
ABSTRACT

Purpose: The objective of this article is to review fun-
damental differences between model-dependent and mod-
el-free approaches to data analysis, and to explore the 
potential advantages of more open-ended machine learn-
ing approaches in recovering complex behavioral patterns 
from precision livestock farming data streams.
Sources: Case studies using simulated data were de-

signed to mimic a real-world scenario. Data from a feeding 
trial in an organic dairy were reanalyzed using the Live-
stock Informatics Toolkit.
Synthesis: Case studies using simulated data are used 

to demonstrate how incomplete information about the 
management system can prohibit the development of an 
appropriate model for information compression, allow-
ing aggregation bias to mask important behavioral indi-
cators of compromised welfare. These hidden behavioral 
patterns are then recovered using unsupervised machine 
learning approaches that are able to leverage the intrinsic 
behavioral codependencies of group-housed animals. This 
simulated case study is then extended to demonstrate how 
model-based approaches can also overlook causes of com-
promised welfare when the link between environmental 
factors and behavioral responses is strong but nonlinear, 
whereas model-free information-theoretic tools can easily 
recover and characterize such complex dynamics. Finally, 
in an empirical case study with data from a commercial 
organic dairy, the Livestock Informatics Toolkit is used to 
recover from milk parlor metadata complex associations 
between herd age structure, levels of milk production, and 
order of milking.

Conclusions and Applications: Model-free machine 
learning algorithms provide a more open-ended approach 
to knowledge discovery that require fewer up-front as-
sumptions about the management system. This can yield 
more comprehensive insights into large precision livestock 
farming data sets now commonly encountered in on-farm 
research trials and in applied data auditing scenarios.

Key words: unsupervised machine learning, entropy, be-
havior, welfare, precision livestock farming

INTRODUCTION
Behavioral data has conventionally been collected using 

highly trained human observers to encode behaviors of in-
terest predefined by detailed ethograms (Dawkins, 2007). 
Directly involving research personal in the incoming data 
stream has traditionally served to nurture greater famil-
iarity with the study environment generating behavioral 
responses, which can aid in the development and interpre-
tation of downstream statistical models, but also places 
practical limits on the amount of data that can be gener-
ated. In recent years precision livestock farming (PLF) 
technologies have become more widely available (Wathes 
et al., 2008; Banhazi et al., 2012; Stygar et al., 2021). In 
experimental settings these tools enable animal scientists 
to collect behavioral data on larger numbers of animals 
over longer time periods at far greater sampling frequen-
cies. With wider industry adoption, these technologies also 
create new opportunities to analyze animal behaviors in 
working farm behaviors, not only for scientific endeavors 
but also for more practical applications such as auditing 
and consulting. Data sets of this scale and granularity of-
ten contain a range of more complex stochastic features, 
such as temporal nonstationarity (seasonal and circadian 
rhythms), autocorrelation, heterogeneous variance struc-
tures, nonindependence between experimental units, and 
more, that can be difficult to accommodate in convention-
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al statistical models, particularly when data are collected 
remotely and cannot be anticipated a priori, which can 
in turn lead to spurious inferences (Pinheiro and Bates, 
2000).

In data science, there is the formal concept of “no free 
lunch,” meaning that no single algorithm can be expected 
to perform optimally in all scenarios or applications (Wol-
pert and Macready, 1997). Unsupervised machine learning 
(UML), however, may provide animal scientists an alter-
native approach to extracting behavioral patterns from 
PLF data streams that is better suited to large and com-
plexly structured data sets (Valletta et al., 2017). Where-
as conventional statistical analyses, which were originally 
developed for application in controlled experimental tri-
als, excel at answering targeted hypotheses, UML algo-
rithms are designed to systematically sift through data 
sets to identify and characterize any and all nonrandom 
patterns until only noise remains, offering a more flexible 
and open-ended approach to knowledge discovery (Kirby, 
2001; Fushing et al., 2018). The purpose of this article will 
be to review, through a series of case studies, how UML 
algorithms differ from the standard statistical approaches, 
not only in their technical implementation and efficacy 
but also in their fundamental analytical philosophies. Us-
ing simplified simulated data, we will first introduce the 
fundamental concepts of information compression and loss 
to functionally distinguish model-dependent from model-
free analytical approaches. Using this framework, we will 
then demonstrate how model-free UML tools may be used 
to recover and visualize unexpected behavioral patterns 
in PLF data streams that might be missed by conven-
tional model-based analyses when the environmental fac-
tors driving such responses are not recorded. We will then 
expand upon this simulation to explore how model-free 
information-theoretic approaches can then be used to 
contrast the patterns recovered by UML approaches to 
recover the complex links between behavioral responses 
and the management factors that elicit them, across mul-
tiple data sets. Finally, through an empirical case study 
with herd records from a commercial dairy, we will dem-
onstrate how these 2 model-free approaches may be seam-
lessly integrated, using open-source software available in R 
to analyze patterns in milk parlor metadata with minimal 
assumptions about the behavioral patterns that may be 
lurking therein.

SIMULATION CASE STUDY: DATA 
COMPRESSION AND INFORMATION LOSS
What is the difference between data and information? 

Although these 2 terms are often used interchangeably 
in biology, entire subfields of data science are dedicated 
to solving this riddle (Kirby, 2001; MacKay, 2003). Al-
though mathematicians have developed formal definitions 
for these terms (Shannon, 1948; MacKay, 2003), we will 
attempt to illustrate the conceptual differences with a 
simplified simulated example.

Suppose a researcher wants to analyze the gait dynamics 
of a dairy cow using a 120-Hz leg-mounted accelerometer. 
In developing their data collection protocol, they surmise 
that if 1 accelerometer would be good, then 2 acceler-
ometers must be even better. For their pilot study, they 
attach 2 sensors onto the same leg of a well-behaved cow 
and record her walking normally down the alleyway in a 
straight line. If both sensors were calibrated and synchro-
nized properly, then extracting recordings of the vertical 
axis of acceleration from either sensor might produce a 
data set that looks something like the plot in Figure 1A. 
From this graph, can we learn anything about this cow 
from the blue sensor that we could not have inferred from 
the red sensor, or vice versa? In this simplified example, 
beneath the simulated random measurement error attrib-
uted to each sensor, the 2 signals are virtually identical. 
Thus, even though this researcher has doubled the number 
of datapoints recorded by adding a second sensor, they 
have not really collected any additional information about 
the gait dynamics of this cow.

