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Abstract. In applications of offline reinforcement learning to observational data, such as in
healthcare or education, a general concern is that observed actions might be affected by
unobserved factors, inducing confounding and biasing estimates derived under the
assumption of a perfect Markov decision process (MDP) model. Here we tackle this by con-
sidering off-policy evaluation in a partially observed MDP (POMDP). Specifically, we con-
sider estimating the value of a given target policy in an unknown POMDP given
observations of trajectories with only partial state observations and generated by a differ-
ent and unknown policy that may depend on the unobserved state. We tackle two ques-
tions: what conditions allow us to identify the target policy value from the observed data
and, given identification, how to best estimate it. To answer these, we extend the frame-
work of proximal causal inference to our POMDP setting, providing a variety of settings
where identification is made possible by the existence of so-called bridge functions. We
term the resulting framework proximal reinforcement learning (PRL). We then show how
to construct estimators in these settings and prove they are semiparametrically efficient.
We demonstrate the benefits of PRL in an extensive simulation study and on the problem

of sepsis management.
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1. Introduction

An important problem in reinforcement learning (RL) is
off-policy evaluation (OPE), which is defined as estimat-
ing the average reward generated by a target evaluation
policy, given observations of data generated by running
some different behavior policy. This problem is particu-
larly important in many application areas such as
healthcare, education, or robotics, where experimenting
with new policies may be expensive, impractical, or
unethical. In such applications OPE may be used to esti-
mate the benefit of proposed policy changes by decision
makers or as a building block for the related problem of
policy optimization. At the same time, in the same appli-
cations, unobservables can make this task difficult due
to the lack of experimentation.

As an example, consider the problem of evaluating a
newly proposed policy for assigning personalized cur-
ricula to students semester by semester, where the cur-
riculum assignment each semester is decided based on
observed student covariates, such as course outcomes
and aptitude tests, with the goal of maximizing student
outcomes as measured, for example, by standardized

test scores. Because it may be unethical to experiment
with potentially detrimental curriculum plans, we may
wish to evaluate such policies based on passively col-
lected data where the targeted curriculum was decided
by teachers. However, there may be factors unobserved
in the data that jointly influence the observed student
covariates, curriculum assignments, and student out-
comes; this may arise for example because the teacher
can perceive subjective aspects of the students’ personal-
ities or aptitudes and take these into account in their
decisions. Although such confounding breaks the usual
Markovian assumptions that underlie standard approaches
to OPE, the process may well be modeled by a partially
observed Markov decision process (POMDP). Two
key questions for OPE in POMDPs are: when is policy
value still identifiable despite confounding due to par-
tial observation and, when it is, how can we estimate it
most efficiently.

In this work, we tackle these two questions, expand-
ing the range of settings that enable identification and
providing efficient estimators in these settings. First,
we extend an existing identification result for OPE in
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tabular POMDPs (Tennenholtz et al. 2020) to the contin-
uous setting, which provides some novel insight on this
existing approach but also highlights its limitations. To
break these limitations, motivated by these insights, we
provide a new general identification result based on
extending the proximal causal inference framework
(Miao et al. 2018a, Cui et al. 2020, Kallus et al. 2022) to
the dynamic, longitudinal setting. This permits identifi-
cation in more general settings. Unlike the previous
results, this one expresses the value of the evaluation
policy as the mean of some score function under the dis-
tribution over trajectories induced by the logging policy,
which allows for natural estimators with good qualities.
In particular, we prove appropriate conditions under
which the estimators arising from this result are consis-
tent, asymptotically normal, and semiparametrically
efficient. In addition, we provide a tractable algorithm
for computing the nuisance functions that allow such
estimators to be computed, based on recent state-of-the-
art methods for solving conditional moment problems.
We term this framework proximal reinforcement learn-
ing (PRL), highlighting the connection to proximal
causal inference. We finally provide a series of experi-
ments, on both a synthetic toy scenario and a complex
scenario based on a sepsis simulator, which empirically
validate our theoretical results and demonstrate the ben-
efits of PRL.

2. Related Work

First, there is an extensive line of recent work on OPE
under unmeasured confounding. This work considers
many different forms of confounding, including con-
founding that is independent and identically distributed
(iid.) at each time step (Bennett et al. 2021, Liao et al.
2021, Wang et al. 2021), occurs only at a single time step
(Namkoong et al. 2020), satisfies a “memorylessness”
property (Kallus and Zhou 2020), follows a POMDP
structure (Oberst and Sontag 2019, Tennenholtz et al.
2020, Nair and Jiang 2021, Killian et al. 2022), may take
an arbitrary form (Chandak et al. 2021, Chen and Zhang
2023), or is in fact not a confounder (Hu and Wager
2023). These works have varying foci: Namkoong et al.
(2020), Kallus and Zhou (2020), and Chen and Zhang
(2023) focus on computing intervals comprising the par-
tial identification set of all hypothetical policy values
consistent with the data and their assumptions; Oberst
and Sontag (2019) and Killian et al. (2022) focus on sam-
pling counterfactual trajectories under the evaluation
policy given that the POMDP follows a particular
Gumbel-softmax structure; Wang et al. (2021) and Gasse
et al. (2021) focus on using the offline data to warm start
online reinforcement learning; Liao et al. (2021) study
OPE using instrumental variables; Chandak et al. (2021)
show that OPE can be performed under very general
confounding if the behavior policy probabilities of the

logged actions are known; Hu and Wager (2023) con-
sider hidden states that do not affect the behavior policy
and are therefore not confounders but do make OPE
harder by breaking Markovianity thereby inducing a
curse of horizon; and Tennenholtz et al. (2020) and Nair
and Jiang (2021) study conditions under which the pol-
icy value under the POMDP model is identified.

Of the past work on OPE under unmeasured con-
founding, Tennenholtz et al. (2020) and Nair and Jiang
(2021) are closest to ours because they too consider a
general POMDP model of confounding, namely without
restrictions that preserve Markovianity via iid. con-
founders, knowing the confounder-dependent propen-
sities, having unconfounded logged actions, or using a
specific Gumbel-softmax form. Tennenholtz et al. (2020)
consider a particular class of tabular POMDPs satisfying
some rank constraints, and Nair and Jiang (2021) extend
these results and slightly relax its assumptions. How-
ever, neither considers how to actually construct OPE
estimators based on their identification results that sat-
isfy desirable properties such as consistency or asymp-
totic normality, and they can only be applied to tabular
POMDPs. Our work presents a novel and general identi-
fication result and proposes a class of resulting OPE esti-
mators that possesses such desirable properties.

Another area of relevant literature is on proximal
causal inference (PCI). PCI was first proposed by Miao
etal. (2018a), showing that using two conditionally inde-
pendent proxies of the confounder (known as a negative
control outcome and a negative control action), we can
learn an outcome bridge function that generalizes the
standard mean-outcome function and controls for the
confounding effects. Since then, this work has been
expanded, including by alternatively using an action
bridge function that instead generalizes the inverse
propensity score (Miao et al. 2018b), allowing for multi-
ple fixed treatments (Tchetgen Tchetgen et al. 2020),
performing multiply-robust treatment effect estimation
(Shi et al. 2020), combining outcome and action bridge
functions for semiparametrically efficient estimation
(Cui et al. 2020), using PCI to estimate the value of
contextual-bandit policies (Xu et al. 2021) or generalized
treatment effects (Kallus et al. 2022), or estimating bridge
functions using adversarial machine learning (Ghassami
et al. 2022, Kallus et al. 2022). In addition, the OPE for
POMDP methodologies of Tennenholtz et al. (2020) and
Nair and Jiang (2021) discussed earlier were said to be
motivated by PCI. Our paper relates to this body of
work as it proposes a new way of performing OPE for
POMDPs using PCI, and it also proposes a new adver-
sarial machine learning-based approach for estimating
the bridge functions.

At the intersection of work of OPE and PCl is the con-
current work of Ying et al. (2021), which considers PCI
in multi-time step scenarios, given two proxies at each
time step similar to what we consider in Section 4.2.
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Unlike us, they only consider the problem of estimating
treatment effects for fixed vectors of treatment at each
time step, optionally conditional on observable context
att=1, as opposed to evaluating policies that can adap-
tively treat based on the context available thus far.

