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Abstract. In applications of offline reinforcement learning to observational data, such as in 
healthcare or education, a general concern is that observed actions might be affected by 
unobserved factors, inducing confounding and biasing estimates derived under the 
assumption of a perfect Markov decision process (MDP) model. Here we tackle this by con
sidering off-policy evaluation in a partially observed MDP (POMDP). Specifically, we con
sider estimating the value of a given target policy in an unknown POMDP given 
observations of trajectories with only partial state observations and generated by a differ
ent and unknown policy that may depend on the unobserved state. We tackle two ques
tions: what conditions allow us to identify the target policy value from the observed data 
and, given identification, how to best estimate it. To answer these, we extend the frame
work of proximal causal inference to our POMDP setting, providing a variety of settings 
where identification is made possible by the existence of so-called bridge functions. We 
term the resulting framework proximal reinforcement learning (PRL). We then show how 
to construct estimators in these settings and prove they are semiparametrically efficient. 
We demonstrate the benefits of PRL in an extensive simulation study and on the problem 
of sepsis management.

Funding: This work was supported by the National Science Foundation [Grant 1846210]. 
Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2021.0781. 
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1. Introduction
An important problem in reinforcement learning (RL) is 
off-policy evaluation (OPE), which is defined as estimat
ing the average reward generated by a target evaluation 
policy, given observations of data generated by running 
some different behavior policy. This problem is particu
larly important in many application areas such as 
healthcare, education, or robotics, where experimenting 
with new policies may be expensive, impractical, or 
unethical. In such applications OPE may be used to esti
mate the benefit of proposed policy changes by decision 
makers or as a building block for the related problem of 
policy optimization. At the same time, in the same appli
cations, unobservables can make this task difficult due 
to the lack of experimentation.

As an example, consider the problem of evaluating a 
newly proposed policy for assigning personalized cur
ricula to students semester by semester, where the cur
riculum assignment each semester is decided based on 
observed student covariates, such as course outcomes 
and aptitude tests, with the goal of maximizing student 
outcomes as measured, for example, by standardized 

test scores. Because it may be unethical to experiment 
with potentially detrimental curriculum plans, we may 
wish to evaluate such policies based on passively col
lected data where the targeted curriculum was decided 
by teachers. However, there may be factors unobserved 
in the data that jointly influence the observed student 
covariates, curriculum assignments, and student out
comes; this may arise for example because the teacher 
can perceive subjective aspects of the students’ personal
ities or aptitudes and take these into account in their 
decisions. Although such confounding breaks the usual 
Markovian assumptions that underlie standard approaches 
to OPE, the process may well be modeled by a partially 
observed Markov decision process (POMDP). Two 
key questions for OPE in POMDPs are: when is policy 
value still identifiable despite confounding due to par
tial observation and, when it is, how can we estimate it 
most efficiently.

In this work, we tackle these two questions, expand
ing the range of settings that enable identification and 
providing efficient estimators in these settings. First, 
we extend an existing identification result for OPE in 
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tabular POMDPs (Tennenholtz et al. 2020) to the contin
uous setting, which provides some novel insight on this 
existing approach but also highlights its limitations. To 
break these limitations, motivated by these insights, we 
provide a new general identification result based on 
extending the proximal causal inference framework 
(Miao et al. 2018a, Cui et al. 2020, Kallus et al. 2022) to 
the dynamic, longitudinal setting. This permits identifi
cation in more general settings. Unlike the previous 
results, this one expresses the value of the evaluation 
policy as the mean of some score function under the dis
tribution over trajectories induced by the logging policy, 
which allows for natural estimators with good qualities. 
In particular, we prove appropriate conditions under 
which the estimators arising from this result are consis
tent, asymptotically normal, and semiparametrically 
efficient. In addition, we provide a tractable algorithm 
for computing the nuisance functions that allow such 
estimators to be computed, based on recent state-of-the- 
art methods for solving conditional moment problems. 
We term this framework proximal reinforcement learn
ing (PRL), highlighting the connection to proximal 
causal inference. We finally provide a series of experi
ments, on both a synthetic toy scenario and a complex 
scenario based on a sepsis simulator, which empirically 
validate our theoretical results and demonstrate the ben
efits of PRL.

2. Related Work
First, there is an extensive line of recent work on OPE 
under unmeasured confounding. This work considers 
many different forms of confounding, including con
founding that is independent and identically distributed 
(i.i.d.) at each time step (Bennett et al. 2021, Liao et al. 
2021, Wang et al. 2021), occurs only at a single time step 
(Namkoong et al. 2020), satisfies a “memorylessness” 
property (Kallus and Zhou 2020), follows a POMDP 
structure (Oberst and Sontag 2019, Tennenholtz et al. 
2020, Nair and Jiang 2021, Killian et al. 2022), may take 
an arbitrary form (Chandak et al. 2021, Chen and Zhang 
2023), or is in fact not a confounder (Hu and Wager 
2023). These works have varying foci: Namkoong et al. 
(2020), Kallus and Zhou (2020), and Chen and Zhang 
(2023) focus on computing intervals comprising the par
tial identification set of all hypothetical policy values 
consistent with the data and their assumptions; Oberst 
and Sontag (2019) and Killian et al. (2022) focus on sam
pling counterfactual trajectories under the evaluation 
policy given that the POMDP follows a particular 
Gumbel-softmax structure; Wang et al. (2021) and Gasse 
et al. (2021) focus on using the offline data to warm start 
online reinforcement learning; Liao et al. (2021) study 
OPE using instrumental variables; Chandak et al. (2021) 
show that OPE can be performed under very general 
confounding if the behavior policy probabilities of the 

logged actions are known; Hu and Wager (2023) con
sider hidden states that do not affect the behavior policy 
and are therefore not confounders but do make OPE 
harder by breaking Markovianity thereby inducing a 
curse of horizon; and Tennenholtz et al. (2020) and Nair 
and Jiang (2021) study conditions under which the pol
icy value under the POMDP model is identified.

Of the past work on OPE under unmeasured con
founding, Tennenholtz et al. (2020) and Nair and Jiang 
(2021) are closest to ours because they too consider a 
general POMDP model of confounding, namely without 
restrictions that preserve Markovianity via i.i.d. con
founders, knowing the confounder-dependent propen
sities, having unconfounded logged actions, or using a 
specific Gumbel-softmax form. Tennenholtz et al. (2020) 
consider a particular class of tabular POMDPs satisfying 
some rank constraints, and Nair and Jiang (2021) extend 
these results and slightly relax its assumptions. How
ever, neither considers how to actually construct OPE 
estimators based on their identification results that sat
isfy desirable properties such as consistency or asymp
totic normality, and they can only be applied to tabular 
POMDPs. Our work presents a novel and general identi
fication result and proposes a class of resulting OPE esti
mators that possesses such desirable properties.

