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Abstract: Although there is an extensive literature on the eigenvalues of
high-dimensional sample covariance matrices, much of it is specialized to in-
dependent components (IC) models—in which observations are represented
as linear transformations of random vectors with independent entries. By
contrast, less is known in the context of elliptical models, which violate the
independence structure of IC models and exhibit quite different statistical
phenomena. In particular, very little is known about the scope of bootstrap
methods for doing inference with spectral statistics in high-dimensional el-
liptical models. To fill this gap, we show how a bootstrap approach de-
veloped previously for IC models can be extended to handle the different
properties of elliptical models. Within this setting, our main theoretical
result guarantees that the proposed method consistently approximates the
distributions of linear spectral statistics, which play a fundamental role in
multivariate analysis. We also provide empirical results showing that the
proposed method performs well for a variety of nonlinear spectral statistics.
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1. Introduction

The analysis of spectral statistics of sample covariance matrices is a major re-
search area within multivariate analysis, random matrix theory, high-dimensional
statistics, and related fields [5, 49, 47, 42]. If x1,...,x,, are centered i.i.d. ob-
servations in R? with a sample covariance matrix denoted by

I XX, , (1.1)

then we say that a random variable T}, is a spectral statistic if it has the form
T, = Y(M(Zn), ..., Ap(En)), where A (X,) > --- > A,(%,) are the sorted

A~

eigenvalues of ¥,,, and v is a generic real-valued function. Over the past two
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decades, there has been a tremendous growth of interest in spectral statistics
in high-dimensional settings where p = p(n) grows so that p/n converges to
a positive constant as n — oo. Likewise, statistical tools for approximating
the distributions of spectral statistics have been applied to high-dimensional
data in a broad range of domains, such as electrical engineering, finance, and
biology [41, 1, 9, 10].

Although the research on spectral statistics has dealt with many different
statistical models, two of the most influential ones have been elliptical and
independent components (IC) models. To be specific, we say that the random
vector x; follows an elliptical model if it can be represented in the form

X1 = 512}/2111 (12)

where ¥, = E(x;x ), and (uy,&1) € RP x [0,00) is a random vector such that
u; and &; are independent, with u; being uniformly distributed on the unit
sphere of RP. Alternatively, we say that x; follows an IC model if

x; = X/ ?z), (1.3)

where z; € RP is a random vector whose entries are centered and independent.

At first sight, these two models may seem to be very similar, but this out-
ward appearance conceals some crucial differences in modelling capabilities. In
particular, it should be stressed that the entries of the random vector £ u; in
an elliptical model are correlated, which contrasts with the independence of
the entries of z; in an IC model. Also, since the scalar random variable &; is
shared across all entries of x; in an elliptical model, this enhances the ability
to capture scenarios where the magnitudes of all entries of x; move in the same
direction simultaneously. This is a key effect in some application domains, such
as in finance, where the entries of x; correspond to stock prices that can fall
in tandem during a sharp market downturn. Additional background on related
merits of elliptical models can be found in [11, 38, 16]. More generally, the mul-
tivariate analysis literature has placed a longstanding emphasis on the benefits
of elliptical models in fitting various types of non-Gaussian data [14, 2, 17].

However, looking beyond the points just mentioned, IC models have played
a more dominant role than elliptical models in the literature on spectral statis-
tics in high dimensions. Consequently, the established body of high-dimensional
limit theory is much less complete for elliptical models. Indeed, the challenge
of extending results from IC models to elliptical ones has become a prominent
topic of ongoing research, which has led to important advances in the limit the-
ory for spectral statistics [e.g. 28, 19, 18, 48, 24, 29, 52]. As a matter of historical
context, it also worth bearing in mind that for some spectral statistics, it took
many years for such extensions to be established.

From the standpoint of statistical methodology, a corresponding set of gaps
exists between elliptical and IC models. These gaps are especially apparent in
the current state of bootstrap methods for high-dimensional data. In particular,
it is known from [34] that a form of parametric bootstrapping can successfully
approximate the distributions of spectral statistics in IC models, whereas very
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little is known for elliptical models. Accordingly, our primary goal in the current
paper is to resolve this issue by developing a parametric bootstrap method
that is both theoretically and empirically effective in high-dimensional elliptical
models.

With regard to theory, we will focus on the class of linear spectral statistics,
which have the form

Tn(f) =

"=

Zf(/\j(in)), (1.4)

for a suitable real-valued function f. Beginning with the pathbreaking works [23,
3] that established the earliest versions of the central limit theorem for linear
spectral statistics in high dimensions, these statistics have been a perennial fo-
cus of research. Their importance is underscored by the fact that they appear
frequently throughout multivariate analysis, with some of the most well-known
examples being Str(3,), str(X7), and | logdet(3,), among various other clas-
sical statistics for testing hypotheses [49].

Motivated by these considerations, our main theoretical result (Theorem 2)
shows that the proposed bootstrap method consistently approximates the dis-
tributions of linear spectral statistics when the underlying data are elliptical
and p/n converges to a positive constant as n — oco. The proof substantially
leverages recent progress on the central limit theorem for linear spectral statis-
tics in elliptical models due to [18]. Also, an intermediate step in the proof
(Lemma A.4) shows that the well-known eigenvalue estimation method QuEST
is consistent in elliptical models—which may be of independent interest, since it
seems that QuEST’s consistency has not previously been reported outside of IC
models [26]. Moreover, Section 3.4 develops an application of Theorem 2 where
we establish the asymptotic validity of inference procedures related to the stable
rank parameter r, = tr(%,)?/tr(32) of the population covariance matrix 3,,.

To address the empirical performance of the proposed method, Section 4
presents numerical results for a wide variety of model settings and statistics.
Most notably, these results show encouraging performance for both linear and
nonlinear spectral statistics. (We regard any function of (A1(Xy,),..., Ap(Zn))
that is not of the form (1.4) as a nonlinear spectral statistic.) To put this point
into perspective, it is important to highlight the fact that asymptotic formu-
las for the distributions of nonlinear spectral statistics are typically developed
on a case-by-case basis, and are relatively scarce in comparison to those for
linear spectral statistics. Even when such formulas are available, they may be
very different from those for linear spectral statistics—as they may require the
estimation of different model parameters, or the implementation of different al-
gorithms for numerical evaluation. On the other hand, the bootstrap approach
may be considered more user-friendly, since it can be applied to different types
of spectral statistics in an automatic and unified way. Similarly, the bootstrap
approach can provide the user with the freedom to easily explore statistics that
depend on several linear spectral statistics in a complicated manner (which
would otherwise require intricate delta-method calculations), or statistics for
which formulas may not be available at all.
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Notation and terminology. For a random object Y, the expression £(Y)
denotes its distribution, and £(Y|X) denotes its conditional distribution given
the observations X1, . . ., X,. Similarly, we use | X when referring to probabilities,
expectations, and variances that are conditional on the observations. The sym-

bols = and = respectively denote convergence in probability and convergence
in distribution. For a set A C R* and a number § > 0, the outer §-neighborhood
of A is defined as A% = {a’ € RF|infaca||a’ — allz < §}, where || - ||2 is the
Euclidean norm. If v and w are random vectors in R, then the Lévy-Prohorov
metric drp(L(v), L(w)) between their distributions is defined as the infimum
over all numbers § > 0 such that the inequality P(v € A) < P(w € A%) + 4
holds for all Borel sets A C R¥. If v, 11,15, ... is a sequence of random probabil-

ity distributions on R¥, then the expression v, £ J means that the sequence of
scalar random variables dpp (v, V) converges to 0 in probability as n — oco. For
two sequences of non-negative real numbers {a,} and {b,}, we write a,, < b,
if there is a constant C' > 0 not depending on n such that a,, < Cb,, holds for
all large n. When both of the relations a, < b, and b, < a, hold, we write
apn, < by. The relation a, = o(b,,) means a, /b, — 0 as n — oo, and the relation
a, = O(by,) is equivalent to a,, < b,. The k x k identity matrix is denoted as I,
and the indicator function for a condition --- is denoted as 1{---}. Lastly, we

use C* to refer to the set of complex numbers with a positive imaginary part.

2. Method

Conceptually, the proposed method is motivated by the fact that the stan-
dard nonparametric bootstrap, based on sampling with replacement, often per-
forms poorly when it is applied naively to high-dimensional data, unless special
low-dimensional structure is available. (For additional background, see the pa-
pers [13, 32, 35, 50], as well as the numerical results presented here at the end of
Section 4.2.) This general difficulty can be understood by noting that sampling
with replacement implicitly relies on the empirical distribution of the data as
a substitute for the true data-generating distribution. In other words, the non-
parametric bootstrap attempts to approximate a p-dimensional distribution in
a fully non-parametric way, which can be challenging for even moderately large
values of p. For this reason, alternative bootstrap methods that sample from
parametric distributions have been advocated to improve upon the nonpara-
metric bootstrap in high dimensions [e.g. 36, 34, 53], and this is the viewpoint
that we pursue here.

2.1. Bootstrap algorithm

At an algorithmic level, the proposed method is built on top of two estima-
tors. The first is an estimator G2 for the variance parameter ¢2 = var(£}).
The second is an estimator %, for the diagonal matrix of population eigenval-
ues diag(A1(Xn), ..., Ap(En)). Once these two estimators have been assembled,
the method generates bootstrap data from an elliptical model parameterized in
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terms of ¢2 and ¥,,. More specifically, the ith sample of each bootstrap dataset

X7,...,X» is generated to be of the form

X = &5,/ g,
where £ is a non-negative random variable satisfying E((£)?|X) = p and
var((£5)?|X) = <2, and uj € R? is drawn uniformly from the unit sphere,

independently of . Then, a single bootstrap sample of a generic spectral statis-
tic T, = (M (Zn), ..., Ap(E,)) is computed as T, = (M (ZF), ..., \p(E))),
where X7 is the sample covariance matrix of the bootstrap data.

To emphasize the modular role that <2 and ¥, play in the bootstrap sampling
process, we will provide the details for their construction later in Sections 2.2
and 2.3. With these points understood, the following algorithm shows that the
method is very easy to implement.

Algorithm 1 (Bootstrap for spectral statistics).

Input: The number of bootstrap replicates B, as well as ¥, and 2.
For:b=1,...,B do in parallel

1. Generate independent random variables g7, ..., g, from a Gamma distribu-
tion with mean p and variance G2, and then put & = \/g_;" fori=1,...,n.

2. Generate independent random wvectors uj,...,u;, € RP from the uniform
distribution on the unit sphere.

3. Compute x; = fg‘i,l/zu;‘ fori=1,....n, and form &% = Iy xrx)T.

4. Compute the spectral statistic T, | = w()\l(i;i), e )\p(ifl)).

end for

Return: The empirical distribution of Ty, 1,..., T p.

Remarks. One basic but valuable feature of the algorithm is that it can be
applied with equal ease to both linear and nonlinear spectral statistics. To com-
ment on some more technical aspects of the algorithm, the Gamma distribution
is used in step 1 because it offers a convenient way to generate non-negative
random variables whose means and variances can be matched to any pair of
positive numbers. (If the event ¢ = 0 happens to occur, then the Gamma dis-
tribution in step 1 is interpreted as the point mass at p, so that {f = /p for all
i=1,...,n.) Nevertheless, the choice of the Gamma distribution for generating
g3, -, g5 is not required. Any other family of distributions on [0, 00) param-
eterized by means p and variances o2, say {G .52}, will be compatible with
our bootstrap consistency result in Theorem 2 if it satisfies the following two
conditions: First, the pair (1, 0?) can be set to (p,v) for any integer p > 1 and
real number v > 0. Second, there exists some fixed € > 0 such that the quantity
Ik |'5_75|4+5de702 (t) remains bounded when p diverges and 2 /p converges to a

finite limit.
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2.2. Variance estimation

The estimation of the parameter ¢2 = var(¢?) is complicated by the fact that the

random variables &1, ..., &, are not directly observable in an elliptical model. It

is possible to overcome this challenge with the following estimating equation,

which can be derived from an explicit formula for var(||x;]|3) that is given in

Lemma D.1,

var(||x1[3) — 26r(33)
tr(X%,)?% + 2tr(X2)

Based on this equation, our approach is to separately estimate each of the three
moment parameters on the right hand side, denoted as

2 = p(p+2) + 2p. (2.1)

a, = tr(X2)
B = var(||xa13)
Yn = tr(Zn)2.

These parameters have the advantage that they can be estimated in a more
direct manner, due to their simpler relations with the observations and the
matrix X,,. Specifically, we use estimates defined according to

a, = tr(22) - L4(3,,)2,

~ 1 n
Bo= =3 (Ixil3 - £ X5y Ixe 13)

n— :
=1

2
’

—_

F = tr(Zn)2.

Substituting these estimates into (2.1) yields our proposed estimate for ¢2

~2 B\n_Qan
G =P +2)=——F= +2p) 2.2
(( et ) (22)

where x; = max{x,0} denotes the non-negative part of any real number z.
The consistency of this estimate will be established in Theorem 1, which shows

%(@? —62) — 0 in probability as n — co.