As this example has hopefully highlighted, data can be 
considered as more akin to a physical resource—something 
that can be measured in bytes of memory space. Informa-
tion, however, should be regarded as a more nebulous unit 
of measure that represents how much can be learned from 
a data set. In experimental settings, collecting measure-
ments is typically costly, so sampling strategies are often 
developed to minimize redundancy between data points, 
such that data and information become functionally 
equivalent terms (Pinheiro and Bates, 2000). With many 
commercially marketed sensor technologies, however, the 
sampling frequency that researchers may use to generate 
data sets is often dictated to them by the hardware itself, 
which can result in a considerable amount of redundancy 
between datapoints (Kirby, 2001; McVey et al., 2020). 
With such data sets, information compression strategies 
are often implemented in an effort to reduce the size of 
a data set without losing any potentially useful informa-
tion about the system. Returning to the previous example, 
suppose the researcher realizes they have not requisitioned 
enough hard drives to store data from both accelerom-
eters, so they decide to record only the average output of 
the 2 sensors at each time point, as illustrated in Figure 
1B. This simple information compression step reduces the 
size of their data set by half, but no details about the sig-
nal have been sacrificed.

Now suppose that the researcher returns to the dairy 
to confirm that this protocol will also work on heifers. 
In the struggle that ensues to attach the accelerometers, 
one sensor is accidentally strapped on upside down. As a 
result, the axes of the 2 signals will become inverted, as 
illustrated in Figure 1C. Subsequently, if the previously 
validated rolling average filter were applied to this new 
data set, the signals would here cancel out, leaving only 
the measurement noise, as shown in Figure 1D. Although 
this compression error could be remedied quite easily in 
this simplified simulation, this example still serves to il-
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lustrate just how easily biologically relevant patterns can 
be lost when the assumptions employed in an informa-
tion compression strategy do not match the realities of the 
data to which it is applied.

SIMULATION CASE STUDY: COMPARING 
MODEL-DEPENDENT AND MODEL-

FREE APPROACHES TO INFORMATION 
COMPRESSION

Animal scientists are seldom forced to work with raw ac-
celerometer data, as in the previous simulation. Therefore, 
to further explore the fundamental differences between 
model-dependent and model-free approaches to informa-
tion compression and knowledge discovery, we will next 
consider a more practical example. Suppose a farmer has a 
group of 100 cows that are currently overstocked at 200% 
stocking density in a freestall barn. Concerned they might 
fail their upcoming welfare audit, the farmer contracts a 
consultant to analyze data from a commercially marketed 
leg-mounted accelerometer system that the farm uses in 
its estrus detection program. This system provides dai-

ly estimates of the proportion of time that each animal 
spends lying down. The farmer would like to know wheth-
er there is any clear evidence of animals with compromised 
welfare in 60 d of archival records. Through structured 
random sampling from Gaussian distributions, a data set 
that might be realized from such a scenario has been simu-
lated. Full details and reproducible code used to generate 
this simulation are provided in Supplemental Materials 
(https:​/​/​github​.com/​cgmcvey/​ARPAS2023), but readers 
are encouraged to first consider how the analysis of this 
data set should be approached without any prior informa-
tion about its underlying structure.

Suppose the consultant hired is an animal scientist, who, 
although not necessarily a specialist in welfare and be-
havior, is fully trained in the scientific method and wants 
to answer this farmer’s question with full statistical rigor 
using a mixed-effect linear model. They begin by imple-
menting standard exploratory data analysis techniques 
and produce the plot shown in Figure 2, wherein each 
dot represents the proportion of time that a given cow is 
recorded lying down on a given observation day. A LOESS 
(LOcally Estimated Scatterplot Smoothing) curve is also 

Figure 1. Human gait data collected from the forward axis of a 120-Hz triaxial accelerometer has been modified to help visualize 
the difference between data and information. Upper left (A): The data collection protocol is implemented flawlessly, such that the 
red and blue sensors produce nearly identical signals. Lower left (B): Averaging their results at each time point reduces the size of 
the data set by half with no appreciable loss of detail in the signal. Upper right (C): One sensor is strapped on upside down so that 
the signals become inverted. Lower right (D): Assumptions employed by this simple information compression algorithm are now 
violated. In reducing the data set by half, all information about gait dynamics is lost, the signals having canceled out to leave only 
measurement noise.

https://github.com/cgmcvey/ARPAS2023
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added to this scatterplot, to reflect the mean lying time 
for the entire herd at each time point. From this visual-
ization, they glean that a considerable amount of varia-
tion between cows exists, and that there certainly are ani-
mals on any given day that are not spending a sufficient 
amount of time lying down (Tucker et al., 2021). There is 
not, however, any clear evidence in this graph that would 
indicate that lying time patterns are changing at the herd 
level over time. Quite the opposite, actually; the herd is 
incredibly stable in its average lying time over the obser-
vation interval. Based on this visualization, the consultant 
constructs a mixed-effect model, with cow included as a 
random effect to account for repeated measures to avoid 
pseudo-replication, as shown in Equation [1]:

	 YLT = β1Xheifer + β2Xday + Zcow	 [1]

where

•	 YLT = proportion of day spent lying down by a given 
cow on a given day;

•	 β1Xheifer = binary categorical effect (heifer or not 
heifer);

•	 β2Xday = linear effect for day of observation;
•	 Zcow = random effect for consistent individual differ-

ences between cows.

Because the data appear stationary, they add day of ob-
servation as a simple continuous fixed effect. Finally, based 
on their preexisting knowledge of factors that may affect 

lying time, they add a categorical fixed effect to distin-
guish between heifers and cows within the herd. The re-
sults of this model are provided in full in Supplemental 
Materials (https:​/​/​github​.com/​cgmcvey/​ARPAS2023). 
As anticipated from the exploratory data analysis visual-
izations, the fixed effect for day is neither biologically nor 
statistically significant (B̂2 = −0.0001, SE = 8.53e −5, T 
= −1.41). However, the consultant is a bit surprised to 
find that the difference in average lying time between heif-
ers and cows is also neither statistically or biologically 
significant (B̂1 = −0.0026, SE = 3.13e −3, T = 0.83). 
Thus, the consultant determines that the expected pro-
portion of time spent lying for any animal within this herd 
for any given day within the observation window is 40% 
(SE = 0.34%). In appraising the variance estimates for the 
random effects in this model, the consultant also sees that 
between-cow variance (σ̂cow = 2.67e −5) is considerably 
smaller than the within-cow error term (σ̂error  = 1.31e 
−2), from which they conclude that there is also no evi-
dence of consistent individual differences in lying time 
within this herd, and so these results also do not indicate 
that any individuals are consistently above or below the 
expected lying time for this herd. Subsequently, they 
might confirm that, although cows might not get to lie 
down an adequate amount of time every day, and the aver-
age lying time could certainly be improved, there is also 
no evidence of individual cows in this herd that are consis-
tently critically under-rested.