Another area of relevant literature is on proximal 
causal inference (PCI). PCI was first proposed by Miao 
et al. (2018a), showing that using two conditionally inde
pendent proxies of the confounder (known as a negative 
control outcome and a negative control action), we can 
learn an outcome bridge function that generalizes the 
standard mean-outcome function and controls for the 
confounding effects. Since then, this work has been 
expanded, including by alternatively using an action 
bridge function that instead generalizes the inverse 
propensity score (Miao et al. 2018b), allowing for multi
ple fixed treatments (Tchetgen Tchetgen et al. 2020), 
performing multiply-robust treatment effect estimation 
(Shi et al. 2020), combining outcome and action bridge 
functions for semiparametrically efficient estimation 
(Cui et al. 2020), using PCI to estimate the value of 
contextual-bandit policies (Xu et al. 2021) or generalized 
treatment effects (Kallus et al. 2022), or estimating bridge 
functions using adversarial machine learning (Ghassami 
et al. 2022, Kallus et al. 2022). In addition, the OPE for 
POMDP methodologies of Tennenholtz et al. (2020) and 
Nair and Jiang (2021) discussed earlier were said to be 
motivated by PCI. Our paper relates to this body of 
work as it proposes a new way of performing OPE for 
POMDPs using PCI, and it also proposes a new adver
sarial machine learning-based approach for estimating 
the bridge functions.

At the intersection of work of OPE and PCI is the con
current work of Ying et al. (2021), which considers PCI 
in multi–time step scenarios, given two proxies at each 
time step similar to what we consider in Section 4.2. 
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Unlike us, they only consider the problem of estimating 
treatment effects for fixed vectors of treatment at each 
time step, optionally conditional on observable context 
at t � 1, as opposed to evaluating policies that can adap
tively treat based on the context available thus far.

Finally, there is an extensive body of work on learning 
policies for POMDPs using online learning. For exam
ple, see Azizzadenesheli et al. (2016), Katt et al. (2017), 
Bhattacharya et al. (2020), Yang et al. (2021), and Singh 
et al. (2021), and references therein. Our work is distinct 
in that we consider an offline setting where identifica
tion is an issue. At the same time, our work is related to 
the online setting in that it could potentially be used to 
augment and warm start such approaches if there is also 
offline observed data available.

3. Problem Setting
A POMDP is formally defined by a tuple (S,A,O, H, 
PO, PR, PT), where S denotes a state space, A denotes a 
finite action space, O denotes an observation space, H ∈ N 
denotes a time horizon, PO is an observation kernel, with 
P(t)

O (· |s) denoting the density of the observation Ot given 
the state St� s at time t, PR is a reward kernel, with 
P(t)

R (· |s, a) denoting the density of the (bounded) reward 
Rt ∈ [�Rmax, Rmax] given the state St� s and action At� a 
at time t, and PT is a transition kernel, with P(t)

T (· |s, a)

denoting the density of the next St+1 given the state St� s 
and action At� a at time t. We allow for the POMDP to be 
time inhomogeneous; that is, we allow the outcome, 
reward, and transition kernels to potentially depend on 
the time index. Finally, we let O0 denote some prior obser
vation of the state before t� 1 (which may be empty), and 
we let τfull

t and τt denote the true and observed trajectories 
up to time t, respectively, which we define as

τ0 � τfull
0 � O0

τt � (O0, (O1, A1, R1), (O2, A2, Rt), : : : , (Ot, At, Rt))

τfull
t � (O0, (S1, O1, A1, R1), (S2, O2, A2, Rt),

: : : , (St, Ot, At, Rt)):

Let πb be some given randomized logging policy, which is 
characterized by a sequence of functions π(1)

b , : : : ,π(H)

b , 
where π(t)

b (a |St) denotes the probability that the logging 
policy takes action a ∈ A at time t given state St. The log
ging policy together with the POMDP define a joint dis
tribution over the (true) trajectory τfull

H given by acting 
according to πb; let Pb denote this distribution. All prob
abilities and expectations in the ensuing will be with 
respect to Pb unless otherwise specified, for example, by 
a subscript.

Our data consist of observed trajectories generated by 
the logging policy: D � {τ(1)

H ,τ(2)

H , : : : ,τ(n)

H }, where each 
τ(i)

H is an i.i.d. sample of τH (which does not contain St), 
distributed according to Pb. Importantly, we emphasize 
that, although we assume that states are unobserved by 

the decision maker and are not included in the logged 
data D, the logging policy still uses these hidden states, 
inducing confounding.

Implicit in our notation π(t)
b (a |St) is that the logging 

policy actions are independent of the past given current 
state St. Similarly, the POMDP model is characterized by 
similar independence assumption with respect to obser
vation and reward emissions, and state transitions. This 
means that Pb satisfies a Markovian assumption with 
respect to St; however, as St is unobserved, we cannot 
condition on it and break the past from the future. We 
visualize the directed acyclic graph (DAG) representing 
Pb in Figure 1. In particular, we have the following con
ditional independencies in Pb: For every t,

Ot ⊥⊥τfull
t�1 |St, Rt ⊥⊥τfull

t�1, Ot |St, At,
St+1 ⊥⊥τfull

t�1, Ot, Rt |St, At, At ⊥⊥τfull
t�1 |St:

Now, let πe be some deterministic target policy that we 
wish to evaluate, which is characterized by a sequence of 
functions π(1)

e , : : : ,π(H)
e , where π(t)

e (Ot,τt�1) ∈ A denotes 
the action taken by policy πe at time t given current 
observation Ot and the past observable trajectory τt�1. 
We visualize the POMDP model under such a policy 
that only depends on observable data in Figure 2. We 
allow π(t)

e to potentially depend on all observable data 
up to time t; this is because the Markovian assumption 
does not hold with respect to the observations Ot, so we 
may wish to consider policies that use all past observable 
information to best account for the unobserved state. We 
let Pe denote the distribution over trajectories that would 
be obtained by following policy πe in the POMDP. Then, 
given some discounting factor γ ∈ (0, 1], we define the 
value of policy πe as

vγ(πe) �
XH

t�1
γt�1EPe [Rt]:

The task OPE under the POMDP model is to estimate 
vγ(πe) (a function of Pe) given D (drawn from Pb).