2.3. Spectrum estimation

The problem of estimating the eigenvalues of a population covariance matrix has
attracted long-term interest in the high-dimensional statistics literature, and
many different estimation methods have been proposed [e.g. 12, 39, 7, 26, 25].
In order to estimate A1 (X,),...,A\p(2y) in our current setting, we modify the
method of QUEST [26], which has become widely used in recent years. This
choice has the benefit of making all aspects of our proposed method easy to
implement, because QUEST is supported by a turnkey software package [27].
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We denote the estimates produced by QuEST as B\\QJ > > XQ,p, and we
will use modified versions of them defined by

X; = min(Aq.j, bn), (2.3)

for j = 1,...,p, where we let b = Al(iﬁ) + 1. The modification is done for
theoretical reasons, to ensure that Aq, ..., A, are asymptotically bounded, which
follows from Lemma A.5. In addition, we define the diagonal p X p matrix asso-

ciated with these estimates as

¥, = diag(Ai, ..., A\p). (2.4)

Later, in Theorem 1, we will show that the estimates 5\1, ..., Ap are consistent,
in the sense that their empirical distribution converges weakly in probability to
the correct limit as n — oo.

3. Theoretical results

In this section, we present three theoretical guarantees for the proposed method.
Theorem 1 establishes appropriate notions of consistency for each of the estima-
tors ¢2 and $,.. Second, our main result in Theorem 2 shows that the bootstrap
samples generated in Algorithm 1 consistently approximate the distributions
of linear spectral statistics. Lastly, Theorem 3 demonstrates the asymptotic
validity of bootstrap-based inference procedures involving nonlinear spectral
statistics.

3.1. Setup

All of our theoretical analysis is framed in terms of a sequence of models in-
dexed by n, so that all model parameters are allowed to vary with n, except
when stated otherwise. The details of our model assumptions are given below
in Assumptions 1 and 2.

Assumption 1 (Data generating model). As n — oo, the dimension p grows
so that the ratio ¢, = p/n satisfies ¢, — ¢ for some positive constant ¢ different
from 1. For each i =1,...,n, the observation x; € RP can be represented as

X; = 61'2:/2111‘, (31)

where ¥, € RP*P s a deterministic non-zero positive semidefinite matriz, and
(ui,&1),..., (U, &) are i.i.d. random vectors in RP x [0, 00) satisfying the fol-
lowing conditions: The vector uy is drawn from the uniform distribution on the
unit sphere of RP, and is independent of & . In addition, as n — oo, the random
variable &3 satisfies E(£2) = p, as well as the conditions

4+e
<1

~ )

2_ 2_
var (fi/z_)p) =7+ 0(1) and E El\/ﬁp

for some fixed constants T > 0 and € > 0 that do not depend on n.

(3.2)
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Remarks. With regard to the limiting value ¢ for the ratio p/n, the single case of
¢ = 1 is excluded so that we may employ certain facts about the QUEST method
that were established in [26]. From a practical standpoint, our proposed method
can still be used effectively when p/n = 1, as shown in Section 4. To address the
moment conditions on &7, a similar set of conditions was used in [18] to establish
a high-dimensional central limit theorem for linear spectral statistics. However,
our condition involving a 4+& moment for (£ —p)/./p replaces a corresponding
2 4+ ¢ moment condition in that work. The extra bit of integrability is used here
to show that the estimators <2 and ¥, have suitable asymptotic properties for
ensuring bootstrap consistency.

Examples. To illustrate that the conditions in (3.2) cover a substantial range of
situations, it is possible to provide quite a few explicit examples of distributions
for £2 that are conforming:

Chi-Squared distribution with p degrees of freedom
Poisson(p)

(1 — 7)Negative-Binomial(p, 1 — 7), for any 7 € (0,1)
Gamma(p/t,1/7), for any 7 > 0
Beta—Prime(M, w>, for any 7 > 0

S TN

Log-Normal <log(p) — % log (1 + %),log (1 + %)), for any 7 > 0
7. (p+ 28) Beta(p/2, ), for any 8 > 0

It is also possible to give a more abstract class of examples that subsumes some

of the previous ones as special cases. In detail, the conditions in (3.2) will hold for

any 7> 0 if £ = Y°0_, 2{; for some independent random variables 211, ..., 21,

satisfying

LYULBE) =L AS () o r and max Bl S i
(3.3)

Further details for checking the validity of the previous examples, as well as
explicit parameterizations, are provided in Appendix E.

In addition to Assumption 1, we need one more assumption dealing with the
spectrum of the population covariance matrix ¥,,. To state this assumption, let
H,, denote the empirical distribution function associated with A1(X,,), ..., Ap(Zy),
which is defined for any t € R according to

12
H,(t) = 521@(2@ <t} (3.4)

=1

Assumption 2 (Spectral structure). There is a limiting spectral distribution
H such that as n — oo,
H, = H, (3.5)

where the support of H is a finite union of closed intervals, bounded away from
0 and oo. Furthermore, there is a fixzed compact interval in (0,00) containing
the support of H,, for all large n.
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Remarks. Variations of these conditions on population eigenvalues are com-
monly used throughout random matrix theory. This particular set of conditions

was used in [26] to establish theoretical guarantees for the QUEST estimation
method in the context of IC models.

3.2. Consistency of estimators
Here, we establish the consistency of the estimators <2 and %, defined in (2.2)

and (2.4). The appropriate notion of consistency for ¥, is stated in terms of its
empirical spectral distribution function, which is defined for any ¢ € R as

zp: 1\ <t} (3.6)

Theorem 1. Under Assumptions 1 and 2, the following limits hold as n — oo,

1@ -2 5o, (3.7)

Hy

=

H. (3.8)

Remarks. The limits (3.7) and (3.8) are proved in Appendices A.1 and A.2
respectively. Although these limits can be stated in a succinct form, quite a few
details are involved in their proofs. For instance, the analysis of ¢? is based on
extensive calculations with polynomial functions of the quadratic forms ||x;||3
and x;'—xj with i # 7, as well as associated mixed moments. The consistency
of H, is also notable because it requires showing the consistency of QUEST in
elliptical models, and it seems that the consistency of QuUEST has not previously
been reported outside of IC models.

3.3. Consistency of bootstrap

To develop our main result on the consistency of the proposed bootstrap method,
it is necessary to recall some background facts and introduce several pieces of
notation.

Under Assumptions 1 and 2, it is known from [6, Theorem 1.1] that an ex-
tended version of the classical Marcenko-Pastur Theorem holds for the empirical
spectral distribution function H,(t) = zl) 521 1{A;(25) < t}. Namely, there is
a probability distribution W(H, ¢) on [0, 00), depending only on H and ¢, such
that the weak limit fIn = U(H,c) occurs almost surely. In this statement, we
may regard U(-,-) as a map that takes a distribution H' on [0, 00) and a number
¢’ > 0 as input, and returns a new distribution ¥(H’, ¢') on [0, 0o) whose Stieltjes
transform mp o (2) = [ -d(V(H',¢))()) solves the Marcenko-Pastur equa-
tion (3.9) below. That is, for any z € C*, the number mp, . = mpg,(2) is the
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unique solution to the equation

mgy: e :/t( 1 dH/(t) (39)

/ /
1—d —cdempe) —2

within the set {m € C|(¢’ —1)/z +m € Ct}.

The map ¥(-,-) is relevant to our purposes here, because it determines a
centering parameter that is commonly used in limit theorems for linear spectral
statistics. In detail, if H,, ., denotes a shorthand for the probability distribution
U(H,,c,), and if f is a real-valued function defined on the support of Hy c, ,
then the associated centering parameter is defined as

() = / F(O)dH e, (1): (3.10)

Similarly, let H, ., = ¥(H,,c,) and 9, (f) = [ f(t)dH, ., (t). Also, in order
to simplify notation for handling the joint distribution of several linear spectral
statistics arising from a fixed set of functions f = (f1,..., fi), we write T,,(f) =
(Th(f1),- -, Tu(fx)), and likewise for T, | (f), 9,,(f), and I, (F).

As one more preparatory item, recall from page 1851 that dpp denotes the
Lévy-Prohorov metric for comparing distributions on R*. This metric is a stan-
dard choice for formulating bootstrap consistency results, as it has the funda-
mental property of metrizing weak convergence.

Theorem 2. Suppose Assumptions 1 and 2 hold, and let £ = (f1,..., fx) be a
fized set of real-valued functions that are analytic on an open subset of R con-
taining [0,00). Under these conditions, if Ty, | (f) is generated as in Algorithm 1
using the estimators <2 and %, defined by (2.2) and (2.4), then the following
limit holds as n — oo

dup (L(p{Ta(8) = 0u(D)}) , LATL(6) = Du(D}X)) 5 0. @311)

Remarks. The proof is given in Appendix B, and makes key use of a recently
developed central limit theorem for linear spectral statistics due to [18]. Re-
garding other aspects of the theorem, there are two points to discuss. First, the

assumption that the functions fi,..., fx are defined on an open set containing
[0, 00) has been made for technical simplicity. In the setting where p/n — ¢ > 1,
this assumption is minor because fi, ..., fxr must be defined at 0 due to the sin-

gularity of ¥,,. Nevertheless, if p/n — ¢ € (0,1), then it is possible to show that
a corresponding version of the theorem holds for analytic functions that are not
defined at 0, and our numerical results confirm that the proposed method can
successfully handle such cases. Second, the quantities 9,,(f) and 9, (f) are only
introduced so that the distributions appearing in (3.11) have non-trivial weak
limits, which facilitates the proof. Indeed, the proposed method can be applied
without requiring any particular type of centering.
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3.4. Application to inference on stable rank with guarantees

When dealing with high-dimensional covariance matrices, it is often of interest
to have a measure of the number of “dominant eigenvalues”. One such measure
is the stable rank, defined as
tr(,)?
Ty = w2) (3.12)

which arises naturally in a plethora of situations [e.g. 4, 44, 45, 30, 37, 33].
Whenever 3, is non-zero, this parameter satisfies 1 < r,, < rank(X,), and the
equality r, = p holds if and only if 3, is proportional to the identity matrix.

In this subsection, we illustrate how the proposed bootstrap method can be
applied to solve some inference problems involving the parameter r,,. Our first
example shows how to construct a confidence interval for r,,, and our subsequent
examples deal with testing procedures related to r,,. Later, in Theorem 3, we es-
tablish the theoretical validity of the methods used in these examples—showing
that the confidence interval has asymptotically exact coverage, and that the
relevant testing procedures maintain asymptotic control of their levels.

8.4.1. Confidence interval for stable rank

Our confidence interval for r, is constructed using the estimator

I tr(,)2

Tn = —A( n)”_ , (3.13)
tr(22) — A,

where we define
X ) F(n ) P
n n  plp+2)

n =

n T n plp+2) n? pp+2)]
and we set 7, equal to n in the exceptional case that its denominator is 0. It
should be noted that 7, differs from the naive plug-in rule tr(%,)?/tr(32), since
the extra term ﬁn in the denominator serves as a bias correction.

To proceed, let g1, denote (1—a)-quantile of the random variable (7, —r,,)/p
for any fixed a € (0,1), and consider the interval Z,, = [, —pq1—a /2, Tn — Pla /2]
Whenever the distribution of (7, — r,,)/p is continuous, this interval satisfies

P(r, €Z,) =1—q. (3.14)

+tr(§n)2[n+1 n—132-2p 2n-1)p*+
n

However, the quantiles g,/2 and qi_,/2 are unknown, and so they must be
estimated. This can be accomplished by generating bootstrap samples of the
following form in Algorithm 1,

\ 1( tr(2)> tr(fin)2)
r((E5)2) — Ay w(32) )

n,l —

p
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where ﬁ;ﬁ is defined by modifying the previous formula for ﬁn so that &, and
G2 are replaced by versions computed with the bootstrap data x3,...,x%. Also,
we define T3 ; to be 0 in the exceptional case of a denominator being equal to
0. Letting @, /2 and qy_q /2 denote the respective a/2 and (1 — a/2)-quantiles of
L(T,; 1|X), the proposed confidence interval is defined as

o = [Fu=Dli-ajz: P = Plasa)- (3.15)

Below, Theorem 3 shows that as n — oo, the coverage probability P(r,, € fn)
converges to 1 — «, as desired.

3.4.2. Hypotheses related to stable rank

Screening data for PCA. Consider a scenario where a collection of different
datasets are to be screened for further investigation by principal components
analysis (PCA). In this situation, the datasets that should be discarded are
the ones that cannot be well summarized by a moderate number of principal
components. To put this in more quantitative terms, a dataset may be considered
unsuitable for PCA if the stable rank r, exceeds a certain fraction of the full
dimension p. That is, if 22 > ¢g for some fixed reference value ¢y € (0,1). On
the other hand, if %" < €p, then the dataset may be retained. This leads to
considering the hypothesis testing problem

. I'n
Ho.p : 22

)

< e Vs. Hin 22 > . (3.16)
To develop a testing procedure, we may again consider the (1 — a)-quantile g;
of the random variable (7,, — r,,)/p. This quantile serves as a conceptual basis
for a rejection criterion, because it satisfies the following inequality under the
null hypothesis

IP’(% > ql_a) < a (3.17)

In other words, if q; _, were known, then a level-« testing procedure would result
from using %?n — €9 > ¢1_o as a rejection criterion. Accordingly, a bootstrap-

based version of this procedure rejects the null hypothesis when %?n —€0 > Ql—a,
with the quantile estimate q;_,, defined as before.

Testing for sphericity. One more example of a testing problem related to
7y, is that of testing for sphericity,

/

O i Xn =021 for some 0% >0 vs. Im S0 # 0?1 forany o > 0.