Finally, there is an extensive body of work on learning
policies for POMDPs using online learning. For exam-
ple, see Azizzadenesheli et al. (2016), Katt et al. (2017),
Bhattacharya et al. (2020), Yang et al. (2021), and Singh
et al. (2021), and references therein. Our work is distinct
in that we consider an offline setting where identifica-
tion is an issue. At the same time, our work is related to
the online setting in that it could potentially be used to
augment and warm start such approaches if there is also
offline observed data available.

3. Problem Setting

A POMDP is formally defined by a tuple (S, A, O,H,
Po,Pr,Pr), where S denotes a state space, A denotes a
finite action space, © denotes an observation space, H € N
denotes a time horizon, Py is an observation kernel, with
P(Ot)(' |s) denoting the density of the observation O; given
the state S;=s at time f, Pr is a reward kernel, with
Pg)( |s,a) denoting the density of the (bounded) reward
Rt € [—Rimax, Rmax] given the state S;=s and action A;=a
at time ¢, and Pr is a transition kernel, with P(t)( |s,a)
denoting the density of the next S;1 given the state S;=s
and action A;=a at time t. We allow for the POMDP to be
time inhomogeneous; that is, we allow the outcome,
reward, and transition kernels to potentially depend on
the time index. Finally, we let Oy denote some prior obser-
vation of the state before f=1 (which may be empty), and
we let /! and 7; denote the true and observed trajectories
up to time £, respectively, which we define as

To = TO = OO
- (OO/ (OerllRl)/ (OZIAZIRf)/ R (Ot/At/ Rt))
M= (0o, (S1,01,A1,R1),(S2,02, A2, Ry),

< (St/ Ot/ At/ Rt))
Let 1, be some given randomized logging policy, which is
characterized by a sequence of functions n( ..., néH),

where nb)(a |St) denotes the probability that the loggmg
policy takes action a € A at time ¢ given state S;. The log-
ging policy together with the POMDP define a joint dis-
tribution over the (true) trajectory 7! given by acting
according to 7, let P, denote this d1str1butior1. All prob-
abilities and expectations in the ensuing will be with
respect to P, unless otherwise specified, for example, by
a subscript.

Our data consist of observed tra]ectorles generated by
the logging policy: D = {1} I s ’ch), o TH )}, where each
T bll is an i.i.d. sample of 75 (which does not contain S),
distributed according to P;. Importantly, we emphasize
that, although we assume that states are unobserved by

the decision maker and are not included in the logged
data D, the logging policy still uses these hidden states,
inducing confounding.

Implicit in our notation nb)(a|5t) is that the logging
policy actions are independent of the past given current
state S;. Similarly, the POMDP model is characterized by
similar independence assumption with respect to obser-
vation and reward emissions, and state transitions. This
means that P, satisfies a Markovian assumption with
respect to Sy; however, as S; is unobserved, we cannot
condition on it and break the past from the future. We
visualize the directed acyclic graph (DAG) representing
Py in Figure 1. In particular, we have the following con-
ditional independencies in P;: For every ¢,

full 11
Oy 1L 7,515y, RtJ-LTfli1,Ot|5t,At,
Sie1 LT, O R[S, A, Ar L™ Sy

Now, let 1, be some deterministic target policy that we
wish to evaluate, which is characterlzed by a sequence of
functions n(l) . nE,H), where 71, )(Ot,’[t 1) € A denotes
the action taken by policy m, at time t given current
observation O; and the past observable trajectory t;_;.
We visualize the POMDP model under such a policy

that only depends on observable data in Figure 2. We

allow 71 to potentially depend on all observable data
up to time ¢; this is because the Markovian assumption
does not hold with respect to the observations O,, so we
may wish to consider policies that use all past observable
information to best account for the unobserved state. We
let P, denote the distribution over trajectories that would
be obtained by following policy 7, in the POMDP. Then,
given some discounting factor y € (0,1], we define the
value of policy 7, as

H
U;/(ne) = Z)/t_lEPH [Rt]

t=1

The task OPE under the POMDP model is to estimate
v, (1t.) (a function of P,) given D (drawn from Py).

Figure 1. (Color online) POMDP Model Under Logging
Policy m,

QQQ

R > 52' ................... , 53 ......

Notes. The arrows from S; to A; (red online) make explicit the depen-
dence of 71;, on the hidden state. Dashed circles denote variables unob-
served in our data.
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Figure 2. (Color online) POMDP Model Under Evaluation
Policy m,

Note. The arrows from O; to A; and from 7, to A;;; (red online) make
explicit the dependence of 7, on the current observation and previous
observable trajectory, and the nodes 7; and arrows into them (blue online)
make explicit the dependence of the observable trajectories on the data.

4. ldentification Theory

Before considering how to actually estimate v, (r,.), we
first consider the problem of identification, which is the
problem of finding some function 1 such that v, (r.) =
Y(Py) and is a prerequisite for identification. This is the
first stepping stone because P} is the most we could
hope to ever learn from observing D. If such a 1 exists,
then we say that v, (r,) is identified with respect to . In
general, such an identification result is impossible for
the OPE problem given unobserved confounding as
introduced by our POMDP model. Therefore, we must
impose some assumptions on P} for such identification
to be possible.

To the best of our knowledge, the only existing identi-
fication result of this kind was presented by Tennenholtz
et al. (2020) (with a slight generalization given by Nair
and Jiang 2021) and is only valid in tabular settings
where states and observations are discrete. We will pro-
ceed first by extending this approach to more general,
nontabular settings. However, we will note that there
are some restrictive limitations to estimation based on
this approach. Therefore, motivated by the limitations,
we develop a new and more general identification the-
ory that extends the PCI approach to the sequential set-
ting and easily enables efficient estimation.

4.1. Identification by Time-Independent Sampling
and Its Limitations
For our generalization of Tennenholtz et al. (2020), we
will consider evaluating policies 7, such that ng)(Ot, )
only depends on Oy and Aj;_1; that is, ngt) can depend
on all observed data available at time ¢ except for Oy and
past rewards. First, foreacht € {1,...,H},let Dy = (O;_1,
Ot, 0441, 44, Ry), and for any such tuple D = (0,0’,0”,
A, R) define o(D)=0, o’(D) =0’, 0”(D) = 0", a(D)=A,
and 7(D)=R. In addition, define the shorthand nﬁ”(DH)
= nff)(o'(Dt), ...,0'(D1),a(Dy_1),...,a(Dy)). Furthermore,
let Ping denote the measure on D;.y in which each tuple
D, is sampled independently according to its marginal dis-
tribution in P),. Under this measure, the overlapping

observations between these tuples (e.g., 0o’(D;) and
0(Dy+1)) may take different values. Then, given these
definitions, we have the following result.

Theorem 1. Under some reqularity conditions detailed in
Section EC.1 of the online appendix, there exist functions
p" defined by conditional moment restrictions under Py,
such that for every t € {1,...,H]}, we have

t
Ep, [Ri] = Ep,, [(D)] [ 1{a(Ds) = 7 (D1)}
s=1

x p®(o(Ds),a(Ds),0”(Ds-1)) | - 1)

Furthermore, under the conditions of Tennenholtz et al.
(2020, theorem 1), these regularity conditions are satisfied,
and the right-hand side (RHS) of Equation (1) is identical
to their identification quantity.

Because Pinq is a function of P, the RHS of Equation
(1) is a valid identification quantity, and applying this
result for each t € [H] identifies v, (77.). The full details of
the regularity conditions and nuisance functions gov-
erning this result are not very important for this work,
so they are deferred along with the proof of this theorem
to Section EC.1 of the online appendix. For our purposes,
the main takeaway of Theorem 1 is that there exists a
natural generalization of Tennenholtz et al. (2020, theo-
rem 1) to nondiscrete settings; although that result
was originally expressed as a sum over all possible
observable trajectories, we show that it can instead be
expressed as the expectation of a simple, estimable
quantity whose existence does not depend on discrete-
ness. Unfortunately, the expectation that naturally arises
is under Ping rather than Py,. This means that empirical
approximations of this expectation given n i.i.d. samples
from P, would require averaging over n’° terms, intro-
ducing a curse of dimension. Furthermore, this expecta-
tion clearly does not have many of the desirable properties
for OPE estimating equations held by many OPE estima-
tors in the simpler MDP setting, such as Neyman orthogo-
nality (Kallus and Uehara 2020, 2022).

