maximum distance separable
(MDS) codes [2], [4], [11], [12] have met this optimal recov-
ery threshold. However, they have other limitations in practical
distributed computing systems. First, real-world data matri-
ces are often sparsely populated (e.g., see examples in [13]),
leading to structures that can be exploited for computational
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efficiency gains. However, MDS code-based techniques are not
built to preserve data sparsity which can significantly increase
the overall job execution time. In addition, most of the avail-
able methods are not focused on the case of heterogeneous
systems, where different worker nodes are rated with different
storage capacities and speeds (e.g., if the computation is being
distributed across wireless edge devices).

Motivated by these limitations, in this work, we develop a
novel approach for distributed matrix-vector and matrix-matrix
multiplication which explicitly accounts for sparsity in the
input matrices. Our proposed approach assigns coded subma-
trices as random linear combinations of a very small number
of uncoded submatrices to preserve the inherent sparsity up to
a certain level. Moreover, unlike the straggler optimal schemes
in [5] and [8], our approach involves a much less computa-
tionally burdensome process to find a “good” set of random
coefficients for numerical stability of the system. In addi-
tion, our approach addresses the case where the nodes are
heterogeneous in nature, having different computation and
communication speeds.

The paper is organized as follows. In Section II, we discuss
the problem formulation, related literature background and
summarize our contributions. Then, in Sections III and IV, we
present the details of our distributed matrix-vector and matrix-
matrix multiplication schemes, respectively, with results on
straggler resilience, extension to heterogeneous systems, and
utilization of partial computations. Next, Section V discusses
different properties of our proposed schemes in terms of
worker computation delay, communication delay, numeri-
cal stability and the required time to find a “good” set of
coefficients. In Section VI, we present numerical experiments
comparing the performance of our proposed method with other
recent approaches. Finally, Section VII concludes the paper
with a discussion of possible future directions.

II. PROBLEM FORMULATION, BACKGROUND AND
SUMMARY OF CONTRIBUTIONS

A. Problem Formulation

We consider a distributed system comprised of a central
node and a set of worker nodes aiming to compute A”x for
matrix-vector multiplication or A’B for matrix-matrix mul-
tiplication, for given matrices A € R™, B € R™" and
vector x € R’. In the homogeneous setting, we assume a
system of n worker nodes rated with the same computation and
communication speeds, for local data processing and transmit-
ting/receiving processed data, respectively. In particular, each
worker can store the equivalent of y4 = é fraction of A and

the whole vector x (or yp é fraction of B) for matrix-
vector multiplication (or matrix-matrix multiplication). In the
heterogeneous setting, by contrast, workers are rated with dif-
ferent storage capacity and speeds. Stragglers arise in practice
from speed variations or failures experienced by the nodes at
particular times [2].

In our approach in the homogeneous setting, we first
partition matrices A and B into k4 and kp disjoint block-
columns, respectively, as A [A() A - AkA_l] and
B [BO B Bk}g—l]v such that A; € R™/% and
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B € Rk for 0 <i <ks—1land 0 <j < kg — 1.
Next, we will assign a random linear combination of some
block-columns of A and the vector x (or another random lin-
ear combination of some block-columns of B) to each worker
node for matrix-vector multiplication (for matrix-matrix mul-
tiplication). As discussed in Section I, assigning dense linear
combinations can destroy the inherent sparsity of the matrices.
Instead, we aim to assign linear combinations of a lesser num-
ber of submatrices. To quantify this, we define the “weight”
of the encoded submatrices as follows.

Definition 1: We define the weights of the encoding process
w4 and wp for matrices A and B, respectively, as the num-
ber of submatrices that are linearly combined to obtain each
encoded submatrix. We assume uniform weights across the
worker nodes, i.e., the combination received by each worker
is formed from the same number of submatrices.

Thus, in this work, we consider the problem of minimizing
recovery threshold for both matrix-vector and matrix-matrix
multiplication in the homogeneous system while maintaining
low w4 and wp for the assigned submatrices. We will extend
the resulting approach for the heterogeneous setting as well by
assigning tasks proportional to worker capabilities. Note that
we outline the important notations in Appendix A (Table V).

B. Background and Literature Review

Several coded computation schemes have been proposed for
matrix multiplication [1], [2], [3], [4], [5], [6], [7], [8], [9],
[11], [12], [14], [15], [16], [17], [18], [19] in recent years.
We give a comparative summary between these schemes in
terms of properties they support in Table I; for a more detailed
overview, we refer the reader to [20]. Here we begin with an
illustration of the polynomial code approach [4].

Consider a homogeneous system with n = 5 worker nodes
where each worker can store yu VB 1/2 fraction
of both matrices A and B. We partition matrices A and B
into ky kp 2 block-columns each, as Ag, A; and
By, B;, respectively. Next we define two matrix polynomi-
als as A(z) = Ag + Az and B(z) = By + Bz2, so that
AT(2) B(z) = AlBo+ATBoz+AlB 2> + Al Bz, The central
node evaluates A(z) and B(z) at n = 5 distinct real num-
bers and transmits the corresponding matrices to worker node
Wi, for i = 0,1,2,...,n — 1. Now each node computes its
respective assigned matrix-matrix block-product and returns
the result to the central node. Since A7 (z) B(z) is a degree-3
polynomial, once the central node receives results from the
fastest T = 4 worker nodes, it can decode all the coefficients
in AT(z) B(z), hence, ATB. Thus, the recovery threshold is
T =4 and the system is resilient to s = 1 straggler.

Unlike the schemes in [18], [24] which are sub-optimal in
terms of straggler resilience, the polynomial code approach
is among the first to provide the optimal recovery threshold.
However, recent works on matrix computations have identi-
fied metrics beyond recovery threshold that also need to be
considered. Here we discuss the importance of factoring them
into our methodology.

Sparsity of matrices A and B: Sparsity is quite preva-
lent in real-world datasets with applications in optimization,
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TABLE I
COMPARISON AMONG EXISTING WORKS ON CODED MATRIX-COMPUTATIONS (THE APPROACH IN [10]
INVOLVES A HIGHER COMPUTATIONAL COMPLEXITY)

CODES MAT-MAT  OPTIMAL  NUMERICAL SPARSELY  HETERO.

MuLT? THRESH.?  STABILITY? CODED? SYSTEM?
REPETITION CODES v X v v v
RATELESS CODES [18] X X v X v
GEOMETRIC CONV. CODES [19] X v v X v
PrOD. CODES [21], FACT. CODES [9] v X v X X
POLYNOMIAL CODES [4] v v X X v
MATDOT CODES [10] v v X X v
BIVARIATE PoOLY. CODE [22] v v X X v

ORTHOPOLY [11], RKRP CODE [12],

CONV. CODE [2], CIR. ROT. MAT. [23] v v v X v
SPARSE PRIVATE APPROACH [14] X X v v v
[-LEVEL CODING [5] v X v v X
SCS OPTIMAL SCHEME [5] v v v v X
CLASS-BASED SCHEME [8] v v v v X
Proposed Scheme v v v v v

deep learning, power systems, electromagnetism etc. (see [13]
for such examples). In other words, there are many practi-
cal problems where the corresponding matrices to be operated
on are sparse, which can be exploited to significantly reduce
matrix computation time [24]. Consider two column vectors
of length m, denoted by a and y, where a has around ¥m
non-zero entries (0 < ¢ << 1). It takes approximately 2y¥m
floating point operations (FLOPs) to compute a’y, whereas it
could take around 2m FLOPs if a was dense.

As shown in Table I, many existing coding approaches do
not preserve sparsity. For example, in the polynomial code
approach [4] or its variants [11], the encoded submatrices of
A and B are obtained by linearly combining k4 and kp subma-
trices. Thus, the number of non-zero entries can increase by
up to k4 and kp times, respectively, compared with the orig-
inal matrices A and B, which would lead to a significantly
higher computation time. This underscores the importance of
developing schemes that minimize the number of uncoded
submatrices that are combined.

Note that there are several methods available in the litera-
ture [5], [8], [14], [24], [25] which demonstrate some advan-
tages in sparse matrix computations. However, the approach
in [14] is not developed for matrix-matrix multiplication, and
the approach in [25] has different assumptions than ours: the
central node is also responsible for some computations. In
addition, the approach in [24] and B-level coding scheme
in [5] do not meet the exact optimal recovery threshold, which
require more nodes to finish their respective tasks. While the
approach in [8] and the SCS-optimal scheme in [5] meet
the exact optimal recovery threshold, they partition the matri-
ces into large number of block-columns, hence, need a large
amount of time to find a “good” set of coefficients to obtain the
linear combinations (details are given in Sections V-B and VI).
Besides, some of the assigned submatrices in those approaches
are densely coded, thus, an improved coding approach could
further optimize the computational speed over those methods.

Numerical stability of the system: Another important issue
is the numerical stability of the system. Since the encoding

and decoding methods in coded computation operate over
the real field, the decoding of the unknowns from a system
of equations can be quite inaccurate if the corresponding
system matrix is ill-conditioned. There can be a blow-up of
round-off errors in the decoded result owing to the high con-
dition numbers of the corresponding decoding matrices. For
example, the polynomial code approach in [4] incorporates
Vandermonde matrices into the encoding process which are
known to be ill-conditioned. Literature aiming to address this
issue [2], [11], [12] has emphasized that the worst case con-
dition number (kyor5;) Over all different choices of stragglers
should be treated as an important metric for minimization.

However, many of the numerically stable methods are based
on random codes [2], [5], [8], [12] which require significant
time to find a “good” set of random coefficients that make the
system numerically stable. The idea is to first generate a set
of random coefficients and find the ;5 over all choices of
stragglers. Next, repeat this step several times (say, 20) and
retain the set of random coefficients which gives minimum
Kworst- The latency incurred by this process increases with the
number of worker nodes and can delay the encoding process.