(3.18)
The connection to the parameter 7, arises from the fact that (3.18) is equivalent
to the problem Hp ,, r=1vs. Hy, ¢ 2 < 1. This observation was used in the
influential paper [44] to develop a formula-based sphericity test. By analogy with
our discussion of the problem (3.16), this observation can also be used to develop

a bootstrap-based sphericity test. However, there is one point of distinction in
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the current situation, which is that the eigenvalues of 3, no longer need to be
estimated. The reason is that under Hg ,, the scale-invariance of the statistic
(Pn — n)/p causes it to behave as if ¥,, = I,. Consequently, to estimate the
quantiles of the null distribution of (7, — r,)/p, Algorithm 1 can be run using
¥, = I,. To summarize, if we let g, denote the resulting estimate for the a-
quantile of the null distribution of (7, — r,)/p, then the rejection criterion is
o _1<q,.

The following result establishes the theoretical validity of the procedures
discussed in this subsection.

Theorem 3. If Assumptions 1 and 2 hold, then as n — oo,
P(r,€Z,) — 1-a. (3.19)
Furthermore, if Ho n, holds for all large n, then
IP’(% > al,a) < a+o(l), (3.20)
or if Hgyn holds for all large n, then

IED(% 1< zfa) - a (3.21)

Remarks. This result provides a notable complement to Theorem 2, because
it demonstrates that bootstrap consistency can be established in tasks that are
based on a nonlinear spectral statistic, namely 7,, — r,,. The proof of this result
is given in Appendix C, where it can be seen that the limiting distribution
of 7, — 7, has a very complicated dependence on the moments of H, due to
the correlation between tr(%,) and tr(X2). In this way, the proof illustrates
the utility of the bootstrap, since the bootstrap enables the user to completely
bypass such complexity.

4. Numerical results

This section explores the empirical performance of the proposed bootstrap
method in three different ways. Sections 4.2 and 4.3 deal with bootstrap ap-
proximations for linear and nonlinear spectral statistics, while Section 4.4 looks
at procedures for doing inference on the stable rank parameter r,.

4.1. Parameter settings

In our simulations, we generated data from elliptical models that were parame-
terized as follows. The random variable ¢f was generated using four choices of
distributions:

(i). Chi-Squared distribution with p degrees of freedom
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. . 1
(ii). Beta-Prime W,HPTM ,

(iii). (p+ 4)Beta(p/2,2),
(iv). T5F(p,20),

where F(dy,ds) denotes an F-distribution with d; and ds degrees of freedom.
Note that cases (i), (iii), (iv), correspond respectively to a multivariate Gaussian
distribution, a multivariate Pearson type II distribution, and a multivariate t-
distribution with 20 degrees of freedom. Also, the numerical values appearing
in (i)-(iv) were chosen to ensure the normalization condition E(£F) = p.

The population covariance matrix ¥,, was selected from five options:

1. The eigenvalues of %, are A\1(5,) = -+ = A5(5,) = 3 and A;(3,) =1 for
j € {6,...,p}. The p x p matrix of eigenvectors of ¥,, is generated from
the uniform distribution on orthogonal matrices.

2. The eigenvalues of X,, are A;(X,) = exp(—j/4) for j € {1,...,20}, and

A20(Zn) = -+ - = Ap(25). The eigenvectors are the same as in case 1.

. The matrix ¥, has entries of the form (2,);; = (35)/"~7 + 1{i = j}.

. The matrix ¥, has entries of the form (X,);; = (75)1{i # j} + 1{i = j}.

5. The eigenvalues of X, are A\1(X,) =5 and \;(X,) =1 for j € {2,...,p}.
The eigenvectors are the same as in case 1.

B~ o

4.2. Linear spectral statistics

Our experiments for linear spectral statistics were based on the task of using
the proposed bootstrap to estimate three parameters of L(p(T,,(f) — 9n(f))):
the mean, standard deviation, and 95th percentile. We considered two choices
for the function f, namely f(z) = 2% and f(z) = x —log(z) — 1. In the first case,
we selected the ratio p/n so that p/n € {0.5,1,1.5}, and in the second case we
used p/n € {0.3,0.5,0.7}.

Design of experiments. For each possible choice of (£1,%,,p/n), we gener-
ated 5000 realizations of the dataset xi,...,x,, with n = 400. These datasets
allowed us to compute 5000 realizations of the statistic p(T,(f) — 9n(f)), and
we treated the empirical mean, standard deviation, and 95th percentile of these
5000 realizations as ground truth for our parameters of interest. In Tables 1
and 2, the ground truth values are reported in the first row of numbers corre-
sponding to each choice of ¥,,.

With regard to the bootstrap, we ran Algorithm 1 on the first 500 datasets
corresponding to each parameter setting. Also, we generated B = 250 boot-
strap samples of the form p(T,; ;(f) — 9,(f)) during every run. As a result of
these runs, we obtained 500 different bootstrap estimates of the mean, standard
deviation, and 95th percentile of L(p(T,(f) — ¥»(f))). In Tables 1 and 2, we
report the empirical mean and standard deviation (in parenthesis) of these 500
estimates in the second row of numbers corresponding to each choice of 3,,.

One more detail to mention is related to the computation of ¥,,(f) and 9, (f).
For each parameter setting, we approximated 9,,(f) as follows. We averaged 30
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TABLE 1
Results for p(Tn(f) — 9n(f)) with f(z) =
p/n =05 p/n =1 p/n=15
&1 Ypn  mean sd 95th mean sd 95th mean sd 95th
1 0.51 3.31 6.02 0.85 6.11 10.87 1.44 9.15 16.48
0.48(0.24)  3.27(0.19) 5.85(0.53) 0.96(0.44) 6.09(0.35) 11.02(1) 1.47(0.65) 9.25(0.51) 16.73(1.48)
P 0 0.11 0.19 0.01 0.11 0.19 0 0.11 0.2
0(0.01) 0.11(0.01)  0.19(0.03) 0(0.01) 0.11(0.01)  0.19(0.02) 0(0.01) 0.11(0.01)  0.2(0.03)
() 3 2.16 12.88 23.12 4.02 24.12 44.03 5.8 36.13 65.72
: 1.9(0.88) 12.85(0.73)  23.2(2.07) 3.94(1.75) 24.27(1.35)  43.95(3.82) 5.8(2.77) 37.08(2.2) 67.09(6.1)
4 0.64 63.35 110.6 2.48 241.3 420 14.11 540 952.2
1.53(4.7) 62.9(9.6) 111.2(19.68) 4.95(17.04) 245(34.43) 433(70.15) 11.44(36.41)  541.9(78.44)  958.3(161.6)
5 0.55 5.03 9.1 1.03 7.49 13.4 1.57 10.42 18.58
: 0.55(0.34)  5.1(0.46) 9.15(1.05) 1.04(0.53) 7.41(0.48) 13.4(1.22) 1.55(0.74) 10.35(0.65)  18.61(1.7)
1 3.57 6.35 14.09 6.69 11.93 26.9 10.25 18.09 39.92
3.47(0.59)  6.36(0.45) 14.03(1.29) 6.83(1) 11.85(0.76)  26.51(2.32) 10.26(1.53)  17.99(1.11)  39.92(3.25)
P 0.01 0.12 0.21 0 0.11 0.2 0 0.11 0.19
0.01(0.01)  0.12(0.01)  0.2(0.03) 0.01(0.01)  0.11(0.01)  0.2(0.03) 0(0.01) 0.11(0.01)  0.2(0.03)
(i) 3 14.16 25.27 56 27.59 47.57 105.8 41.49 71.66 159.7
: 13.67(2.24)  25.12(1.76)  55.35(5.1) 26.94(3.72)  47.09(2.97)  104.9(8.33) 40.39(6.13)  T1.59(4.5) 158.6(13.38)
4 2.26 65.49 114.9 9.27 246.8 435.7 23.51 539.9 970.1
4.7(4.65) 66.35(9.67)  119.7(20.26) 9.81(16.29)  248.2(38.15)  441.7(75.8) 19.95(37.73)  548.5(83.74)  971.1(172)
5 3.75 7.75 16.66 7.21 13.01 28.58 10.46 18.87 42.02
k 3.59(0.65)  7.86(0.62) 16.69(1.58) 7.03(1.05) 12.87(0.84)  28.29(2.43) 10.4(1.51) 18.83(1.1) 41.45(3.22)
1 —0.46 1.13 1.44 —0.95 2.13 2.61 —1.47 3.12 3.71
—0.47(0.08)  1.14(0.07) 1.4(0.17) ~0.96(0.14)  2.15(0.11) 2.58(0.33) —1.43(0.21)  3.17(0.15) 3.81(0.45)
9 0.01 0.11 0.19 0 0.11 0.19 0 0.11 0.19
0(0.01) 0.11(0.01)  0.19(0.03) 0(0.01) 0.11(0.01)  0.19(0.02) 0(0.01) 0.11(0.01)  0.19(0.03)
Gii) 3 —1.93 4.49 5.41 —3.89 8.66 10.62 —5.62 13 15.33
~1.85(0.33)  4.56(0.25) 5.68(0.69) —3.78(0.57)  8.69(0.48) 10.57(1.26) ~5.7(0.9) 12.87(0.68)  15.52(1.88)
4 1.61 63.23 110 6.1 242 420.7 —6.78 541.8 944.3
0.75(4.21)  63.54(9.08)  111.2(18.37) 3.06(16.56)  242.5(37.18)  423.6(74.62) 5.52(35.54)  530.5(80.96) 928.1(161.8)
5 —0.52 3.78 5.98 —0.9 4.45 6.74 -1.3 5.35 7.75
: —0.48(0.25)  3.83(0.51) 6.14(1.02) ~0.94(0.32)  4.53(0.55) 6.81(1.17) ~1.4(0.36)  5.38(0.53) 7.67(1.15)
1 0.67 12.57 21.94 1.19 33.98 58.49 0.77 64.69 114.1
13.02(2.03) 12.28(1.26) 33.54(4.18) 50.46(7.66) 33.11(3.74) 105.7(13.79) 111.2(15.79)  62.29(6.76) 215.5(26.71)
2 0.01 0.13 0.24 0.01 0.14 0.25 0 0.14 0.23
0.01(0.01)  0.13(0.02) 0.24(0.04) 0.02(0.01) 0.14(0.02) 0.25(0.04) 0.02(0.01) 0.14(0.02) 0.25(0.04)
(iv) 3 0.68 48.68 82.62 1.3 136.4 236.7 15.26 260 457.1
51.21(8.4) 48.62(5.03) 132.7(17.04) 198.5(28.4) 131.5(13.71)  418.8(51.54) 442.9(64.24)  250.9(28.24)  861.1(108)
4 2.75 73.19 135.4 17.25 281.2 506.3 27.98 603.8 1097
14.03(5.46)  73.41(12.32)  142.2(25.81) 54.28(20.28)  277.7(44.26)  538.9(90.87) 123.8(46.62)  622.4(97.37)  1217(206.5)
- 0.42 14.02 23.86 2.62 35.23 62.08 —0.69 66.26 110.7
° 13.2(208)  13.82(141)  36.31(4.4) 50.71(7.33)  34.45(3.39)  108.3(12.79) 111.5(15.1)  64.04(6.65)  219(26.3)

realizations of —— 40p Z40p FON (55 Z40n 52271/2u1 ;'—Z}l/z)), where ¥, = I1p®%,
is of size 40p x 40p, each u; was drawn from the uniform distribution on the unit
sphere of R, and each ¢? was generated as in (i)-(iv), but with 40p replac-
mg p. For the bootstrap samples, we computed one realization of the statistic
40p Z40p FOG (g S (€r)? 21/2 *(u )TZI/ )) to approximate 9, (f) during
every run of Algorlthm 1, where ¥, = 140 ® %, is of size 40p x 40p, each u; was
drawn from the uniform distribution on the unit sphere of R*%?, and each (£})?2
was drawn from a Gamma distribution with mean 40p and variance 4052.

Comments on results. It is easiest to explain the format of the tables with
an example: The two entries in the upper right corner of Table 1 show that in
settings (i) and 1 with p/n = 1.5, the 95th percentile of L(p(T,, (f)—9,(f))) with
f(x) = 22 is equal to 16.48, and the bootstrap estimate for the 95th percentile
has a mean (standard deviation) of 16.73 (1.48). Table 2 presents results for
f(x) =log(x) —  — 1 in the same format.

In most settings, the bootstrap estimates perform well, with their bias and
standard deviation being small in proportion to the parameter being estimated.