4.2. Identification by PCI

We now discuss an alternative way of obtaining iden-
tifiability, via a reduction to a nested sequence of PCI
problems of the kind described by Cui et al. (2020).
These authors considered identifying the average treat-
ment effect (ATE) and other related causal estimands for
binary decision making problems with unmeasured
confounding given two independent proxies for the con-
founders, one of which is conditionally independent
from treatments given confounders, and the other of
which is independent from outcomes given treatment
and confounders. We will in fact leverage the refinement
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of the PCI approach by Kallus et al. (2022), which has
strictly weaker assumptions than Cui et al. (2020).

Our reduction works by defining random variables Z;
and W, for each t € [H] that are measurable with respect
to (w.r.t)) the observed trajectory 7y, as well as defining
random variables U, for each ¢ € [H] such that S; is mea-
surable w.r.t. U;. We, respectively, refer to Z; and W; as
negative control actions and negative control outcomes, and
we refer to U, as confounders. All triplets (Z;, W;, U;) must
be satisty certain independence properties outlined below.
Any definition of such variables that satisfy these indepen-
dence properties is considered a valid PCI reduction, and
we will have various examples of valid PCI reductions for
our POMDP model at the end of this section.

To formalize these assumptions, we must first define
some additional notation. Let P; denote the measure on
trajectories induced by running policy 7. for the first
t—1 actions and running policy 7, henceforth. Accord-
ing to this definition, P, = P}, and P, = Py, ;. In addi-
tion, let E; and P; be shorthand for expectation and
probability mass under P;, respectively. We visualize
these intervention distributions in the first part of
Figure 3.

Next, for each t€{1,...,H} we define E; = ng)(Ot,
’[tfl), and Dt = (Zt, Wt,At, Et,Rt). In addition, we will
refer to any random variable Y, as an outcome variable at
time t if it is measurable w.r.t. (R, D¢11.17). For any such
variable and a € A, we use Y}(a) to denote a random var-
iable with the same distribution that Y; would have if,

possibly counter to fact, action a2 were taken at time ¢
instead of A;. Under P}, we can interpret Y;(a) as the
outcome that would be obtained by applying 7. for the
first t — 1 actions, the fixed action a at time ¢, and then
71, henceforth (as opposed to the factual outcome Y
obtained by applying 7, for the first t — 1 actions and m,
henceforth). According to this notation, Y;(A;) = Y, always.

Given these definitions, we are ready to present our
core assumptions. Our first assumption is that the con-
founders U, are sufficient to induce a particular condi-
tional independence structure between the proxies Z;
and W,, as well as the observable data. Specifically, we
assume the following.

Assumption 1 (Negative Controls). For each t € [H] and
a€ A, and any outcome variable Y, that is measurable
w.r.t. (Ry, Dyy1.5), we have

Zt/At A P; Wt/ Et/ Yf(a) | Ut.

These independence assumptions imply that the
decision-making problem under P; with confounder U,,
negative controls Z; and W, action A;, and outcome
(R¢, Dys1:11) satisfy the PCI problem structure as in Cui
et al. (2020). We visualize this structure for the problem
at time ¢ in Figure 3. In addition, it requires that the
action-side proxy Z; is conditionally independent from
the next action E; that would have been taken under ngt) .
We may additionally include an observable context vari-
able X;, which may be useful for defining more efficient

Figure 3. (Color online) The Interventional Distribution 7; and the PCI Problem Under It

PCI Problem under P;

Notes. (Top) Visual representation of the interventional distribution ;. This is the distribution over trajectories obtained by taking actions fol-
lowing the target policy 7, for the first t — 1 actions and then taking all subsequent actions following 7;. (Bottom) Probabilistic graphical repre-
sentation of the corresponding proximal causal inference decision-making problem at time ¢ under P;, with outcome variable Y; = ¢(R, D11.11)
for arbitrary ¢. The variables Z; and W; are conditionally independent action-side and outcome-side proxies for the true (unobserved) con-

founder U,.
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reductions. In this case, the conditional independence
assumption in Assumption 1 should hold given both U;
and X;, and in everything that follows Z; W,, and U,
should be replaced with (Z,, X;), (W,, X)), and (U,, X)),
respectively, as in Cui et al. (2020). However, we omit X;
from the notation in the rest of the paper for brevity.

Next, our results require the existence of some bridge
functions, as follows.

Assumption 2 (Bridge Functions Exist). For each t € [H]
and a€ A, and any given outcome variable Y; = @(R;,
Dy+1.:), there exists functions g®) and h'*9) satisfying

E; [q(Z,, A | Uy, Ay =a) =P (Ar=a|U) " as.
and E; [h"D (W, Ap) | U, Ar =a)
=E[1{E;=A} YU, Ar=a] as..

Implicit in the assumption is that P; (A; = a|U;) > 0. We
refer to the functions g as action bridge functions and
W9 as outcome bridge functions. These may be seen as
analogues of inverse propensity scores and state-action
quality functions, respectively. As argued previously by
Kallus et al. (2022), assuming the existence of these func-
tions is more general than the approach taken by Cui
et al. (2020), who require complex completeness condi-
tions. We refer readers to Kallus et al. (2022) for a
detailed presentation of conditions under which the
existence of such bridge functions can be justified, as
well as concrete examples of bridge functions when the
negative controls are discrete, or the negative controls
and Y; are defined by linear models.

In the case of both Assumptions 1 and 2, the assump-
tion depends on the choice of proxies Z; and W, and on
the choice of confounders U;. In addition, the parts of
(Oy, T4_1) that ngt) may depend on determines what vari-
ables E; is a function of, so the evaluation policy 7, also
affects the validity of Assumption 1. For now, we just
emphasize this important point and present our main
identification theory, which is valid given these assump-
tions. However, we will provide some concrete exam-
ples of feasible and valid choices of (Z;, W, U;) that
satisfy Assumption 1 for different kinds of policies 7. in
Section 4.3. In addition, we provide an in-depth exami-
nation of the additional conditions under which
Assumption 2 holds for an example tabular setting in
Section 4.4.

Theorem 2. Let Assumptions 1 and 2 hold. Define ¢ and
h" as any solutions to
E; [q(Z, A) Wy, Ar=al =P (Ar=a|W,) ! as. Vac A,
)
E; (KO (We, A Z1,Ar=a] =By [I{E, = A} Y| Zi, A =a]
a.s. YacA, ©)]

whereY y=Ry, and for every t < H, we recursively define

Yi1=Riq+y (Z HO(Wi,a) +q%(Z4, Ar)
acA

X (I{A; =E}Y; — h(t)(wt/At))) - @

Also, let 1, = Hé;%]l{Es = As}q¥)(Zs, As). Then, we have

vy(1e) = Ep, [Ypg (Th)], where

H
¢DR (ty) = Z Vt_l <T]t+1Rt + T]tz h(t)(wtr a)
t=1

aeA

- mq“)(zf,A»h“)(wt,Af)) 0

Because Ep, [ (t)] is fully defined by P, this is a
valid identification result. As detailed in our proof, the
existence of solutions to Equations (2) and (3) is guaran-
teed given our assumptions. Comparing with Theorem
1, this result has many immediate advantages; it is writ-
ten as an expectation over P, and therefore may be ana-
lyzed readily using standard semiparametric efficiency
theory, and although Equations (2) and (3) may appear
complex given that they are expressed in terms of the
intervention distributions Pj, this can easily be dealt
with as discussed later. We also observe that Equation
(5) has a very similar structure to the double reinforce-
ment learning (DRL) estimators for the MDP setting
(Kallus and Uehara 2020), where 1) and ¢*) are used in
place of inverse propensity score and quality function
terms, respectively. This is very promising because DRL
estimators enjoy desirable properties such as semipara-
metric efficiency in the MDP setting (Kallus and Uehara
2020). Indeed, in Section 5, we show that similar proper-
ties extend to estimators defined based on Equation (5).
At a high level, the proof of Theorem 2 works by
defining a series of of outcome variables Y; such that, for
each PCI problem at time t € [H] under distribution
P; and with outcome variable Y;, the policy value
obtained by intervening at time t with 7, is equal to
Ep, [Ri + YRi41+ -+ +YH'Ry]. In the base case of t=H,
this property is trivially satisfied with Y,=R;, because
under Py, all prior actions prior to time H are taken
following m,. Conversely, for t<H, we establish via
backward induction that this holds with Y; defined
according to Equation (4); this works because the term
multiplied by y in Equation (4) is the doubly robust
influence function for the PCI problem at time f, so
E; [Yi-1] = Ep, [Ri—1] + YEj,; [Y¢]. Similarly, ¢, (1) is
the doubly robust influence function for the PCI prob-
lem at t=1and so Ep, [{pg (1)) = E5 [Y1] == 1) (7,).
That is, we recursively apply the improved identifica-
tion theory of Kallus et al. (2022) to a nested sequence of



Downloaded from informs.org by [132.174.252.179] on 02 October 2023, at 12:17 . For personal use only, all rights reserved.