Now suppose that the milk buyer is dubious of this 
result, so they send the data to a new consultant who 

Figure 2. Exploratory data analysis visualization of simulated data set. Each dot represents the proportion of time an individual 
cow is recorded as lying down on a specific day. The red LOESS (LOcally Estimated Scatterplot Smoothing) fit line represents the 
average amount of lying time across the herd for a given day.

https://github.com/cgmcvey/ARPAS2023
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specializes in welfare audits. They ask the farmer some 
additional questions about this herd before constructing 
their own model and learn that the start of grazing season 
fell somewhere in the middle of this observation window, 
at which point cows had free access to pasture from their 
freestall barn. The consultant, suspecting that heifers and 
cows might react differently to this pasture access, devel-
ops a similar model to the first consultant, except that in 
this set of linear equations, an interaction term is included 
to allow the temporal dynamics to differ between these 
subgroups, as shown in Equation [2]:

	 YLT = β1Xheifer + β2Xday + β3Xheifer × Xday + Zcow	 [2]

where

•	 YLT = proportion of day spent lying down by a given 
cow on a given day;

•	 β1Xheifer = binary categorical effect (heifer or not 
heifer);

•	 β2Xday = linear effect for day of observation;
•	 β3Xheifer × Xday = interaction effect between linear ef-

fect for day of observation and categorical effect for 
heifer; and

•	 Zcow = random effect for consistent individual differ-
ences between cows.

With this small modification to the fixed-effects matrix, 
this model now tells an entirely different story. The dis-
crete effect for parity, the linear term for day, and the in-

teraction effect all now have a biologically and statistically 
significant influence on expected lying time. In visualizing 
this dynamic in Figure 3, the consultant can now clearly 
see that, during the first half of the observation interval, 
the mature cows are monopolizing the freestall spaces, 
forcing the heifers to stand; however, once the grazing sea-
son starts, the cows leave their freestalls to go graze, and 
the foot-weary heifers remain in the freestalls.

In the preceding analyses it is important to distinguish 
between linear models and statistical inferences as 2 com-
plementary but distinct steps. A linear model is ultimately 
just a way to produce estimates of mean and variance that 
are conditional on additional variables. Further probabi-
listic assumptions can be made to draw statistical infer-
ences about these estimates, but they typically are not 
employed in the estimation step itself. In other words, 
linear models are just a means of generating summary 
statistics. And all summary statistics are a form of infor-
mation compression (Agresti, 2013). Thus, we can once 
again see in this example of model-dependent information 
compression, when the biological system that generates a 
data set is well understood, this prior knowledge can be 
infused into an appropriate model to efficiently compress 
the information contained in such records. However, if we 
have an incomplete understanding of the system that gives 
rise to the behavioral responses, a linear model can be-
come an inefficient means of information compression that 
hemorrhages information, potentially causing important 
patterns to go overlooked.

Figure 3. Visualization of the temporal complexity hidden within this data set. Due to the overstocking in this pen, a strong negative 
correlation is found between subgroups, as cows must compensate for the limited number of freestall spaces. When this physical 
limitation is removed with the reintroduction of pasture access, this dynamic becomes inverted. If a linear model is not structured to 
anticipate this inversion, the symmetric nature of this data set will cause this pattern to be wholly overlooked.
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In the preceding example, the simulated behavioral re-
sponse was intended to be a bit tricky to capture, but it 
was still fully describable by explanatory variables—date 
of observation and parity—available to the consultants. 
But what if this same mechanism driving inversions in 
lying patterns had been driven by more complex factors? 
What if, instead of a single persistent shift in lying pat-
terns after pasture access was granted, the desirability of 
the freestalls had been influenced by more transient envi-
ronmental factors such as weather or bedding cleanliness? 
Alternatively, what if an animal’s ability to monopolize 
these freestall spaces had not been determined by a simple 
trait such as parity? Resource holding potential is known 
to be influenced by a range of factors, including size, se-
niority, energy balance, health status, innate aggressive-
ness, and more—many of which might not be directly 
measured in standard production systems (Schein and 
Fohrman, 1955; Hurd, 2006; Šárová et al., 2013; Hubbard 
et al., 2021). Clever model parameterization may still suc-
ceed in capturing any one of these patterns, but, as such 
complexities begin to compound within a system, it can 
become overwhelming to account for all such contingencies 
within a single model. Subsequently, the farther we move 
from controlled experimental contexts toward the chaos 
and complexity of commercial farm environments, the 
more fundamentally challenging it becomes to use model-
based approaches for information compression to extract 
ethological insights from PLF data streams.

Looking beyond the model-dependent tools that domi-
nate conventional experimental statistics, modern ma-
chine learning approaches may provide a means to over-
come such gaps in background knowledge by more fully 
leveraging the power of modern computing (Valletta et al., 
2017). Such algorithms are divisible into 2 general classes 
(Kirby, 2001; James et al., 2013; Valletta et al., 2017). In 
supervised machine learning, the user is required to dis-
tinguish between explanatory and response variables, but 
the model that relates these 2 sets of variables is inferred, 
by varying degrees, from the data itself. Subsequently, this 
framework lends itself to optimizing the predictive power 
of a model but may still overlook important patterns in 
a data set if the factors driving heterogeneity (systematic 
nonrandomness) in the response variables are not mea-
sured and included among the candidate predictor vari-
ables. Unsupervised machine learning (UML) algorithms, 
by contrast, employ a more open-ended approach to infor-
mation compression. Such algorithms do not distinguish 
between explanatory and response variables, but seek only 
to progressively extract and visualize the most striking 
nonrandom features of a data set until only noise remains.

Several algorithmic approaches exist to explore the la-
tent structures (high-dimensional geometry) of large data 
sets via UML. Neural networks are arguably the most rig-
orous of such techniques (Goodfellow et al., 2016). Such 
algorithms work by breaking down large and complex 
biological phenomena into progressively smaller pieces by 
passing large data sets through layers of neurons connect-

ed by a network architecture. This ground-up approach to 
learning the key features of a data set, although incredibly 
powerful, is also incredibly data hungry, with thousands 
of data points typically required to train deep learning 
neural architectures. Although unsupervised neural net-
works may not be as data hungry as their supervised 
cousins, smaller sample sizes still impose practical limits 
on the depth of network that may be trained to a data 
set without risking overfitting. Shallow network architec-
tures, however, can limit the ability of such networks to 
recover complex (nonlinear) patterns within a data set, 
with the simplest one-layer networks being able to recover 
only linear relationships. Future advancements in trans-
fer learning techniques, where the most basic layers of a 
neural architecture can be borrowed from larger reference 
databases, may greatly improve the efficiency with which 
such networks may be trained (Arac et al., 2019; Mathis 
and Mathis, 2020; Andersen et al., 2021), but for many 
behavioral applications where data may only be available 
from a single farm or even a single group of animals, less 
data-hungry algorithms may be preferable.

Spectral embedding approaches offer a method of in-
formation compression that is suitable for many “wide” 
problems, where the number of variables in a data set is 
large relative to the number of observational units (Kirby, 
2001). Principal component analysis is the simplest ex-
ample of this class of algorithms, but more modern embed-
ding approaches are better suited to the complex nonlinear 
geometric features that can often be found in sensor data. 
In previous research, however, we have demonstrated that 
such algorithms are liable to produce embedding artifacts 
when the space of possible behaviors that may be demon-
strated by animals are severely constrained by factors such 
as spatial restrictions intrinsic to the housing systems or 
temporal constraints imposed by the management sched-
ule (McVey et al., 2020). For data sets subject to such 
dynamics, this then leaves clustering algorithms.