Bootstrap in high-dimensional elliptical models 1863

TABLE 2
Results for p(Tn(f) — 9n(f)) with f(z) =  — log(x) — 1.
p/n =03 p/n =05 p/n =07
& T, Tmean sd 95th Tcan sd 95th Tean sd 95th
1 0.18 0.35 0.77 0.34 0.64 1.4 0.6 1 2.24
017(0.03)  035(0.02) 0.74(0.05)  0.34(0.06)  0.63(0.03) 1.37(0.09) 0.58(0.09)  1.01(0.05)  2.25(0.14)
P 0.18 0.83 1.55 0.36 1.16 2.25 0.59 1.53 3.1
® 0.19(0.22)  0.79(0.26)  1.49(0.65) 0.36(0.45)  1.11(0.37)  2.19(1.05) 0.62(0.7) 1.51(0.44)  3.1(1.42)
3 0.18 0.86 1.62 0.35 1.19 2.27 0.55 1.58 3.12
3 017(0.06)  0.86(0.05) 159(0.14)  0.33(0.09)  1.19(0.06)  2.3(0.19) 0.58(0.12)  156(0.08) 3.17(0.25)
4 0.16 0.91 1.66 0.32 1.53 2.92 0.57 2.21 4.29
0.17(0.09)  0.91(0.07) 1.71(0.18) 0.33(0.18)  1.54(0.12) 2.91(0.31) 0.58(0.31)  2.21(0.16)  4.29(0.49)
5 0.18 0.44 0.91 0.32 0.7 1.46 0.56 1.04 2.28
0.17(0.04)  0.45(0.03)  0.92(0.07) 0.34(0.06)  0.69(0.03)  1.48(0.11) 0.59(0.09)  1.05(0.05)  2.31(0.15)
1 1 0.37 1.62 1.74 0.65 2.79 2.56 1.02 4.25
1.04(0.11)  0.37(0.02)  1.66(0.12) 1.79(0.17)  0.66(0.03)  2.87(0.19) 2.64(0.22)  1.04(0.05)  4.35(0.25)
P 1.04 1.52 3.54 1.74 2.02 5.06 2.54 2.49 6.54
) L05(0.4)  1.51(025) 3.54(0.81) L77(0.7)  2.01(035)  5.09(1.27) 2.54(0.96)  246(0.41)  6.59(1.63)
3 1.02 1.63 3.78 1.78 2.15 5.34 2.57 2.63 6.94
1.04(0.16)  1.6(0.12)  3.68(0.36) 1.8(0.22) 211(0.14)  5.31(0.45) 2.61(0.28)  2.59(0.16)  6.88(0.53)
4 1.02 0.94 2.59 1.69 1.57 4.26 2.58 2.22 6.3
104(0.16)  0.940.07) 2.63(0.24)  18(0.31)  1.58(0.12) 4.45(0.43) 2.63(049)  225(0.17)  6.4(0.63)
- 1.02 0.47 1.8 1.78 0.71 2.96 2.56 1.06 4.31
°1.05(0.13)  0.48(0.03) 1.84(0.16) 1.8(0.17) 0.72(0.04)  2.98(0.2) 2.64(0.22)  1.08(0.05) 4.41(0.27)
1 —0.11 0.34 0.45 —0.13 0.62 0.9 —0.14 1 1.49
~0.11(0.02) 0.34(0.02) 0.45(0.05)  —0.14(0.04) 0.62(0.03) 0.88(0.08) ~0.09(0.07)  1.01(0.04)  1.57(0.14)
2 —0.12 0.36 0.49 —0.14 0.64 0.93 —0.08 1.01 1.57
(i) —0.04(0.12)  0.47(0.18)  0.74(0.43) 0.05(0.29)  0.85(0.28)  1.45(0.74) 0.18(0.45)  1.22(0.31)  2.19(0.95)
R 0.38 0.52 ~0.14 0.65 0.93 ~0.07 1.03 1.6
~0.11(0.03)  0.38(0.02) 051(0.05)  —0.14(0.05) 0.65(0.03) 0.93(0.09) ~0.09(0.07)  1.03(0.05)  1.6(0.14)
4 —0.09 0.91 1.43 —0.12 1.55 247 —0.14 2.21 3.64
—0.09(0.07)  0.9(0.08)  1.42(0.17) —0.1(0.13)  1.54(0.11)  2.48(0.28) 0.01(0.21)  221(0.16) 3.7(0.4)
5 —0.11 0.43 0.62 -0.15 0.67 0.94 —0.15 1.06 1.57
5 _011(0.08) 0.44(0.03) 062(0.07)  —0.14(0.05) 0.68(0.03) 0.99(0.09) ~0.09(0.07)  1.04(0.05)  1.64(0.15)
1 0.19 0.45 0.95 0.37 0.86 1.81 0.68 1.44 3.15
2.35(0.28)  0.44(0.03)  3.07(0.31) 6.45(0.79)  0.84(0.06)  7.85(0.87) 12.53(1.51)  1.41(0.1)  14.87(1.64)
P 0.15 2.15 3.75 0.26 3.41 5.85 0.46 4.77 8.24
2.37(0.81)  2.2(0.31)  6.01(1.31) 6.37(1.52)  3.64(0.43)  12.36(2.23) 12.6(2.65)  5.16(0.56)  21.06(3.51)
Gv) 3 0.13 2.42 4.3 0.22 3.96 6.84 0.57 5.75 10.49
2.37(0.34)  2.32(0.21)  6.25(0.7) 6.45(0.86)  3.8(0.35)  12.82(1.43) 12.67(1.58)  5.31(0.5)  21.49(2.33)
4 0.19 1.01 1.89 0.4 1.7 3.29 0.5 2.53 4.75
2.39(0.35)  099(0.09) 4.06(0.44)  6.46(0.93)  1.72(0.15) 9.37(L08) 1244(178)  2.52(0.2)  16.64(1.97)
- 0.19 0.54 1.1 0.35 0.93 1.92 0.62 1.49 3.12
° 2.36(0.3) 0.54(0.04)  3.25(0.35) 6.35(0.78)  0.9(0.07)  7.86(0.87) 12.55(1.55)  1.46(0.1)  14.97(1.7)

However, there are some specific parameter settings that require more atten-
tion. These settings involve choice 4 for ¥,,, which is an equi-correlation matrix,
and choice (iv) for &;, which induces a multivariate t-distribution with 20 de-
grees of freedom. Notably, these choices correspond to settings that violate As-
sumptions 1 and 2 of our theoretical results. In the case of the equi-correlation
matrix, the bootstrap approximations for f(z) = z? are less accurate in com-
parison to other choices of %,,, due to increased variance. By contrast, if f(z) =
log(x) — x — 1, then the bootstrap approximations have similar accuracy across
all choices of ¥,, while holding other parameters fixed.

In the case of the multivariate t-distribution, the bootstrap is able to accu-
rately estimate the standard deviation of L(p(T,(f) — ¢.(f))) for both choices
of f, but difficulties arise in estimating the mean and 95th percentile. To under-
stand these mixed results, it is important to recognize the standard deviation
does not depend on the centering parameter ¥,,(f), whereas the mean and 95th
percentile do. Also, the choice of ¥, (f) as a centering parameter is based on
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TABLE 3
Estimation of standard deviation of p(Tn(f) — 9n(f)) with the nonparametric bootstrap.
p/n & En  fl@)== f(@) =z —log(z) — 1
. 3.31 0.64
05 (M 1 97045 6.08(0.27)
i 0.11 1.16
05 (M) 2 0.11(0.01) 6.11(0.28)
i 12.88 1.19
05 (1) 3 35.72(1.83)  6.23(0.31)
. 63.35 1.53
05 () 4 666510.63)  6.25(0.3)
5.03 0.7

05 () 5 1935063  6.11(0.27)

the CLT for linear spectral statistics established in [18], and the assumptions
underlying that result are violated by the multivariate t-distribution.

Breakdown of nonparametric bootstrap. To highlight one of the mo-
tivations for our parametric bootstrap method, we close this subsection with
some numerical results exhibiting the breakdown of the standard nonparamet-
ric bootstrap, based on sampling with replacement. For the sake of brevity, we
focus only on the task of estimating the standard deviation of p(T,(f) —9,.(f))
in a subset of the previous parameter settings, corresponding to p/n = 1/2, and
(€n,2n) € {(1)} x {1,2,3,4,5}. The standard deviation is of particular interest,
because it clarifies that the breakdown does not depend on how the statistic is
centered.

The results are presented in Table 3, showing that the nonparametric boot-
strap tends to overestimate the true standard deviation, often by a factor of 2 or
more. For comparison, the corresponding estimates obtained from the proposed
bootstrap method are much more accurate, as can be seen from Tables 1 and 2.
In addition, the nonparametric bootstrap can have difficulties with nonlinear
spectral statistics in settings like those considered here. Numerical results along
these lines can be found in the paper [13].

4.83. Nonlinear spectral statistics

This subsection looks at how well the proposed bootstrap handles nonlinear
spectral statistics. The statistics under consideration here are the largest sample
eigenvalue A\;(X,,), and the leading eigengap A1(3,) — A2(X,,). The underlying
experiments for these statistics were designed in the same manner as in Sec-
tion 4.2, and Tables 4 and 5 display the results in the same format as Tables 1
and 2. To a large extent, the favorable patterns that were noted in the results
for linear spectral statistics are actually enhanced in the results for nonlinear
spectral statistics—in the sense that the bias and standard deviations of the
bootstrap estimates are generally smaller here than before. Also, in contrast
to linear spectral statistics, the results for nonlinear spectral statistics are rela-
tively unaffected by choice 4 for ,,. Lastly, under choice (iv) for £, the accuracy
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TABLE 4
Results for A\ (Xn).
p/n=05 p/n=1 p/n=15
& ¥, mean sd 95th mean sd 95th mean sd 95th
1 2.9 0.06 3 3.96 0.06 4.07 4.9 0.06 5.01
2.93(0.05)  0.06(0.01)  3.04(0.07) 3.99(0.04)  0.06(0.01) 4.1(0.06) 4.93(0.04)  0.07(0.01)  5.05(0.06)
P 0.8 0.05 0.89 0.8 0.05 0.89 0.81 0.05 0.9
0.8(0.05) 0.05(0.01)  0.89(0.06) 0.8(0.05) 0.05(0.01)  0.89(0.06) 0.81(0.05)  0.05(0.01)  0.9(0.06)
o) 3 5.76 0.11 5.95 7.91 0.12 8.12 9.81 0.13 10.03
5.81(0.08)  0.12(0.02)  6.02(0.11) 7.98(0.09)  0.13(0.02)  8.21(0.13) 9.87(0.1) 0.14(0.03)  10.12(0.14)
4 21.35 1.47 23.81 41.79 2.87 46.62 62.34 4.31 69.6
21.21(1.5) 1.47(0.13)  23.68(1.71) 41.8(2.73) 2.9(0.23) 46.7(3.09) 62.34(4.19)  4.3(0.35) 69.62(4.73)
5 5.62 0.35 6.21 6.25 0.34 6.81 6.88 0.33 7.44
© 5.61(0.33) 0.35(0.03)  6.2(0.38) 6.22(0.33) 0.34(0.03)  6.79(0.37) 6.87(0.33) 0.33(0.03)  7.43(0.38)
1 2.96 0.07 3.08 4.02 0.07 4.14 4.96 0.07 5.08
3.03(0.07)  0.07(0.01)  3.15(0.09) 4.09(0.07)  0.07(0.01)  4.22(0.09) 5.04(0.06)  0.08(0.01)  5.17(0.08)
2 0.8 0.06 0.89 0.8 0.05 0.89 0.8 0.05 0.9
0.8(0.05) 0.05(0.01)  0.89(0.06) 0.8(0.06) 0.05(0.01)  0.89(0.06) 0.81(0.06)  0.05(0.01)  0.9(0.06)
(i) 3 5.88 0.13 6.11 8.04 0.14 8.26 9.93 0.14 10.16
6.03(0.13)  0.14(0.02)  6.27(0.16) 8.2(0.12) 0.15(0.02)  8.47(0.15) 10.1(0.12)  0.16(0.02)  10.37(0.16)
4 21.34 1.51 23.86 41.8 2.92 46.72 62.32 4.3 69.65
21.44(1.48)  1.51(0.13)  23.99(1.69) 41.87(3) 2.92(0.25)  46.79(3.38) 62.37(4.37)  4.34(0.38)  69.67(4.99)
5 5.65 0.35 6.24 6.28 0.35 6.86 6.9 0.34 7.48
: 5.67(0.36) 0.36(0.03)  6.27(0.41) 6.31(0.35) 0.35(0.03)  6.9(0.4) 6.91(0.35) 0.34(0.03)  7.48(0.4)
1 2.88 0.05 2.97 3.94 0.06 4.04 4.88 0.06 4.99
2.89(0.03) 0.06(0.01)  2.98(0.05) 3.95(0.03) 0.06(0.01)  4.06(0.05) 4.89(0.03) 0.06(0.01)  5(0.05)
9 0.8 0.05 0.89 0.8 0.05 0.89 0.8 0.05 0.9
0.8(0.05) 0.05(0.01)  0.89(0.06) 0.8(0.05) 0.05(0.01)  0.89(0.06) 0.8(0.05) 0.05(0.01)  0.89(0.06)
(i) 3 5.72 0.1 5.9 7.88 0.12 8.08 9.77 0.12 9.99
: 5.74(0.07)  0.11(0.02)  5.94(0.11) 7.9(0.08) 0.12(0.02)  8.12(0.13) 9.79(0.08)  0.13(0.02)  10.01(0.11)
4 21.39 1.47 23.84 41.83 2.88 46.61 62.14 4.34 69.51
21.39(1.38)  1.47(0.12)  23.87(1.56) 41.74(2.95)  2.87(0.25)  46.57(3.35) 61.71(4.39)  4.25(0.37)  68.87(4.96)
5 5.61 0.34 6.17 6.24 0.34 6.82 6.87 0.34 7.44
? 5.59(0.34)  0.34(0.03)  6.17(0.38) 6.23(0.35)  0.34(0.03)  6.8(0.39) 6.88(0.34)  0.34(0.03)  7.45(0.39)
1 3.24 0.18 3.55 4.77 0.42 5.48 6.27 0.67 7.51
3.39(0.22) 0.12(0.03)  3.59(0.27) 5(0.46) 0.18(0.05)  5.31(0.54) 6.59(0.64) 0.25(0.07)  7.03(0.75)
9 0.8 0.06 0.9 0.8 0.06 0.91 0.81 0.06 0.91
0.81(0.06) 0.06(0.01)  0.91(0.07) 0.81(0.06) 0.06(0.01)  0.91(0.07) 0.81(0.06) 0.06(0.01)  0.91(0.07)
(v) 3 6.42 0.36 7.03 9.51 0.81 10.97 12.52 1.33 15.13
v 6.77(0.4) 0.24(0.06)  7.18(0.49) 10.17(0.81)  0.37(0.1)  10.82(0.97) 13.55(1.35)  0.54(0.16)  14.48(1.6)
4 21.45 1.62 24.28 42.01 3.23 47.49 62.59 4.68 70.57
21.52(1.71)  1.62(0.16)  24.26(1.96) 42.08(3.22)  3.17(0.29)  47.44(3.66) 63.05(4.62) 4.76(0.43)  71.15(5.29)
- 5.71 0.39 6.37 6.48 0.4 718 7.33 0.51 8.14
° 5.79(0.39)  0.39(0.04)  6.45(0.45) 6.66(0.42)  0.39(0.04)  7.33(0.49) 7.69(0.45)  0.39(0.05)  8.37(0.53)

for nonlinear spectral statistics is reduced in comparison to other choices of &;.
Nevertheless, the reduction in accuracy under choice (iv) is less pronounced here
than it was in the context of linear spectral statistics. This makes sense in light
of the fact that the statistics A\1(X,) and A1(Z,,) — A2(2,) do not involve the
centering parameter ¥, (f) that was used for linear spectral statistics. (Recall
from Section 4.2 that the reduced accuracy for linear spectral statistics under
choice (iv) appeared to be related to ¥, (f).)