Figure 1. (Color online) POMDP Model Under Logging 
Policy πb 

Notes. The arrows from St to At (red online) make explicit the depen
dence of πb on the hidden state. Dashed circles denote variables unob
served in our data.
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4. Identification Theory
Before considering how to actually estimate vγ(πe), we 
first consider the problem of identification, which is the 
problem of finding some function ψ such that vγ(πe) �

ψ(Pb) and is a prerequisite for identification. This is the 
first stepping stone because Pb is the most we could 
hope to ever learn from observing D. If such a ψ exists, 
then we say that vγ(πe) is identified with respect to Pb. In 
general, such an identification result is impossible for 
the OPE problem given unobserved confounding as 
introduced by our POMDP model. Therefore, we must 
impose some assumptions on Pb for such identification 
to be possible.

To the best of our knowledge, the only existing identi
fication result of this kind was presented by Tennenholtz 
et al. (2020) (with a slight generalization given by Nair 
and Jiang 2021) and is only valid in tabular settings 
where states and observations are discrete. We will pro
ceed first by extending this approach to more general, 
nontabular settings. However, we will note that there 
are some restrictive limitations to estimation based on 
this approach. Therefore, motivated by the limitations, 
we develop a new and more general identification the
ory that extends the PCI approach to the sequential set
ting and easily enables efficient estimation.

4.1. Identification by Time-Independent Sampling 
and Its Limitations

For our generalization of Tennenholtz et al. (2020), we 
will consider evaluating policies πe such that π(t)

e (Ot,τt)

only depends on O1:t and A1:t�1; that is, π(t)
e can depend 

on all observed data available at time t except for O0 and 
past rewards. First, for each t ∈ {1, : : : , H}, let Dt � (Ot�1, 
Ot, Ot+1, At, Rt), and for any such tuple D � (O, O′, O′′, 
A, R) define o(D)� O, o′(D) � O′, o′′(D) � O′′, a(D)� A, 
and r(D)� R. In addition, define the shorthand π(t)

e (D1:t)

� π(t)
e (o′(Dt), : : : , o′(D1), a(Dt�1), : : : , a(D1)). Furthermore, 

let Pind denote the measure on D1:H in which each tuple 
Dt is sampled independently according to its marginal dis
tribution in Pb. Under this measure, the overlapping 

observations between these tuples (e.g., o′(Dt) and 
o(Dt+1)) may take different values. Then, given these 
definitions, we have the following result.

Theorem 1. Under some regularity conditions detailed in 
Section EC.1 of the online appendix, there exist functions 
ρ(t) defined by conditional moment restrictions under Pb, 
such that for every t ∈ {1, : : : , H]}, we have

EPe [Rt] � EPind

"

r(Dt)
Yt

s�1
1{a(Ds) � π(t)(D1:s)}

× ρ(s)(o(Ds), a(Ds), o′′(Ds�1))

#

: (1) 

Furthermore, under the conditions of Tennenholtz et al. 
(2020, theorem 1), these regularity conditions are satisfied, 
and the right-hand side (RHS) of Equation (1) is identical 
to their identification quantity.

Because Pind is a function of Pb, the RHS of Equation 
(1) is a valid identification quantity, and applying this 
result for each t ∈ [H] identifies vγ(πe). The full details of 
the regularity conditions and nuisance functions gov
erning this result are not very important for this work, 
so they are deferred along with the proof of this theorem 
to Section EC.1 of the online appendix. For our purposes, 
the main takeaway of Theorem 1 is that there exists a 
natural generalization of Tennenholtz et al. (2020, theo
rem 1) to nondiscrete settings; although that result 
was originally expressed as a sum over all possible 
observable trajectories, we show that it can instead be 
expressed as the expectation of a simple, estimable 
quantity whose existence does not depend on discrete
ness. Unfortunately, the expectation that naturally arises 
is under Pind rather than Pb. This means that empirical 
approximations of this expectation given n i.i.d. samples 
from Pb would require averaging over ns terms, intro
ducing a curse of dimension. Furthermore, this expecta
tion clearly does not have many of the desirable properties 
for OPE estimating equations held by many OPE estima
tors in the simpler MDP setting, such as Neyman orthogo
nality (Kallus and Uehara 2020, 2022).

4.2. Identification by PCI
We now discuss an alternative way of obtaining iden
tifiability, via a reduction to a nested sequence of PCI 
problems of the kind described by Cui et al. (2020). 
These authors considered identifying the average treat
ment effect (ATE) and other related causal estimands for 
binary decision making problems with unmeasured 
confounding given two independent proxies for the con
founders, one of which is conditionally independent 
from treatments given confounders, and the other of 
which is independent from outcomes given treatment 
and confounders. We will in fact leverage the refinement 

Figure 2. (Color online) POMDP Model Under Evaluation 
Policy πe 

Note. The arrows from Ot to At and from τt to At+1 (red online) make 
explicit the dependence of πe on the current observation and previous 
observable trajectory, and the nodes τt and arrows into them (blue online) 
make explicit the dependence of the observable trajectories on the data.
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of the PCI approach by Kallus et al. (2022), which has 
strictly weaker assumptions than Cui et al. (2020).

Our reduction works by defining random variables Zt 
and Wt for each t ∈ [H] that are measurable with respect 
to (w.r.t.) the observed trajectory τH, as well as defining 
random variables Ut for each t ∈ [H] such that St is mea
surable w.r.t. Ut. We, respectively, refer to Zt and Wt as 
negative control actions and negative control outcomes, and 
we refer to Ut as confounders. All triplets (Zt, Wt, Ut) must 
be satisfy certain independence properties outlined below. 
Any definition of such variables that satisfy these indepen
dence properties is considered a valid PCI reduction, and 
we will have various examples of valid PCI reductions for 
our POMDP model at the end of this section.

To formalize these assumptions, we must first define 
some additional notation. Let P∗

t denote the measure on 
trajectories induced by running policy πe for the first 
t� 1 actions and running policy πb henceforth. Accord
ing to this definition, Pb � P∗

1, and Pe � P∗
H+1. In addi

tion, let E∗
t and P∗

t be shorthand for expectation and 
probability mass under P∗

t , respectively. We visualize 
these intervention distributions in the first part of 
Figure 3.