Several algorithmic strategies may be employed to com-
press the complex geometric features of high dimensional 
data sets into discrete clusters (Valletta et al., 2017; Ad-
amczyk et al., 2017; Rufener et al., 2018; Xu et al., 2020; 
Sibanda et al., 2020; Hou et al., 2020; Clouard et al., 2022; 
Franceschini et al., 2022). K-means clustering is arguably 
the simplest clustering algorithm to implement, and sub-
sequently has seen some adoption in analyses of livestock 
data. Although no overt model is stated in this approach, 
the users still must specify a priori the appropriate num-
ber of clusters needed to represent the latent structures 
in the data—a metaparameter choice that may not be 
immediately obvious in all applications. Neural networks, 
such as autoencoders, may be used to create unsupervised 
clusters and can be parameterized to learn cluster num-
bers from the data itself but, again, require larger sample 
sizes to do so. For smaller data sets, hierarchical cluster-
ing (HC) algorithms may provide a more open-ended ap-
proach to developing an optimal discrete encoding of such 
high-dimensional patterns.
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As its name implies, HC is an intuitive analytical frame-
work that progressively groups data through a series of 
sequential agglomerative steps (James et al., 2013). To 
illustrate how this algorithm works, suppose you go to the 
feedstore and pick up a pack of toy cows, each of a dif-
ferent breed. You line them up in front of a toddler and 
ask which 2 cows look the most alike. They point to the 
Guernsey and the Holstein, so you pull them forward and 
stand them together. You ask this question again, and 
they point to the Jersey and the Brown Swiss, so you pull 
these forward and stand them together. You ask again, 
and the Angus and Herford cows are paired together. You 
ask again, and 2 groups of dairy cows are pushed together. 
And finally, if you still command said toddler’s attention, 
you end up, through one final pairing, with all your cows 
in one pile. If you kept track of all these pairings, you 
might produce a visual summary of this decision-making 
process, as presented in Figure 4. This schematic, properly 
called a dendrogram, provides a succinct 2-dimensional 
representation of how a fairly large number of phenotypic 
features are distributed within your plastic herd.

Hierarchical clustering algorithms seek to mimic this in-
tuitive agglomerative process using objective mathemati-
cal constructs. To demonstrate how this might work, let 
us return to our previous example of the farmer with over-
stocked dairy cows. As before, our larger mature cows will 
monopolize the freestalls when they are not on pasture. 
In this example, however, we will increase the complex-
ity of this analytical problem by now supposing that the 

animals always had access to pasture, and that rain events 
were the environmental factor driving inversions in lying 
times—inversions that will now be randomly scattered 
throughout the observation window. The first step in hi-
erarchically clustering this data set is to compute a dis-
similarity matrix, which is a square symmetric matrix con-
taining quantitative estimates of the dissimilarity between 
the data vectors for each pair of observational units in the 
corresponding row and column indices. To cluster cows 
together with similar lying patterns, we will first calculate 
a dissimilarity matrix using the Euclidean distance or L2 
norm (Equation [3]), which here is just the squared differ-
ences in observed lying times between a given pair of cows 
summed over all observation days. Similarly, to cluster 
together days wherein the herd demonstrated similar ly-
ing patterns in response to environmental factors, we will 
calculate the Euclidean distance (Equation [3]) between 
each pair of observation days as the sum of squared dif-
ferences in lying time over all animals in the herd. Using 
these pairwise dissimilarity values, a ground-up agglom-
eration algorithm can then be applied. Here we will use 
Ward’s (2-dimensional) linkage method, wherein clusters 
are merged to produce the largest increase in between-
group variance at each agglomerative step:

	 d � � � � � �p q p q p q, ,( ) = − = −( )
=
∑2

2

1
i i

i

k
	 [3]

Figure 4. Through sequential agglomerative steps, breeds are progressively paired together based on their relative similarity. The 
resulting dendrogram provides a 2-dimensional visualization of how these breeds are distributed within a much higher-dimensional 
space of phenotypic traits.
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where

•	 �p = data vector for observational unit a (animal, 
day, etc.) with i = 1, . . ., k recorded variables;

•	 �q = data vector for observational unit b (animal, day, 
etc.) with i = 1, . . ., k recorded variables.

To visualize the results of both clustering routines simul-
taneously, a heatmap can be used to directly visualize this 
simulated data matrix. Here each row will correspond to 
a cow, each column will correspond to an observation day, 
and each cell will be colored to represent the proportion 
of time that a given cow spends lying down on a given 
day. With rain events scattered randomly throughout the 
observation window and cow records provided in no par-
ticular order, we see, in visualizing the raw data matrix 
as in Figure 5A, that the inversions in lying patterns are 
completely obscured. The dendrograms produced by clus-
tering cows over days and also days over all cows can 
be used to reorder the rows and columns indices of the 
raw data matrix so that cows and observation days with 
similar temporal patterns in lying times are grouped to-
gether on the row and column axis, respectively. Visual-
izing these results again, using a heatmap as in Figure 

5B, we can now see that this clustering algorithm has 
captured 2 distinct groups of cows and 2 distinct groups 
of observation days, and so the inversion in lying patterns 
within the data are now quite visually striking. Thus, even 
though this HC algorithm was never provided information 
on the factors driving this behavioral pattern (cow parity 
and weather records), it has still succeeded in recovering 
the social dynamics hiding within this lying time data. 
Subsequently, even if no other farm records were made 
available, a consultant would still be able to identify that 
overstocking is compromising the welfare of this herd, us-
ing this model-free approach to information compression 
and knowledge discovery.

SIMULATION CASE STUDY: COMPARING 
MODEL-DEPENDENT AND MODEL-FREE 

APPROACHES TO IDENTIFYING  
BIVARIATE ASSOCIATIONS

The preceding example illustrates that, by leveraging 
intrinsic codependencies in the behavioral responses of 
socially housed animals, model-free machine learning ap-
proaches can recover complex behavioral patterns from 

Figure 5. Heatmap visualization of the lying time data matrix. Cows are arranged on the row axis, observation days are arranged 
on the column axis, and the color of each cell represents the proportion of time that a given cow is recorded as lying down on a 
given day. In 5A (left) no clear patterns in lying time are visible, as the weather events driving inversions in lying time are distributed 
randomly over the observation window and cow records are provided in no systematic order. In 5B (right) results of hierarchically 
clustering cows over days and days over cows are used to rearrange the rows and columns of the data matrix, respectively, making 
it easy to visualize the clear inversions in lying dynamics within this herd even without having any data on the factors driving this 
dynamic.