4.-4. Inference on stable rank

Confidence interval. Table 6 presents numerical results on the width and
coverage probability of the bootstrap confidence interval Z,, (defined in (3.15))
for the stable rank parameter r,. The results were computed using experiments
based on the same design as in Section 4.2, with every interval having a nominal
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TABLE 5
Results for A (Xn) — X2 (Zn).
p/n =05 p/n=1 p/n=15
& ¥, mean sd 95th mean sd 95th mean sd 95th
1 0.09 0.05 0.18 0.1 0.05 0.19 0.1 0.06 0.21
0.1(0.02) 0.06(0.01)  0.2(0.05) 0.1(0.02) 0.06(0.01)  0.21(0.04) 0.11(0.02)  0.06(0.01)  0.22(0.04)
9 0.18 0.07 0.3 0.18 0.07 0.29 0.18 0.07 0.29
0.19(0.06)  0.06(0.01)  0.29(0.07) 0.18(0.06)  0.06(0.01)  0.29(0.07) 0.19(0.06)  0.06(0.01)  0.3(0.07)
@) 3 0.18 0.1 0.35 0.19 0.1 0.38 0.2 0.11 0.41
0.2(0.04) 0.11(0.02)  0.4(0.08) 0.22(0.05)  0.12(0.03)  0.44(0.1) 0.23(0.05)  0.13(0.03)  0.47(0.11)
4 18.78 1.47 21.26 38.26 2.87 43.07 57.95 4.31 65.22
18.62(1.5) 1.47(0.13)  21.09(1.71) 38.24(2.74)  2.9(0.23) 43.15(3.09) 57.94(4.19)  4.3(0.35) 65.22(4.73)
5 2.78 0.35 3.38 2.32 0.35 2.9 2.01 0.34 2.58
: 2.75(0.33) 0.35(0.03)  3.34(0.38) 2.28(0.33) 0.34(0.03)  2.85(0.37) 1.98(0.33) 0.34(0.03)  2.55(0.38)
1 0.1 0.05 0.2 0.1 0.05 0.2 0.11 0.06 0.21
0.11(0.02)  0.06(0.01)  0.22(0.05) 0.11(0.02)  0.06(0.01)  0.23(0.05) 0.12(0.02)  0.07(0.01)  0.24(0.04)
9 0.18 0.07 0.29 0.18 0.07 0.29 0.18 0.07 0.29
0.18(0.06)  0.06(0.01)  0.29(0.07) 0.19(0.06)  0.06(0.01)  0.29(0.07) 0.19(0.06)  0.06(0.01)  0.3(0.07)
(i) 3 0.19 0.1 0.38 0.2 0.11 0.41 0.21 0.11 0.42
0.22(0.04)  0.12(0.02)  0.44(0.09) 0.23(0.05)  0.13(0.03)  0.48(0.1) 0.24(0.04)  0.13(0.03)  0.49(0.1)
4 18.72 1.5 21.24 38.21 2.92 43.11 57.88 4.3 65.19
18.76(1.48)  1.51(0.13)  21.3(1.68) 38.22(2.99) 2.92(0.25) 43.13(3.38) 57.87(4.37)  4.34(0.38)  65.17(4.98)
5 2.74 0.36 3.34 2.29 0.35 2.88 1.97 0.35 2.55
h 2.68(0.36) 0.36(0.03)  3.29(0.41) 2.24(0.35) 0.35(0.03)  2.84(0.4) 1.89(0.35) 0.34(0.03)  2.47(0.4)
1 0.09 0.05 0.17 0.09 0.05 0.19 0.1 0.06 0.21
0.09(0.02) 0.05(0.01)  0.19(0.04) 0.1(0.02) 0.05(0.01)  0.2(0.03) 0.11(0.01) 0.06(0.01)  0.21(0.03)
9 0.18 0.07 0.29 0.18 0.07 0.29 0.18 0.07 0.29
0.19(0.06) 0.06(0.01)  0.3(0.07) 0.18(0.06) 0.06(0.01)  0.29(0.07) 0.18(0.06) 0.06(0.01)  0.29(0.07)
Gii) 3 0.17 0.09 0.34 0.19 0.1 0.38 0.2 0.11 0.41
: 0.19(0.04)  0.1(0.02)  0.38(0.08) 0.21(0.05)  0.11(0.03)  0.42(0.1) 0.18(0.06)  0.06(0.01)  0.29(0.07)
4 18.84 1.48 21.29 38.31 2.88 43.1 57.77 4.34 65.18
18.83(1.38)  1.47(0.12)  21.32(1.57) 38.21(2.95)  2.88(0.25)  43.05(3.35) 57.32(4.39)  4.25(0.37)  64.49(4.96)
5 2.78 0.34 3.35 2.34 0.35 2.92 2.02 0.34 2.6
: 2.75(0.34)  0.35(0.03)  3.34(0.38) 2.31(0.35)  0.34(0.03)  2.9(0.39) 2.03(0.34)  0.34(0.03)  2.6(0.39)
| 0.17 0.14 0.39 0.31 0.34 0.91 0.5 0.54 1.5
0.17(0.08) 0.09(0.03)  0.34(0.14) 0.27(0.22) 0.14(0.06)  0.53(0.32) 0.4(0.33) 0.21(0.09)  0.78(0.47)
9 0.19 0.07 0.3 0.18 0.07 0.3 0.19 0.07 0.3
0.19(0.06) 0.07(0.01)  0.31(0.07) 0.19(0.06) 0.07(0.01)  0.3(0.08) 0.19(0.06) 0.07(0.01)  0.3(0.07)
(v) 3 0.32 0.28 0.75 0.62 0.64 1.73 0.99 1.06 2.97
V) 0.35(0.17)  0.19(0.07)  0.69(0.28) 0.6(0.44) 0.3(0.13)  1.15(0.64) 0.98(0.87)  0.45(0.21) 1.8(1.19)
4 18.59 1.61 21.41 37.75 3.22 43.23 57.01 4.69 65
18.45(1.69)  1.61(0.16)  21.18(1.93) 37.46(3.21)  3.16(0.29)  42.78(3.62) 56.94(4.6)  4.74(0.43)  64.99(5.25)
- 2.54 0.41 3.21 1.79 0.47 2.53 1.24 0.49 2.03
% 2.4(0.39) 0.39(0.04)  3.06(0.45) 1.58(0.41)  0.4(0.05)  2.27(0.47) 1.09(0.37)  0.4(0.06)  1.78(0.45)

coverage probability of 95%. Due to the fact that the width of the interval scales
with the value of r,,, we report the width as a percentage of r,. To illustrate a
particular example, the upper right corner of Table 6 shows that in settings 1 and
(i) with p/n = 1.5, the average width of the interval over repeated experiments
is 1.97% of r,,, with a standard deviation of 0.12%. Under choices 1, 3, and 5
for ¥,,, the width is typically quite small as a percentage of r,,. By contrast, the
percentage is larger in cases 2 and 4, which seems to occur because 7, is smaller
in these cases compared to 1, 3, and 5. Lastly, to consider coverage probability,
the table shows good general agreement with the nominal level. Indeed, among
the 60 distinct settings, there are only a few where the coverage probability
differs from the nominal level by more than 2%.

Stable rank test. Here, we discuss numerical results for an instance of the
testing problem (3.16) given by

Hon : % <0.1 vS. Hin: % > 0.1. (4.1)
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TABLE 6
Results for the stable rank confidence interval (95% nominal coverage probability).
p/n = 0.5 p/n=1 p/n=1.5
&1 Xn width/ry, (%) coverage (%)  width/r, (%) coverage (%) width/rn, (%) coverage (%)
1 2.00(0.12) 95.20 1.96(0.12) 95.40 1.97(0.12) 93.80
2 14.53(1.19)  95.40 16.99(1.32)  91.60 18.7(1.34) 95.40
(i) 3 2.00(0.12) 95.00 1.98(0.12) 97.40 1.97(0.12) 95.40
4 34.68(2.87)  94.00 41.55(4.30)  94.00 43.82(5.33)  93.80
5 5.18(0.65)  94.80 3.24(0.35)  95.20 2.64(0.24)  94.60
1 2.07(0.12) 94.00 2.01(0.13) 92.80 1.98(0.12) 93.80
2 14.68(1.17)  94.60 17.10(1.34)  95.00 18.75(1.42)  93.20
(i) 3 2.08(0.13) 95.20 2.02(0.12) 95.20 2.00(0.13) 93.40
4 34.86(2.76)  93.40 41.47(4.09)  94.80 44.99(5.34)  94.00
5 5.12(0.63) 94.00 3.22(0.33) 93.40 2.63(0.24) 94.00
1 1.96(0.12) 94.40 1.96(0.11) 96.00 1.96(0.11) 95.80
2 14.45(1.11)  93.40 17.01(1.27)  94.60 18.57(1.42)  94.00
(i) 3 1.97(0.12) 95.00 1.96(0.12) 93.20 1.96(0.12) 93.00
4 34.71(2.67) 93.80 41.49(4.38) 92.80 44.37(5.21) 92.40
5 5.17(0.64) 94.20 3.22(0.33) 95.80 2.61(0.24) 95.20
1 2.38(0.21) 95.00 2.32(0.19) 94.80 2.31(0.25) 93.80
2 15.31(1.19)  97.40 17.86(1.42)  93.80 19.53(1.49)  94.00
(iv) 3 2.4(0.20) 96.00 2.37(0.24) 95.00 2.33(0.27) 94.20
4 3543(2.90)  93.60 42.01(4.33)  93.60 44.59(5.06)  93.40
5  5.20(0.64) 93.20 3.26(0.33) 93.00 2.73(0.29) 93.40

As a way to unify the study of level and power, we modified the experiments
from Section 4.2 as follows. We rescaled the leading 15 eigenvalues in setting
(1) to tune the ratio r,,/p within the grid {0.0980,0.0985,...,0.1045,0.1050}.
More precisely, the eigenvalues of X,, were taken to be of the form X;(%,) =
4s/3 for j € {1,...,5}, Aj(E,) = s for j € {6,...,15} and X;(2,) = 1 for
j € {16,...,p}, with different values of s being chosen to produce values of
rn,/p matching the stated gridpoints. Hence, gridpoints less than 0.1 correspond
to H,, 0, and gridpoints larger than 0.1 correspond to Hy .

At each gridpoint, we performed experiments based on the design of those
in Section 4.2, allowing for p/n to take the values 0.5,1.0,1.5, and allowing the
distribution of &; to be of the types (i), (ii), (iii), and (iv). For each such setting,
we applied the relevant bootstrap test from Section 3.4.2 at a 5% nominal level
to 500 datasets, and then we recorded the rejection rate over the 500 trials.
Figures 1, 2, 3, and 4 display the results by plotting the rejection rate as a
function of the ratio r,/p. The separate figures correspond to choices of the
distribution of &;, and within each figure, three colored curves correspond to
choices of p/n, as indicated in the legend. In addition, all the plots include a
dashed horizontal line to signify the 5% nominal level.

An important feature that is shared by all the curves is that they stay below
the nominal 5% level for essentially every value of 1, /p < 0.1, which corroborates
our theoretical bound (3.20) in Theorem 3. Furthermore, when r,/p = 0.1, the
curves are mostly quite close to 5%, demonstrating that the testing procedure
is well calibrated. For values of r,/p > 0.1, the procedure exhibits substantial
power, with the curve corresponding to p/n = 0.5 achieving approximately 100%
power at 7, /p = 0.105 for every choice of & . In the cases of p/n € {1.0,1.5}, the
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procedure still retains power, but with some diminution, as might be anticipated
in settings of higher dimension.

rejection rate vs. vy, /p

100

p/n=0.5
p/n=1
80 p/n=1.5

90 [

70

60 [

50 [

40

30

20

rejection rate (%)

9.8 9.9 10 10.1 10.2 10.3 104 10.5

n/p (%)

F1G 1. Results for the testing problem (4.1) when {% follows a Chi-Squared distribution with
p degrees of freedom.
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F1G 2. Results for the testing problem (4.1) when E% follows a Beta—Prime(W, %ﬁ)
distribution.
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rejection rate vs. ry, /p
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FI1G 3. Results for the testing problem (4.1) when &3 follows a (p+4)Beta(p/2,2) distribution.

rejection rate vs. rn/p

100 T T T T T

sl p/n=0.5
g ——p/h=1
&o 80 pn=15
N~— 70t
Q
%’ 60 -
~
50
=i
8w
13!
.2 30
Q" 20r
=
10
=
0 —_— T L L L L L
9.8 9.9 10 10.1 10.2 10.3 10.4 10.5

rn/p (%)

FIG 4. Results for the testing problem (4.1) when €2 follows a S%F(p, 20) distribution.