Heterogeneous system and partial computations done by the
stragglers: Another important issue arises in distributed com-
puting with heterogeneous worker nodes (different memory,
speed and bandwidth) where algorithms based on homoge-
neous assumptions may lead to sub-optimal performance [26].
In this work, we address this issue by assigning each worker a
processing load according to its memory and speed. Some of
the approaches [4], [11], [12] that were originally developed
for a homogeneous system could similarly be extended to the
heterogeneous setting.

Moreover, the performance of distributed computing often
depends on how well the associated scheme is able to uti-
lize (rather than discard) partial computations done by slower
workers [27]. Specifically, efficient utilization of the partial
computations done by slower nodes may enhance the overall
speed. To address this, in our scheme in the heterogeneous set-
ting, we assign multiple smaller tasks to some workers, with
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the size of each task dictated by the limitations of the least
powerful worker. The workers then compute their respective
tasks and return the results sequentially. With this division,
define Q to be the minimum number of block products that
must be returned to the central node for the guarantee of
decoding the intended result (A”x or ATB) successfully even
in the worst case, i.e., from any Q block products returned
across all the worker nodes (respecting the computation order
in each node) [5]. We associate the scheme with the met-
ric Q/A, where A is the number of submatrix products to
be recovered in the intended product (A = k4 or kskp for
matrix-vector or matrix-matrix case, respectively). Q/A is
always lower bounded by 1, and a system with a small Q/A
can utilize the partial computations of the slower workers
efficiently [5], [8].

C. Summary of Contributions

The contributions of this work can be summarized as
follows.

o We develop novel straggler-resilient approaches for dis-

tributed matrix-vector and matrix-matrix multiplication.
For a system with n homogeneous worker nodes, each
of which can store 1/k4 and 1/kp fractions of matrices
A and B, respectively, our developed approach for dis-
tributed matrix-matrix multiplication can be resilient to
any s = n — kpkp stragglers (where s < min(ky, kp)).
Thus, our approach is straggler optimal, since it meets
the lower bounds on straggler resilience as given in [4].
In addition, with the assumption that each node stores the
whole vector x, our approach for the matrix-vector case
is also straggler-optimal.

o While our approaches are applicable to any types of
matrices, it is specifically suited to sparse “input” matri-
ces. A very limited number of uncoded submatrices are
linearly combined in our encoding, so that the inherent
sparsity of the input matrices can be preserved up to cer-
tain level. For example, in a system with n = 12, k4 = 10
and s = 2 for distributed matrix-vector multiplication,
the traditional dense codes [2], [4], [11], [12] require lin-
ear combinations of ky 10 submatrices, whereas our
scheme combines only s + 1 = 3 uncoded submatrices
(see Example 1). Thus, our approach will be significantly
impactful in the scenario where s+ 1 < k4 (as mentioned
in Remark 1).

o We also show that our proposed approaches are numer-
ically stable. It has been verified by comparing other
approaches in terms of the worst case condition number
over different choices of stragglers. Moreover, our scheme
involves a significantly less computationally expensive
step compared to [5], [8] to find a “good” set of ran-
dom coefficients for numerically stability, in other words,
the encoding time can be significantly reduced in our
schemes.

In addition, we extend our algorithms to the heteroge-
neous case where the worker nodes are heterogeneous
in nature having different computation and communi-
cation speeds and storage capacities. Furthermore, our

L]
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approaches meet the lower bound of Q/A value which
indicates that these can efficiently utilize the partial
computations done by the slower worker nodes in a
heterogeneous system, thus can enhance the overall job
execution speed significantly.

« Finally, we conduct exhaustive numerical experiments on
Amazon Web Services (AWS) cluster using large-sized
sparse matrices, and present comparisons that demon-
strate the advantages of our schemes in terms of worker
node computation time, communication time, numerical
stability and coefficient determination time. The results
show that our proposed approach can have up to 30%
reduction in computational complexity per worker node
and can be 100x faster for determining a “good” set of
coefficients for numerical stability.

ITI. PROPOSED APPROACH FOR MATRIX-VECTOR
MULTIPLICATION

In this section, we detail our approach for straggler resilient
distributed matrix-vector multiplication in case of both homo-
geneous and heterogeneous worker nodes.

A. Homogeneous System

First we discuss our coded matrix-vector multiplication
approach in the homogeneous system with resilience to up
to s = n — ks stragglers. The overall procedure is given in
Alg. 1. We partition matrix A into k4 disjoint block columns
as Ap, Ay, Ay, ..., Ay, _1, and assign a random linear combi-
nation of w4 (weight) submatrices of A to every worker node.
Formally, we set wg = min (s+1, k4), and assign a linear com-
bination of A;, Ajt1,Aiy2, ..., Aite,—1 (indices modulo ky)
to worker node W;, fori =0,1,2,...,n — 1, where the lin-
ear coefficients are chosen i.i.d. (independent and identically
distributed) from a continuous distribution. Note that every
worker node W; has access to the vector x. Once the fastest
T = ks worker nodes return their computation results, the cen-
tral node decodes A”x. The following theorem establishes the
resiliency of Alg. | to straggler nodes.

Theorem 1: Assume that a system has n worker nodes each
of which can store 1/k4 fraction of matrix A and the whole
vector x for the distributed matrix-vector multiplication ATx.
If we assign the jobs according to Alg. 1, we achieve resilience
to any s = n — ku stragglers.

Proof:

Case 1 (First consider the case when s < ki): Since we
have partitioned the matrix A into k4 disjoint block-columns,
to recover ATx, we need to decode all k4 vector unknowns,
Alx, ATx, Alx, .. '*AIZA—IX' We denote the set of these k4
unknowns as B. Now we choose an arbitrary set of k4 worker
nodes. Each of these worker nodes corresponds to an equation
in terms of wy of those k4 unknowns. We denote the set of
ks equations as C, thus, |B| = |C| = ka.

Now we consider a bipartite graph G = C U 3, where
any vertex (equation) in C is connected to some vertices
(unknowns) in B which participate in the corresponding equa-
tion. Our goal is to show the existence of a perfect matching
among the vertices of C and B. We argue this according to
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Algorithm 1: Proposed Scheme for Distributed Matrix-
Vector Multiplication

Input : Matrix A, vector x, n-number of worker nodes,
s-number of stragglers, storage fraction y4 = é;
s<n-—ky.

1 Partition A into k4 block-columns as

A=[Ao Al Ap1]

2 Create a n x ks random matrix R with entries r; j,

0<i<n—land 0<j<ky—1,;

3 Set weight wq = min(s + 1, ka);

4fori<Oton—1do

5 Define T ={i,i+1,...,i+ ws — 1} (modulo kyu);

6 The central node creates a random linear combination
of A,’s where g € T, thus A= quT ri,q¢Agq- Then, it
assigns encoded submatrix Ai to worker node W;;

7 Worker node W; computes AI-TX;

8 end

Output: The central node recovers A”x from the results
of the fastest k4 worker nodes.

Hall’s marriage theorem [28] for which we need to show that
for any C C C, the cardinality of the neighbourhood of C,
denoted as ./\/(é) C B, is at least as large as |C_|. Thus, for
IC| = m < ks, we need to show that [N (C)| > m.

Case la (First we consider the case that m < 2s):, thus,
we assume that m is equal to either 2p or 2p — 1, where
1 < p < s. Here we recall that the number of unknowns
participating in any equation is wq = min(s + 1, k4), and the
participating unknowns are shifted in a cyclic manner among
the equations. If we choose any § worker nodes out of the
first ko4 worker nodes (Wy, Wy, Wa, ..., Wi, _1), according to
the proof of cyclic scheme in [5, Appendix C], the minimum
number of total participating unknowns is min(ws +8 — 1, k4).
In other words, the first equation (among those § equations)
consists of w4 unknowns, and then any additional equation
includes at least one additional unknown until the number of
total participating unknowns is ky4.

Now, according to Alg. 1, the same unknowns participate in
two different equations corresponding to two different worker
ngdes, W; and Wy, 1, where j =0,1,...,s —_1. Thus for any
IC] = m = 2p,2p — 1 < 25, we have [N(C)| > min(ws +
[m/2] — 1,kp) = min(wg + p — 1, ka). Now, since wq =
min(s + 1, k4), we can say that |N(C_)| > min(s +p, kg) > m.

Case I1b (Now we consider the remaining case where m =
25+q:), 1 < q < ka—2s. We need to find the minimum number
of unknowns which participate in any set of m equations. As
we have discussed before, the same unknowns participate in
two different equations corresponding to two different worker
nodes, W; and Wy, , where j = 0,1,...,s — 1. Thus, the
additional g equations will correspond to at least g additional
unknowns. Therefore, |A/(C)| > min(w4 + [2s/2] +qg—1,kap).
Now, since wq = min(s+ 1, k4), we have, |]N(C)| > min(2s +
q, kg) = m.