Bennett and Kallus: Proximal Reinforcement Learning
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

7

PCI problems. In each step of the induction, we apply
Assumptions 1 and 2 with the specific outcome variable
Y. We provide full proof details in Section EC.2 of the
online appendix, where we also present a slightly more
general result that allows for alternatives to ydr that
instead resemble importance sampling or direct method
estimators for the MDP setting.

4.3. Specific Proximal Causal Inference
Reductions and Resulting Identification

Next, we provide some discussion of how to actually
construct a valid PCI reduction; that is, how to choose
Z;, W;, and U, that satisfy Assumption 1. We provide
several options of how this reduction may be performed
and discuss in each case the assumptions that would be
required of the POMDP and 7, for identification based
on our results. In all cases that we consider, we would
need to additionally justify Assumption 2, which implic-
itly requires some additional completeness conditions
on the choices of Z;, W;, and U,. Furthermore, the practi-
cality of any given reduction would depend heavily on
how well correlated W; and Z, are for each t, which in
turn would impact how easily the required nuisance
functions g and ¥ could be fit. We summarize these
reductions in Table 1.

4.3.1. Current and Previous Observations. Perhaps the
most simple kind of PCI reduction would be to define
Ut = St, Wt = Ot/ and Zt = (Ot—ert—ert—l)' That jS, we
use the current hidden state as confounders, and we use
both the observation of S; and the previous observation,
action, and reward triple as proxies for O;. For this defini-
tion, we define Ay = Ry = 0. It is easy to verify that thisis a
valid PCI reduction (i.e., satisfying Assumption 1) as long
as ngt) depends on (1, O;) via O; only. In addition, it is easy
to verify that this reduction remains valid if we replace Z,
with O;_1, which gives us a very simple and elegant reduc-
tion at the slight cost of fewer treatment-side proxies.

This kind of reduction may be relevant in applications
where the current observation of the state is considered
to be rich enough for decision making, but where none-
theless it is possible that confounding is present. One
example of such a setting is a noisy observation setting,
where O; is a direct observation of S; that may be cor-
rupted with some probability, as discussed in more

Table 1. Summary of Different PCI Reductions

detail in Section 6. Another example where such a reduc-
tion may be desirable is when we wish to consider poli-
cies that are functions of O; only for reasons of
simplicity /interpretability. For example, if we wish to
evaluate an automated policy for sepsis management,
we may wish that the policy is a simple function of the
patient’s current state that can be understood and
audited by doctors.

4.3.2. Current and k-Prior Observation. An alternative
to the previous reduction would be to define to define
U; =(S4,Si_p41), W;=0,, and Z; = O;_p, for some inte-
ger k > 2, where k' = min(k, t). In this reduction, we can
no longer include any action or reward in Z;, as this
would break Assumption 1 in general given the defini-
tion of P;. This reduction allows for any policy where
ngt) depends on (7;,0;) via the data from the k-most
recent time steps; thatis, (O 4 1.4, At—p41:60-1, Ri—p41:4-1)-
This kind of reduction would be useful in applications
where it is necessary to consider policies that consider a
past history of observations rather than only the most
recent observation. For example, if we were considering
the task of training a robot to act within an environment
that it can only observe part of at each time step through
its camera, it may be necessary to consider policies that
use several recent observations to build a more accurate
map of the environment. However, one limitation of this
reduction compared with the previous is that it uses two
states as its confounder, which may make Assumption 2
more difficult to satisfy. In addition, because Z; and W;
are separated in time, if k is large, they may be weakly
correlated, making bridge functions more difficult to fit.

4.3.3. Two Views of Current Observation. Finally, we
consider a different kind of reduction, which is valid
when we have two separate views of the observation;
that is, we can partition each observation O; as

O = (OEO),O?)), where OEO) J.LO§1)|St. In this case, we
can define U;=S;, W; = OEU, and Z; = o§0>. This allows

us to evaluate any policy where ) may depend on all of

T, except for Offt).

This kind of reduction could be appealing in many
settings. First, it may be useful for the same kinds of
applications as the previous kind of reduction, as it

PCI reduction Wi Uy ngt) can take as input
Current and previous observations (simple) 01 O, S, O,

Current and previous observations (extended) O¢-1,A11,Ri 1 Oy Sy O,

Current and k-prior observations O O, St, St ka1 (O, t1-1) \ Tr—pr
Two views of current observations Oio) Oil) S, (O, t1-1) \ Og:)f)

Notes. For each, we provide the explicit reduction in terms of the triplet (Z;, W;, U;), and we summarize what kinds of
policies can be evaluated under the respective reduction. For the third row, recall that k¥ = min(k, f), and for the fourth

row, recall that O; = (Oio), Oﬁl}), where O£O> 1 OEU |S;.



Downloaded from informs.org by [132.174.252.179] on 02 October 2023, at 12:17 . For personal use only, all rights reserved.

8

Bennett and Kallus: Proximal Reinforcement Learning
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

allows us to consider policies defined on a history of
past observations without incurring the costs of the same
costs in terms of satisfying Assumption 2 or estimating
bridge functions. This reduction could be particularly use-
ful when there are some observation variables that cannot
be used directly for decision making. For example, in the
personalized education example considered in Section 1,
there may be certain testing-based metrics that were speci-
fically collected with the logged data, but that would not
be available when a policy was deployed. Similarly, in
robotics settings as discussed earlier, there may be cheap
sensors that are always available and expensive sensors
that are only available in the logged data (Pan et al. 2020).
In this case, we could include all such unavailable covari-
ates in OEO), and the remaining covariates in Oﬁl), and this
would allow policy evaluation with no effective restriction
on the kinds of policies considered. Similarly, if certain sen-
sitive covariates were not allowed to be included in poli-
cies, for example, for ethical reasons, such covariates could
be included in O".

4.4. Example: Tabular POMDPs Using Previous
and Current Observation as Proxies
Finally, we conclude this section with a discussion of
our key identification assumptions for a simple tabular
case, where we use the previous and current observa-
tions as proxies for the unobserved state as described in
Section 4.3.1. That is, we consider settings where U; = S,,
Z; =01, W;=0,, and S and O are both finite.

As argued previously, this choice of proxies satisfies
Assumption 1 as long as T(ff) depends on Oy, ;1 via O;
only. However, it remains to also justify Assumption 2.
The following proposition allows us to rewrite the
bridge equations for this simple setting in terms of some
conditional probability matrices under the POMDP and
evaluation policy 7.

Proposition 1. Let PY(O|S) denote the |O| by |S]
matrix of the distribution of O; given S; in the POMDP,
and let Pgt)(S’ |S) denote the |S| by |S| matrix of the dis-
tribution of S;_q given Sy under rollout by m,. In addition,
for any outcome variable Y, = ¢(Ry, Dyy1.1r) and a € A, let
E;[1{E; = A:}Y:|S,a] denote the |S|-length vector of
values of 1{E; = A} Y; given Sy and A;=a under Pj, and
let P;(11|S)71 denote the |S|-length vector of values of
P(A; :11|St)_1 under Pj. Then, using proxies Z; = O;_1
and W;= Oy, and confounders U,;=S,, the bridge equations
in Assumption 2 for each t correspond to solving

P‘(zt)(sr | S)TP(t)(O | S)Tq(t)(o’ ll) — Pf(a | 5)71 VYae A
and
PY(O|8) h"?(0,a) =E;[1{E; = A;} Y(|S,a] VacA,

where ¢(0,a) and h'*? (0, a) are the |O|-length vector of
values of ¢V (Zy,a) and h'* ) (W, a), respectively.