Next, for each t ∈ {1, : : : , H} we define Et � π(t)
e (Ot, 

τt�1), and Dt � (Zt, Wt, At, Et, Rt). In addition, we will 
refer to any random variable Yt as an outcome variable at 
time t if it is measurable w.r.t. (Rt, Dt+1:H). For any such 
variable and a ∈ A, we use Yt(a) to denote a random var
iable with the same distribution that Yt would have if, 

possibly counter to fact, action a were taken at time t 
instead of At. Under P∗

t , we can interpret Yt(a) as the 
outcome that would be obtained by applying πe for the 
first t� 1 actions, the fixed action a at time t, and then 
πb henceforth (as opposed to the factual outcome Yt 
obtained by applying πe for the first t� 1 actions and πb 
henceforth). According to this notation, Yt(At) � Yt always.

Given these definitions, we are ready to present our 
core assumptions. Our first assumption is that the con
founders Ut are sufficient to induce a particular condi
tional independence structure between the proxies Zt 
and Wt, as well as the observable data. Specifically, we 
assume the following.

Assumption 1 (Negative Controls). For each t ∈ [H] and 
a ∈ A, and any outcome variable Yt that is measurable 
w.r.t. (Rt, Dt+1:H), we have

Zt, At ⊥⊥ P∗
t
Wt, Et, Yt(a) |Ut:

These independence assumptions imply that the 
decision-making problem under P∗

t with confounder Ut, 
negative controls Zt and Wt, action At, and outcome 
(Rt, Dt+1:H) satisfy the PCI problem structure as in Cui 
et al. (2020). We visualize this structure for the problem 
at time t in Figure 3. In addition, it requires that the 
action-side proxy Zt is conditionally independent from 
the next action Et that would have been taken under π(t)

e . 
We may additionally include an observable context vari
able Xt, which may be useful for defining more efficient 

Figure 3. (Color online) The Interventional Distribution P∗
t and the PCI Problem Under It 

Notes. (Top) Visual representation of the interventional distribution P∗
t . This is the distribution over trajectories obtained by taking actions fol

lowing the target policy πe for the first t � 1 actions and then taking all subsequent actions following πb. (Bottom) Probabilistic graphical repre
sentation of the corresponding proximal causal inference decision-making problem at time t under P∗

t , with outcome variable Yt � φ(Rt, Dt+1:H)

for arbitrary φ. The variables Zt and Wt are conditionally independent action-side and outcome-side proxies for the true (unobserved) con
founder Ut.
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reductions. In this case, the conditional independence 
assumption in Assumption 1 should hold given both Ut 
and Xt, and in everything that follows Zt, Wt, and Ut 
should be replaced with (Zt, Xt), (Wt, Xt), and (Ut, Xt), 
respectively, as in Cui et al. (2020). However, we omit Xt 
from the notation in the rest of the paper for brevity.

Next, our results require the existence of some bridge 
functions, as follows.

Assumption 2 (Bridge Functions Exist). For each t ∈ [H]

and a ∈ A, and any given outcome variable Yt � φ(Rt, 
Dt+1:H), there exists functions q(t) and h(t,φ) satisfying

E∗
t [q(t)(Zt,At) |Ut,At � a] � P∗

t (At � a |Ut)
�1 a:s:

and E∗
t [h(t,φ)(Wt,At) |Ut,At � a]

�E∗
t [1{Et � At}Yt |Ut,At � a] a:s::

Implicit in the assumption is that P∗
t (At � a |Ut) > 0. We 

refer to the functions q(t) as action bridge functions and 
h(t,φ) as outcome bridge functions. These may be seen as 
analogues of inverse propensity scores and state-action 
quality functions, respectively. As argued previously by 
Kallus et al. (2022), assuming the existence of these func
tions is more general than the approach taken by Cui 
et al. (2020), who require complex completeness condi
tions. We refer readers to Kallus et al. (2022) for a 
detailed presentation of conditions under which the 
existence of such bridge functions can be justified, as 
well as concrete examples of bridge functions when the 
negative controls are discrete, or the negative controls 
and Yt are defined by linear models.

In the case of both Assumptions 1 and 2, the assump
tion depends on the choice of proxies Zt and Wt and on 
the choice of confounders Ut. In addition, the parts of 
(Ot,τt�1) that π(t)

e may depend on determines what vari
ables Et is a function of, so the evaluation policy πe also 
affects the validity of Assumption 1. For now, we just 
emphasize this important point and present our main 
identification theory, which is valid given these assump
tions. However, we will provide some concrete exam
ples of feasible and valid choices of (Zt, Wt, Ut) that 
satisfy Assumption 1 for different kinds of policies πe in 
Section 4.3. In addition, we provide an in-depth exami
nation of the additional conditions under which 
Assumption 2 holds for an example tabular setting in 
Section 4.4.

Theorem 2. Let Assumptions 1 and 2 hold. Define q(t) and 
h(t) as any solutions to

E∗
t [q(t)(Zt,At) |Wt,At � a] � P∗

t (At � a |Wt)
�1 a:s: ∀a ∈A,

(2) 
E∗

t [h(t)(Wt,At) |Zt,At � a] �E∗
t [1{Et � At}Yt |Zt,At � a]

a:s: ∀a ∈A, (3) 

where Y H�RH, and for every t ≤ H, we recursively define

Yt�1 � Rt�1 + γ

 
X

a∈A

h(t)(Wt, a) + q(t)(Zt, At)

× (1{At � Et} Yt � h(t)(Wt, At))

!

: (4) 

Also, let ηt �
Qt�1

s�11{Es � As} q(s)(Zs, As). Then, we have 
vγ(πe) � EPb [ψDR (τH)], where

ψDR (τH) �
XH

t�1
γt�1

 

ηt+1Rt + ηt

X

a∈A

h(t)(Wt, a)

� ηtq
(t)(Zt, At)h(t)(Wt, At)

!

: (5) 

Because EPb [ψDR (τH)] is fully defined by Pb, this is a 
valid identification result. As detailed in our proof, the 
existence of solutions to Equations (2) and (3) is guaran
teed given our assumptions. Comparing with Theorem 
1, this result has many immediate advantages; it is writ
ten as an expectation over Pb and therefore may be ana
lyzed readily using standard semiparametric efficiency 
theory, and although Equations (2) and (3) may appear 
complex given that they are expressed in terms of the 
intervention distributions P∗

t , this can easily be dealt 
with as discussed later. We also observe that Equation 
(5) has a very similar structure to the double reinforce
ment learning (DRL) estimators for the MDP setting 
(Kallus and Uehara 2020), where h(t) and q(t) are used in 
place of inverse propensity score and quality function 
terms, respectively. This is very promising because DRL 
estimators enjoy desirable properties such as semipara
metric efficiency in the MDP setting (Kallus and Uehara 
2020). Indeed, in Section 5, we show that similar proper
ties extend to estimators defined based on Equation (5).