McVey et al.: Unsupervised machine learning in livestock behavior 107

sensor data absent any assumptions of the causative fac-
tors. In practice, however, once such a pattern is detected, 
a consultant or researcher would typically want to try to 
pin down the variables eliciting such reactions. In the pre-
ceding simulation, the mechanism linking lying time, age, 
and weather was fairly simple, and so, armed with the 
insights from the UML analyses, several straightforward 
linear methods might be employed to probe for the caus-
ative variables among farm records. But what if the link 
between environmental variables and the behavioral re-
sponses elicited were more complex? We have already seen 
in the previous example that model-based methods can 
overlook significant bivariate associations when the struc-
ture of the assumed model does not match the dynamics 
of the system, so let us now consider how model-free ap-
proaches might be extended to characterize complex be-
havioral patterns not only within but also across data sets.

Several supervised machine learning approaches are 
specifically designed to probe for significant associations 
among large sets of candidate predictor variables (James 
et al., 2013; Valletta et al., 2017). With LASSO regres-
sion, any nonlinear dynamics between candidate predic-
tors and the response must be explicitly coded, whereas 
neural networks and regression trees can infer a range of 
nonlinear dynamics when properly parameterized. For all 
these methods, however, 2 potential drawbacks should 
be considered for behavioral applications. First, because 
the bias-variance tradeoffs of such models must be tuned 
through cross-validation to avoid overfitting and spurious 
associations, the sample sizes required by these techniques 
to screen large numbers of candidate predictors are of-
ten quite large (James et al., 2013). Even when sufficient 
sample sizes are available, such techniques inherently pri-
oritize prediction over intuition. Although variable impor-
tance estimates may provide some insights into the key 
drivers of a behavioral response, it can be difficult, using 
these approaches, to characterize the dynamics between 
predictor and response variables.

For applications where intuition is more important than 
prediction, information-theoretic approaches may provide 
a model-free approach to both identifying and character-
izing complex bivariate associations between data sets, 
which naturally compliments UML clustering techniques. 
Information entropy (H), as calculated using Equation [4], 
is an estimator designed to quantify the relative uncer-
tainty in a categorical response variable (Shannon, 1948; 
MacKay, 2003). The discrete values that may be record-
ed for such a variable are often called the “vocabulary” 
or “dictionary,” and are here indexed as k = 1, . . ., K, 
wherein K is the total number of discrete levels. For ap-
plications in animal behavior, however, this dictionary is 
typically just the ethogram used. Although logarithmic 
terms are not often known for their interpretability, here 
they confer several convenient algebraic properties to en-
tropy estimates, making this estimator intuitive as a rela-
tive measure:
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where

•	 P(X = k) = proportion of observations recorded as a 
given discrete value (k);

•	 K = total number of discrete values that variable X 
may assume.

Suppose a data set were collected wherein each observa-
tional unit is coded with 1 of 2 mutually exclusive behav-
iors; for example, lying or not lying. If both behaviors are 
observed at equivalent frequencies, and we are provided 
no additional information than the distribution of this dis-
crete variable, could we make any type of informed guess 
about what behavior we might see if we selected an obser-
vation at random from this data? Because no behavior is 
no more likely to be observed than another, we would be 
completely uncertain and, subsequently, would compute a 
maximum theoretical entropy of log2(2) = 1. Alternatively, 
if some behavioral mechanism caused this probability to 
shift toward or away from 1 of these 2 behaviors, then 
we might be able to venture a guess at what behavior we 
might expect to see if we picked an observation at ran-
dom; our uncertainty would decrease and so too would the 
corresponding entropy estimate. Taken to the extreme, if 
only 1 behavior were ever observed, then we could guess 
the encoded value of any observation in our data set with 
complete certainty, and so the corresponding entropy es-
timate would drop to 0. Figure 6 demonstrates how the 
entropy estimate of a binary variable changes with the 
symmetry of the distribution of the observed binary en-
coding. In calculating such entropy values, the resulting 
estimates are contingent only upon the assumptions used 
to develop the discretization scheme. No conditional mean 
or any other model need be assumed, as with a standard 
variance estimator used in conventional statistical infer-
ence frameworks for linear models.

This model-free framework can subsequently be extend-
ed to a multivariate estimator with 2 or more discrete 
variables. In the bivariate case, the distribution of one 
variable is compared across each encoded level of the other 
to decompose, as in Equation [4], the total entropy in 
the joint encoding into 3 terms: the conditional entropy 
unique to the first variable, the conditional entropy unique 
to the second variable, and the mutual information that is 
redundant between the 2 encodings (MacKay, 2003). This 
mutual information estimate, in turn, reflects how much 
information we learn about one encoded variable if we 
know the value of the other, and subsequently can be used 
to reflect the strength of a bivariate association between 2 
sets of encoded data regardless of the underlying dynamic 
(linear, quadratic, exponential, etc.):
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	 H(X, Y) = H(X|Y) + H(Y|X) + I(X, Y),	 [5]

where

•	 H(X, Y) = total entropy of joint encoding of discrete 
variables X and Y;

•	 H(X|Y) = information about encoding X that could 
not be gleaned from known value of Y;

•	 H(Y|X) = information about encoding Y that could 
not be gleaned from known value of X;

•	 I(X, Y) = information that is redundant between 
encodings X and Y.

To demonstrate the efficacy of an information-theoretic 
framework for identifying complex bivariate associations 
over more conventional model-based approaches, let us 
return to the previous consulting example. Suppose our 
farmer with the overstocked cows, now fully aware of the 
welfare issues this management choice has created, re-
duces their stocking rate to a 1:1 ratio and continues to 
monitor the lying time of the animals to provide proof 
to the milk buyer that the issue has been resolved. Af-
ter several months at this lower stocking rate, the farmer 
reviews the data and is dismayed to find that there are 
still days where animals have inadequate lying times. To 
solve this new problem, the farmer hires yet another data 
consultant.

Suppose that this new data set was collected in the sum-
mer and so, naturally, this consultant includes temper-

ature-humidity index (THI) as one of many candidate 
variables to consider as a potential source of the continued 
welfare concerns for this herd (Tucker et al., 2021). Using 
stochastic sampling techniques, the full details of which 
are provided in Supplemental Materials (https:​/​/​github​
.com/​cgmcvey/​ARPAS2023), we have simulated a fairly 
straightforward but nonlinear dynamic between these 2 
variables. On days where the observed THI values are low, 
animals are not heat stressed and so spend the majority of 
their day out on pasture, grazing. As the THI rises, cows 
become heat stressed for progressively larger proportions 
of the day, resulting in a gradual increase in the propor-
tion of each day that cows spend lying down in the shade 
of their freestall barn. Above a certain high THI thresh-
old, however, cows struggle to thermoregulate when lying 
down, causing them to stand for extended periods of time. 
When lying time is plotted against THI, as in Figure 7A, 
we can see that there is a clear nonrandom pattern in 
this data that is perhaps best characterized by a thresh-
old model—a dynamic that is commonly found when a 
single behavioral response is subject to the influence of 
competing underlying behavioral response mechanisms. If 
a simple linear effect were used to probe for a significant 
bivariate association between these 2 variables, however, 
a near-zero slope would be returned, as shown by the red 
line overlaid in Figure 7A. In this case, not only would 
a Pearson correlation test (r = −0.03, P = 0.25) fail to 
identify this nonrandom but also nonlinear pattern, but, 
because this pattern is also not monotonically increasing, 

