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Abstract—Convolutional neural networks trained using man-
ually generated labels are commonly used for semantic or in-
stance segmentation. In precision agriculture, automated flower
detection methods use supervised models and post-processing tech-
niques that may not perform consistently as the appearance of
the flowers and the data acquisition conditions vary. We propose
a self-supervised learning strategy to enhance the sensitivity of
segmentation models to different flower species using automatically
generated pseudo-labels. We employ a data augmentation and
refinement approach to improve the accuracy of the model pre-
dictions. The augmented semantic predictions are then converted
to panoptic pseudo-labels to iteratively train a multi-task model.
The self-supervised model predictions can be refined with existing
post-processing approaches to further improve their accuracy. An
evaluation on a multi-species fruit tree flower dataset demonstrates
that our method outperforms state-of-the-art models without com-
putationally expensive post-processing steps, providing a new base-
line for flower detection applications.

Index Terms—Agricultural automation, incremental learning,
object detection, semantic scene understanding, segmentation and
categorization.

I. INTRODUCTION

COMPUTER vision algorithms are becoming increasingly
popular in agricultural applications. Detecting and count-

ing flowers is an important crop management activity to optimize
fruit production [1]. Automatic bloom intensity estimation meth-
ods have the potential to reduce workloads in large production
fields. Many machine vision approaches have been proposed
to address the challenges of estimating crop yield. Most recent
flower detection and counting methods based on deep learning
models require a large amount of manually labeled training
data to achieve acceptable performance [2], [3], [4]. Although
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weakly supervised approaches [5] can simplify the training of
convolutional neural networks (CNNs), they are not particularly
effective to adapt large-scale, pre-trained models to unseen
object categories.

Data augmentation [6], [7] is a de facto standard technique
to reduce the dependence on manual annotations when training
deep neural networks. But in agricultural visual data, the ap-
pearance of objects of interest and the scene conditions vary sig-
nificantly from one field to another. Besides, since agricultural
production environments usually require images to be acquired
from moving vehicles [2], [4], [8], the sun conditions and dense
background clutter make this task challenging in terms of model
generalization. Hence, we still need to generate enough manual
labels for various species of crops to generalize the prediction
models across species with significantly different appearance
and backgrounds potentially comprised of semantically distinct
elements.

Although deep CNNs can perform reasonably accurate pixel-
level semantic predictions [2], [9], false alarms due to simi-
larities between flowers, fruits at different stages of matura-
tion, and background objects limit potential opportunities for
the application of computer vision algorithms to agricultural
automation tasks. Instance [10] and panoptic [11] segmentation
models might be able to better identify individual flowers or
clusters of flowers and thus improve detection performance.

To address the above challenges, inspired by the works pre-
sented in [2], [11], [12], we propose a novel self-supervised
panoptic segmentation approach that leverages a small number
of annotations for supervised learning (SL) and then adjusts the
model to challenging unlabeled datasets. In summary, the main
contributions of this work are:
� A robust self-supervised flower segmentation method that

addresses typical agricultural visual data challenges in fruit
tree orchards.

� A novel panoptic pseudo-label generation technique for
automatically updating the model for unlabeled datasets
that contain severe clutter and illumination challenges.

� A robust sliding-window-based training and testing ap-
proach that does not require additional post processing to
refine the network predictions.

� Extensive evaluations on multiple-species datasets, which
demonstrate superior generalized performance over state-
of-the-art techniques.

� Our source code and pre-trained models are available at
https://github.com/siddiquemu/ssl_flower_semantic.
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II. RELATED WORK

In agricultural automation, several supervised [13], [14], [15]
and weakly supervised [16] deep learning models have been
employed to address the challenges of detecting flowers [2], [3],
[17], [18], fruits [4], [19], [20], or entire plants [21]. Applications
of these methods range from robotic harvesting to estimating
fruit load and optimizing fruit production by counting flowers in
the early blooming season. Although some of these approaches
leverage data augmentation techniques to generate automatic
labels [12], [22], [23], none of these methods addresses model
generalization ability for significantly different test datasets. In
the context of object detection and segmentation, recent methods
attempt to accommodate data distribution shifts through the
following techniques: a) supervised learning, b) semi-supervised
learning, c) self-supervised learning, and d) multi-task panoptic
segmentation models.