At a high level, the proof of Theorem 2 works by 
defining a series of of outcome variables Yt such that, for 
each PCI problem at time t ∈ [H] under distribution 
P∗

t and with outcome variable Yt, the policy value 
obtained by intervening at time t with πe is equal to 
EPe [Rt + γRt+1+ ⋯ +γH�tRH]. In the base case of t� H, 
this property is trivially satisfied with Yt � Rt, because 
under P∗

H, all prior actions prior to time H are taken 
following πe. Conversely, for t< H, we establish via 
backward induction that this holds with Yt defined 
according to Equation (4); this works because the term 
multiplied by γ in Equation (4) is the doubly robust 
influence function for the PCI problem at time t, so 
E∗

t [Yt�1] � EPe [Rt�1] + γE∗
t+1 [Yt]. Similarly, ψDR (τH) is 

the doubly robust influence function for the PCI prob
lem at t� 1 and so EPb [ψDR (τH)] � E∗

2 [Y1] �⋯� vγ(πe). 
That is, we recursively apply the improved identifica
tion theory of Kallus et al. (2022) to a nested sequence of 
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PCI problems. In each step of the induction, we apply 
Assumptions 1 and 2 with the specific outcome variable 
Yt. We provide full proof details in Section EC.2 of the 
online appendix, where we also present a slightly more 
general result that allows for alternatives to ψdr that 
instead resemble importance sampling or direct method 
estimators for the MDP setting.

4.3. Specific Proximal Causal Inference 
Reductions and Resulting Identification

Next, we provide some discussion of how to actually 
construct a valid PCI reduction; that is, how to choose 
Zt, Wt, and Ut that satisfy Assumption 1. We provide 
several options of how this reduction may be performed 
and discuss in each case the assumptions that would be 
required of the POMDP and πe for identification based 
on our results. In all cases that we consider, we would 
need to additionally justify Assumption 2, which implic
itly requires some additional completeness conditions 
on the choices of Zt, Wt, and Ut. Furthermore, the practi
cality of any given reduction would depend heavily on 
how well correlated Wt and Zt are for each t, which in 
turn would impact how easily the required nuisance 
functions q(t) and h(t) could be fit. We summarize these 
reductions in Table 1.

4.3.1. Current and Previous Observations. Perhaps the 
most simple kind of PCI reduction would be to define 
Ut � St, Wt � Ot, and Zt � (Ot�1, At�1, Rt�1). That is, we 
use the current hidden state as confounders, and we use 
both the observation of St and the previous observation, 
action, and reward triple as proxies for Ot. For this defini
tion, we define A0 � R0 � ∅. It is easy to verify that this is a 
valid PCI reduction (i.e., satisfying Assumption 1) as long 
as π(t)

e depends on (τt, Ot) via Ot only. In addition, it is easy 
to verify that this reduction remains valid if we replace Zt 
with Ot�1, which gives us a very simple and elegant reduc
tion at the slight cost of fewer treatment-side proxies.

This kind of reduction may be relevant in applications 
where the current observation of the state is considered 
to be rich enough for decision making, but where none
theless it is possible that confounding is present. One 
example of such a setting is a noisy observation setting, 
where Ot is a direct observation of St that may be cor
rupted with some probability, as discussed in more 

detail in Section 6. Another example where such a reduc
tion may be desirable is when we wish to consider poli
cies that are functions of Ot only for reasons of 
simplicity/interpretability. For example, if we wish to 
evaluate an automated policy for sepsis management, 
we may wish that the policy is a simple function of the 
patient’s current state that can be understood and 
audited by doctors.

4.3.2. Current and k-Prior Observation. An alternative 
to the previous reduction would be to define to define 
Ut � (St, St�k′+1), Wt � Ot, and Zt � Ot�k′ , for some inte
ger k ≥ 2, where k′ � min(k, t). In this reduction, we can 
no longer include any action or reward in Zt, as this 
would break Assumption 1 in general given the defini
tion of P∗

t . This reduction allows for any policy where 
π(t)

e depends on (τt, Ot) via the data from the k-most 
recent time steps; that is, (Ot�k′+1:t, At�k′+1:t�1, Rt�k′+1:t�1).

This kind of reduction would be useful in applications 
where it is necessary to consider policies that consider a 
past history of observations rather than only the most 
recent observation. For example, if we were considering 
the task of training a robot to act within an environment 
that it can only observe part of at each time step through 
its camera, it may be necessary to consider policies that 
use several recent observations to build a more accurate 
map of the environment. However, one limitation of this 
reduction compared with the previous is that it uses two 
states as its confounder, which may make Assumption 2
more difficult to satisfy. In addition, because Zt and Wt 
are separated in time, if k is large, they may be weakly 
correlated, making bridge functions more difficult to fit.

4.3.3. Two Views of Current Observation. Finally, we 
consider a different kind of reduction, which is valid 
when we have two separate views of the observation; 
that is, we can partition each observation Ot as 
Ot � (O(0)

t , O(1)
t ), where O(0)

t ⊥⊥ O(1)
t |St. In this case, we 

can define Ut � St, Wt � O(1)
t , and Zt � O(0)

t . This allows 
us to evaluate any policy where π(t)

e may depend on all of 
τt except for O(0)

0:t .
This kind of reduction could be appealing in many 

settings. First, it may be useful for the same kinds of 
applications as the previous kind of reduction, as it 

Table 1. Summary of Different PCI Reductions

PCI reduction Zt Wt Ut π(t)
e can take as input

Current and previous observations (simple) Ot�1 Ot St Ot
Current and previous observations (extended) Ot�1, At�1, Rt�1 Ot St Ot
Current and k-prior observations Ot�k′ Ot St, St�k′+1 (Ot,τt�1) \ τt�k′