Thus, in this case when s < k4, for any C, we have shown
that |N(C)| > |C|. So, there exists a perfect matching among
the vertices of C and B according to Hall’s marriage theorem.
Now we consider the largest matching where the vertex ¢; € C

-®
-®
-@
@

[(A0 A1 400 | [(ALA2As)| [(AnAsAs)| [{AsAsas)]

-@
-@
-®
@

[(Anasac] [{45 40470 [{AcArnAdl| |{ArAca) ]

-®
-®
-©
@

[(Acas Ao} | [{As Ao Ai}]| [{A0AsAs}| [(A1As 44

Fig. 1. Submatrix allocation for n = 12 workers and s = 2 stragglers,
with y4 = 11—0 according to Alg. 1. The weight of every submatrix is
wp = min(s + 1, ky) = 3. Any assignment {A;, Aj, Ai} indicates a random
linear combination of the corresponding submatrices where the coefficients
are chosen i.i.d. at random from a continuous distribution.

is matched to the vertex b; € B, which indicates that b; par-
ticipates in the equation corresponding to c¢;. Let us consider a
ka x k4 system matrix where row i corresponds to the equation
associated to ¢; where b; participates. Let us replace row i of
the system matrix by e€; where e; is a unit row-vector of length
ks with the j-th entry being 1, and O otherwise. Thus we have
a kg x k4 matrix where each row has only one non-zero entry
which is 1. Since we have a perfect matching, this kg X ky
matrix will have only one non-zero entry in every column. This
is a permutation of the identity matrix, and, thus, is full rank.
Since the matrix is full rank for a choice of definite values,
according to Schwartz-Zippel lemma [29], the matrix contin-
ues to be full rank for random choices of non-zero entries.
Thus, the central node can recover all k4 unknowns from any
set of k4 worker nodes.

Case 2 (Next consider the case when s > ku): In this
case, wg = min(s + 1, k4) = ka, thus all the worker nodes
are assigned linear combinations of k4 submatrices. Since the
entries are chosen randomly from a continuous distribution,
we can say that any k4 X k4 submatrix of the n x k4 system
matrix is full rank. Thus we can recover all k4 unknowns from
the returned results of any k4 out of n worker nodes. |

Remark 1: While our proposed method is applicable for
any values of s and kg4, it is particularly impactful if s < kg —1
(thus, wg < ka), i.e., the percentage of the number of strag-
glers is less than 50% of the total number of nodes (in the
common practical cases, this percentage can be even less than
10% [2], [30]). In these cases, the encoded submatrices have
less weights than the dense coded approaches [4], [11], [12]
which could reduce the expected communication delay and
the average worker node computation delay for sparse “input”
matrices.

Example I: Consider a system with n = 12 worker
nodes each of which can store 1/10 fraction of matrix
A. We partition matrix A into k4 = 10 disjoint block-
columns, Ap, Aq,...,Ag. According to Alg. 1, we set the
weight wg = min(s + 1,k4) = min(n — kg + 1,kq) =
3, and assign random linear combinations of submatrices
A;, Ait1, Aito (indices modulo 10) to worker node W;, for

i = 0,1,...,11, as shown in Fig. 1. Thus, according to
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Theorem 1, the system has a recovery threshold T = k4 = 10,
and it is resilient to any s = 2 stragglers.

B. Extension to Heterogeneous System

In this section, we extend our approach in Alg. | to a hetero-
geneous system of n worker nodes where the nodes may have
different computation speeds and communication speeds. We
assume that true knowledge about the storage and speeds of
the worker nodes are available prior to the assignment of the
jobs. We also assume that we have A different types of nodes
in the system, with worker node type O, 1, , A — 1. First,
without loss of generality (w.l.0.g.), we sort the worker nodes
in a non-ascending order in terms of the worker node types.
Next, suppose that « is the number of the assigned columns
and B is the number of processed columns per unit time in
the “weakest” type node. In this scenario, we assume that a
worker node W; of type j; receives cj,a coded columns of data
matrix A and has a computation speed c;; 8, where ¢;; > 1is an
integer. Thus, a higher ¢;; indicates a “stronger” type node W;
which has a ¢;; times higher memory and can process at a c;;
times higher computation speed than the “weakest” type node.
Since we sort the nodes in a non-ascending order in terms of
the worker node types, we have jo > j1 >j» > -+ > ji_1 =0,
hence ¢j, > ¢j; > ¢j, > --- > ¢j;_, = 1. Note that A = 1 and
all ¢j, = 1 lead us to the homogeneous system in Section III-A
where 0 <i<n-—1 and j; =0.

Assume that the “weakest” type worker node requires u
units of time to process o columns of A. Thus, any node W;
of type j; can process cja columns in time w. In this sce-
nario, from the computation and storage perspective, worker
node W; (of type j;) can be considered as a combination
of ¢j; > 1 worker nodes of the “weakest” type. Thus, n
worker nodes in the heterogeneous system can be thought as
homogeneous system of n Z:'l:_o] ¢j; worker nodes of the
“weakest” type. In other words, the worker node Wj in the
heterogeneous system (0 < k < n — 1) can be thought as a

combination of worker nodes W,,, Wm+1, cel, Wm+c,q_ 1 in a
homogeneous setting, where m = fz_ol ¢j; and Wy is of type

Jji worker node. Now, for any worker node index k4 (such that
0<ky< ﬁ_— 1), we define ky = Zfio_l cj and s = 27:_]—; Cii»
S0, n = Z;:ol ¢j; = ka + s. Thus, a heterogeneous system of
n worker nodes can be thought as a homogeneous system of
n = kg + s nodes, for any ka (0 < kg < 7 — 1). We state
the following corollary (proof is in [31]) of Theorem 1 for
heterogeneous system.

Corollary 1: Consider a heterogeneous system of n nodes
of different types and assume any ko (where 0 < k4 <ii—1).
Now, if the jobs are assigned to the modified homogeneous
system of n =k + s “weakest” type worker nodes according
to Alg. 1, the system (a) will be resilient to s such nodes and
(b) will provide a Q/A value as 1.

As we have discussed in Section III-A, under the assump-
tion that each worker node has been assigned 1/k4 fraction
of the whole job, our proposed approach for a homogeneous
system can be resilient to any s stragglers out of n = kg + s
worker nodes. Now, the heterogeneous system of n worker
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Fig. 2. A heterogeneous system where n = 7 and k4 = 5, thus n = 9
and k4 = 7. Each of Wy and W is assigned twice the load of each of
We. This system is resilient to any s = 2 block-column process-
ing, i.e., it is resilient to any two type O nodes (e.g., W3 and Wg) or any one
type 1 node (e.g., Wp).

nodes is resilient to s = Z'f_-l ¢j; block-column process-
ing, where each node is 21551gngdA 1/ky fraction of the whole
job. Varying the indexing of the nodes depending on different
node types or changing the value of k4, one can decrease (or
increase) the per worker load of the job, which can increase
(or decrease) the value of s. The number of actual stragglers
that the system is resilient to can vary depending on the node
types.

Example 2: Consider the example in Fig. 2 consisting of
n =7 worker nodes. Let us assume, ¢;; =2 when i =0, 1 and

¢;=1when2 <i<6,thus,n=73 " 01 ¢j; = 9. Now assume

that ky = 5, thus ky = Zon ¢ = 7 and s = Z:l kl =2
So, each weakest device is assigned 1/7-th fraction of the
whole job. This scheme is resilient to any s = 2 block-column
processing, in other words, it is resilient to any two type 0
nodes or any one type 1 node.

Moreover, for the heterogeneous setting, our proposed
approach provides a Q/A value to be 1, which indicates
that the central node can recover all A = 7 unknowns from
any Q = 7 block-products. In this example, Wy and W; are
assigned multiple jobs and our proposed approach can effi-
ciently utilize their partial computations if any of them is
slower than their rated speed. For instance, assume that W
is a failure, and W) is slower and able to compute one (out of
two) of the submatrix products while each of Wy, Wa, ..., Ws
completes its respective assigned job. Then, the central node
can recover all the submatrix products from the successful
worker nodes with the help of the partial computations done
by Wp.

Remark 2: Tt is well-known in the cloud computation that
the low-cost machines (which are the “weaker” ones) are the
most probable ones to straggle [7]. In that case, the number of
stragglers that our proposed heterogeneous matrix computation
scheme can be resilient to will be higher.

IV. PROPOSED APPROACH FOR MATRIX-MATRIX
MULTIPLICATION

A. Homogeneous System

First, we discuss our distributed matrix-matrix multiplica-
tion approach for the homogeneous system with resilience to
s = n—kykp stragglers where s < max(ka, k). Without loss of
generality (w.l.o.g.), we can assume that k4 > kg, thus, s < kj.
Each node stores the equivalent of 1/k4 and 1/kp fractions (of
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Algorithm 2: Proposed Scheme for Distributed Matrix-
Matrix Multiplication

Input : Matrices A and B, n-number of worker nodes,
s-number of stragglers, storage fraction y4 = é
and y4 = %; s < n— kakp < max(ka, kg).

1 Partition A and B into k4 and kg block-columns,
respectively;
2 Create a n x k4 random matrix R4 with entries rfj,

O0<i<n—land0<j<ky—1,

3 Create a n x kg random matrix Rp with entries rf}]
0<i<n—1land 0<j<kp—1,;

4 Set weights wy and wp (Where wyq > wp) in such a way
that wawp > 5, 1 <wyg < kg and 1 < wp < kp;

sfori<«< Oton—1do

6 Define T ={i,i+1,...,i+ ws — 1} (modulo ky);

7 Create a random linear combination of A,’s where

qeT, thus Ay =Y rri Ay

8 Set j = |i/ka ]|, and define

S={,j+1,...,j4+ wp— 1} (modulo kp);
9 Create a random linear combination of B,’s where
q € S, thus B, = qus rquq;
10 The central node assigns encoded submatrices A; and

ﬁ,' to worker node W;;
1 Worker node W; computes AiTﬁ,-;
12 end
Output: The central node recovers A”B from the fastest
kakp worker nodes.

block-columns) of matrices A and B, respectively. Thus, if a
node multiplies its respective assignments from A and B, it
completes 1/kap fraction of overall job of computing A”B,
where kap = kakp. The overall procedure is given in Alg. 2.