a) Supervised Methods: These methods usually employ ba-
sic image transformations [10], [13] or sophisticated data
augmentation techniques [24], [25] to improve model gener-
alization. In addition to data augmentation during training,
some methods incorporate post-processing algorithms at test
time [26], [27] or include specialized input/output units that
are easier to fine-tune to new datasets [28], [29]. While these
techniques reduce the dependency on annotations for different
datasets, they do not eliminate it. Model performance is still
largely dependent on the amount of training data available.

b) Semi-supervised Methods: Using labeled data to boot-
strap a model whose predictions are then employed to fine-tune
the initial model (or to train a student model) is a popular
approach to develop methods for multiple object detection [30],
as well as instance [10], [12] and semantic [9] segmentation. This
strategy is effective when labeled and unlabeled data have similar
appearance and sufficient labeled data is available to bootstrap
a deep model. When the characteristics of the labeled and
unlabeled data differ significantly, as is the case among different
flower species, more sophisticated supervision mechanisms are
needed [31], [32].

c) Self-supervised Methods: When no labeled data is
available, self-supervision strategies can be used to automat-
ically generate pseudo-labels from the unlabeled data [33],
[34]. In these scenarios, the initial model is trained to solve
a surrogate task that presumably has a similar representation
structure as the target task [35]. Using unsupervised learning
techniques to align latent feature representations is a widely used
approach [31]. Self-supervision strategies that use model predic-
tion uncertainties to guide the learning process, while arguably
more interpretable and predictable, are less commonly explored.
Our approach uses a multi-inference data augmentation mecha-
nism in conjunction with the region growing refinement (RGR)
algorithm [26] to generate robust and accurate pseudo-labels
in an iterative manner. These pseudo-labels allow our model
to continuously improve its performance on previously unseen
datasets.

d) Panoptic Methods: Multi-task learning is commonly
used to improve model performance across different tasks [36].
As long as the tasks are similar, the model tends to generalize

Algorithm 1: Self-supervised Learning Algorithm.
Input: Set of high resolution labeled images I , their
corresponding segmentation labels Î , and the set of
unlabeled images I ′

Output: Self-supervised model fWr for unlabeled data I ′

1: Generate the augmented training set Dl using I and Î
according to (1)

2: Train the initial model fW0(Dl) using Dl

3: Generate the augmented unlabeled image patches Yθij

4: for r ← 1 to maxIter do
5: Generate the augmented predictions Y θij using (3)
6: Compute the normalized score map Oi using (4)
7: Compute the binary semantic mask Si from Oi

using RGR
8: Generate the augmented binary semantic masks Sθij

9: Apply connected component analysis to Sθij to find

the instance masks m(l)
θij

and bounding boxes b(l)θij

10: Construct the set of pseudo-labels Ỹθij using (5)

11: Construct the set Du = {Yθij , Ỹθij}
12: Update the self-supervised model fWr−1(Du) using

Du

13: end for

better to unseen data [37]. The recently introduced panoptic
segmentation approach jointly learns the closely related tasks of
instance and semantic segmentation and currently represents the
state of the art in instance and semantic segmentation [38], [39].
However, training such models requires a significant number
of manual labels containing instance and semantic information.
Our approach makes it possible to apply a panoptic model to sig-
nificantly different datasets without resorting to manual labels.
To our knowledge no self-supervised panoptic segmentation
method has been proposed so far.

III. SELF-SUPERVISED PANOPTIC SEGMENTATION

Our proposed self-supervised learning (SSL) technique for
panoptic segmentation shown in Fig. 1 comprises three main
components: i) labeled and unlabeled data augmentation, ii)
panoptic model initialization using the labeled dataset, and iii)
panoptic pseudo-label generation from unlabeled data to update
the model. As shown in Algorithm 1, we use images from the
training set and their corresponding labels to train our initial
model using an SL strategy. Our SSL approach then updates the
initial model iteratively in a fully self-supervised manner using
the pseudo-labels generated by the model at a previous iteration.