This proposition follows trivially by applying the
fact that Z; = Oy, Wy=0, and U;=5;, and explicitly
expanding out the conditional expectations in the bridge
equations in terms of Pgt)(S’ |S) and PY(O|S) given the
Markovian property of the POMDP conditioned on the
unobserved states.

A trivial corollary of the proposition is that, if | O] > |S|,
and P®(0[S) and P(S’|S) are both full rank, then the
previous equations are always solvable for all 2 € A, no
matter the outcome variable Y. This follows by using any
pseudo-inverse for PY(s’1S)" PH(0|S)T and PH(O|S)".
The conditions that |@] > |S| and that PY(O|S) is full
rank are independent of the behavior or evaluation pol-
icies, and they essentially require that all distributions
over states imply different distributions over observa-
tions; that is, there are no “invisible” aspects of S;
that don’t affect O;. Conversely, the assumption that

P,(f) (S8’|S) is full rank depends on the evaluation policy
1t,. However, it may be justified for all possible evalua-
tion policies, for example, if the |S| by |S| conditional
probability matrix defining the transition kernel P(Tt)(St
|Si—1,Ai—1 = a) were invertible for every a € A. In other
words, we can justify Assumption 2 under some basic
conditions on the underlying POMDP, which may be
reasoned about on a problem-by-problem basis.

Finally, although the previous analysis is specific to
our example setting, the intuition is very general; for
Assumption 2 to hold, we need that the proxies are suffi-
ciently well correlated with the confounders (e.g., that
PY(0|S) and PY(S’|S) are full rank), and that they con-
tain at least as much information as the confounders
(e.g., that we also have |O] > |S]).

5. Policy Value Estimators

Now we turn from the question of identification to that
of estimation. We will focus on estimation of v, ()
based on the identification result given by Corollary
EC.1 in the online appendix. We will assume in the
remainder of this section that we have fixed a valid PCI
reduction that satisfies Assumptions 1 and 2. A natural
approach to estimating v, (r,) based on Corollary EC.1
in the online appendix would be to use an estimator of
the kind

A(n I~ i
90 (m0) =Y o (117), ©)
i=1

where l/pDR is an approximation of 1dr using plug-in esti-
mators for the nuisance functions /¥ and g for each t.
Specifically, to eschew assumptions on the nuisance func-
tion estimators aside from rates, we will use a cross-fitting
estimation technique (Zheng and van der Laan 2011, Cher-
nozhukov et al. 2018). Namely, fixing K> 2, for each

Atk
k=1,...,K:(1)fort=1,...,H, we fit estimators h(t ) and
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4% only on the observed trajectories i=1,...,n with

i#k—1(modK); (2) and then for i=1,...,n with
i=k—1(modK), we set J)DR (Tg)) to be Y, (TE}) where

NI
we replace h*),q®) with A ),q(t’k). Then we use these to

construct an estimator by taking an average as in Equation
(6). We discuss exactly how we fit nuisance estimators
given trajectory data in Section 5.3. Until then, for Sections
5.1 and 5.2, we keep this abstract and general: We will only
impose assumptions about the rates of convergence of nui-
sance estimators and that we used cross-fitting so that T}?

~(tK) .
is independent of Q' ), Gtth

wheneveri = k — 1 (mod K).
5.1. Consistency and Asymptotic Normality

We first consider conditions under which the estimator
ﬁ(y”)(ne) is consistent and asymptotically normal. For
this, we need to make some assumptions on the quality
of our nuisance estimators.

Assumption 3. Consistent and bounded nuisance esti-
mates: letting WV represent any of {q"(Z;,As):te€[H]}
U {h)(Wy,a) : t € [H],a € A}, we have that for each k € [K],

& ®) & ®
D) W™ =Wy, p, =0p(1), ) W™ |l = Op(1), and (3)
[Wleo < co.

Nuisance estimation rates: (1) for each te€[H|,a€ A,

N A(trk)
kelKl, 14“P(Zi,A) —qNZuA)lp, IR (Wia) — O

(Wea)llo,p, =0p(n~1/?), (2) for each t € [H],t' <t,a€ A,

N4 ’ ’\(trk)
ke [K], 13" (Ze, Ar) =4 (Ze, Av)lly p, IR (Wra) = h©O

Wea)ll,p, = 0p(n~Y/?), and (3) for each te[H]t <t,
ke[Kl, 1472y, Av) = 4" (Zo, Ay, 1G9 (21, A) —
4NZ, Ao, p, = 0p(n~1/2). In all of these, the randomness

in each bound is with respect to the sampling distribution
of the data.

Essentially, Assumption 3 requires that the nuisances
q" and h" are estimated consistently in terms of the
L p, functional norm for each t and that the correspond-
ing product-error terms converge faster than n~'/2 rate.
This could be achieved, for example, if each nuisance by
itself were estimated at a 0,(n~'/*) rate, which notably
permits slower-than-parametric rates and is obtainable
for many nonparametric machine-learning-based meth-
ods (Chernozhukov et al. 2018). In particular, there is a
very established line of work on establishing rates like
these for conditional moment problems, like those defin-
ing g% and 1", in terms of projected error (e.g., obtain-
ing rates for B[R (W, A)) — hOW, AD|Z4, Alll) using,
for example, sieve methods (Chen and Pouzo 2009,
2012) or minimax methods with general machine
learning classes (Dikkala et al. 2020). These can be trans-
lated to corresponding rates for the actual L, error
(e.g., ||ﬁ(t'k)(Wt,At) —hY(W,, A)ll,) given assumptions
on so-called “ill-posedness” measures (Chen and Pouzo

2012), which can be used to ensure our required rates.
Alternatively, there exist methods that can directly obtain
L, error rates for such conditional moment problems, by
leveraging so-called “source conditions” (Carrasco et al.
2007, definition 3.4), for example, using regularized sieve
methods (Florens et al. 2011), neural nets with Tikhonov
regularization (Liao et al. 2020) or kernel methods with
spectral regularization (Wang et al. 2022). The product-rate
condition allows for some trade off where, if some nui-
sances can be estimated faster, then other nuisances can be
estimated even slower than o,(n~1/*). In addition, we
require a technical boundedness condition on the uniform
norm of the errors and of the true nuisances themselves.
Given this, we can now present our main consistency and
asymptotic normality theorem.

Theorem 3. Let the conditions of Theorem 2 be given, and
assume that the nuisance functions plugged into z?;,")(ng)
are estimated using cross fitting. Furthermore, suppose that
the nuisance estimation for each cross-fitting fold satisfies
Assumption 3. Then, we have

\/ﬁ(ﬁ;")(ne) —0,(n.)) = N(0,0%g) in distribution,

where 0%y = Ep, [(Ypg (Th) — U)/(T[e))z]-

The key step in proving Theorem 3 is to establish that
Ydr enjoys Neyman orthogonality with respect to all
nuisance functions and in particular characterizing the
unique product structure of the bias. Having established
this, we proceed by applying the machinery of theorem
3.1 of Chernozhukov et al. (2018). We refer the reader to
the appendix for the detailed proof.

Orne technical note about this theorem is that there
may be multiple ) and 1) that solve Equations (2) and
(3), which creates some ambiguity in both Assumption 3
and the definition of Yy (tx). This is important because
the ambiguity in the definition of {, (1) affects the
value of the asymptotic variance o2y. In this case, we
implicitly assume that Assumption 3 holds for some
arbitrarily given solutions g and h*) for each t € [H],
and that 02 is defined using the same g*) and h®) solu-
tions. Thus, our consistency result in Theorem 3 holds
even when bridge functions are nonunique.