4.5. Sphericity test

Let Ty, = 7,/p — 1 be a shorthand for the statistic that was introduced in
Section 3.4.2 for testing sphericity. We now provide numerical comparisons with
three other testing procedures based on linear spectral statistics. To define these
other procedures, let

5 (4.2)
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denote the sample covariance matrix of rescaled observations, and consider the
following three statistics,

-~

T, = %tr(S,QL) —cp,—1 (4.3)
a1y dens (@ a 10, &
Ty = 5tr(Sp) — %tr(é’f{) — 2, (5tr(857))* + —2tr(SR) = 5ep =1 (4.4)
— T:+1 Tot+6—cn
Ty = max { T RGstiee ) } (45)

The testing procedures corresponding to these three statistics reject the spheric-
ity hypothesis when the statistics take large values. The first two statistics can
be attributed in part to the papers [44] and [15], and the proposal of taking the
maximum was made in [46]. However, in all of these works, an ordinary sam-
ple covariance matrix was used in place of gn Variants of the definition of Ty
n (4.3) have been studied in [40] and references in therein, while the definitions
To and T3 in (4.4) and (4.5) were proposed in [18]. The latter paper also derived
the limiting null distributions of all three statistics in high-dimensional elliptical
models.

Since numerical comparisons of the statistics Ty, T, and T3 were given pre-
viously in [18], our experiments here are designed using similar settings. Under
the null hypothesis, we generated data from a standard multivariate normal
distribution in 15 cases, corresponding to 3 choices of p/n € {0.5,1,2} and 5
choices of n € {100, 200, 300, 400, 500}. For the statistics Ty, To, and T3, we used
the analytical critical values derived previously in [18], and for the statistic Tg;,
we determined its critical value using the proposed bootstrap with B = 500.
For each setting under the null hypothesis, we generated 50000 datasets and
calculated the empirical level of each test as the fraction of rejections among
the 50000 trials. The results corresponding to a nominal level of 5% are dis-
played in Table 7, which shows that the empirical and nominal levels are in
close agreement for all four statistics.

Regarding the alternative hypothesis, we retained all the settings described
above, except that we replaced the null covariance matrix ¥, = I, with a
diagonal spiked covariance matrix such that A;(X,) = 1.3 for all 1 < j < p/2,
and A;(X,) = 1 for all other j. This choice has the benefit that it creates
variation in the numerical values of power, so that they are not too concentrated
near 1. Similar alternatives were also used for the experiments in [18]. The results
are presented in Table 8, which is organized in the same format as Table 7. In
each setting, the power of the statistic Ty, approximately matches the highest
power achieved among T, To, and Ts.

5. Conclusion

Up to now, high-dimensional elliptical models have generally fallen outside the
scope of existing bootstrap methods for spectral statistics. In the current paper,
we have addressed this problem by showing how a parametric bootstrap ap-
proach that is specialized to IC models [34] can be extended to elliptical models



Bootstrap in high-dimensional elliptical models 1871

TABLE 7
Results on empirical level for sphericity tests (5% nominal level).
p/n =05 p/n=1 p/n=2

n T T T3 Ter T T2 T3 Ter LE! T2 T3 Ter
100  0.049 0.048 0.051 0.050 0.049 0.049 0.051 0.054 0.048 0.051 0.053 0.051
200 0.049 0.050 0.052 0.057 0.043 0.047 0.048 0.047 0.051 0.052 0.054 0.051

300 0.046 0.048 0.051 0.046 0.046 0.047 0.048 0.048 0.051 0.054 0.059 0.052
400 0.048 0.051 0.050 0.051 0.049 0.056 0.051 0.054 0.051 0.049 0.053 0.054

500 0.049 0.045 0.048 0.052 0.050 0.046 0.048 0.053 0.044 0.045 0.044 0.046

TABLE 8
Results on power for sphericity tests.

p/n =05 p/n=1 p/n =2
n T T T3 Ter T T T3 Tsr T T T3 Ter
100  0.190 0.165 0.185 0.217 0.201 0.154 0.190 0.211 0.208 0.136 0.194 0.207
200 0.497 0.391 0.466 0.502 0.513 0.350 0.473 0.503 0.503 0.271 0.465 0.520

300 0.793 0.660 0.766 0.797 0.801 0.589 0.763 0.812 0.793 0.458 0.752 0.804
400 0.952 0.863 0.941 0.952 0.951 0.790 0.933 0.954 0.958 0.670 0.941 0.949

500 0.993 0.958 0.990 0.994 0.993 0.922 0.989 0.993 0.993 0.816 0.987 0.995

in high dimensions. In addition, we have shown that the new method is sup-
ported by two types of theoretical guarantees in the elliptical setting: First, the
method consistently approximates the distributions of linear spectral statistics
(Theorem 2). Second, the method can be applied to a nonlinear combination
of these statistics to construct asymptotically valid confidence intervals and hy-
pothesis tests (Theorem 3). From a practical perspective, a valuable property
of the method is its user-friendliness, since it can be applied to generic spec-
tral statistics in an automatic way. In particular, this provides the user with the
flexibility to easily explore spectral statistics whose asymptotic distributions are
analytically inconvenient or unknown. With regard to empirical performance,
we have presented extensive simulation results, showing that with few excep-
tions, the method accurately approximates the distributions of both linear and
nonlinear spectral statistics across many settings and inference tasks. An in-
teresting question for future work is to determine if a consistent parametric
bootstrap method for spectral statistics can be developed within more general
models that unify IC and elliptical models.

Appendices

In Appendices A, B, and C, we give the proofs of Theorems 1, 2, and 3 re-
spectively. Background results are given in Appendix D, and additional details
related to the examples in Section 3.1 are given in Appendix E.
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Appendix A: Proof of Theorem 1

Our consistency guarantees for ¢2 and H,, are proven separately in the next two
subsections.

A.1. Consistency of G2: Proof of (3.7) in Theorem 1

Define the parameter

T, = (p +3j(fn2;n2an) + 2, (A].)

and the estimate

Tn + 20,

Based on the definitions of ¢2 and <2, note that

2 ~2
% =7, and % = max{7,, 0},

as well as the fact that the Assumption 1 implies 7,, — 7 as n — oo. Since the
function x — max{z, 0} is 1-Lipschitz and 7,, > 0, it suffices to show 7,,— 7, Eo.

In Lemmas A.1, A.2, and A.3 given later in this subsection, the following
three limits will be established,

6[\n P
o By A.
=5 (A3)
ﬁn P
— =1 A4
Tn (#4)
En - Bn P
(p+2) e 0. (A.5)

t (p+2)an =1

Due to the ratio-consistency of a,, and 7, as well as the fact tha P

holds under Assumption 2, it is straightforward to check that

S O N ) () NP (A.6)
Yn + 20, Yn + 200, Yn + 200,
Therefore,
~ +2)Bo { AVn 420 B, — Bn +2)a, +2)@n
- n:(p )B Tnt20m +(p+2)6 B o (P +2) _2(3 )A
Tnt+205 \ Yn+205 Yn+20, Yn+20, Vn+200,
(p+2)Bn
=22 o (1 1
%+2an0ﬂm( ) +oe(1),

(A7)
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where we have applied (A.5) twice in the second step. Under Assumption 1, we
have E(£}) = p? + 7p + o(p) and so Lemma D.1 gives

E 4
Bn = p(;ilz)) (tr(En)2+2tr(§]%)) — tr(%,)?

2 T
_ %W(n(zn)um(zi)) —t(2)?

T—2
— (TR ) er(2)? 21+ o()rr(53)
S P
Consequently, we have % < 1, and applying this to (A.7) completes the
proof of (3.7) in Theorem 1. |

Lemma A.1. If Assumptions 1 and 2 hold, then as n — oo

Proof. Recall that a,, = tr(¥2) and that @, = tr(i%) - %tr(in)z. The two
terms in the estimate can be expanded as

a(E) = S )?

i=1 j=1

S e %)

i=1 j=1

(A.8)

1 ~
—tr(X,)?
nr( )

which leads to the algebraic relation

~

Oy — Oy, 1 1
(T - 1) S (w0 - )
n 1/#] n

Ap

=: A, + B,.

In the remainder of the proof, we will show that A, and B, are both op(1).
We begin with the analysis of B, since it is simpler. Note that B, is always
non-negative, since it can be rewritten as

Bn = anln?’ Zl>](x;rx7f - X_;'rxj)27 (A].O)

and so it suffices to show that E(B,,) = o(1). Furthermore, the expectation of
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B,, can be computed directly as

E(Bn) i %i)

ﬁ Disg 2 var(x; x;

= % var(x; x1)

n(n = 1) [ Eeh E(h)
E {(”(1”:2) _1>tr(2")2 + 2p(p4}2)tr(2721) (Lemma D.1)

_ n(n—1) [O(%)tr(zn)Q-FQ(l + O(%))tr(Z%)] (Assumption 1)

opnd

1

n’

A

(A.11)

where the last step uses % < p. Thus, E(B,) = o(1).

Now we handle the term A,, by showing that E(A2) = o(1). It is helpful to
start by noting that if 4 # j, then

E((x] x;)?) = tr(£2), (A.12)

(2

which can be checked by a direct calculation. (See the calculation in (D.5) for
additional details.) Consequently, if we expand out the square A2 and then take
the expectation, it follows that

E(A2) = — E[(Z@ij)?)?] _ =) (A.13)

aZn?t L n?
i#]

Next, we compute the second moment on the right as

E[(Z(X;XJ)Q)Q] = ZZE[(XJXJ)Z(XITXJC)Z]. (A.14)

i#] i#j 1#k

In Lemma D.2, it is shown that if (4, j, k,1) are four distinct indices, then

E((x] x;)") = 3(p(ﬂi<il)2)> (a2 + 2tx(2)) (A.15)

T2 (xTx.)2) = E(£1) o (34
B0 33)" (e 3a)7) = o =5y (o + 2tr(E,)) (A.16)
E((x %)% (x[ x)*) = of. (A.17)

Note that in the double sum (A.14), the numbers of terms involving 2, 3, and 4
distinct indices are respectively O(n?), O(n?) and n* + O(n?). Applying these
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observations to (A.14), we have

ﬁE[(Z#j(X?Xj)Q)z] = a%i4 (n4 + O(n3))

+ e () (02 + 20(1) ) O(n?)

Py
azn

+ (3(”5@)2(ag+2tr(z;ﬁ)))0(n2)

aznt p(p+2)
= 1+0(3).
Combining this with (A.13), we reach the following bound on E(A42),

E(42) = 1+0(3) - 200 41

B (A.18)

)

S|=

which completes the proof. O

Lemma A.2. If Assumptions 1 and 2 hold, then as n — oo

Proof. Recall v, = tr(%,)? and 7, = tr(in)2, and note that the algebraic
identity a? — b? = 2b(a — b) + (a — b)? gives

E[3n — n] E]Qtr(zn)(tr(in) — () + (tr(S,) — tr(zn))2’

< 2tr(8,) (var(tr(5,))) " + var(tr(S,)).
Next, observe that var(tr(£,)) = 2 var(x{ x1), and that the calculation in (A.11)
shows var(x{ x1) < p. Combining this with the fact that 7, < p? under Assump-

tion 2, we have
E|7n — vl < tr(%,) +1

~ A.19
Yn p? (A-19)
which leads to the stated result. O
Lemma A.3. If Assumptions 1 and 2 hold, then as n — oo,
B\n - Bn P
+2)———— — 0. A.20
(p )’Yn + 20, ( )

~ 2
Proof. Recall that f, =var(|[x; |2) and f, = L= 3" (||xi||§—% S xs ||§) .
It is clear that E(B\n) = fBn, and so it suffices to show
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Since Assumption 2 implies 7,, + 2a,, < p?, it remains to show var(gn) = o(p?).
Making use of a standard bound for the variance of a sample variance, we
have

~ 4
var(Ba) S LE|Ixill} - tx(Z)

(A.21)

To bound the right side of (A.21), observe that

4 4
E|lxal} - tr (Sa)| = E[e (u] Saws - Ler(Sa)) + (262 - 1) tx(S0)

4 4
< E(E)E o] S — (S| + (St E[Lg -1

Since A1(X;,) < 1 holds under Assumption 2, it follows from Lemma D.3 that

4
E ‘uIEnul - %tr(En) < I%.
Also, Assumption 1 implies
4
E ]%g% - 1‘ S L and  E@E) St (A.22)

Applying the last several observations to (A.21) implies var(gn) < p, which
yields the stated result. 0

A.2. Consistency of H,: Proof of (3.8) in Theorem 1

For each t € R, denote the empirical distribution function of the QUEST eigen-

value estimates as
p

~ 1 ~
Hqn(t) = , > 1{qy <t}

j=1
It follows from Lemma A.4 below that the limit

Hon=H (A.23)

holds almost surely as np—> 00. So, to prove (3.8), it is sufficient to show
SUDP¢er ‘H\Qn(t) - {fn(t)l — 0. N N
Since A\q,; and A; can only disagree when Aq, ; > by, we have

~ 1 -
sup |[Ho.n(t) — Ha(t)] < =Y 1{Aq,; # A}
teR pj:1

1 &~ - A.24
= =Y 1{Aq; > bn} (4.24)
Rt

~ ~

= 1—Hgn(bn).
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Let u denote the upper endpoint of the support of the distribution associated
with H, and fix any € € (0, i) Since Hq p, is a non-decreasing function, we have

Sup ‘ﬁQ,n —Hy(t)] < 1- ﬁQ’n(u + 6)1{3n > u+ e} (A.25)
teR

By the definition of u, the value u+-¢ is a continuity point of H with H (u+¢) = 1,
and so the limit (A.23) implies ﬁQm(u—F €) = 1+ o0p(1). Hence, in order to show
that the right side of (A.25) converges to 0 in probability, it is enough to show
that P(b, > u+¢€) — 1.