A. Data Augmentation

Our method is based on the panoptic segmentation model
proposed in [11] pre-trained on the COCO [40] and COCO-
stuff [41] datasets. To fine-tune the model for flower segmenta-
tion, we augment the training set introduced in [2] using a sliding
window (SW) technique. That is, we extract from the input image
I and its corresponding semantic label Î , both of size M ×N
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Fig. 1. Proposed self-supervised learning framework for multi-species flower segmentation. Labeled images are used to initialize the model for flower
segmentation. The overlapping sliding window patches of the unlabeled input images are rotated multiple times to generate augmented semantic predictions
from a previously initialized panoptic segmentation model. The remapping step transforms the score maps to the input coordinate system and then the normalized
predictions are used to generate the panoptic pseudo-labels using a semantic refinement procedure to update the pre-trained model.

pixels, overlapping patches of size m× n = �M/K� × �N/K�
pixels with a stride of p× q = �m/2� × �n/2�, where K is the
window size factor. Let (Xi, X̂i) = SWi(I, Î) be the i-th image
patch and its corresponding semantic label. We augment Xi

and X̂i by applying J different rotations at randomly selected
angles {θj}Jj=1. For the sake of sampling efficiency, rather
than directly sampling from the interval [0, 2π], we employ a
stratified sampling strategy. That is, we partition the circle into
five sectors centered at (π/2) · k, k = 0, 1, . . . , 4 and sample
each sector uniformly. This strategy increases sample diversity,
ultimately reducing the variance of the pseudo-labels generated
using our method. Thus, the set of labeled image patches and
corresponding manual labels used to train the supervised model
is given by

Dl =
{(

Xθij , X̂θij

)}
=

{
Rθj (SWi(I, Î))

}
, (1)

where Rθj (·, ·) rotates its two arguments by an angle θj .
We employ the same data augmentation procedure for each

unlabeled image of the test sets to generate the unlabeled aug-
mented samples Yθij from the corresponding image patches Yi.
In the SSL approach, we use the SL model to predict the initial
augmented pseudo-labels Ỹθij used to fine-tune the model for
unseen datasets. The procedure for pseudo-label generation is
described in detail in Section III-B. Thus the unlabeled dataset
for each flower species is

Du =
{(

Yθij , Ỹθij

)}
. (2)

At test time, we simply apply the sliding window operation to
generate the normalized semantic score maps and combine the

predictions corresponding to the overlapping portions of each
window using majority voting. We observed that the benefit of
test-time data augmentation is negligible after a few SSL training
iterations. Hence, we do not perform rotation augmentation at
inference time, which ensures that the computational time of the
model remains unchanged.

B. Pseudo-Label Generation

Data distribution shifts degrade the accuracy of segmentation
models. Strong data augmentation is an effective strategy to
mitigate this problem [42]. Thus, to improve the sensitivity of
our model to different flower species, we apply the data augmen-
tation procedure described above to Yi and use the previously
computed network weights W(r−1) to generate the augmented
predictions at the r-th SSL iteration according to

Y θij = fW (r−1)(Yθij ). (3)

To remap the semantic predictions back to the original image
coordinate frame, we apply the reverse rotation operatorR−θj (·)
with bi-linear interpolation to the augmented predictions Y θij .
We then normalize the scores using a softmax function and use
the average normalized score map Oi as our final prediction,
i.e.,

Oi =
1

J

∑
j

σ
(
R−θj (Y θij )

)
, (4)

whereσ(·) represents the softmax function applied element-wise
to the individual logits for the classesC ∈ {background,flower}.
As Fig. 2(a) and (b) illustrate,Oi contains a significantly higher
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Fig. 2. Illustration of the steps of our panoptic pseudo-label generation method. (a) semantic prediction for a single augmented patch, (b) normalized average
score map obtained using (4), (c) instance bounding boxes, and (d) instance segmentation masks and semantic labels generated during SSL iterations.

Fig. 3. Comparisons between the pseudo-labels generated using a fixed threshold τseg (top row) and the RGR-based semantic refinement (bottom row).
(a) AppleA, (b) AppleB, (c) Peach, (d) Pear. The segmentation masks in the images at the bottom row better reflect flower boundaries and the corresponding
bounding boxes better distinguish nearby flower instances.

number of flowers segmented with high confidence than a single
augmented patch Y θij .