Finally, we briefly consider how this variance grows
in terms of H. Because ¢z (TH) consists of a sum of H
terms, each of which is multiplied by 7, = [[5,¢*"
(Zy,Ay) 1{Es = Ay}, we can generally bound the effi-
cient asymptotic variance by Zgl ]_[;=1||q(s)(ZS,AS)||Oo
(g (Zs, Al + Y ge Al W @)l + 19°(Ze, Al IR (W,
Ay)|lp)- Therefore, assuming that all functions h)(W;, A;)
and qY(Z;, A;) have ||- ||, norm of the same order H
grows, the asymptotic variance should grow roughly as
O(H?) as H — co. Conversely, if the inverse problems
for ¥ and h"Y grow increasingly ill-conditioned as ¢
increases, then the norms of these functions may grow,
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in which case the growth of asymptotic variance may be
worse than quadratic.

5.2. Semiparametric Efficiency

We now consider the question of semiparametric efficiency
of our OPE estimators. Semiparametric efficiency is
defined relative to a model M, which is a set of allowed
distributions such that P, € M. Roughly speaking, we
say that an estimator is semiparametrically efficient
w.r.t. M if it is regular (meaning invariant to Op(1/+/n)
perturbations to the data-generating process that keep it
inside M), and achieves the minimum asymptotic vari-
ance of all regular estimators. We provide a summary of
semiparametric efficiency as it pertains to our results in
Section EC.4 in the online appendix, but for the purposes
of this section it suffices to say that, under conditions we
establish, there exists a function ¢ € Ly p, (1), called
the “efficient influence function” w.r.t. M, and that an
estimator z?(,")(ng) is efficient w.r.t. M if and only if
\/ﬁ(ﬁg,")(ﬂe) - Uy(ne)) = 7171/22?:1 Yoge (T%)) + Op(l)/ that
is, asymptotically it looks like simple sample average of
this function.

One complication in considering models of distribu-
tions on 7y is that technically the definition of v, (r,)
depends on the full distribution of 7{!'. In the case that
the distribution of 74 corresponds to the logging distri-
bution induced by some behavior policy and underlying
POMDP that satisfies Assumption 2, it is clear from The-
orem 2 that using any nuisances satisfying the required
conditional moments will result in the same policy value
estimate v, (r,). However, if we allow for distributions
on 7y that do not necessarily satisfy such conditions, as
is standard in the literature on policy evaluation, it may
be the case that different solutions for &) and g1 result
in different values of Ep[1; (7x)]. To avoid such issues,
we consider a model of distributions where the nui-
sances and corresponding policy value estimate are
uniquely defined, as follows.

Definition 1 (Model and Target Parameter). Define /\/l(eo)
as the set of all distributions on 7y, and for each t > 1
recursively define

1. M,p = H;% qEPS)(Zs/As) ]l{As = Es}/

2. Pf,p(At |W;) = EP[m,p | Wi, At]Pp(A|Wy),

3. Tip:Lyp(Zt,Ar) = Lo p(Wi, A), where (T pg)(Wi, Ar)
= EP[T]t,pg(Zt,At) | Wi, A],

4. MY = MY A {P: T, p is invertible and P} (Al AR
€ Lo, p(Wi, Ap)},

5. 4 (Z1, A) = T; p(P; p(Ai| W) ),
where 1-3 are defined for Pe M"Y, and 5 for
P e MY, Furthermore, let T; p denote the adjoint of
T; p, define Yy=Ry;, and for each t € [H] and P € Mgt)
recursively define

6.ty p(Zt, Ar) = Epln, p 1{A: = E} Y p|Z1, A,

7. h%)(Wt,At) = (T;,P)il(rut,P(Zt/At))/

8. Yi1,p=Ri1+7(D seu hg)(wfﬂ) + qg)(ztht)(]l{Af
= Ei} Yo p — 1 (W, AY)),
where the latter is only defined for ¢>1. Finally, let
Mpcr = MEH), and for each P € Mpcr define

V(P)=Ep lz h%)(Wl,a)] .

aeA

This definition is not circular because 1, , =1 for
every P, and so we can concretely define the first set
of quantities in the order they are listed previously for
each t € [H] in ascending order, and the second set
in descending order of t. The case that P =7, it is
straightforward to reason that 7, ,, , q%i , hgz ,and Yy p,
agree with the corresponding definitions in Theorem 2
and Corollary EC.1 in the online appendix T », and T} p,
correspond to standard conditional expectation opera-
tors under Pj, P; 5, (A;|W;) = P; (A;|W;), and V(P) =
v, (7t.). Therefore, Mpcy is a natural model of observational
distributions where the required nuisances are uniquely
defined, and V(P) is a natural and uniquely defined
generalization of v, (r,) for distributions P that do not
necessarily correspond to actual logging distributions
satisfying Assumption 2.

Finally, we assume the following the following on
the actual observed distribution Py.

Assumption 4. For every sequence of distributions P,
that converge in law to Py, there exists some integer N
such that for all n> N and t € [H] such that Ty p, and
T; p, are invertible. Furthermore, for all such sequences
and t € [H], we also have
1. im infy e infy(z,, a,)), 5, 21Tt 2, f(Ze A, , > 0,
2. lim inanoo inf”g(Wr,At)\h,p,, 21||T;/P”g(Wt,At)||LP” > 0,

3. lim sup,_, |IP; p (Ai|Wp) "l < co.

In addition, for each t € [H] the distribution Py satisfies
4. inf”f(z,,Af)nz,pbzl||Tt,7>nf(ZtrAt)||z,7>h >0,

5. infygw,, A, 5, 21177 p, &(We Adll, 5, > 0.

The condition that T; p, and T; , are invertible for
large n ensures that the model Mpc; is locally saturated
at Py, and the additional conditions ensure that the nui-
sance functions can be uniformly bounded within para-
metric submodels. These are very technical conditions
used in our semiparametric efficiency proof, and it may
be possible to relax them. In discrete settings, these con-
ditions follow easily given P}, € Mpcy because in this set-
ting the conditions can be characterized in terms of
the entries or eigenvalues of some probability matrices
being bounded away from zero, which by continuity
must be the case when P, is sufficiently close to Pj.
Importantly, the locally saturated condition on Mpcy at
Py means that the relevant tangent space is unrestricted.
(See Section EC.5.1 in the online appendix for a
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discussion of issues with the tangent space in past work
in the absence of local saturation.)

Given this setup, we can now present our main effi-
ciency result.

Theorem 4. Suppose that Py is the observational distribu-
tion given by a POMDP and logging policy that satisfies
the conditions of Theorem 2, and let Assumption 4 be given.
Then, g (Th) — vy(7t.) is the efficient influence function
for V(P) at P = P.

Finally, the following corollary combines this result
with Theorem 3, which shows that under the same con-
ditions, if the nuisances are appropriately estimated
then the resulting estimator will achieve the semipara-
metric efficiency bound relative to Mpc;.

Corollary 1. Let the conditions of Theorems 3 and 4 be
given. Then, the estimator v(")(m) is semiparametrically
efficient w.r.t. Mpcr.

5.3. Nuisance Estimation

Finally, we conclude this section with a discussion of how
we may actually estimate g and #®. The conditional
moment Equations (2) and (3) defining these nuisances
are defined in terms of the intervention distributions P,
which are not directly observable. Therefore, we provide
the following lemma, which reframes these as a nested
series of conditional moment restrictions under Py,

Lemma 1. Let the conditions of Theorem 2 be given. Then,
for any collection of functions gV, ...,q" and hV, ..., K,
these functions satisfy Equations (2) and (3) for every t €
[H] if and only if for every t € [H], we have

Ep, |1, (g(wt,Aoq(”(zt,Af) - Zg(wt,a)ﬂ =0
aeA
Vmeasurable g
and  Ep, [n, f(Z, A (Wy, A)) = I{E: = A} Y1) =0
Vmeasurable f,

where n; and Y, are defined as in Theorem 2.