Figure 6. A visualization of how entropy (H) estimates vary with changes in the relative distribution of discrete observations for a 
simple K = 2 encoding (ethogram). When behaviors “lying” and “standing” are recorded at equal frequencies P(X = “lying”) = P(X = 
“standing”) = 0.5, the entropy or uncertainty in this behavioral system is maximized at log2(2) = 1. P = proportion. As one behavior 
(lying) is observed more frequently, the entropy of the system progressively decreases. When only one behavior (lying) is observed, 
then no uncertainty remains in the system and entropy drops to 0.

https://github.com/cgmcvey/ARPAS2023
https://github.com/cgmcvey/ARPAS2023
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even a nonparametric Spearman rank correlation test (rho 
= 0.03, P = 0.12) would fail to identify THI as a signifi-
cant influence on lying times within this herd.

Consider instead a nonparametric testing framework us-
ing information entropy as the test statistic (McVey et 
al., 2021). Suppose both the THI and lying time mea-
surements are discretized using simple equal-sized binning 
rules. Using an arbitrary bin width of 5, this will create a 
discrete encoding with 4 levels for THI and an encoding 
with 7 levels for lying time. If we compare the mutual in-
formation estimate from the 2 observed encodings against 
estimates generated from a simple nonconditional permu-
tation of sample indices, as in a standard permutation test 
(Higgins 2004), the resulting P-value for this test of bivari-
ate association would be highly significant (P ≤ 0.001). To 
further characterize this dynamic, a simple contingency 
table, wherein each cell represents the total number of 
observations for each joint encoding, can be easily visual-
ized, as in Figure 7B. The mutual information estimate 
for the overall bivariate association can subsequently be 
decomposed into pointwise mutual information estimates 
to reflect how much each cell in the observed table differs 
from the counts that would be expected by multiplying 
the marginal probabilities, which would be the distribu-
tion of joint observations anticipated if no association ex-
isted between the 2 encodings (see McVey et al., 2021, for 
further details). Here, blue cells indicate that there are 
fewer observations with the corresponding joint encoding 
than would be expected if no association between these 
variables were present, whereas orange cells are overrepre-
sented relative to the null. From this visualization we can 
clearly see that the probability of observing a given lying 
pattern is shifted in different directions based on the level 
of the THI encoding. Thus, absent any prior intuition or 

assumptions about the relationship between these 2 vari-
ables, an information-theoretic approach has successfully 
identified a significant bivariate association and provided 
insights into the underlying dynamic to inform further in-
terpretation of the underlying behavioral mechanisms at 
play and, subsequently, the correct management interven-
tions needed to remediate this welfare concern.

EMPIRICAL CASE STUDY: MODEL-FREE 
KNOWLEDGE DISCOVERY WITH MILK 

PARLOR METADATA
Although we hope that the previous simulations have 

served to illustrate the potential advantages of a more 
open-ended model-free approach to knowledge discovery in 
large PLF data sets, the behavioral patterns recovered in 
these simulated examples are fairly simple when compared 
with the complex web of behavioral responses that might 
be elicited from the environmental and social stimuli pres-
ent in a working farm environment. Therefore, to demon-
strate the utility of this analytical framework in real-world 
applications, we will finally consider data collected from 
the parlor on a working dairy farm using the fully model-
free analytical pipeline available in the Livestock Infor-
matics Toolkit, an open-source package available in the R 
programing environment (McVey et al., 2021).

The Organilac data set was collected in 2017 from a feed 
trial assessing the influence of an organic fat supplement 
on cow health and productivity during the first 150 d of 
lactation. The study ran from January through July on a 
USDA-certified organic dairy in northern Colorado, and 
all animal handling and experimental protocols were ap-
proved by the Colorado State University Institution of An-
imal Care and Use Committee (protocol ID: 16-6704AA). 

Figure 7. Two visualizations of the simulated relationship between temperature-humidity index (THI) and lying time. (A) A simple dot 
plot reveals a clear bivariate association that is likely best described by a threshold model, with cows becoming heat stressed and 
standing for extended periods of time to move heat more effectively at THI values above 92 THI. This nonlinear dynamic, however, 
is not captured by a simple linear association assumed in the Pearson correlation test (Cor), which is visualized with the red line 
imposed over the data, or the monotonically increasing association assumed by the Spearman rank order test (Rho). (B) Both 
variables have been discretized and their joint distribution visualized using a simple contingency table. Cells are here visualized 
by their pointwise mutual information estimates (PMI), which reflects cells that are significantly over- or underpopulated when 
compared with the product of the marginal probabilities, which is the value that would be expected if no bivariate relationship exists. 
Here we can clearly see that behavioral mechanisms are shifting the lying patterns of this herd in different directions at different 
levels of heat stress.
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Full details of the experimental design can be found in 
Manriquez et al. (2018, 2019). A total of 200 cows were 
enrolled over a 1.5-mo period into a mixed-parity herd of 
animals with predominantly Holstein genetics. Cows were 
maintained in a closed herd for the duration of the trial, in 
an open-sided freestall barn, which was stocked at roughly 
half capacity with respect to both feedbunk spaces and 
stalls. Cows had free access to TMR and an adjacent out-
door dry lot when in their home pen, and, beginning in 
April, cows were moved onto pasture at night in accor-
dance with organic grazing standards. Cows were milked 
3 times a day in a radio-frequency identification-equipped 
rotary parlor (DeLaval), which not only quantified daily 
milk production weights but also recorded milking order, 
or the or the sequence in which cows enter the parlor to 
be milked.

Milking order has been the focus of several research 
papers since the 1960s (Kilgour and Scott, 1959; Gad-
bury, 1975; Soffié et al., 1976; Rathore, 1982; Reinhardt, 
1983; Berry and McCarthy, 2012; Polikarpus et al., 2015; 
Beggs et al., 2018; McVey et al., 2020). Almost all of these 
studies have confirmed that queuing patterns are nonran-
dom and are surprisingly consistent over time (Beggs et 
al., 2018), but the factors determining where a cow ends 
up in the queue have proven difficult to pin down. Al-
though it is quite possible that these dynamics vary be-
tween farms based on differences in herd structure and 
farm environment, inconsistencies in previous results may 
also be partially attributed to the fact that this behav-
ioral system violates nearly every assumption required to 
extract statistical inferences from a conventional linear 
model—namely, independence and homogeneity of vari-
ance (McVey et al., 2020). In previous research with entry 
order records, we have demonstrated the efficacy of an 
iterative HC approach known as data mechanics in recov-
ering subtle nonstationarity in the queuing positions of a 
subset of animals within this herd over an extended 80-d 
observation window (Guan and Hsieh, 2018; McVey et al., 
2020).