C. Semantic Prediction Refinement

Instead of applying a fixed threshold τseg to generate panoptic
pseudo-labels fromOi, we employ RGR, a robust segmentation
refinement method [26]. RGR uses a Monte Carlo strategy
to perform an appearance-based refinement of low-confidence
regions in Oi using the corresponding image patch Yi, which
allows it to generate an improved binary segmentation mask.
RGR uses three key elements to determine the boundaries of an
object of interest: 1) the confidence of the model predictions,
2) appearance similarities among pixels, and 3) distances
among pixels. That is, every pixel in an image is asso-
ciated with a nearby pixel of similar appearance whose
semantic class has been predicted with high confidence.
As Fig. 3 illustrates, RGR improves the boundary adher-
ence of the pseudo-labels and better distinguishes flower
instances.

Let Si be the semantic binary mask obtained from Oi using
RGR. As in the pseudo-label generation step, we apply J rota-
tions toSi to generate augmented semantic binary masks,Sθij =
Rθj (Si). We then perform connected component analysis to

obtain the corresponding instance masks m
(l)
θij

and bounding

boxes b
(l)
θij

for the l = 1, . . . , L distinct elements of Sθij . The

augmented panoptic pseudo-labels are given by

Ỹθij =
{
(b

(l)
θij

,m
(l)
θij

), Sθij

}L

l=1
. (5)

Fig. 2(c) and (d) show that this approach generates high-quality
bounding boxes and instance masks.

D. Multi-Task Loss

In both the SL and SSL models, the instance bounding boxes
b
(l)
θij

and segmentation masksm(l)
θij

from the augmented labels are
used to train the ROI-heads for the flower class. The augmented
semantic masks Sθij are used to train the semantic segmenta-
tion head for the background and flower classes. For panoptic
segmentation learning, we consider background as a stuff class
and flower as a thing class [43] to jointly update the model using
the following multi-task loss function

L(W ) = λ(Lc + Lb + Lm) + (1− λ)Ls, (6)

where Lc is the classification loss, Lb is the bounding-box
loss, Lm is the mask loss, and Ls is the segmentation loss, as
defined in [11]. By further training the initial SL model on the
unlabeled datasets using the proposed SSL approach where the
augmented panoptic labels are robust to prediction uncertainty
and intrinsically incorporate rotation invariance, it is possible to
iteratively improve the performance of the model.
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Fig. 4. Examples of improved annotations in the AppleA training set. The
cropped sections shows (a) incorrect contours containing background pixels,
and (b) improved labels.

Fig. 5. Precision-recall curves for the SSL models with and without RGR
pseudo-label refinement. Solid circles represent points that maximizeF1 scores.

IV. EXPERIMENTS

We compare the performance of our method against the state-
of-the-art algorithms presented in [2], [3] using the evaluation
metrics and procedures described in [2]. To quantify the benefit
of employing RGR as part of our pseudo-label generation strat-
egy, we evaluate two different techniques to generate the pseudo-
labels. First, we evaluate an approach in which we apply a fixed
threshold τseg to the predicted score maps. For a fair comparison,
we determine τseg based on the maximum F1 score obtained by
the model on the training set at a previous iteration (see Fig. 5).
We call this model SSL. The model in which we employ RGR
to refine the score maps without hard thresholding is deemed
SSL+RGR. We also assess the performance improvements ob-
tained by applying RGR as a post-processing mechanism in
conjunction with our SSL model. We refer to that approach as
SSL+RGR (pp), where pp stands for post-processing. As a
baseline, we also assess the performance of theSLmodel trained
only on the AppleA dataset applied to the other datasets.

A. Datasets

We evaluate our method on the multi-species flower dataset
first introduced in [2], which comprises four subsets: i) AppleA
(train/test), ii) AppleB, iii) Peach, and iv) Pear. The AppleA
and AppleB datasets contain images of the same apple orchard,
but collected on different dates and under distinct conditions.
While AppleA was collected using a hand-held camera, AppleB

images were captured by a camera mounted to a mobile platform.
For additional details regarding the datasets, we refer the reader
to [2].