In our approach, we partition matrices A and B
into k4 and kp disjoint block columns, respectively, as
Ao, A1, Ay, ... A -1 and Bo, By, Bo, ..., By, respec-
tively. Next, we set w4 and wp in such a way so that wawp > s;
and assign a random linear combination of w4 (weight) sub-
matrices of A and another random linear combination of
wp (weight) submatrices of B to every worker node where
1 < ws < kg and 1 < wp < kg. It should be noted that for
a given storage fraction y4 = 1/ks (or yp = 1/kp) of matrix
A (or B) for each of the worker nodes, the case wg = 1
(or wp = 1) leads to an approach which provides suboptimal
performance in terms of number of stragglers that the system
is resilient to [5].

Formally, we assign a random linear combination of
Ai, Ait1, ..., Ajyw,—1 (indices of A are reduced modulo ku)
to worker node W;, 0 <i < n — 1. Thus, we can say that the
participating submatrices of A are shifted in a cyclic manner
over all n worker nodes. Next we set j = |i/ka], and assign
B;,Bji1,...,Bj w1 (indices of B are reduced modulo kg)
to worker node W;. Once the fastest t = kakp worker nodes
finish and return their computation results, the central node
can recover all the unknowns in the form of AgBV, where
O<u<ky—1land 0<v<kp—1.

{Ao, A1} {A1, Ar} {A2, Az} {As, A4} {A4, A5} {As, Ao}
{Bo, B1} {Bo,B1} {Bo,B1} {Bo, B1} {Bo, B1} {Bo,B1}
{Ao, A1} {A1, Az} {Az, A3} {As, A4} {A4, A5}
{B1,B>} {B1,B2} {B1,B2} {B1,B2}

@
-@
-@

{Ao, A} {A1, A} {Az, A3} {A4, A5}
{B2,Bs} {B2,B3} {B2, B3} {B2.Bs}
{Ao, A1} {A1, Ar} {A2 A3} {As, A4} {A4, A5} {As, Ao}
{Bii:BU} {Bliv B()} {Blh B()} {B3> BU} {Bii:BU} {Bliv B()}
{Ao. A} {A1, Az} {A2, As}
{Bo, B, } {By, B} {Bo,B1}

Fig. 3. Submatrix allocation according to Alg. 2 when n = 27 and s = 3,

with y4 = % and yp = % The weights of the submatrices are wq = wp = 2.
Any assignment {A;, A;} or {B;, B;} indicates a random linear combination
of the corresponding submatrices where the coefficients are chosen i.i.d. at
random from a continuous distribution.

Example 3: Consider the example in Fig. 3 where n =
27,y4 = 1/6 and yp = 1/4. So, we partition A and B into
ks = 6 and kg = 4 block-columns, respectively. In each node,
we assign one coded submatrix from A and one from B which
are linear combinations of w4 = wp = 2 uncoded submatrices
with coefficients chosen i.i.d. at random from a continuous
distribution. It can be verified that this scheme is resilient to
s = n — kakp = 3 stragglers. In what follows, we will use
this example several times to describe different structures and
properties of our scheme.

1) Structure of the Job Assignment: To describe the struc-
ture of the proposed scheme, first we partition the worker
nodes into k4 disjoint classes, denoted by M;’s, where any
M; consists of all the worker nodes W;’s if j = i(mod kj).
In other words, M; = {W;, Wi,+i, Woky4i, ...}, for i =
0,1,2,...,ka—1.Since n = kpakp+s < ka(kp+1) (as s < ky),
we can say |M,]| is either kg or kg+ 1. Moreover, according to
our proposed scheme, the participating submatrices of A are
the same over all the worker nodes in any M;. For instance, in
Example 3, we have Mo = {Wy, Ws, W2, Wig, Was}, and
random linear combinations of Ap and A are assigned to all
the corresponding worker nodes. At this point, we define a set,
Df ={A;, A1, ..., Aifp,—1), which consists of the partici-
pating submatrices of A corresponding to worker node set M;,
where the indices are reduced modulo k4. Now we state the
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following claim which gives a lower bound for the cardinality
of the union of any arbitrary number of DA S.

Claim 1: Consider any g sets DA S,q < kA wa+1, denoted
w.lo.g., D4, 0 <j < g — 1 arbitrarily. Then ‘U DA‘ >
wa+q— 1.

Proof: From the definition of Df‘ above, we can say that
the participating uncoded submatrices of A are shifted in a
cyclic fashion within Dé, D?, R D?A_]. Thus, according to
the proof of cyclic scheme in [5, Appendix C], the minimum
number of total constituent submatrices of A within any L of
D;-“’s is min(wa + L — 1, k4). Now consider any ¢ arbitrary
1_3}4’5, 0 <j < gqg-—1. Thus, ‘Uq IDA’ > min(wa + g —
1,ka) =wa+q— 1, since g < kg —wa + 1.

Example 4: Consider Example 3 in Fig. 3 where k4 = 6
and wyg = 2. Now, choose any arbitrary ¢ < 5 sets of Df"s.
For example, we choose ¢ = 3 of DZA’S, such as Dé, D?
and Dg‘ (w.lL.o.g. we can denote them as Z_)é, 2_714 and Z_)é).
Then, according to Claim | we have,
|Z_)6‘ Uﬁ? UZ_)‘E‘| > wy + 2 = 4. Thus, the total number of
constituent submatrices of A within Mgy, M; and M3 is
lower bounded by 4. It can be verified from Fig. 3 that the
exact number is 5, where D4 = {Ag, A1}, D = {A|, Ay} and
D§ = (A3, Aq}.

Now, in our approach, according to Alg. 2, the participating
submatrices of B are shifted in a cyclic fashion over the worker
nodes of any M;. For instance, in Example 3, the participating
submatrices, Bg, By, B> and B3, are shifted in a cyclic fashion
within the worker nodes of My, i.e., Wy, Wg, Wi, Wig and
Wa4. Next, in the following claim, we find the minimum num-
ber of participating unknowns (in the form of A’B,) within
any § worker nodes from any M,. Now we state the following
claim with the proof in [31].

Claim 2: Consider M, 0 < g < ks — 1. Denote the mini-
mum of total number of participating unknowns (in the form
of AiTBj) within any 6 worker nodes from M, by p. Then
0 = wp X wg if § = 1. Otherwise, if 2 < § < kg + 1, then

_ M‘I
”‘{ M,

2) Rearrangement of M;’s: Before stating the neces-
sary theorem and corresponding claims, we discuss a pre-
processing step that rearranges the M;’s. Choose any arbitrary
m worker nodes (m < kskp), and assume that §; worker nodes
have been chosen from M;, for 0 < i < ks — 1, so that
Zk*‘ !'8; = m. Now, we rearrange the M,’s in the following
process.

(i) We rearrange the J;’s in a decreasing sequence so that
80 > 81 > 82 > > 5kA 1 and rename the correspondlng
M;’s as M;’s so that §; nodes have been chosen from M.

(i) If multiple §;’s are equal, we place the M;’s first which
have smaller cardinality. In other words, if §; = §; for any
i,j < ka— 1, where |M;| = kg and |M;| = kp + 1, then we
place M; first (i.e., rename as Mk for some k) and then we
place M; (rename as /\;lk_H).

Now, we denote pp as the minimum of total number of
participating unknowns (in the form of ATB]) within the &
worker nodes of M. Thus, according to Claim 2, if 5o = 1,

= kg;
=kp+ 1.

wp X min(wg + 6 — 1, k) if
wa X min(wg + § — 2, k) if
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00 = wa X wp. Otherwise, if 2 < 8y < kg + 1, then
on x min(wp + 80— 1,kg) if | My| = ks;

- ey
wn x min(p + 80— 2.ks) if [ My| = ks + 1.

po =

After that, we move to /\;ll,/\;lz, .. /\;lkA —wy» Sequen-
tially, to find the number of additional partlclpatmg unknowns
within the corresponding §; worker nodes of M;, where
1 <i < kg — 1. We denote p; as the minimum number of
such additional participating unknowns in M,.

Here, according to Claim ‘U DA‘ > w4 and
‘U}zol_);f“ > wy + 1. Thus, there will be at least one addi-

tional participating submatrix of A in MoUM| in comparison
to My, and the property will continue to hold until we con-
sider the set Mo UM, U---U M U/\/lkA —was- Now, since the
submatrices of B (which will be multiplied by the additional
submatrix of A) are shifted in a cyclic fashion within any M,
if S,- =1, then p; = wp; otherwise, if 2 < Si < kg + 1, then

min(a)B—i—Si— 1,k3> if /\;ll‘ = kg;

pi=1 . - |- 2)
mln(a)g +6; -2, kB) if | M;| =kp+1;

for 1 <i < ka — wa. Note that, p; has a trivial lower bound,

zero, when kg —wp +1 <i<ky— 1.

Now we state the following corollary which is a special case
of Lemma 1 stated later in this section. The lemma (hence, the
corollary) provides a lower bound on the minimum number of
participating unknowns (in the form of A’B,) in the equations
from any arbitrary m nodes. Here, we assume that k4 > kp.
Note that, if kg > k4, we can compute ATB as (BTA)T without
any additional computational cost. Thus, we can assume kg >
kp without loss of generality.

Corollary 2 (Corollary of Upcoming Lemma 1): For any
arbitrary k4 > 3 and kp > 3 (where k4 > kp without loss
of generality), let us assign the jobs to n = kakp + s (where
s < 3) worker nodes according to Alg. 2 using wg = wp = 2.
Then the total number of participating unknowns (in the form
of Al-TB,') within any m nodes (m < kqkp) is at least m.