We can observe that the moment restrictions defining
q" for each t depend only on ¢’ for #' <t, and those
defining h® for each t depend on h*) for ' >t and on
q"") for every t”” # t. This suggests a natural order for
estimating these nuisances, of g through g™ first, and
then 1" through h)). We now take this approach, solv-
ing an estimate of the continuum of moment conditions
in each round. (An alternative approach may be to
jointly solve for all 2H nuisances together.) Set

u(g,g) =1, <g(Wt,At)q(Zt/At> >3 (Wf'”)>

aeA

U, f) = il f(Zs, A)(H(We, Ar) = 1{E, = A} ),
where 7, and Y, are estimated by plugging in the

preceding nuisance estimators (in the ordering described
previously). Following Bennett and Kallus (2023), the
continuum of moment conditions {g:Ep, U%"(q,¢) =
0 Vg} or {h:Ep,U™Y(h,f)=0 Vf} can be efficiently
solved using a regularized, variational reformulation of
the optimally weighted generalized method of moments
(Hansen 1982), known as the variational method of
moments (VMM). This gives our following proposed esti-
mators for solving for this nuisance bridge functions.

Proposition 2. Our VMM nuisance estimators for 4V, ...,
g™ and KO, ..., h") take the form

q" = arg minsup E,[U"%"(q,9)] ——E (U9, )]
qEQ(t) geg(f)

+RT(q) — R@f”)(g),

h = arg min sup E,[U"(h,f)] — E (U (hy,£)?]

hen  feF®
+ RN Ry — RED(P),

and can be sequentially solved for in the order gV through
q" then ™ through KV, where QY and H"® are hypothesis
classes for the functions ") and h®), respectively, G* and F©
are some critic function classes corresponding to the set of
moments we are enforcmg R(q D, R&HD, RWD and RYY are
reqularizers, and §* and 1" are some prior estimates of q\"
and W), which are arbitrarily defined and need not necessarily
be consistent.

There are many existing methods for solving empiri-
cal minimax equations of these kinds for different kinds
of function classes Q¥ and H®, as well as different
kinds of corresponding critic classes " and F*. For
example, see Bennett and Kallus (2023) for a detailed
description of how such estimators may be implemen-
ted for both kernel and neural classes. In particular, in
Section EC.6 of the online appendix, we provide a
detailed derivation and description of an efficient pro-
cess for solving these equations when the two critic clas-
ses are given by reproducing kernel Hilbert spaces
(RKHSs), and we regularize them using squared RKHS
norm, which is very generic and allows for any function
classes QY and H" that we can efficiently minimize
convex losses over.

6. Experiments

Finally, we present a series of experiments to demon-
strate our method and theory. We present two sets of
experiments. First, we present a simple toy scenario,
where we explore the behavior of the methodology and
provide a “proof of concept” of our theory. Second,
motivated by the findings of our first experiments, we
benchmark our methodology in a confounded variation
of the more complex “sepsis simulator” environment of
Oberst and Sontag (2019), which is a better reflection of
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real application. For full details of all experiments, see
our code at https: // github.com /CausalML/ProximalRL.

6.1. Experiment 1: Toy Scenario

6.1.1. Experimental Setup. For our first experiment, we
consider a simple POMDP, which we refer to as NoisyOss,
which is a time-homogeneous POMDP with three states,
two actions, and three observation values. We denote these
by S= {51,52,53}, A= {ﬂl,ﬂz}, and O = {01,02,03}. We
detail the state transition, reward, and initial state distribu-
tion of the POMDP in Section EC.7 of the online appendix.
The observation emission process for NoisyOpgs is given
Pg)(o,- Isj) = 1{i = j} (1 — B€noise /2) + €/2, where €pise is a
parameter of the POMDP. This models a noisy observation
of the state, because we observe the correct state with prob-
ability 1 — €noise, Or @ randomly selected incorrect state oth-
erwise. Thus, if €noise =0 there is no confounding, and
greater €ngise indicate more noisy measurements.

We collected logged data using a time-homogeneous
behavioral policy 7T\°5*O%, with a horizon length H=3.
We considered three different evaluation policies ey,
nf}ard, and T(Sphm, which are all also time-homogeneous
and depend only on the current observation and are
detailed in Section EC.7 of the online appendix. These
polices are so named because ;"> and 7@ are
designed to have high and low overlap with the logging
policy, respectively, and 7eF"™ is the optimal policy
when €nise is sufficiently small. Therefore, these cover a
wide range of different kinds of policies. In all cases, we
sety=1.

We performed policy evaluation with the following
methods: (1) Ours is the efficient estimator discussed in
Section 5, with nuisance estimation performed using the
sequential procedure described in Section 5.3; (2) MEANR is
a naive unadjusted baseline given by 137 S »fR®;
(3) MDP is a model-based baseline given by fitting a tabu-
lar MDP to the observed data, treating the observations as
states, and computing the value of 7, on this model; and
(4) TIS is a baseline based on the result in Theorem 1, with
estimated plugged-in nuisances and replacing the expecta-
tion under Piq with its empirical analogue. We provide
more detail about each of these methods in Section EC.7
of the online appendix. In the case of our method, we
used a simplified version of the “current and previous
observation” PCI reduction given by the first row of Table 1,
where Z; = O;_1 and W;=0O,, which is valid because we
are considering evaluation policies that only depend on O.

6.1.2. Results. We now present results policy evalua-
tion for the previous scenario and policies, using both
our method and the previous benchmarks. Specifically,
for each n € {200,500,1,000,2,000,5,000,10,000}, 7, € {rs",
mhard P} and € € {0,0.2}, we repeated the following
process 100 times: (1) we sampled n trajectories with

horizon length H=3, behavior policy "™ and noise

level enoise = €; and (2) estimated vy (1, ) using these n tra-
jectories for each method.

In Figure 4, we display results for the confounded
case where €npise = 0.2 (i.e., POMDP setting). Here, we
see that our method is consistent, whereas the MDP
method, which is only designed to work in MDP set-
tings, is not. The only exception is for estimating the
value of 7;"”; however, this is only because MDP just
happens to have very small bias for estimating this pol-
icy. Although our method is consistent, it does have
more variance than the MDP benchmark as it tackles a
much more complex estimation problem. As expected,
the unadjusted MEaNR benchmark is inconsistent as it
only estimates the value of the logging policy. Finally,
despite our identification theory in Section 4.1, the TIS
method in general performs very poorly. This is unsur-
prising, because as discussed in Section 4.1, the identifi-
cation result (as an expectation over Pi,q) may not lend
itself to good estimation by plugging in empirical esti-
mates into the identification formula. For comparison, in
Section EC.7 of the online appendix, we present addi-
tional results for the unconfounded case, €ppise = 0 (i-€.,
MDP setting), where we see that the MDP baseline
becomes consistent due to the absence of confounding
and that our method remains consistent and has less
variance than in the POMDP setting shown here but still
more than the MDP baseline, which is expected as it still
solves a more complex estimation problem to adapt to
both the MDP and POMDP settings.

6.2. Experiment 2: Sepsis Management

6.2.1. Experimental Setup. Next, we consider a more
“real world”-inspired scenario. Specifically, we consider
a scenario based on the sepsis management simulator of
Oberst and Sontag (2019). Their environment considers
the active management of sepsis for patients, whose
state is described by heart rate, blood pressure, oxygen
concentration, glucose level, and whether the patient is
diabetic. At each time step, the action taken consists of
three binary components: whether to place the patient
on/off antibiotics, whether to place them on/off vaso-
pressors, and whether to place them on/off a ventilator,
giving a total of eight unique actions. After taking each
action, we receive a reward based on the number of
components of the state taking values within safe
ranges, with a maximum reward of 1 if all indicators are
safe and the patient is off all three treatments and a mini-
mum reward of —10 if three more indicators are unsafe,
with various intermediate values. The system uses
almost identical parameters as in Oberst and Sontag
(2019) with some minor modifications, and we provide a
more detailed description in the online appendix.

To introduce confounding, we only observe a cen-
sored version of the state; for each patient, with 25%
probability, we do not observe whether that patient is
diabetic (i.e., in all observations for that patient the
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Figure 4. (Color online) Experiment Results with €pgise = 0.2
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,and 7P, respectively. On the left, we display the mean policy

value estimate of each method, where the solid black line corresponds to the true policy value, and the shaded regions correspond to one stan-
dard deviation of the policy value estimates. On the right, we display the corresponding mean squared error of these estimates, where the

shaded regions correspond to 95% confidence intervals for these values.