We train our SL model using the AppleA training set, which
consists of 100 images with a resolution of M ×N = 5184×
3456 pixels [2]. After applying J rotation augmentation steps,
the number of training patches Xθij for each input image is
J × (2K − 1)2 since i = 1, 2, . . . , (2K − 1)× (2K − 1) and
j = 1, 2, . . . , J . Hence, forK = 4 and J = 20, there are 98,000
training patches in the AppleA dataset. These patches are used
to train our initial panoptic flower segmentation model.

We consider a randomly selected subset comprising 70% of
the 30 images from the AppleA test set as unlabeled images I ′

to fine-tune the SL model using the automatically generated
panoptic pseudo-labels. Similarly, 70% of the images from
the AppleB, Peach, and Pear datasets (18, 24, and 18 images,
respectively), all of which have a resolution of 2704× 1520
pixels, are considered unlabeled images used to update the SL
model iteratively. The remaining images in each dataset are used
solely for performance evaluation. Given the relatively small
size of the test sets, we evaluate our methods using five-fold
cross-validation.

The datasets introduced in [2] provide pixel-level, high-
resolution annotations of individual flowers. However, as Fig. 4
shows, the annotations have imperfections that can only be
observed when closely inspected. Despite being small, these
inaccuracies comprise a non-negligible portion of the image pix-
els, especially considering that only a fraction of the pixels cor-
respond to flowers. To resolve this issue, we use the MATLAB�

image labeler tool to manually correct inaccurate labels and to
label additional smaller but clearly visible unannotated flowers.
Fig. 4 shows some examples of the annotations before and after
the corrections.

B. Training Details

The vast majority of image pixels in the datasets correspond to
background pixels. Hence, to provide the model sufficient sam-
ples containing flower pixels, we train the network for 20,000
iterations using stochastic gradient descent with a batch size of
512 samples and a base learning rate of 25e−4, which is divided
by 10 at 10%, 25%, and 50% of the training period. We freeze
the ResNet-101 backbone [44] during training. To emphasize
semantic learning, we use λ = 0.8 in (6). We have empirically
observed that setting RGR’s average spacing between samples
to 100 pixels provides an adequate balance between the accuracy
of the refined score map and the computation time required to
produce it. We use the values reported in [2] for the remaining
parameters, namely, the number of iterations is 10, the score
map threshold is 0.5, the high-confidence foreground threshold
is 0.8, and the high-confidence background threshold is 0.01.

V. RESULTS AND DISCUSSION

Table I compares the performance of the SL and SSL models
against the algorithms presented in [2], [3]. Although the SL
model trained using our proposed data augmentation strategy
segments flowers using a fixed threshold τseg , it performs either

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on October 02,2023 at 18:12:25 UTC from IEEE Xplore.  Restrictions apply. 



12392 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 6. Qualitative assessment of our proposed SSL approach on test datasets (a) AppleB, (b) Peach, (c) Pear. Most false positives correspond to small, unlabeled
flowers.

TABLE I
EVALUATION OF FLOWER SEGMENTATION PERFORMANCE USING OUR SSL

PANOPTIC MODEL

on par with or better than the state-of-the-art models on test sets
that are similar to the training set, even without applying our
proposed SSL strategy. However, for datasets with significantly
different characteristics, the SL model does not perform satis-
factorily. The SSL approach using a fixed threshold outperforms
the baseline methods on the AppleB, Peach, and Pear datasets
by significant margins (11.5%, 3.5%, and 4.1% absolute IoU
improvement with respect to [3]). For the AppleA dataset, the
SSL method alone outperforms [2] but is slightly worse than [3].
This is largely due to the fact that the baseline methods perform
dramatically better on the training set, whereas the performance
of our model remains relatively stable across datasets. As dis-
cussed in more detail below, background flowers also contribute
to the performance degradation. When we use RGR to refine
the pseudo-labels, we observe IoU improvements with respect
to the fixed threshold SSL method of 1.9%, 7.4%, and 3.8%
for the AppleB, Peach, and Pear datasets, respectively. The