Proof: First, we choose any arbitrary m < kskp worker
nodes out of all n nodes. As discussed in the preprocessing
ste}E above, we choose §; worker nodes from the set M;, thus,
Z::o 8; = m. Moreover, the minimum number of participat-
ing unknowns in My is denoted by po as given by (1). The
minimum number of additional participating unknowns from
M; is denoted by p; and given by (2) when 1 <i < k4 — w4
or trivially lower bounded by zero for other values of i when
ka —wqg +1 < i < ks — 1. Thus, the minimum number of
partlcllpatmg urllcknowns in tkhesle m worker ngdes is at least

o b= iy i A e P 2t pi In this
corollary, wg = 2. Thus, to prove the corollary, it is sufficient
to prove that

ka—2 ka—1

Z pi = Z 8.
i=0 i=0

Now we carry out the following exhaustive case analysis
and we show that for every case, (3) is true. Here, according

3)
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to the pre-processing step (i) for the rearrangement of M;’s
in Section IV-A2, we have 80 > 81 > 82 > > SkA 1. Since
n = kakp + s and s < 3 < ky, any 8 can have a value at
most kg + 1. The cases are based on different values of 50: in
case 1, we assume 1 < So < kg and in case 2, we assume that
50 = kp + 1. Moreover, since s < 3 and m < kpkp, there can
be at most three Si’s which can have value kg + 1. We discuss
those in Cases 2a, 2b and 2c, respectively.

Case 1 (1 < S0 < kp): If, 80 =lorl < 60 < kp, since
wp = wp = 2, accordlng to (1), we have, py > 260 > 60 +
SkA 1, as 8kA 1 < 80 Now, accordmg to (2), for 1 < i < kg—
we have p; > &. Thus, Y1407 i = po + 147 pi = So+
SkA 1+ ZkA 28 = Zk*‘ 18,, hence, (3) is true.

Case 2 (89 = kg + 1): In this case, since wy = wg = 2,
we have pg = 2kp according to (1). Now, for simplicity we
consider the following three sub-cases.

Case 2a (89 = kp+1 and &; < kg): Since Y15 §; = m <
kakg and 8y = kB + 1, 8kA 1 can be at most kg — 1. Thus
po = 2kp > 50 + (SkA 1. Thus similar to Case 1, we can say
that (3) is true.

Case 2b (80 = 81 = kp + ] and 82 < kg): In this case,
po+ p1 = 3k3 Now, m = ) 4, ka1 8; < kakp which indicates
that ZkA 8; < (ka — 2)kp — 2 and we know that §;’s are
arranged in a non- 1ncreasmg order. Thus, it can happen that
SkA 1 <k3—20r8kA 1 —8kA » =kg—1. IfSkA 1 < kp—2,
we have 8o 481 + 8, —1 = k3+1+k3+1+k3 2 = po+ p1.
Hence, (3) is true since Zl 20 2o > ZkA 25, as we know

pi > 8 fori=2,3,. - kg — 2 from (2).

The remaining case is, SkA 1= SkA » = kg — 1. Now, since
the corollary aims at resilience to at most three stragglers, there
can be at most three M’ ;s which have cardinality kg + 1. But,
80 = 51 = kg + 1, and thus, there can be at most one more
M, left with cardinality kg + 1. So, either both of ./\/lkA
and MkA,l will have cardinality kp or one of them will have
cardinality kp + 1. However, according to our rearrangement
procedure (ii) in Section IV-A2, if two §;’s are equal, we place
the M ; which has smaller cardinality, first. Thus, in both cases,
MkA—z must have cardinality kg, hence pi, > = kp according
to (2). Thus,

p0 + 1+ Pry—2 = 4kp = 80 + 81 + Spy—2 + 8k, -1,

hence we are done similar to Case 1, since for 2 <i < k4 —3,
we have p; > Si.

Case 2¢ (50 = 51 = 52 = kp+1): In this case, po+p1+p2 =
4kg. Note that m < kakp, thus SkA_l can be at most kg — 1.
Consider the scenario, when SkA—l < kg — 3. In this scenario,

2 2

D b+ 81 <3ks+ 1) +hkg—3=4kg= > pi.
i=0 i=0

hence we are done similar to Case 1, since for 3 <i < k4 —2,
we have p; ZS IfSkA 1 —kB—2 thenk3—2<SkA s <
kB — 1, in that case Piy—2 = 1+ <SkA 2 accordmg to (2) since
|MkA »| = kg. Thus, 8y + 8, + &> +5kA 2 -I-SkA 1 < 3(kp+
1) +py—2—1+kp—2 = dkg+px,—2. So, 80+81+82+8kA 2+
Sky—1 < po + p1 + p2 + pr,—2. Hence, we are done. Finally, if

SkA_l = kg—1, since Zfio_l 8i < kakp and 8;’s are arranged in
a non-increasing order, we must have 6y, > = 8,—3 = kp— 1.
Thus, po + p1 + p2 + pi,—3 + pi,—2 = 4kp + 2kp = 6kp, and

So + 51 + 52 + Skr3 + Skrz + gkrl
=3(kp+ 1) +3(kp — 1) = 6kp,

hence we are done, since p; > Si, for 3 <i<ky—4. |

Lemma 1: For any arbitrary k4 > 3 and kp > 3 (where
ka > kp without loss of generality), if we assign the jobs to
n = kakp~+s worker nodes (where s < k4) according to Alg. 2,
then the minimum of total number of participating unknowns
within any m worker nodes (m < kskp) will be lower bounded
by m.

Proof: The proof of this lemma appears in Appendix B. B

Theorem 2: Assume that a system has n worker nodes each
of which can store the equivalent of 1/k4 fraction of matrix
A and 1/kp fraction of matrix B (without loss of generality
ka > kp) for distributed matrix-matrix multiplication ATB. If
we assign the jobs according to Alg. 2, we achieve resilience
to any s = n — kakp stragglers where s < k4.

Proof: This theorem is proved in a similar manner as
Theorem | with the help of Lemma 1 and Schwartz-Zippel
lemma [29]. The proof is detailed in [31]. [ |

B. Extension to Heterogeneous System

Similar to the matrix-vector case in Section III-B, we extend
our approach in Alg. 2 to heterogeneous system where the
worker nodes may have different computation and communica-
tion speeds. We have all the same assumptions as we had in the
matrix-vector case in Section III-B. We have A different types
of devices in the system, with worker node type 0, 1, ..., A—1.
Any worker node W; (for 0 < i < n—1) receives ¢j;aa columns
of matrix A and cj,ap columns of matrix B where any worker
node of the weakest type receives g and ap columns, respec-
tively, and ¢;, > 1 is a positive integer. Moreover any worker
node W; of node type j; has a computation speed c;, 8, where
B is the computation speed for the worker node of the weakest
type.

As we have discussed for the matrix-vector case in
Section III-B, from the computation and storage perspective,
W; can be considered as a collection of ¢;, > 1 worker nodes
of the “weakest” type. Thus, n worker nodes in the hetero-
geneous system can be thought as homogeneous system of
n= Zl —o Cj; worker nodes of the “weakest” type. Now, for
any worker node index kap (such that 0 < kap < n—1),

_ kap—1 _ i—1
we dleﬁne kap = D ;2% ¢j; and s = Zi:]_CAB
i

i—o Cji = kap+s. Thus, a heterogeneous system of n worker
nodes can be thought as a homogeneous system n = kqp + s
nodes, for any kag (0 < kap < i — 1). Now we state the
following corollary (of Theorem 2) for heterogeneous system
with the proof in [31].

Corollary 3: Consider a heterogeneous system of n nodes
of different types for distributed matrix-matrix multiplication
and assume any kap (where 0 < kap < i1 — 1). Now, if the
jobs are assigned to the modified homogeneous system of n =
kap—+s “weakest” type worker nodes according to Alg. 2 where

le., SO, n =

Authorized licensed use limited to: lowa State University Library. Downloaded on October 02,2023 at 18:56:21 UTC from IEEE Xplore. Restrictions apply.



372

kap = kakp, (a) the system will be resilient to s such nodes
and (b) will provide a Q/A value as 1.

V. PROPERTIES OF OUR PROPOSED SCHEMES
A. Computational Complexity for a Worker Node

Consider random sparse matrices A € R”*" and B € R™*"
where the probability that any entry is non-zero is 1. In our
proposed approach in Alg. 2, the respective weights of the
assigned submatrices of A and B are w4 and wp. Thus, when
n is small, the probability of any entry in an encoded submatrix
of A to be non zero is

WA

I-[Ja-m=1-0=n"~1-1-win =wn: @
i=1

For example, (i) if n = 0.01 and wg = 6, we have 1 — (1 —
M@ =1—(1—-0.001)° = 0.0585 ~ wyn, or (ii) if n = 0.02
and wp = 4, wehave | — (1 — ) =1— (1 — 0.02)4
0.077 ~ wpn. Thus, in any encoded submatrix of A or B, the
probability of any entry being non-zero is can be approximated
by wan or wpgn, respectively.

In this work, we consider the scenarios where A and B
are sparse, hence n is small. Therefore, the computational
complexity for any node is O(wan x wpn X t X k;‘;{’g) =
(’)(a)Aan2 X ,;W—kt). On the other hand, in a dense coded
approach [4], [11] which assign linear combination of kg
and kp submatrices, the computational complexity is approx-
imately O(kan x kpnt x kAﬂkB) = O(n* x rwt), which is Zx—fa’;
times larger than our proposed method, as wg < ka, wp < kp.

The recent approach proposed in [8] can deal with sparse
matrices with lesser per worker node computational complex-
ity in comparison to the approaches in [4], [5], [11], [12].
The coding scheme in [8] sets the weight of matrix B as ¢
which is given by ¢ > 14 kp — [*2] where ¢ = 1 + [£1,
In that case, the per worker node computational complexity
is O(r;2 X rwt X (% + n%)). Thus in order to compare our
approach against [8], we consider the ratio

G

Thus, our proposed approach involves less computational com-
plexity whenever w X ﬁ > 1. In the following, we
discuss such examples.