Two views of current observations O(0)
t O(1)

t St (Ot,τt�1) \ O(0)
0:t

Notes. For each, we provide the explicit reduction in terms of the triplet (Zt, Wt, Ut), and we summarize what kinds of 
policies can be evaluated under the respective reduction. For the third row, recall that k′ � min(k, t), and for the fourth 
row, recall that Ot � (O(0)

t , O(1)
t ), where O(0)

t ⊥⊥ O(1)
t |St.
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allows us to consider policies defined on a history of 
past observations without incurring the costs of the same 
costs in terms of satisfying Assumption 2 or estimating 
bridge functions. This reduction could be particularly use
ful when there are some observation variables that cannot 
be used directly for decision making. For example, in the 
personalized education example considered in Section 1, 
there may be certain testing-based metrics that were speci
fically collected with the logged data, but that would not 
be available when a policy was deployed. Similarly, in 
robotics settings as discussed earlier, there may be cheap 
sensors that are always available and expensive sensors 
that are only available in the logged data (Pan et al. 2020). 
In this case, we could include all such unavailable covari
ates in O(0)

t , and the remaining covariates in O(1)
t , and this 

would allow policy evaluation with no effective restriction 
on the kinds of policies considered. Similarly, if certain sen
sitive covariates were not allowed to be included in poli
cies, for example, for ethical reasons, such covariates could 
be included in O(0)

t .

4.4. Example: Tabular POMDPs Using Previous 
and Current Observation as Proxies

Finally, we conclude this section with a discussion of 
our key identification assumptions for a simple tabular 
case, where we use the previous and current observa
tions as proxies for the unobserved state as described in 
Section 4.3.1. That is, we consider settings where Ut � St, 
Zt � Ot�1, Wt � Ot, and S and O are both finite.

As argued previously, this choice of proxies satisfies 
Assumption 1 as long as π(t)

e depends on Ot,τt�1 via Ot 
only. However, it remains to also justify Assumption 2. 
The following proposition allows us to rewrite the 
bridge equations for this simple setting in terms of some 
conditional probability matrices under the POMDP and 
evaluation policy πe.

Proposition 1. Let P(t)(O |S) denote the |O | by |S |

matrix of the distribution of Ot given St in the POMDP, 
and let P(t)

e (S′ |S) denote the |S | by |S | matrix of the dis
tribution of St�1 given St under rollout by πe. In addition, 
for any outcome variable Yt � φ(Rt, Dt+1:H) and a ∈ A, let 
E∗

t[1{Et � At} Yt |S, a] denote the |S |-length vector of 
values of 1{Et � At} Yt given St and At � a under P∗

t , and 
let P∗

t(a |S)
�1 denote the |S | -length vector of values of 

P(At � a |St)
�1 under P∗

t . Then, using proxies Zt � Ot�1 
and Wt � Ot, and confounders Ut � St, the bridge equations 
in Assumption 2 for each t correspond to solving

P(t)
e (S′ |S)

⊤P(t)(O |S)
⊤q(t)(O, a) � P∗

t(a |S)
�1 ∀a ∈ A 

and

P(t)(O |S)
⊤h(t,φ)(O,a) �E∗

t[1{Et � At}Yt |S,a] ∀a ∈ A, 

where q(t)(O, a) and h(t,φ)(O, a) are the |O |-length vector of 
values of q(t)(Zt, a) and h(t,φ)(Wt, a), respectively.

This proposition follows trivially by applying the 
fact that Zt � Ot�1, Wt � Ot, and Ut � St, and explicitly 
expanding out the conditional expectations in the bridge 
equations in terms of P(t)

e (S′ |S) and P(t)(O |S) given the 
Markovian property of the POMDP conditioned on the 
unobserved states.

A trivial corollary of the proposition is that, if |O | ≥ |S | , 
and P(t)(O |S) and P(t)

e (S′ |S) are both full rank, then the 
previous equations are always solvable for all a ∈ A, no 
matter the outcome variable Yt. This follows by using any 
pseudo-inverse for P(t)

e (S′ |S)
⊤ P(t)(O |S)

⊤ and P(t)(O |S)
⊤. 

The conditions that |O | ≥ |S | and that P(t)(O |S) is full 
rank are independent of the behavior or evaluation pol
icies, and they essentially require that all distributions 
over states imply different distributions over observa
tions; that is, there are no “invisible” aspects of St 
that don’t affect Ot. Conversely, the assumption that 
P(t)

e (S′ |S) is full rank depends on the evaluation policy 
πe. However, it may be justified for all possible evalua
tion policies, for example, if the |S | by |S | conditional 
probability matrix defining the transition kernel P(t)

T (St 
|St�1, At�1 � a) were invertible for every a ∈ A. In other 
words, we can justify Assumption 2 under some basic 
conditions on the underlying POMDP, which may be 
reasoned about on a problem-by-problem basis.

Finally, although the previous analysis is specific to 
our example setting, the intuition is very general; for 
Assumption 2 to hold, we need that the proxies are suffi
ciently well correlated with the confounders (e.g., that 
P(t)(O |S) and P(t)

e (S′ |S) are full rank), and that they con
tain at least as much information as the confounders 
(e.g., that we also have |O | ≥ |S |).

5. Policy Value Estimators
Now we turn from the question of identification to that 
of estimation. We will focus on estimation of vγ(πe)

based on the identification result given by Corollary 
EC.1 in the online appendix. We will assume in the 
remainder of this section that we have fixed a valid PCI 
reduction that satisfies Assumptions 1 and 2. A natural 
approach to estimating vγ(πe) based on Corollary EC.1 
in the online appendix would be to use an estimator of 
the kind

v̂(n)
γ (πe) �

1
n
Xn

i�1

bψDR (τ(i)
H ), (6) 

where bψDR is an approximation of ψdr using plug-in esti
mators for the nuisance functions h(t) and q(t) for each t. 
Specifically, to eschew assumptions on the nuisance func
tion estimators aside from rates, we will use a cross-fitting 
estimation technique (Zheng and van der Laan 2011, Cher
nozhukov et al. 2018). Namely, fixing K ≥ 2, for each 
k � 1, : : : , K: (1) for t � 1, : : : , H, we fit estimators ĥ

(t, k)
and 

Bennett and Kallus: Proximal Reinforcement Learning 
8 Operations Research, Articles in Advance, pp. 1–16, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

32
.1

74
.2

52
.1

79
] o

n 
02

 O
ct

ob
er

 2
02

3,
 a

t 1
2:

17
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



q̂(t, k) only on the observed trajectories i � 1, : : : , n with 
i ≠ k � 1 (mod K); (2) and then for i � 1, : : : , n with 
i � k � 1 (mod K), we set ψ̂DR (τ(i)

H ) to be ψDR (τ(i)
H ) where 

we replace h(t), q(t) with ĥ
(t, k)

, q̂(t, k). Then we use these to 
construct an estimator by taking an average as in Equation 
(6). We discuss exactly how we fit nuisance estimators 
given trajectory data in Section 5.3. Until then, for Sections 
5.1 and 5.2, we keep this abstract and general: We will only 
impose assumptions about the rates of convergence of nui
sance estimators and that we used cross-fitting so that τ(i)

H 

is independent of ĥ
(t, k)

, q̂(t, k) whenever i � k � 1 (mod K).