To illustrate the utility of significant expansions to the 
analytical tools now available in the LIT package (McVey 
et al., 2021), we will revisit these results to further ex-
plore how queuing behaviors might relate to cow age and 
milk yield. These 2 variables are typically quite highly 
correlated, which, in a linear model, can cause variance 
inflation and model instability (Pinheiro and Bates 2000). 
However, they are not completely redundant, as there may 
be biologically relevant information on the productivity 
of a cow relative to her age. One strategy to address this 
issue would be to normalize each cow’s yield against the 
average for her lactation cohort. On organic dairies, how-
ever, limited access to hormonal synchronization protocols 
can cause cow age to vary progressively with lactation 
number, which can reduce the efficacy of this simple nor-
malization scheme. Alternatively, by encoding the infor-
mation in these 2 variables via HC, this redundancy can 
be leveraged to establish empirically determined cutoffs.

The results of jointly clustering cow age in days and the 
95th daily yield quantile for each cow (a model-free esti-
mate of peak yield) are shown in Figure 8, wherein each 
variable has been independently normalized to receive 
equal weights, using the encodePlot function in the LIT 
package (McVey et al., 2021). By examining the branches 
of the clustering dendrogram used to order the row obser-
vations, we see that the first several clusters reflect the re-
dundancy between age and yield. The first cut isolates the 
heifers into their own cluster, although 2 very young and 
low-yielding second-lactation animals were also included 
in this grouping. The second cut served to distinguish the 
still-growing second-lactation cows from the fully grown 
cows in parity 4 or more, with similarities in yield be-
ing used to divide the third-lactation animals between 
these 2 groups. All remaining cuts served predominantly 
to distinguish yield levels within these age clusters. Note 
that this dynamic can also be easily visualized by parsing 
through visualizations of each progressive cut provided in 
Supplemental Materials (https:​/​/​github​.com/​cgmcvey/​
ARPAS2023).

With this information encoded, a mutual information 
test can be used to evaluate whether a significant bivari-
ate association exists between the encoding of age and 
yield and the previously reported encodings for queuing 
patterns. For both these data sets, however, the optimal 
number of clusters to use to create a discrete encoding 
is not immediately obvious. If too coarse an encoding is 
used, valuable information may be lost and significant 
associations overlooked. On the other hand, if too fine 
an encoding is used, the mutual information test will be-
come underpowered. To overcome this issue, a bivariate 
tree testing framework can be employed, wherein mutual 
information tests are performed for all combinations of 
encoding granularities, to take full advantage of the geo-
metric information encoded in the clustering trees created 
from either data set (McVey et al., 2021). Conceptually, 
this test is analogous to examining a sample under a light 
microscope when the organisms present are unknown. The 
test begins at the coarsest resolution, and the focus is 
slowly sharpened. Just as microbes of different sizes would 
come into and fall out of resolution in a light microscope 
as the focus is sharpened, we can expect in a bivariate tree 
test that behavioral mechanisms that produce associations 
at different scales will similarly fall into and out of reso-
lution at varying encoding granularities (Fushing et al., 
2018; McVey et al., 2020, 2021).

The result of a bivariate tree test applied to the age and 
yield encoding against the encoding of entry order pat-
terns for all cows is shown in Figure 9. The heatmap dis-
plays z-scores comparing the observed mutual information 
estimate against the randomly permuted tests statistics, 
revealing that a highly significant bivariate association (P 
= 0.001) emerges with 3 clusters for the age and yield en-
coding and 6 clusters for the queuing pattern encoding. In 
this example, the number of clusters used to encode tem-
poral patterns in the entry order data was also varied on 

https://github.com/cgmcvey/ARPAS2023
https://github.com/cgmcvey/ARPAS2023
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Figure 8. Heatmap visualization of the joint encoding of age in days (AgeDaysOld) and peak yield (95th quantile of daily yield 
estimates, MilkYield95). Cows are arranged along the row axis (zoom in to read cow ID labels). Age and yield records are arranged 
along the column axis. Each cell is colored to represent the value of a given record field for a given cow, wherein both age and 
yield are represented by their normalized z-scores (centered and squared). The row dendrogram reveals that the redundancy 
between age and yield through the first few lactations drives the first 2 cuts of this clustering tree, but subsequent divisions serve 
predominantly to distinguish between yield levels within these broader age classes.
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a grid in the data mechanics clustering scheme, and so the 
purple annotations along the column axis additionally re-
veals that the strongest bivariate association is consistent-
ly found when 2 temporal subperiods are used to encode 
nonstationarity in the entry positions of cows over this 
extended observation window. Note that this relationship 
is stronger than previously reported in preliminary work 
with a mutual information testing framework wherein age 
and peak yield were tested against queuing patterns in-
dependently without leveraging the redundancy between 
these 2 variables (McVey et al., 2020).

To characterize this bivariate association, a 2-way con-
tingency table can easily be created using the optimized 
cluster counts using the compareEncoding utility provided 
in the LIT package (McVey et al., 2021). In this visualiza-
tion (Figure 10), clusters are numbered for either data set 
from top to bottom along their corresponding heatmap. 
Queuing pattern clusters are arranged along the row axis 
of the contingency table. In this heatmap, individual cows 
are arranged on the rows and observation days along the 
column axes, respectively, with each cell in the heatmap 
representing the relative location of a given cow within 
the queue on a given day: red toward the back and blue 
toward the front. The age and yield encoding is arranged 
along the column axis of the contingency table. Each cell 
of the contingency table represents the number of cows 

with a given combination of queue pattern and age yield 
encoding, and is colored by their pointwise mutual infor-
mation value only if this observed estimator differs sig-
nificantly from permutations under the null at the α = 
0.05 significance level (McVey et al., 2021). Orange cells 
represent encoding combinations that are significantly 
overrepresented in this data set when compared with joint 
marginal probabilities under the null that there is no as-
sociation, and blue cells are respectively significantly un-
derrepresented.