Example 5: Consider a scenario, where k4 = 8, kp = 6 and
s = 3. In our approach, we set wg = wp = 2. On the other
hand, the approach in [8] sets ¢ = 2 and ¢ > 4. Thus, accord-
ing to (5), the ratio of the per worker node computational
complexity for the approach in [8] and that in this work is
72/51, which indicates a 30% reduction in our case compared
to the method in [8].

Remark 3: The weights in our proposed approach depend
on the number of stragglers (s) since we just need to satisfy
the inequality, wqwp > 5. On the other hand, in the approach
in [8], the corresponding weights depend on k4 and kg. Thus,
for fixed s, in our approach, the weights remain fixed, whereas

is
+m)ﬁmw+w_mw+n ¢
WAWB - - X
kakp

(&)

nwaswp n WAWB '
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TABLE 11
COMPARISON OF THE WORST CASE CONDITION NUMBER, Kyyorst FOR
DIFFERENT DISTRIBUTIONS FOR DISTRIBUTED COMPUTATION
OVER n = 30 NODES WITH s = 2 STRAGGLERS

WORST CASE CONDITION NUMBER, Kqyorst

DISTRIBUTIONS MATRIX-VECTOR MATRIX-MATRIX
RAND(0,0.5) 5.53 x 10* 1.60 x 10*
RAND(0,1) 2.43 x 10* 1.10 x 10*
RAND(0,5) 3.61 x 10* 1.63 x 10*
UNIFRAND(0,1) 2.87 x 10* 1.45 x 10*
UNIFRAND(-1,1) 2.67 x 10* 1.21 x 10*
UNIFRAND(-5,5) 2.84 x 10* 1.38 x 10*

for the method in [8], the weights increase with the increase
of k4 and kg.

Example 6: Consider the cases where k4 and kp are even
and kg = kp > 0, s 5. In those cases, in our proposed
approach, we set wy = 3 and wp = 2. Thus, the ratio in (5)
becomes %ﬁ:) X %. When ku kp = 8, this ratio is
1.25, which iqndicates a 20% reduction in the per worker node
computational complexity for our approach compared to the
method in [8]. Now, with the increase of k4 = kp (even), this
ratio in (5) is greater than 1 and will increase (kf‘]gz‘%ﬁ > 1
and ¢ will increase), and thus, the gain of our méthod will
always be significant for large n. When k4 = kg = 10, the
ratio is 1.43, which indicates a 30% gain over the approach
in [8]. When k4 = kg = 12, the ratio is 1.60, and so on.

B. Numerical Stability and Coefficient Determination Time

The condition number is often considered as an impor-
tant metric for the numerical stability of a linear
system [2], [11], [12]. In distributed computation, for a system
of n workers and s stragglers, we define the worst case con-
dition number (kyorsy) in the homogeneous system as the
maximum of the condition numbers of the decoding matrices
over all different choices of s stragglers. In the approaches
where random coding is involved [2], [5], [12], the idea is
to generate random coefficients several times (say, 20 trials),
and keep the set of coefficients which provides the minimum
Kworst-

In this work, for the proofs of Theorems 1 and 2, we
need the coefficients to be chosen i.i.d. at random from a
continuous distribution. Now, we briefly explore a few con-
tinuous distributions with different parameters to observe the
effect on the worst case condition number (ko). We con-
sider (i) Gaussian distribution (denoted as “rand(c, d)” if the
mean is ¢ and the standard deviation is d) and (ii) uniform
distribution (denoted as “unifrand(/b, ub)” if the lower and
the upper endpoints are /b and ub, respectively), for a dis-
tributed system of n = 30 nodes and s = 2 stragglers for
both distributed matrix-vector and matrix-matrix multiplica-
tion. Table II gives the results, where we observe that iy,
remains within an order of magnitude for the different dis-
tributions on each type of multiplication. In our numerical
simulations in Section VI, we draw the linear coefficients at
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TABLE III
COMPARISON OF WORKER COMPUTATION TIME AND COMMUNICATION DELAY FOR MATRIX-MATRIX MULTIPLICATION FOR n = 39,
YA =VB = % WHEN RANDOMLY CHOSEN 95%, 98% AND 99% ENTRIES OF MATRICES A AND B ARE ZERO

WORKER COMP. TIME (IN S)

COMMUNICATION DELAY (IN S)

METHODS

w=99% pu=98% pu=955% n=99% u=98% u=095%
PoLy. CODE [4] 1.61 5.13 8.91 0.76 1.41 2.39
ORTHO PoLY CODE [11] 1.56 5.18 9.04 0.81 1.43 2.37
RKRP CODE [12] 1.58 5.09 8.95 0.78 1.38 2.35
SCS OPTIMAL SCHEME [5] 0.97 1.38 4.31 0.28 0.42 0.61
CLASS-BASED SCHEME [8] 0.52 0.85 3.42 0.23 0.34 0.55
PROPOSED SCHEME 0.34 0.53 2.24 0.16 0.25 0.42

i.i.d. from the standard normal distribution, since it gives the
best performance out of the distributions considered here. '
In our proposed matrix-matrix multiplication approach in
Alg. 2, we partition A and B into k4 and kp block-columns,
respectively, and we have the recovery threshold 7 = kpkp.
Thus, in every trial we need to determine (’;) condition num-
bers of T x t sized (decoding) matrices, which has a total
complexity of O((l:)‘(3). On the other hand, the recent sparse
matrix computation approaches in [5], [8] partition matrix A
into Ay = LCM(n, k4) block-columns. Thus, in every trial,
they need to determine () condition numbers of Agkp x Aakp
sized matrices which has a total complexity of O((:) Azkg).
Since, A4 can be significantly larger than k4, every trial
involves considerably more complexity in comparison to ours.
For example, consider a case where n and k4 are coprime. In
that case Ay = nky, and thus the complexity corresponding
to the approaches [5], [8] are around O®®3) times higher than
ours. Similar result holds for the matrix-vector multiplication
case in Alg. 1. Note that the approach in [12] involves similar
computational complexity per trial as ours, and the approaches
in [4], [11] do not require such coefficient search; however,
these methods have very high computational complexity per
worker node for sparse matrices, as discussed in Section V-A.
Remark 4: In case of distributed matrix-vector multiplica-
tion, our proposed Alg. 1 has a per worker node computational
complexity O((s + Dt x =) = O((s + 1) 1 x %). While it
is significantly smaller than that of dense coded approaches,
the approach in [8] has a per worker node computational com-
plexity O((s + 1) n x ’;t), slightly smaller than our proposed
method (since n = k4+s). However, it involves very high coef-
ficient determination time which is confirmed by numerical
experiments in Section VI. In addition, unlike the approaches
in [5], [8], our approach is extended to heterogeneous systems.
Remark 5: It should be noted that our proposed approach
requires the central node to invert a kakp x kakp sized decoding
matrix. Thus, for A € R™" and B € R™*", the corresponding
decoding complexity is O(ki kf} +rwkakp). On the other hand,
the SCS optimal approach in [5] and the class-based scheme
in [8] involves a decoding complexity (’)(Agk% + rwAukp),
where Ay = LCM(n, k4) could be significantly higher than k4.

I Table 11 implies that the impact of the distribution parameters on the worst
case condition number can be non-monotonic. Since our focus in this work
is to provide resilience to the maximum number of stragglers irrespective of
the coefficient distribution, we leave a more comprehensive investigation of
how the choice of distribution impacts numerical stability to future work.

VI. NUMERICAL EXPERIMENTS

In this section, we compare the performance of our proposed
approaches with different competing methods [4], [5], [8],
[11], [12] via numerical experiments. We conduct our exper-
iments on an AWS (Amazon Web Services) cluster with
t2.small machines as the worker nodes. Note that the work
in [24] is also suited for sparse matrix computations, however,
it does not follow the storage constraints as mentioned in [4],
[51, [8], [11], [12] and also does not meet the exact optimal
recovery threshold. Therefore, we do not include [24] in our
comparison.

We consider the case of matrix-matrix multiplication in a
system with n = 39 workers, each of which can store y4 =
¥B = L fraction of matrices A and B. We consider sparse input
matrices A of size 20, 000 x 15000 and B of size 20, 000 x
12000. We assume three different cases where the sparsity of A
and B are 95%, 98% and 99%, respectively, which indicate that
randomly chosen 95%, 98% and 99% entries of matrix A are
zero. There are many practical examples where the structure
of data matrices exhibit this level of sparsity (see [13] for such
examples). Note that we also carry out numerical simulations
on matrix-vector multiplication. The results follow a similar
trend of the matrix-matrix case and is discussed in [31].

Worker computation time: First we compare different meth-
ods in terms of worker computation time (the required time
for a worker to complete its respective job) for our system
of n = 39 workers and the results are shown in Table III.
In this example, the approaches in [4], [11], [12] assign lin-
ear combinations of k4 = kg = 6 submatrices to the worker
nodes. Hence, the inherent sparsity of both A and B can be
destroyed in the encoded submatrices. On the other hand, our
proposed approach or the approaches in [5] or [8] assign linear
combinations of less number of submatrices, and hence, are
specifically suited for sparse matrices. Table III demonstrates
that the worker node computations in these approaches are sig-
nificantly faster than the dense coded approaches. In addition,
if we compare our proposed approach against the approach
in [8], we can see that the ratio in (5) is w X j—: ~
1.38. It indicates around a 30% reduction of worker com-
putational complexity in our proposed approach than the
method in [8] which can be roughly verified from the results
in Table III.