5.1. Consistency and Asymptotic Normality
We first consider conditions under which the estimator 
v̂(n)
γ (πe) is consistent and asymptotically normal. For 

this, we need to make some assumptions on the quality 
of our nuisance estimators.

Assumption 3. Consistent and bounded nuisance esti
mates: letting Ψ represent any of {q(t)(Zt, At) : t ∈ [H]}

∪ {h(t)(Wt, a) : t ∈ [H], a ∈ A}, we have that for each k ∈ [K], 
(1) ‖Ψ̂

(k)
�Ψ‖2,Pb

� op(1), (2) ‖Ψ̂
(k)

‖∞ � Op(1), and (3) 
‖Ψ‖∞ < ∞.

Nuisance estimation rates: (1) for each t ∈ [H], a ∈ A, 
k ∈ [K], ‖q̂(t, k)(Zt, At) � q(t)(Zt, At)‖2,Pb

‖ĥ
(t, k)

(Wt, a) � h(t)

(Wt, a)‖2,Pb
� op(n�1=2), (2) for each t ∈ [H], t′ < t, a ∈ A, 

k ∈ [K], ‖q̂(t′ , k)(Zt′ , At′ ) � q(t′)(Zt′ , At′ )‖2,Pb
‖ĥ

(t, k)
(Wt, a) � h(t)

(Wt, a)‖2,Pb
� op(n�1=2), and (3) for each t ∈ [H], t′ < t, 

k ∈ [K], ‖q̂(t′, k)(Zt′ , At′ ) � q(t′)(Zt′ , At′ )‖2,Pb
‖q̂(t, k)(Zt, At) �

q(t)(Zt, At)‖2,Pb
� op(n�1=2). In all of these, the randomness 

in each bound is with respect to the sampling distribution 
of the data.

Essentially, Assumption 3 requires that the nuisances 
q(t) and h(t) are estimated consistently in terms of the 
L2,Pb functional norm for each t and that the correspond
ing product-error terms converge faster than n�1=2 rate. 
This could be achieved, for example, if each nuisance by 
itself were estimated at a op(n�1=4) rate, which notably 
permits slower-than-parametric rates and is obtainable 
for many nonparametric machine-learning-based meth
ods (Chernozhukov et al. 2018). In particular, there is a 
very established line of work on establishing rates like 
these for conditional moment problems, like those defin
ing q(t) and h(t), in terms of projected error (e.g., obtain
ing rates for ‖E[ĥ

(t, k)
(Wt, At) � h(t)(Wt, At) |Zt, At]‖2) using, 

for example, sieve methods (Chen and Pouzo 2009, 
2012) or minimax methods with general machine 
learning classes (Dikkala et al. 2020). These can be trans
lated to corresponding rates for the actual L2 error 
(e.g., ‖ĥ

(t, k)
(Wt, At) � h(t)(Wt, At)‖2) given assumptions 

on so-called “ill-posedness” measures (Chen and Pouzo 

2012), which can be used to ensure our required rates. 
Alternatively, there exist methods that can directly obtain 
L2 error rates for such conditional moment problems, by 
leveraging so-called “source conditions” (Carrasco et al. 
2007, definition 3.4), for example, using regularized sieve 
methods (Florens et al. 2011), neural nets with Tikhonov 
regularization (Liao et al. 2020) or kernel methods with 
spectral regularization (Wang et al. 2022). The product-rate 
condition allows for some trade off where, if some nui
sances can be estimated faster, then other nuisances can be 
estimated even slower than op(n�1=4). In addition, we 
require a technical boundedness condition on the uniform 
norm of the errors and of the true nuisances themselves. 
Given this, we can now present our main consistency and 
asymptotic normality theorem.

Theorem 3. Let the conditions of Theorem 2 be given, and 
assume that the nuisance functions plugged into v̂(n)

γ (πe)

are estimated using cross fitting. Furthermore, suppose that 
the nuisance estimation for each cross-fitting fold satisfies 
Assumption 3. Then, we have

ffiffiffi
n

√
(v̂(n)
γ (πe) � vγ(πe)) → N (0,σ2

DR) in distribution,
where σ2

DR � EPb [(ψDR (τH) � vγ(πe))
2
]:

The key step in proving Theorem 3 is to establish that 
ψdr enjoys Neyman orthogonality with respect to all 
nuisance functions and in particular characterizing the 
unique product structure of the bias. Having established 
this, we proceed by applying the machinery of theorem 
3.1 of Chernozhukov et al. (2018). We refer the reader to 
the appendix for the detailed proof.

One technical note about this theorem is that there 
may be multiple q(t) and h(t) that solve Equations (2) and 
(3), which creates some ambiguity in both Assumption 3
and the definition of ψDR (τH). This is important because 
the ambiguity in the definition of ψDR (τH) affects the 
value of the asymptotic variance σ2

DR. In this case, we 
implicitly assume that Assumption 3 holds for some 
arbitrarily given solutions q(t) and h(t) for each t ∈ [H], 
and that σ2

DR is defined using the same q(t) and h(t) solu
tions. Thus, our consistency result in Theorem 3 holds 
even when bridge functions are nonunique.

Finally, we briefly consider how this variance grows 
in terms of H. Because φDR(τH) consists of a sum of H 
terms, each of which is multiplied by ηt �

Qt�1
s′�0 q(s′)

(Zs′ , As′ ) 1{Es′ � As′ }, we can generally bound the effi
cient asymptotic variance by 

PH
t�1
Qt

s�1‖q(s)(Zs, As)‖∞

(‖q(t)(Zt, At)‖2 +
P

a∈A‖h(t)(Wt, a)‖2 + ‖q(t)(Zt, At)‖∞‖h(t)(Wt, 

At)‖2). Therefore, assuming that all functions h(t)(Wt, At)

and q(t)(Zt, At) have ‖ · ‖∞ norm of the same order H 
grows, the asymptotic variance should grow roughly as 
O(H2) as H → ∞. Conversely, if the inverse problems 
for q(t) and h(t) grow increasingly ill-conditioned as t 
increases, then the norms of these functions may grow, 
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in which case the growth of asymptotic variance may be 
worse than quadratic.