“diabetic” indicator is set to “False” regardless of whether
the patient is diabetic or not). That is, the true state con-
tains both an indicator of whether the patient is diabetic
or not and whether their diabetes status is censored, but
for the observed state we instead only observed a possibly
censored diabetes indicator. Because all other components
of the state are discrete, this means that both state and
observation spaces are discrete (i.e., tabular), with a total
state space size of | S| = 2,880, and observation space size
of |O| =1,440.

We experimented on this scenario over a time horizon
of H=3 and a discount factor of y=1. We first con-
structed our behavioral policy 7, by computing the opti-
mal policy in the true POMDP 7t*, and defining m;, by
introducing e-greedy sampling to 77* with € = 0.1; that
is, we defined mj, = 0.97* + 0.17tir, Where ¢ is a pol-
icy that takes all 8 actions with equal probability. Then,
we sampled 10,000 observational trajectories using 7,
and defined 7, to be the predicted optimal policy fit on
these trajectories using dynamic programming on a sim-
ple count-based tabular MDP model, treating the obser-
vations Oy as the true states S;. Because the observations

O are confounded, we expect that 7, should nof neces-
sarily be an estimate of the actual optimal policy 7*.

Next, given the fixed policies 1, and 7, coming from
the first stage of the experiment, we repeated the follow-
ing procedure 50 times: (1) we sampled 10,000 observa-
tional trajectories using 7, and (2) we estimated vy (7t)
using those trajectories as input for all methods. We per-
formed policy evaluation with our method, as well as
the MeEanR and MDP benchmarks, as in the previous
experiment. In the case of our method, we experimented
with a large range of hyperparameter values, as detailed
in the online appendix. In addition, we used the proxies
Zt = (Gt_l,Xt) and Wt = (Gt, Xt), where Ot = (Gt, Xt) isa
partition of the observation into information about dia-
betes (G;) and nondiabetes information (X;); see online
appendix for more details.

Finally, because we had observed in our prior experi-
ments that our method could be sensitive to hyperpara-
meter values, and also since we lack ground truth so
cannot set these “fairly” using, for example, cross-
validation, we experimented with the following heuris-
tic procedure automatic hyperparameter selection: (1)



Downloaded from informs.org by [132.174.252.179] on 02 October 2023, at 12:17 . For personal use only, all rights reserved.

14

Bennett and Kallus: Proximal Reinforcement Learning
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

Table 2. Results of Our Sepsis Experiments

Method 01(me) Bias RMSE Improvement accuracy
Ours (best hyperparameters) —2.370+0.597 —0.096 0.599 82%

Ours (auto hyperparameters) —2.459+0.182 —0.184 0.258 100%

MDP —1.261 +0.054 1.014 1.015 0%

MEANR —1.799 = 0.025 0.476 0.477 —

Notes. For reach method, we list the average policy value prediction (with one standard deviation error), along
with the empirical bias and root mean squared error. In addition, for each method other than MeaNR, we list
the method’s accuracy of predicting whether v;(r,) > v1(m,) or not. For reference, the true policy values were

v1(1,) = —2.275 and vy (1) = —1.799.

we first estimate the policy value using all 81 different
possible hyperparameter values; (2) we throw away all
estimates that take values outside of the range of
observed reward values; and (3) we take the median of
the remaining estimates. This heuristic is based on the
observation from our prior experiments that, as long as
hyperparameter values are within reasonable ranges,
our method typically gives estimates that are either
fairly accurate, or wildly out-of-bound. We estimated
policy value using this heuristic separately for each of
the 50 experimental replications.

6.2.2. Results. We present the main results of this sec-
ond experiment in Table 2. There we present results for
our method with the single best set of hyperparameters
out of all tested (in terms of mean squared error across
the 50 replications), as well using the automatic hyper-
parameter selection heuristic described above. We can
first observe that using the single best hyperparameter
setup gives policy value predictions that are approxi-
mately unbiased, but with very high variance. Qualita-
tively, this variance seems to be partially explained by
unstable predictions in a minority of cases. Conversely,
our automatic hyperparameter heuristic gives estimates
results in slightly higher bias, but much lower variance,
and therefore much lower mean squared error. This
strong performance of our heuristic vs. choosing the best
single set of hyperparameters is extremely encouraging,
since unlike picking a “best” hyperparameter combina-
tion, the heuristic is actually feasible in practice, as it
does not require any ground truth information for
hyperparameter selection. Finally, as in the prior experi-
ments, the benchmark methods, which either do not
take into account confounding (MDP), or are completely
noncausal (MEeaNR), both give extremely biased esti-
mates with low variance.

Next, in practice, we are often more concerned about
predicting whether 7, is an improvement on 7, or not
rather than the exact policy value of m,. Accurately
answering this question is important in many applica-
tions, where the baseline policy 7, reflects current best
practices or business as usual, and 7, represents a pro-
posed new policy. For example, here we could think of
1, representing how physicians currently manage sep-
sis, and 7, as a proposed automated algorithm for sepsis

management. We have v;(mt,) * —2.275 and v1(m;) =
—1.799, so we would like any method of policy evalua-
tion to be able to correctly predict that the new proposed
algorithm (r,) is worse than standard physician care
(115). Specifically, we evaluate each method by what per-
centage of the time the policy value estimate is smaller
than the observational mean reward (MEANR), as the lat-
ter is an unbiased estimate of v1(7t;). We list these results
in the final column in Table 2. Our method with the best
hyperparameters usually correctly predicts that 7, is
worse than 7, and with our automatic hyperparameter
selection heuristic this prediction is always correct. On
the other hand, the MDP benchmark, which fails to take
into account confounding from the censored diabetes
measurements, always incorrectly predicts that 7, is an
improvement on 7t

7. Conclusion

In this paper, we discussed the problem of OPE in an
unknown POMDP as a model for the problem of offline
RL with general unobserved confounding. First, we ana-
lyzed the recently proposed approach for identifying
the policy value for tabular POMDPs (Tennenholtz et al.
2020). We showed that, although it could be placed
within a more general framework and extended to con-
tinuous settings, it suffers from some theoretical limita-
tions due to the unusual form of the identification
formulation, which brings its usefulness for constructing
estimators with good theoretical properties into ques-
tion. Motivated by this, we proposed a new framework
for identifying the policy value by sequentially reducing
the problem to a series of proximal causal inference pro-
blems. Furthermore, we extended this identification
framework to a framework of estimators based on dou-
ble machine learning and cross-fitting (Chernozhukov
et al. 2018) and showed that under appropriate condi-
tions such estimators are asymptotically normal and
semiparametrically efficient. Finally, we constructed a
concrete algorithm for implementing such an estimator
and provided an empirical proof of concept of our the-
ory by applying algorithm in a toy synthetic setting with
confounding due to noisy measurements, as well as a
complex sepsis management setting with confounding
due to missing measurements of diabetes.
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Perhaps the most significant scope for future work on
this topic is in the development of more practical algo-
rithms. Indeed, although our experiments were only
intended as a proof of concept of our methods and the-
ory, they also show that our actual proposed estimators
can often have high variance even in a simple toy
POMDP with a moderate number (e.g., 1,000) of trajecto-
ries. There may be ways to improve on this; for example,
it may be beneficial to solve the conditional moment pro-
blems defining the g and 1) functions simultaneously
rather than sequentially as we proposed, which may
result in cascading errors. Another important topic for
future work would be to explore hyperparameter optimi-
zation strategies, such as the heuristic method we pro-
posed for our sepsis experiments; although we found this
heuristic worked well empirically, it may introduce other
challenges such as dealing with postselection inference.

Another area where there is significant scope for future
work is on the topic of semiparametric efficiency. Extend-
ing our model to allow for multiple nuisances, in a way
where the parameter of interest is still well defined, is an
important open challenge. Additional issues are dis-
cussed in Section EC.5.1 of the online appendix.

Finally, in terms of future work, there is the problem of
how to actually apply our theory and policy value estima-
tors in real-world sequential decision-making problems
involving unmeasured confounding. Although our work
is largely theoretical, we hope that it will be impactful in
motivating progress toward solving such real-world chal-
lenges in practice.
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