We will handle this remaining task by showing instead that ]P’(?)\n < ute) — 0.
Recall that Bn = Al(in) + 1 and note that the limit H, = H implies that
A1(2,) > u — e must hold for all large n. Therefore, we have

~

P(b, <u+e) < P(Al(f)n) <M () + 26— 1) (A.26)

for all large n. To derive an upper bound on the last probability, we will replace
A1(X,) with a smaller random variable, and then rearrange the event. Let vy
denote an eigenvector of ¥,, corresponding to A\ (X,,) with ||v1|l2 = 1. Defining

the random matrix W, = 13"  £2u;u/, the variational representation of

~ ~

A (X,) gives A1(2,) > A (2,)viW,vi. Also note that our choice of € ensures
2e — 1 < —1/2. This yields the following bounds for all large n,

o~

P(b, <u+e) < ]P’()\l(En)|v1Tan1 1> 1/2)

< 4\ (%,)? var (vIanl)

2
_ 4A1(nEn) var (2] (viv] )u) (A.27)
421 (Zn)? E(¢}
= 1(n ) <3p(1(7i12)) - 1) (Lemma D.1)
< 1
where the last step uses Assumptions 1 and 2. O

Lemma A.4. Suppose that Assumptions 1 and 2 hold. Then, the following limit
holds almost surely as n — oo

Hq,n = H. (A.28)

Proof. In the paper [26, pp.381-382], the limit (A.28) is established in the con-
text of an IC model where p/n — ¢ € (0,00) \ {1}, and the eigenvalues of
the population covariance matrix ¥,, satisfy Assumption 2. To adapt the proof
from [26] to our current setting, it is sufficient to show that the following two
facts hold under Assumptions 1 and 2. First, there is a constant C' > 0 such

that the bound limsup,,_,., A1(Z,) < C holds almost surely, which we prove
later using a truncation argument in Lemmas A.5 and A.6. Second, the random
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distribution function H,(t) = 2 37_ 1{)\;(,) < t} satisfies H, = U(H,c)
p g

almost surely, where we recall that the distribution WU(H,c) is defined near

equation (3.9). The validity of this second fact under our current assumptions

is a consequence of Theorem 1.1 in [6]. O

A.3. Boundedness of sample eigenvalues

Lemma A.5. Under Assumptions 1 and 2, there is a constant C' > 0 such that
the bounds

lim sup Al(in) <C and limsup A\ (X,) < C (A.29)

n—oo n—oo
hold almost surely.

Proof. Since the estimates \; = \;(2,,) are bounded above by by, = Al(in) +1
for all j € {1,...,p}, it is enough to focus on the first inequality in (A.29).
Define a sequence of truncated random variables &; = ¢&; 1{|£? — p| < \/pn} for

1=1,...,n, as well as the following truncated version of ¥,
y 1 e
Sn ==Y G/ a2 (A.30)
n
i=1

Lemma A.6 below shows that P(in £33, i.o.) = 0. Consequently, it suffices to
show there is a constant C' > 0 such that limsup,, , . A1 (%,) < C holds almost
surely.

Since the vectors uy,...,u, are uniformly distributed on the unit sphere of
RP, we may express them as u; = z;/||z;||2 for a sequence of i.i.d. standard
Gaussian vectors z1,...,2z, in RP. This yields

y 1 I €2
Sh==) ’El/f Y1 2,2 9112, (A.31)
n <~ |zlz/p

By construction, we have maxi<;<p E/p<1+ 1/\/¢y for all n > 1. Also, using
standard tail bounds for the X,Z) distribution and the Borel-Cantelli lemma, it is
straightforward to show that lim inf,,_, . mini<;<y [|2;[|3/p is at least 1/2 almost
surely. Taken together, these observations imply there is a constant C' > 0 such
that the bound

M) < OAl(Zn)Al(% Sz ) (A.32)

holds almost surely for all large n. In addition, note that sup,~; A1(X,) S 1

holds by Assumption 2. Lastly, it is known from [51, Theorem 3.1] that the limit

lim )\ (% Sy zizj) = (1+/c)?

n—oo

holds almost surely, which completes the proof. O
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Lemma A.6. Suppose that Assumption 1 holds, and let Y, be as defined
n (A.30). Then,

P(S, # 3, i.0) =0. (A.33)
Proof. We adapt a classical argument from [51]. For a fixed number n, the

matrices Z and ¥, can only disagree if |2 — p| > \/pn for at least one i =
1,...,n, and so

P(E, # 3, i0) < Jim P(U Utle _p|>\/m}> (A.34)

n=ji=1

Next, we partition the values of n into the intervals [27~1 2m) [2m 2m+1)
and take a union bound across the intervals, yielding

-~ 19 2_
P(X, # 3, i.0.) < E}r&ZP( max |§"7f’| > 2m—1>. (A.35)

1<i<n
m=j om—1<pcom

For a generic sequence of random variables Y7, ..., Yy and number g > 1, recall
the standard maximal inequality

g

< N max E|Y;|% (A.36)
1<i< 1<i<N

Since the number of pairs (i,n) in the maximum in (A.35) is at most 22, if we
2

apply Chebyshev’s inequality to (A.35) and use the condition E|517_;’|4+5 <1

from Assumption 1, then for each m > 1 we have

22m

(Var)* (A.37)

1<i<n
om-T<p<om

H”( max |E?T;f| > \/2m—1> <

/S 27m€/2'

Hence, we may insert this bound into (A.35) to conclude that

P(S, # ¥, i0.) < lim 22 me/2 =,

]‘)OO

which completes the proof. O

Appendix B: Proof of Theorem 2

Let z € RF denote a Gaussian random vector to be described in a moment, and
consider the triangle inequality

de(E(p{Tn(f)—ﬁn(f)}),E(p{T;’l(f)—ﬁn(f)}‘X)) < I, + II,, (B.1)
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where we define

Lo = dup (L(p{Tu(f) - m(f)}),ﬂ(z)) (B.2)

I, = de( L(p{T: 5n(f)}\X)). (B.3)

To handle the terms I,, and II,,, we will apply a central limit theorem for linear
spectral statistics established in [18], which relies on the following two conditions
when ¢, - ¢ >0 asn — oo:

(a). The elliptical model in Assumption 1 holds with the conditions on £? being
replaced by

2+¢
<1

~ )

&—p

E() =p, var (5’;‘_—;)) =T7+0(1) and E i

NG

(B.4)

for some constants constants 7 > 0 and € > 0 that do not depend on n.
(b). There is a distribution H such that H,, = H as n — oo, and A\1(XZ,,) < 1.

Under these conditions, Theorem 2.2 in [18] ensures there exists a Gaussian
distribution £(z) depending only on (f, H, ¢, 7) such that I, — 0 as n — oo.

To finish the proof, we must show II,, L. 0. This can be done using the men-
tioned central limit theorem, but some extra considerations are involved, due
to the fact that II,, is random. It is sufficient to show that for any subsequence
J C {1,2,...}, the limit II,, — 0 holds almost surely along a further subse-
quence of J. Since the bootstrap data are generated from an elliptical model
that is parameterized in terms of £((¢})?|X) and ¥, this amounts to verifying
that £((£5)?|X) and H,, satisfy analogues of (a) and (b) almost surely along a
subsequence of J.

To proceed, recall that Algorithm 1 is designed so that E((£})?|X) = p and
var((£5)%|X) = ¢2. Also, note that under Assumption 1, the parameter 2 =
var(£%) satisfies ¢2/p — 7. Consequently, Theorem 1 1mphes 3 /p=rT1+op(l),
and so there is a subsequence J’' C J along which the limit ¢2/p — 7 holds
almost surely. In other words, the limit

(&)*-p
var( 1\/5

) S (B.5)

holds almost surely along .J’. Moreover, since £((£7)?%|X) is a Gamma distribu-
tion with mean p and variance ¢2, Lemma E.4 implies there is a constant C' > 0
not depending on n such that the bound

(E(5r1) " et

holds almost surely. Therefore, the left side of (B.6) is bounded almost surely
along J'.

With regard to the empirical spectral distribution H,, associated with the
matrix ¥, it satisfies the limit H,, = H almost surely along a further subse-
quence J” C J', due to Theorem 1. In addition, Lemma A.5 ensures there is a

~2

7) (B.6)
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constant C' > 0 such that limsup,, ;. A1(3,) < C almost surely. Altogether, it
follows that £((£5)%|X) and H,, simultaneously satisfy analogues of (a) and (b)

almost surely along J”, which implies IL, 5o |

Appendix C: Proof of Theorem 3

To begin the proof, we need to introduce three auxiliary statistics defined by

o= _u(a)? (C.1)
0(32) - Lu(S,)?

oo B (C.2)
tr((X5)?) — £tr(25)?

_ tr(in)2

T2y (©9)

Also, we define 77 as the statistic obtained by applying the formula (3.13) for 7,
to the bootstrap data x7,...,x}. The primary task is to establish the following
four limits, which are established later in this appendix in Propositions 1 and 2.
Specifically, these results show that there exists a non-degenerate Gaussian ran-
dom variable ¢ and a constant a, such that as n — oo,

L(Fn—10) = L(0), (C.4)
L(F — 7] X) = L(0), (C.5)

L7y — ) = Lla), (C.6)
LEE—7]X) = L(a), (C.7)

where £(a) denotes the point mass distribution at a. (In the current section, we
sometimes use the notation for weak convergence in limits where convergence
in probability holds, because it will help to clarify how 7 — 7 can be analyzed
in an analogous manner to 7,, — 7,,.) Using Slutsky’s lemma, it follows from the
limits (C.4) and (C.6) that

LTy —1n) = L(C+a). (C.8)

Analogously, Slutsky’s lemma can be applied in a conditional manner to the
limits (C.5) and (C.7), yielding

L(7E = Fa|X) = L +a). (C.9)

Since the limiting distribution £(¢ + a) is continuous, Pélya’s theorem implies

sup [P(Fn — 1 < ) — P(FX — 7, < t{X)| S 0. (C.10)
teR
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Due to this uniform limit and the continuity of the distribution £(¢ 4 a), stan-

dard arguments can be used to show that the quantiles of L(7], — 7,|X) are

asymptotically equivalent to those of £(7,, —ry,). (For example, see the proof of

Lemma 10.4 in [31].) More precisely, if we note that the quantile estimate gy _,,

defined in Section 3.4 is the same as the (1 — a)-quantile of £(% (7} — 7,)|X),
P

then as n — oo we have the limit

P(L(Fn—1n) > Gia) = o (C.11)

This limit directly implies the first two statements (3.19) and (3.20) in Theo-
rem 3. Regarding the third statement (3.21), if H{Ln holds for all large n, then
replacing %, = diag(j\h...,j\p) with %, = I, does not affect the reasoning
leading up to (C.11), because this replacement does not affect the proofs of
Propositions 1 and 2 given later. Consequently, if Hp,, holds for all large n,
then we have P(%(?n -1 < E]L) — o as n — 0o, which completes the proof. [J
Proposition 1. Under Assumptions 1 and 2, the limits (C.4) and (C.5) hold
as n — 0o.

Proof. The proof is based on viewing #, as a nonlinear function of T,,(f), where
the components of f = (f1, f2) are taken to be fi(z) = z and fa(z) = z2. In
this case, the centering parameter 9, (f) defined by (3.10) reduces to

(8 = (Ltr(Sn), Ler(22) + Lx(20)?) (C.12)

np

as recorded in Lemma 2.16 of [49]. Consequently, by considering the function

2

In(21,72) = —— (C.13)

ZL’Q*CHQ?% ?
we have the key relation

T —Tn = p{gn(Tn(f)) — gn(ﬁn(f))}. (C.14)

*

We can also develop a corresponding relation for the bootstrap statistic 7, — 7.
Due to Lemma 2.16 in [49] and our choice of f, the definition of ¥, (f) be-
low (3.10) implies

_ (145 15 105
O, (f) = (Etr(En), Lr(S2) + n—ptr(Zn)Q) . (C.15)
Likewise, the bootstrap version of (C.14) is

=0 = p{gn(T(F) = ga(Ja(f)) }. (C.16)

We will proceed by applying the delta method to the relations (C.14) and
(C.16). For this purpose, note that the proof of Theorem 2 shows there exists a
Gaussian random vector z € R? such that as n — oo,

Lp{Ta(6) ~9.(0)}) = L(2) (C.a7)
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L(p{T1(F) = Du(£)}|X) S L(2). (C.18)

Also, to introduce some further notation, we refer to the jth moment of the
distribution H as

¢; = [YdH(t), (C.19)
and we use these moments to define the parameter
O(E) = (¢1, 2 + cd?). (C.20)

This parameter arises in the following limits as n — oo,
Do) > 9(F) and  D.(F) D O(F). (C.21)

To see why these limits hold, first note that by Assumption 2, there is a compact
interval containing support of H, for all large n, and by Lemma A.5, the same
statement holds almost surely for H,,. Moreover, Assumption 2 and Theorem 1

ensure the limits H,, = H and H,, g , and so it follows that the moments of
H,, converge to those of H, and the moments of H,, converge in probability to
those of H. Combining these facts with the formulas (C.12) and (C.15) yields
the limits (C.21).