As shown in Figure 10, within the cluster of cows that 
consistently entered at the rear of the milking queue 
(queue cluster no. 1), the oldest cows in this herd (age 
yield cluster no. 2) are significantly underrepresented, 
whereas the second and third lactation animals (age yield 
cluster no. 4) are significantly overrepresented. In contrast, 
the oldest cows in this herd (age yield cluster no. 2) are 
significantly overrepresented among cows that consistent-
ly entered at the very front of the milking queue (queue 
cluster no. 4). Several potential behavioral mechanisms 
could explain this dynamic. Older observational studies 
describing herd dynamics during movement have previ-
ously suggested that ungulate herds are led from both the 
front and the rear of the herd, so that animals in the front 
may direct the movement of the herd, while animals at 
the rear prevent stragglers from falling behind (Reinhardt, 

Figure 9. A heatmap visualization of the results of the bivariate tree test. Cell values reflect the difference between the mutual 
information estimates for the observed data set and those simulated under the null. These results show that a highly significant 
bivariate association appears with 3 clusters for the age and yield encoding and 6 clusters for the entry order encoding. Annotations 
along the column margin reflect the number of temporal subperiod clusters using in the entry order encoding that produce the most 
significant association with age and yield. Kx is the number of clusters for variable x (age), and Ky is the number of clusters for 
variable y (entry order).
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1983). Previous research with this data set has revealed 
significant nonlinear associations between these queuing 
patterns and time budgets that align with this theory, 
wherein cows that generally enter nearer the rear of the 
queue were overrepresented among unthrifty animals with 
low recorded eating times, but that the very rear of the 
herd was brought up by cows with more balanced time 

budgets demonstrating moderate eating times (McVey et 
al., 2021). Given that age and yield are also both cor-
related with cow size (Schein and Fohrman, 1955), one 
interpretation of this bivariate pattern might then be that 
the largest and most experienced animals in this herd are 
more likely to be found at the front, leading the queue to 
the parlor, and second- and third-lactation animals with 

Figure 10. Visualization of the bivariate association between the encodings for age (AgeDaysOld) and yield (MilkYield95) and 
for entry order patterns using the optimized encoding granularities. Queuing pattern clusters are arranged on the row axis, and 
correspond to heatmap clusters numbered from top to bottom. Age and yield encoding are arranged on the column axis, also 
corresponding to heatmap clusters numbered from top to bottom. The contingency table displays the counts for each joint encoding. 
Cells are colors by their pointwise mutual information estimate (PMI) if the observed count differs significantly from values permuted 
under the null at the α = 0.05 significance level, orange being overrepresented and blue being underrepresented.
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less experience but still sufficient size to occupy higher 
rungs of the dominance hierarchy may then fill this “ca-
boose cow” role, driving the smaller or less fit animals for-
ward to consolidate the herd (Schein and Fohrman, 1955; 
Lamb, 1976).

An alternative, if less comprehensive, interpretation of 
this pattern may be the result of not one but multiple dis-
tinct behavioral mechanisms. The oldest cows, by virtue 
of either their experience or their size, may simply have 
the greatest capacity to exert their preference (Schein 
and Fohrman, 1955; Lamb, 1976) to be milked first in 
jockeying for queue position, whereas second- and third-
lactation animals that are more prone to negative energy 
balance (Berry et al., 2006; Friggens et al., 2007) may be 
pushed toward the rear of the queue, either as a behavioral 
mechanism to conserve energy or as a behavioral response 
to clinical or subclinical health complications. This lat-
ter hypothesis may be partially supported by the finding 
that, when cows with recorded clinical health complica-
tions are excluded from these analyses, overrepresenta-
tion of older animals at the front of the queue remains a 
significant finding, but overrepresentation of animals in 
lactation 2 and 3 at the rear of the queue becomes only 
marginally significant at the α = 0.10 significance level 
(see the “AgeYield Visualization” directory in Supplemen-
tal Materials, https:​/​/​github​.com/​cgmcvey/​ARPAS2023). 
Although further research would be needed to decisively 
determine the causative mechanisms driving this behav-
ioral pattern, it should be noted that this inverted age dy-
namic would not have been captured with a model-based 
analysis if a simple linear term were assumed, and this 
pattern might even have been obscured by the ambiguity 
in assignment of third-parity animals to a simple categori-
cal term for lactation number.

A bivariate pattern that would be perhaps even more 
challenging to capture with a model-based approach 
would be that for queuing pattern cluster no. 5, which is 
characterized by animals that were generally found nearer 
the front or middle of the queue when entering the par-
lor from their home pen but who later fell back nearer 
the rear of the queue when returning to the parlor from 
overnight pasture. The oldest cows in this herd (age yield 
cluster no. 3) were significantly overrepresented in this 
cluster, whereas the heifers (age yield cluster no. 1) were 
significantly underrepresented. Though not significant at 
the α = 0.05 significance level, it should also be noted that 
an inverted age dynamic is also observed for the smaller 
queue cluster no. 2, which is characterized by animals that 
entered nearer the rear of the queue when entering the 
parlor from the home pen but later moved forward in the 
queue when arriving from the pasture. Although several 
potential behavioral mechanisms might give rise to this 
more temporally complex queuing pattern, if we assume 
that these older cows also prefer being near the front of 
the queue, as many of their age conspecifics seem to, then 
evidence that these animals are being pushed backward 

in the queue by their younger and smaller herdmates may 
raise some concerns that the fitness and welfare of these 
animals might have become compromised during the pas-
ture subperiod (O’Connor et al., 2019). Whether pasture 
access is the cause or simply creates additional opportuni-
ties for animals to behaviorally demonstrate latent chang-
es in health state certainly cannot be surmised from this 
analysis alone, but warrants further study.

CONCLUSIONS AND APPLICATIONS
There is no free lunch in data science, and so no single 

analytical framework can be expected to best serve the 
broad spectrum of data sets encountered in animal science 
(Wolpert and Macready, 1997). Where PLF technologies 
are employed in controlled experimental settings, using 
a model to infuse into statistical analyses information 
about key experimental assumptions and design decisions 
can improve the power of subsequent inferences. Unfor-
tunately, animals are often able to circumvent even the 
most carefully constructed experimental protocols, and 
so model-free techniques demonstrated in this article may 
still add value to model-based analytical pipelines. When 
implemented in preliminary exploratory data analysis, 
UML tools can aid in the identification of complex outli-
ers and development of a complete model (McVey et al., 
2020). Employed in the visualization of model residuals, 
UML tools can also be used to visualize latent systematic 
features of a data set not captured by the fitted model, 
which can be used to evaluate model sufficiency and po-
tential sources of bias (Enriquez and Hsieh, 2020; McVey 
et al., 2022).

For PLF data sets collected in uncontrolled farm environ-
ments, the preceding simulated and real-world examples 
have hopefully served to demonstrate the benefits of more 
open-ended model-free approaches to knowledge discovery. 
In these case studies we have illustrated how even the 
leanest UML tools can recover complex and unanticipated 
behavioral signals in applications in data auditing and 
consulting, creating additional opportunities for animal 
scientists to bring their wealth of biological knowledge to 
bear in analyses of farm records. Through simple modifica-
tions to the dissimilarity measures used, UML algorithms 
can be easily modified to accommodate the wide range 
of data formats and complex sources of measurement er-
ror commonly encountered in working farm environments, 
such that their application are largely limited only by the 
creativity of the practitioner (McVey et al., 2021). Al-
though future efforts to extract a wider range of animal 
phenotypes and welfare metrics from these data streams 
will likely need to rely to some degree on model-based ap-
proaches to facilitate cross-farm comparisons, UML tools 
can still play a role in helping to develop the most holistic 
and robust metrics possible from these incredibly rich but 
still poorly characterized noisy data streams (Ellen et al., 
2019; Brito et al., 2020; McVey et al., 2022).

https://github.com/cgmcvey/ARPAS2023
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