Communication delay: Now, the comparison among dif-
ferent approaches in terms of communication delay is also
demonstrated in Table III. Here we define the communication
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TABLE IV
COMPARISON AMONG DIFFERENT APPROACHES IN TERMS OF WORST CASE CONDITION NUMBER (kyors:) AMONG ALL DIFFERENT CHOICES OF s
STRAGGLERS AND THE CORRESPONDING REQUIRED TIME FOR 10 TRIALS TO FIND A GOOD SET OF COEFFICIENTS

Kworst FOR REQ. TIME Kworst FOR REQ. TIME Rworst, . = 19

METHODS n=33s=3 10 TRIALS 7 =239, s =3 10 TRIALS n=30,s=6
POLY. CODE [4] 5.14 x 10 0 4.39 x 10'° 0 1.49 x 103
ORTHO-POLY [11] 7.23 x 10° 0 1.81 x 10° 0 1.74 x 10°
RKRP CODE [12] 2.38 x 10° 5.45s 3.43 x 10° 10.31s 7.11 x 108
SCS OPT. SCH. [5] 5.39 x 107 738s 9.15 x 107 3191s 3.16 x 108
CLASS-BASED [8] 4.95 x 107 1327s 6.34 x 107 5772s 5.29 x 108
PROP. SCHEME 4.40 x 10° 5.87s 2.21 x 10° 11.37s 7.78 x 107

delay as the required time for the central node to transmit
the coded submatrices to all the worker nodes. Thus, depend-
ing on the coding procedure, the central node may involve
different communication delay for different approaches. Since
the approaches in [4], [11], [12] assign dense linear combi-
nations of the submatrices, to transmit these large number
of non-zero entries, the system involves a considerable com-
munication delay. On the other hand, the algorithm for our
proposed scheme and the methods in [5] and [8] limit the
number of non-zero entries; hence the delay is reduced
significantly.

In addition, here we compare our proposed approach against
the method in [8] in terms of the approximate number of non-
zero entries. Consider the case when the matrices A and B have
approximately 99% entries to be zero. Now, in our proposed
approach, the number of non-zero entries to be sent to each
worker node from the central node is approximately 20kx

: 15k o
0.01 x wy + 2UXIE 5 0.01 x wp = 1.8 x 10°. On the other
hand, the number of the corresponding non-zero entries to be
sent to each worker node in the approach [8] is approximately
23k 5 % (12 0.01 44 x 0.01) + 28X % 0.01 x ¢ ~
2.3 x 10°. Thus our proposed approach requires the central
node to transmit approximately 20% less non-zero entries than
the method in [8], which confirms the gain of our approach
in Table III.

Numerical stability: Next we evaluate the numerical sta-
bility of the system for different distributed computation
techniques. For any system of n workers and s stragglers,
we find the condition numbers of the decoding matrices over
all different choices of s stragglers and find the worst case
condition number (kyorsr). We consider two different systems
with different number of workers and stragglers. In system
1, we set n 33 and s = 3, and in system 2, we set
n = 39 and s = 3 and demonstrate the k. values of differ-
ent approaches in Table IV. As expected, the approach in [4]
has a very high ky.r: Which indicates its numerical insta-
bility. Among the numerically stable systems, our proposed
approach provides smaller k.. values in comparison to
the methods in [5] and [8] and also comparable with [11]
and [12].

Coefficient determination time: Finally, we compare differ-
ent approaches in terms of the required time for running 10
trials to find a “good” set of random coefficients that make
the system numerically stable. Our proposed approach and the
approach in [12] partition matrices A and B into k4 and kp

block-columns, which leads to k4kp unknowns. On the other
hand, the approaches in [5] and [8] partition matrices A and
B into Ay = LCM(n, k4) and kg block-columns, which leads
to Agkp unknowns. Now as discussed in Section V-B, A4 can
be significantly higher than k4 and to find the condition num-
bers of these larger-sized matrices, approaches in [5] and [8]
take much more time than ours. Table IV confirms more than
100x speed gain for our proposed scheme over the methods
in [5], [8] to find a “good” set of coefficients.

Thus, in summary, while the approaches in [5], [8] involve
similar worker computation time as our proposed approach,
they require significantly higher encoding time than ours.

Heterogeneous system: Next we consider a matrix-matrix
multiplication over a heterogeneous system of n = 19 worker
nodes of A = 3 different types of nodes. We assume that there
are ng = 11, ny = 5 and np = 3 nodes of types 0, 1 and
2, respectively, which are assigned 1, 2 and 3 block-columns
each, respectively, hence n = 11 x 1 +5x 243 x3 = 30. We
design the scheme according to Alg. 2, such that it is resilient
to any s = 6 block-columns processing.

Now, in this heterogeneous setting, since different nodes
are assigned different amounts of jobs depending on their cor-
responding types, the central node will wait until it receives
the results of fastest O = 24 block-column processing. In
this regard, we define the worst case condition number in the
heterogeneous system (iyorsr) as the maximum of the con-
dition numbers of the decoding matrices over all different
choices of s block-columns. Table IV shows the comparison
among different approaches in terms of (kyo5): Our proposed
approach provides significantly smaller (k,,0,5;) values than the
approaches in [4], [5], [8], [11] and also provides competitive
Kwors: Value in compared to the approach in [12].

VII. CONCLUSION

In this work, we have developed distributed matrix compu-
tation schemes which preserve sparsity properties of the inputs
while remaining resilient to the maximum number of stragglers
for given storage constraints. We saw how existing dense coded
approaches (2], [4], [11], [12] suffer from a huge communica-
tion and computation delay in case of sparse matrices. Since
our proposed approach allows very limited amounts of coding
within the submatrices, it preserves the inherent sparse structure
of the input matrix A (and B) up to certain level. Thus, the
worker computation delay and the communication delay were
seen to be significantly reduced in comparison to those dense
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TABLE V
NOTATION TABLE

NOTATION DEFINITION DESCRIPTION
AB SPARSE LARGE-SIZED MATRICES A c R B e R*™
YA, VB STORAGE FRACTION FOR A AND B, RESPECTIVELY YA = i, B = é
n NUMBER OF TOTAL WORKER NODES n > kakp
s NUMBER OF MAXIMUM POSSIBLE STRAGGLERS s=n—kakp
W; WORKER NODE WITH INDEX 1 0<i<n-—1
A Ap NUMBER OF BLOCK-COLUMNS THAT Ax=ka
A AND B, RESPECTIVELY, ARE PARTITIONED INTO AND Ap = kB
A TOTAL NUMBER OF UNKNOWNS THAT NEED TO BE RECOVERED A =AAAB
Kworst WORST CASE CONDITION NUMBER OVER ALL (") STRAGGLERS -
T RECOVERY THRESHOLD OF THE SCHEME T ="kakp
0 NUMBER OF SUBMATRIX PRODUCTS THAT HAVE TO BE COMPUTED 0>A
IN THE WORST CASE TO RECOVER THE INTENDED RESULT =
WA, WB WEIGHTS FOR THE ENCODING OF A AND B WAWEB > S

coded approaches. There are some sparsely coded approaches
in [5], [8] which have been developed specifically to deal with
sparse matrices; however, our proposed approach was seen
to provide three-fold gains over them. Overall, we showed
analytically and experimentally that our proposed approach
(1) provides significant gain in worker computation and com-
munication delay, (ii) saves considerable amount of time to find
a “good” set of coefficients to make the system numerically
stable, and (iii) is applicable to the systems where the worker
nodes are heterogeneous in nature.

There are a number of directions for the future work of this
paper. While there are several secure distributed matrix compu-
tation schemes [14], [15], [16], [17] which protect the system
against privacy leakage, most of them add dense random matri-
ces to the coded submatrices which destroy the sparsity of the
assigned submatrices. Thus, a straggler resilient secure coded
scheme needs to be developed which is particularly suitable
for sparse input matrices. Another direction can be developing
a scheme for a server-less architecture, where there is no such
central node to encode the matrices and the worker nodes may
communicate among them to establish straggler resilience.
This can be particularly helpful for distributed learning or fed-
erated learning methods [32]. We could also aim for improving
the performance in the heterogeneous setting by assigning
multiple jobs with varying weights as guided in [33], [34].
Moreover, we need to develop schemes where true knowledge
about the worker nodes in the heterogeneous setting may not
be available prior to the assignment of the jobs.

APPENDIX A
NOTATION TABLE

In this section, for the ease of the readers, we provide an
overview of the notations used in this work in Table V. This
table also includes very brief definitions of the corresponding
notations.

APPENDIX B
PROOF OF LEMMA 1

Proof: As discussed in Section IV-A, we denote the min-
imum number of participating unknowns in M; by p; when

0 <i < k4 — 1. The trivial lower bound for p; 18 zekro when
A—WA

ka —wa+1 < i < ks — 1, hence, Zzopl— i—0  Pi-
Thus, in order to prove the lemma, we need to show that

kA —WA kA —1

Z pi = Z 5. (6)
i=0 i=0

Now we provide the following definition for the next part of
the proof.

Definition 2: We say that /\;l,- covers itself, if p; > 5,-.
Next, we say that a set of ./\;li’s, denoted by U, covers itself
and another set of Mj’s, denoted by V, (where U and V are

disjoint) if
Yo=Y At X5
iM;eld iM;eld

Claim 3: Every Mj covers itself, for 0 <j < kg — wa.
Proof: From (1), we have py > wq X (wp + §o —2) > b,

since wa, wp > 2. So, /\/lo covers itself. Next from (2), for
1<J<kA—a)A,Wehave,o]28+a)3—2>8 So./\/l
covers itself. |

Now since (6) leads to ZkA @A pi >
ZkA “AS + Zl kA wogp10i> we first denote a set
V = IMiy—wst1, /Vlkrwﬁz, ooy My} (thus,

V| = wg — 1) and in order to satisfy (6), we always need
to find an appropriate &/ which can also cover V along with
itself. To do so, we need to find those /\;li’s where p; —S,- > 0.
In this proof, we define U, {J\;lo,/\;h,/\;lz,...,/\;l,\}.
Now we consider the following two cases for each of which
we show that (6) is true.