TABLE II
PERFORMANCE IMPACT OF SLIDING WINDOW SIZE AND NUMBER OF

ROTATION ANGLES

performance improvements obtained with RGR are proportional
to the appearance dissimilarities between the AppleA dataset
used for model pre-training and the corresponding target dataset.
The average hue, saturation, and value difference between the
AppleA dataset and the AppleB dataset is 30.3, whereas for the
Peach and Pear datasets it is 76.9 and 28.9, respectively. Finally,
performing an additional RGR step at test time leads to an
additional average IoU improvement of approximately 1.9% but
at the cost of substantially higher inference times, as discussed
in the next section. Fig. 5 shows the precision-recall curves
for the proposed SSL methods with and without pseudo-label
refinement using RGR.

The qualitative results in Fig. 6 show that the SSL models
are highly sensitive to flowers in complex regions. For some
datasets, the SSL methods show slightly lower precision than [3].
The main reason for the lower precision is the presence of
small, unannotated flowers in the datasets that our model can
detect. This can be observed in Fig. 6(c) where several small
flowers are present, especially on branches farther from the
camera. Determining which flowers should be annotated is an
application-specific problem that requires further investigation.

A. Parameter Sensitivity and Computation Time Analysis

Table II shows the impact of the sliding window size factor
K and the number of rotation angles J on model performance
and average inference time per input image. This evaluation
is performed on the first SSL iteration of a model initialized
with K = 4 and J = 20. That is, the evaluation reflects the
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Fig. 7. Impact of the loss weight λ (6) on flower segmentation performance
at the first SSL iteration with J = 20 and K = 4.

impact of model parameters on the accuracy of the resulting
pseudo-labels. The top two rows show the test-time impact of
varying K without employing test-time rotations (i.e., J = 1)
for the AppleA and AppleB datasets, respectively. The last row
of the table shows that the IoU and F1 measures on the Peach
dataset gradually increase with J when rotation augmentation is
employed at inference time, but so does the computation time.
Inference times were obtained using one NVIDIA � GeForce�

RTX 2080 Ti GPU without any multi-processing technique.
Post-processing times using RGR are approximately 16× higher
than those presented in Table II on our Intel� Xeon� Silver
4112 CPU @2.6 G Hz. Results for the remaining datasets are
similar and are omitted for brevity. Fig. 7 shows the impact of λ

in the multi-task loss (6) for different flower species. Although
the performance of our approach remains relatively stable as
we vary λ, for most datasets, the best results are obtained
with 0.7 ≤ λ ≤ 0.9, especially in cross-species scenarios, where
appearance variation is more prominent.

VI. CONCLUSION

We introduced a self-supervised learning technique to accu-
rately segment multiple tree flower species without significant
manual labeling efforts. To automatically generate instance and
semantic labels for unlabeled datasets, we propose a data aug-
mentation technique associated with a semantic segmentation
refinement strategy that produces accurate pseudo-labels for
self-supervised model training. The proposed SSL technique
makes it possible to train a deep multi-task model effectively
on unlabeled fruit flower datasets. Self-supervised learning sub-
stantially reduces model dependency on computationally expen-
sive post-processing steps to further refine the model predictions
at inference time. That being said, employing a post-processing
approach with our SSL model can further improve its prediction
accuracy. Our novel SSL method creates a new baseline for the
multi-species flower segmentation task.

A robust and accurate multi-species flower detection method
is the first step toward the development of autonomous robotic
thinning systems [45]. In the future, the proposed panoptic
flower segmentation algorithm can be further improved in a
number of ways. First, our proposed framework resorts primarily

to a data augmentation strategy based on image rotations. Given
the characteristics of the problem under consideration, it stands
to reason that additional data augmentation strategies such as
color jittering and image blurring would further contribute to
the generation of accurate pseudo-labels. In addition, instead of
using empirically defined weights for the instance and semantic
segmentation tasks, task-dependent uncertainty learning strate-
gies [46] may better capture appearance variations to optimize
the task weights. Finally, pseudo-label pixels or sometimes
entire instances may have low prediction scores. The uncertainty
of the pseudo-labels may be used to weigh the contributions of
individual samples. Uncertainty-weighed loss functions [12] are
a promising technique to accomplish that goal.
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