In light of the relations (C.14) and (C.16), and the limits (C.21), we will
expand the function g, around ¥(f) and apply the delta method. This is justified
because the gradieglt Vg, has the following continuity property. Namely, if we

let g(x1,29) = ngilcz%’ let U be a sufficiently small open neighborhood of ¥(f)

in R?, and let {(z1,,72,)} be any sequence of points within & that converges
to ¥(f), then we have the limit

c 3 2
Vgn(@ime2a) = Vo) = (24260 -9)  (C22)

So, applying the delta method to the relations (C.14) and (C.16) and the weak
limits (C.17) and (C.18) gives

L(Fp —1rn) = L(Vg((F)) 2) (C.23)

L7 — o] X) = L(Vg(0(£)) 7). (C.24)

Now, it remains to show that the variance of the Gaussian random variable
Vg(9(f)) Tz is positive. Letting K denote the 2 x 2 covariance matrix of z, it is
shown below equation 2.10 in [18] that the entries of K are given by

K11 = 22 + o1 — 2)¢3,
K12 = 4C¢3 + 402¢1¢2 + 2C(T - 2)¢1 (C(Zﬁ + ¢2)
Koy = 8chy + 42 $3 + 162 P13 + 832 po + de(T — 2)(coT + d2)>.

Combining this with the formula for Vg(d(f)) in (C.22), a direct but lengthy
computation of the quadratic form Vg(9(f)) " K Vg(d(f)) yields

var (Vg(9(6))Tz) = 2555 (coto3 + 20301 + 263 — dprdnds ). (C.25)

2
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To see that the variance is positive, it suffices to check that 2¢?¢4+2¢3 —4¢1 P23

is non-negative. Rewriting this as 2(¢; 411/2 - 3/2)2 +4¢1¢a( 411/2 é/Q — ¢3), its
non-negativity follows from the observation that ¢3 < gbi/ 2 é/ ? is an instance
of the Cauchy-Schwarz inequality. O

Proposition 2. Under Assumptions 1 and 2, the limits (C.6) and (C.7) hold
as n — oo.

Proof. Here, we retain the definitions of f; and fs used in the proof of the
previous proposition. The difference 7,, — 7, can be written explicitly in terms
of T,,(f1), Tn(f2), and A,, (defined below (3.13)) as

N Tn(f1)2<3n _anTn(f1)2)
P — Py = - . (C.26)
(To(f2) — enTn(f1)*)(Th(f2) — An/p)

Furthermore, ﬁn can be decomposed as
Ap =R To(f1)? + RaTu(fo), (C.27)

where the random coefficients k1 and ko are defined by

1 122 2n—1) p>+2
R = Cnp[n+ oSl (”2 )Pt (C.28)
n n p(p+2) n?  p(p+2)
. 2(n—1) p? +¢2
Ko = ¢y no_ 1. C.29
? { n pp+2) (C.29)

The last few displays show that in order to determine the limit of 7,, — 7,
it suffices to determine the limit of the triple (T5,(f1),Tn(f2),52/p). For the
random variables T,,(f1) and T,,(f2), we can apply the limits (C.17) and (C.21)
as well the formula (C.20) to obtain

L(To(f1), Tu(f2)) = L(¢1, 62 + 7). (C.30)
In addition, the proof of the limit (3.7) in Theorem 1 shows that
L(1G) = L(7). (C.31)

Combining the previous two displays with the formulas (C.26)-(C.29), a direct
calculation leads to

L(Fn —7Tn) = L(a), (C.32)

where
= cd? (p2+(1—2)¢7)
#3 ’

which proves (C.6).
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Now we turn to the proof of (C.7). By analogy with the previous argument
that led to (C.32), it is enough to show the following two limits hold as n — oo,

LT (F1). Ty (F2)|X) = L1, 62 + c6?) (C.33)
L(LE2)7]X) = L(7), (C.34)

where (G2)* is obtained by applying the formula (2.2) to the bootstrap data
x3,...,x5. The first limit (C.33) is a consequence of two limits that were es-

tablished in the proof of Theorem 2, which are that II, % 0 and I (F) 5
(¢1, P2 + o).

Regarding the second limit (C.34), note that it is equivalent to showing that
for any subsequence J C {1,2,...}, there is a further subsequence J' C J such
that E(%(?ﬁ)ﬂX) = L(7) holds almost surely along J’. The latter statement
can be proven by analogy with the limit L(%@%) = L(7), which follows from the
proof of (3.7) in Theorem 1. To be more precise, this analogy can be justified as
follows: The proof of (3.7) only relies on Assumption 1 and two other conditions,
which are

M(E,) S1,  and (%tr(En)7 %tr(E%)) = (¢1, P2)- (C.35)

Consequently, it is enough to check that bootstrap counterparts of these con-
ditions hold almost surely along J'. First, the bootstrap counterpart of As-
sumption 1 was shown to hold almost surely along subsequences in the proof
of Theorem 2. Second, the bootstrap counterpart of A\;(X,) < 1 is implied
by Lemma A.5, which guarantees that there is a constant C' > 0 such that
lim sup,, _, /\1(2”) < C holds almost surely. Lastly, the bootstrap counterpart
of the limit (%tr(En), %tr(Efl)) — (¢1, ¢2) is handled by the fact that the mo-

ments of H,, converge in probability to the moments of H, which was shown in
the proof of Proposition 1. This completes the proof. O

Appendix D: Background results

Lemma D.1 ([18], Lemma A.1). Let & € R and uy € RP satisfy the conditions
in Assumption 1, and fiz any symmetric matriz M € RP*P. Then,

E(&1) 2 2 2
var(&2u, Mu;) = —_(tr(M)? + 2tr(M?)) — tr(M)?. D.1
(€] M) = S (M) 4 2r(M%) — ()% (D)
Lemma D.2. Let xq,...,X, satisfy the conditions in Assumption 1, and let

i,7,k,1 be four distinct indices in {1,...,n}. Then,

Tyt — g EED o o
B )Y = 3 (000 ) (2P () (D2)
(0 )20 x4 )?) = L ((2)? 4 2ur() 03)

p(p+2)
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E((x{ x;)?(x] x1)?) = tx(})% (D.4)
Proof. Since the observations are i.i.d. and centered, we have
E((x{ x;)?(x] x1)*) = (var(x{ x;))°

(COV(XzTXJ ) XTX]))2

P

(ZZE x”nx]rxmxjs))2 (D.5)

r=1s=1

S|

- (LX)
which establishes (D.4). The two other assertions can be shown using conditional
expectation. For the statement (D.2), we use Lemma D.1 to obtain

E((x{%j)") = E(E((x] x;x] x:)°[x;))

E(£) 1/2 1/2:\2 /2 1/212
mﬂf((tr(zn XX TZn )) —|—2tr(( n XX TEn )))

E(¢d
= 3 SLE((x] Bax;)?)

_ o (BED N m2y2 g
= 3<p(p+2)> (tr(2)* + 2tr(y,)).-

The argument for (D.3) is similar. O

Lemma D.3. Let u; € RP be a random vector that is uniformly distributed on

the unit sphere, and let M € RP*P be a non-random positive semidefinite matriz
with A (M) < 1. Then,

T 1 4 1

E‘ul Muy — 5tr(M)‘ < 3. (D.6)

~ P

Proof. Due to the orthogonal invariance of u;, we may work under the as-
sumption that M is diagonal, i.e. M = diag(A (M), ..., A\p(M)). Therefore, the
quantity Euf Mu; — %tr(M)|4 is the same as

> N DX (DN(M)N, D E(TT, (w2, - 1) (D7)

J1,J2:33,J4

Depending on the number of distinct indices among (41, j2, j3, j4), the following
bounds can be obtained via direct calculation

1 (4 distinct indices)
‘E(H?_l(ufﬁ—%))‘ < { L (3 distinct indices) (D.8)

L (1 or 2 distinct indices).

bS]

bS]

<
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Since the eigenvalues of M are non-negative with A;(M) < 1, and since the
numbers of terms in (D.7) involving k distinct indices is O(p*), the stated re-
sult (D.6) is proved. O

Appendix E: Discussion of examples in Section 3.1

This section provides detailed information related to examples of the random
variable &7 stated in Section 3.1. We give explicit parameterizations, and we
check that the distributions satisfy the conditions in Assumption 1. The only
three examples we do not individually cover are the Chi-Squared, Poisson, and
Negative-Binomial distributions, because they can be decomposed into sums of
independent random variables, and consequently, such examples are covered by
the following lemma.

Lemma E.1. Suppose &3 = :;:1 zfj for some independent random variables

211, .-, 21p Satisfying

% b E(z) =1, 1_13 b_yvar(2f;)=7+o0(1) and 1??§pE|Z1j|8+2s§pl+i
(E.1)

as n — oo, for some fixed constants T > 0 and € > 0 not depending on n. Then,
&2 satisfies the conditions in Assumption 1.

Proof. It is only necessary to show E| (fffE(ff))/\/ﬁng < 1. Using Rosenthal’s

inequality [22] to bound the L*+¢ norm of a sum of independent centered random
variables, we have

1

(]E]gf - E(ﬁf)lﬁa)i = <E| izfj - ]E(Z%j)|4+€> N
j=1

_1_ 1
S R o7 s (Bl BT

1

S VP +p'/* max (E|zy|3T) 5
1<j<p

ISERV/

which completes the proof. O

Beta distribution The Beta(a,b) distribution with parameters a,b > 0 has a
density function that is proportional to z¢~!(1 — x)*~1 for z € (0, 1).

Lemma E.2. If 3 > 0 is fived with respect to n and £ ~ (p+ 28)Beta(p/2, ),
then &2 satisfies the conditions in Assumption 1.
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48p
p+26+2’
and in particular we have var(£3)/p — 0 as p — co. Based on Equation (25.14)

n [21], the higher moments of &7 are

H ( __ 458 )
p+28+2j

Using the general relationship between central moments to ordinary moments

Proof. The mean and variance are given by E(¢2) = p and var(£3) =

6
]E|§1 p _ ;07132 )OI (£2)6- JE(&-QJ) (E.3)

7=0

2
it can be checked that that E\&Tzﬂﬁ is a rational function of S that converges
pointwise to 0 as p — oo. This implies the (4+¢)-moment condition in (3.2). O

Beta-Prime distribution. A random variable W is said to follow a Beta-
Prime(a, b) distribution with parameters a,b > 0 if it can be expressed as W =
%% with U ~ Beta(a, b).

Lemma E.3. If 7 >0 and £2 ~ Beta—Prime(w, Hp—j%), then &2 satis-
fies the conditions in Assumption 1.

Proof. For any positive integer k& < (1 + p + 27)/7, the random variable &7
satisfies the following moment formula [43, §5],

(1 j— 1
L+p+( 2 — )T
Since 2 < (1+p+27)/7, this gives ]E(é%) =pand E(&}) = p(p+7), which yield
2 2
var (%) = 7. Also, using the formula (E.3), it can be checked that E|51T;f’|6,
viewed as a function of 7, converges pointwise to a polynomial function of 7 as
p — 0o. This implies the (4 + ¢)-moment condition in (3.2). O

Gamma distribution. For «, 8 > 0, we parameterize the Gamma(c, ) distri-
bution so that its density function is proportional to %~ *e=#% when x € (0, 00).

Lemma E.4. If 7 > 0 and £ ~ Gamma(p/7,1/7), then £ satisfies the condi-

tions in Assumption 1.

Proof. The conditions E(£2) = p and var (%) = 7 follow directly from the

stated parameterization. Also, Theorem 2.3 in [8] gives

(El¢2 - p%)"° < C(y7p+7) (E5)

for an absolute constant C' > 0, which implies the (4 + ¢)-moment condition
n (3.2). O
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Log-Normal distribution. A positive random variable Y is said to follow a
Log-Normal(u, 02) distribution if log(Y) ~ N(u, 0?).

Lemma E.5. If 7> 0 and £} ~ Log—Normal(log(p)—%log (1+%),1og (1—}—%)),

then &2 satisfies the conditions in Assumption 1.

Proof. Equations (14.8a)-(14.8b) in [20] show that if Y ~ Log-Normal(u,o?),
then E(Y) = e#t9°/2 and var(Y) = 21+ (6‘72 — 1). Consequently, the stated
choice of £2 satisfies E(¢2) = p and var(¢2)/p = 7. Equation (14.8¢) in [20] shows
that the central 6th moment of Y is

6

E|Y —E(Y)| = obut307 Z(_l)j (?)602(6—3')(5—3')/27
§=0

§f*l’|6
VP
whose coefficients are bounded as p — oo. This ensures that &; satisfies the

(4 + €)-moment condition in (3.2).

and a direct calculation reveals that E| is a polynomial function of 7
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