Case 1 (1 < 50 < kp): If, So = 1, using (1), we have
00 = WAWR > wado, since wp = 2. Moreover, if 1 < 8y < kg,
using (1), we have po = wado. Thus, when 1 < 80 < kp, we
have pg = wado = S0+ (wa—1) & > 80+Zl kA wA+18
since §;’s are arranged in a non-increasing order. In this case,
we can set U = Uy = {Mo} which covers V along with itself.
Now, since each of the other Mi’s (fori <1 < kg — wp)
covers itself (according to Claim 3), (6) is true.

Case 2 (89 = kg+1): Assume that §g = 8] = -+ = 8o =
kp+ 1. Now, there can be at most s < mln(a)AwB — 1, ks ) such
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~ Case 2a:
Okp—watl < kp—wp—1.
Use Claim 4 directly.

~ Case 2b:
Oks—watl = kB — wp.
Case 2:
(51' =kp+1[—
Vi<a-—1

~ Case 2c:
Okp—watl = kp —wp + 1.

~ Case 2d:
Okp—watl = kp —wp +2.
Use Claim 5 directly.

Fig. 4. An overview of Case 2.

M;’s which have cardinality kg + 1. Thus, « is upper bounded
by min(wawp — 1, k4). Now, before moving into details in this
case, we state the following claims. The corresponding proofs
are given in [31].

Claim 4: For o > 1,if Y0 )
then (6) is true by setting U = Uy_1.

Remark 6: While we cannot assume w4 > wpg without loss
of generality, note that ws and wp are design parameters. The
constraint that we have on the number of stragglers in terms
of ws and wp is that s < wawp — 1. Since the upper bound is
symmetric in terms of w4 and wp, we can always set wg > wp
in our design to be resilient to the same number of stragglers.

Claim 5: Assume that « > 1 and let us define « as the
minimum i such that §; < kg — 1. (a) If k > kg —wp, then U =
Uy—1 will cover V along with itself. (b) If k < ky—w4 and &; >
kg—wp+2 forall i < ka—wa, then U = Uy—1 Ul will cover
V along with itself, where U, = {MK, MK+1, R ./\;lkA,wA}.

Our main idea is to perform an exhaustive case analysis on
the value of SkA_wAJr 1, an overview of which is depicted in
Fig. 4. In all cases, we find the appropriate ¢/ such that (6)
holds.

Case 2a (SkA,wAH < kg — wp — 1): Now, g,-’s are in non-
increasing order, thus, in this case

8 < (wa — 1) kg —a,

Y 1 81 < (ks — wp — D(wa — 1)
= kp(wa—1) — (s + D(wa— 1) < kp(wa — 1) — e,

since wq > wp and o < wawp— 1. Thus, according to Claim 4,
we are done by setting U = Uy —1.

Case 2b (SkA—wA+J = kp — wp): To prove (6), here we
consider the following two subcases.

Case 2b (i) (SkA_a,A > kp — wp + 2): In this scenario, if
k > kg — wa, then we are done using Claim 5(a), and, if
k < kg — wa, then we are done using Claim 5(b) since Si >
kp —wp +2 for all i < k4 —ws. We can find « in Claim 5 as
the minimum value of i when §; < kg.

Case 2b (ii) (SkA —oa < kB — wp + 1): Since 5kA —woptl =
kp — wp, then Zl kA wA+1 < (kg — wp)(wg — 1). Now in
this scenario, leol ,o,+,0kA_wA = wakp+ (¢ — Dkp+ pry—aw,

g
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Case 2b (I) SkA_U_,A > kg —wp + 2.
Use Claim 5 directly

Case 2b (ii): 6p 0, < kp — wp + 1.

Case 2¢ (i): @ < (wa — 1)(wp — 1)+ A
Use Claim 4 directly.

Case 2c (ii): a=wawp — wa + A — Ry
wherel < R} < wp — 1.

Case 2c (iii): a=wawp — wa + A + Ry
where 0 < Ry < wyq — 1 — A\

and,
a—1 kA—l
DS+ D b <bywn+ ks —op)(@a— 1) +a
i=0 i=kg—wy
+ akp = wakp
+ (@ = Dkg + 80y + @ — 0plop — 1).
If ‘/\;lkA,wA = kg, then according to (2), px,—w, — SkA,wA >

wp — 1. Since o < wpwp — 1, we are done by setting U
Uy_1 U {./\/tkA wy) to cover V along with itself. Otherwise,

if ‘MkA —on

However, in that case @ < wswp—2 since ./\/lkA — w4

= kp + 1, we have pg,—q, SkA wy = wp — 2.

is already

set as kp + 1. Thus, we can again set U = Uy U {MkA wp)-

Case 2c (SkA —wp+1 = kp—wp+1): In this case, if §g,—u, >
kp — wp + 2, according to Claim 5(b), we are done by setting
U=Uy_1 U LN{K. We can find « in as the minimum value of i
when §; < kz. Now, we consider the only remaining scenario
where gkA—wA = kp — wp + 1. Since, gkA—(DAJFl =kg—wp+1,
we assume Z{Z;Al—w/ﬁl Si=(wa—1) (kg—wp+1) —ir =
(wa — 1) kg — (wa — 1)(wp — 1) — Ap. Now, we consider the
following three subcases.

Case 2c (i) (¢ < (wa — 1) (wp — 1) + A2): Here, we are
done by setting U = Uy—1 (Claim 4).

Case 2c (ii) (¢ = wawp — wa + A2 — Ry, where I < R; <
wp—1): Here, Y070 pitpiy—wy = wakp+(—1Dkg+pi,— oy
and,

a—1 kA—l
Ysi+ > Si=atks+1) 45y o,
i=0 i:kA—wA

+ (kg —wp + )(wa — 1) — A2 = wakp + (@ — 1)kp
+ 8ky—wp + o — {(wa — D(wp — 1) + Ao}

Since, SkA—wA = kp — wp + 1, according to (2), pr,—w, —
Sky—wy = @p —2. In addition, o — [(wa — 1) (wp—1) +A2] =
wp — 1 — R;. Thus, we are done by setting U = Uy_1 U
{MkA—wA}-

Case 2c (iii) (¢ = wawp — w4 —i—kz + R», where 0 < Ry <
wps — 1 — Ag) Since we know, 5kA —wy = kp —wp + 1, we
assume that SkA —wy = (SkA —wp—1 = = 5kA —wp—ptl =
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kg — wp + 1, where B > 1. We define the set H =
{MkAfa)/p MkAfa)Aflv ey MkAfaJA*,B+1}'

Now, we consider two scenarios depending on the value of
wp. If wp > 3, we assume that Si = kp — wp + 2 + o; with
0 <6; <wp—3 where k <i < kg — wsq — B. Thus, in this
scenario,

ka—wp a—1 Kk—1 ka—wa—B ka—wa
ZP;‘:Z,OH-Z,OH- Z pi + Z Pi
i=0 i=0 i=a i=k i=kp—ws—p+1
= akp + kp(wa — 1) + (k — a)kp
kA—a)A
+la—oa—B—rx+Dkg+ Y pi(D
i=kg—wa—p+1

In the remaining scenario where wp = 2, we have
8kA7wAfﬂ+1 =kp—1,thus §; = kg, when o < i < kg —wy—B.
So,

ka—wa a—1 ka—wa—pB ka—wa
DD RS WD M
i=0 i=0 i=a i=kg—ws—p+1

= akp + kp(wp — 1) + (kg —wa — B — o + Dkp

kA—wA
+ Y ®)
i=kg—ws—p+1
Thus, from (7) and (8), for any wp > 2, we have
kp—wa ka—wa

Yo opi=ka—Phs+ Y. pi ©)

i=0 i=kg—wp—p+1
Now, since A, +R» < wyq — 1 and Zfi;;_wﬁl 8 = (ws —

1) (kg — wp + 1) — Ay, the number of /\;l,"s in V having Si
to be less than kp — wp + 1 is upper bounded by A,. Thus,
the number of Mi’s left in V with Si = kg — wp + 1 is lower
bounder by wq — 1 — X2, we denote the set of such Mi’s as
V. Besides, we have 8 > 1 more Si’s with the same value,
kg —wp + 1. Thus, §; = kg —wp + 1 when i = ky —wp — B+
..., ka —wa, ka —wa+1,...ka — 1 —Ap.

Note that, M; € H when i = kg —ws—B+1, ..., ka —wa
and M,- €V when i = ka —wsa +1,... kg — 1 — Ay. But,
the total number of M;’s with cardinality kg + 1 is upper
bounded by wswp — 1. Since we have already taken account
o = wawp — w4 + Ay + Ry of such /\;l,-’s, we have at most
ws — 1 — Ay — Ry of M;’s left which belong to U, UV. Thus,
we can have at most wg — 1 — Ay — Ry of such /\;li’s in H Ufi,
since H C Z;{K and V c V.

Now, since S,- = kp —wp+ 1 when /\;li € Hufi, and ‘f}‘ >

wa — 1 — X2 — Ry, according to our arrangement of /\;li’s~ (in
Section IV-A2(ii)), all such M;’s (i.e., |M;| = kg+1and §; =
kp—wp-+1) belong to V. Therefore, ’./\;l, = kp when M,- eH

and p; = (wp+8; — 1, kp) = kg, since 8; = kg — wp + 1. Thus
we are done using (9), since Zfigw/‘ pi = kakp > Zfigl 5.

Case 2d (53, —wy+1 = kp—wp+2): In this case, if k > ks —
w4, then we are done using Claim 5(a), and, if k < k4 — wg4,
then we are done using Claim 5(b) since S,- > kg — wp + 2 for
all i < kg —wy4. We can find ¢ (from Claim 5) as the minimum
value of i when Si < kg. u
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