5.2. Semiparametric Efficiency
We now consider the question of semiparametric efficiency 
of our OPE estimators. Semiparametric efficiency is 
defined relative to a model M, which is a set of allowed 
distributions such that Pb ∈ M. Roughly speaking, we 
say that an estimator is semiparametrically efficient 
w.r.t. M if it is regular (meaning invariant to Op(1=

ffiffiffi
n

√
)

perturbations to the data-generating process that keep it 
inside M), and achieves the minimum asymptotic vari
ance of all regular estimators. We provide a summary of 
semiparametric efficiency as it pertains to our results in 
Section EC.4 in the online appendix, but for the purposes 
of this section it suffices to say that, under conditions we 
establish, there exists a function ψeff ∈ L2,Pb (τH), called 
the “efficient influence function” w.r.t. M, and that an 
estimator v̂(n)

γ (πe) is efficient w.r.t. M if and only if ffiffiffi
n

√
(v̂(n)
γ (πe) � vγ(πe)) � n�1=2Pn

i�1ψeff (τ(i)
H ) + op(1), that 

is, asymptotically it looks like simple sample average of 
this function.

One complication in considering models of distribu
tions on τH is that technically the definition of vγ(πe)

depends on the full distribution of τfull
H . In the case that 

the distribution of τH corresponds to the logging distri
bution induced by some behavior policy and underlying 
POMDP that satisfies Assumption 2, it is clear from The
orem 2 that using any nuisances satisfying the required 
conditional moments will result in the same policy value 
estimate vγ(πe). However, if we allow for distributions 
on τH that do not necessarily satisfy such conditions, as 
is standard in the literature on policy evaluation, it may 
be the case that different solutions for h(t) and q(t) result 
in different values of EP[ψDR (τH)]. To avoid such issues, 
we consider a model of distributions where the nui
sances and corresponding policy value estimate are 
uniquely defined, as follows.

Definition 1 (Model and Target Parameter). Define M(0)
e 

as the set of all distributions on τH, and for each t ≥ 1 
recursively define 

1. ηt,P �
Qt�1

s�1 q(s)
P (Zs, As) 1{As � Es},

2. P∗
t,P(At |Wt) � EP[ηt,P |Wt, At]PP(At |Wt),

3. Tt,P : L2,P(Zt, At) → L2,P(Wt, At), where (Tt,Pg)(Wt, At)

� EP[ηt,Pg(Zt, At) |Wt, At],
4. M(t)

e � M(t�1)
e ∩ {P : Tt,P is invertible and P∗

t,P(At |Wt)
�1 

∈ L2,P(Wt, At)},
5. q(t)

P (Zt, At) � T�1
t,P(P∗

t,P(At |Wt)
�1

),
where 1–3 are defined for P ∈ M(t�1)

e , and 5 for 
P ∈ M(t)

e . Furthermore, let T∗
t,P denote the adjoint of 

Tt,P , define YH � Rh, and for each t ∈ [H] and P ∈ M(t)
e 

recursively define
6. µt,P(Zt, At) � EP[ηt,P 1{At � Et} Yt,P |Zt, At],

7. h(t)
P (Wt, At) � (T∗

t,P)
�1

(µt,P(Zt, At)),

8. Yt�1,P � Rt�1 + γ(
P

a∈A h(t)
P (Wt, a) + q(t)

P (Zt, At)(1{At 

� Et} Yt,P � h(t)
P (Wt, At))),

where the latter is only defined for t> 1. Finally, let 
MPCI � M(H)

e , and for each P ∈ MPCI define

V(P) � EP

"
X

a∈A

h(1)
P (W1, a)

#

:

This definition is not circular because η1,P � 1 for 
every P, and so we can concretely define the first set 
of quantities in the order they are listed previously for 
each t ∈ [H] in ascending order, and the second set 
in descending order of t. The case that P � Pb, it is 
straightforward to reason that ηt,Pb

, q(t)
Pb

, h(t)
Pb

, and Yt,Pb 

agree with the corresponding definitions in Theorem 2
and Corollary EC.1 in the online appendix Tt,Pb and T∗

t,Pb 

correspond to standard conditional expectation opera
tors under P∗

t , P∗
t,Pb

(At |Wt) � P∗
t (At |Wt), and V(Pb) �

vγ(πe). Therefore, MPCI is a natural model of observational 
distributions where the required nuisances are uniquely 
defined, and V(P) is a natural and uniquely defined 
generalization of vγ(πe) for distributions P that do not 
necessarily correspond to actual logging distributions 
satisfying Assumption 2.

Finally, we assume the following the following on 
the actual observed distribution Pb.

Assumption 4. For every sequence of distributions Pn 
that converge in law to Pb, there exists some integer N 
such that for all n ≥ N and t ∈ [H] such that Tt,Pn and 
T∗

t,Pn 
are invertible. Furthermore, for all such sequences 

and t ∈ [H], we also have 
1. lim infn→∞ inf‖f (Zt, At)‖1,Pn ≥1‖Tt,Pn f (Zt, At)‖1,Pn > 0,
2. lim infn→∞ inf‖g(Wt, At)‖1,Pn ≥1‖T∗

t,Pn
g(Wt, At)‖1,Pn > 0,

3. lim supn→∞
‖P∗

t,Pn
(At |Wt)

�1
‖∞ < ∞.

In addition, for each t ∈ [H] the distribution Pb satisfies
4. inf‖f (Zt, At)‖2,Pb

≥1‖Tt,Pn f (Zt, At)‖2,Pb
> 0,

5. inf‖g(Wt, At)‖2,Pn ≥1‖T∗
t,Pn

g(Wt, At)‖2,Pb
> 0.

The condition that Tt,Pn and T∗
t,Pn 

are invertible for 
large n ensures that the model MPCI is locally saturated 
at Pb, and the additional conditions ensure that the nui
sance functions can be uniformly bounded within para
metric submodels. These are very technical conditions 
used in our semiparametric efficiency proof, and it may 
be possible to relax them. In discrete settings, these con
ditions follow easily given Pb ∈ MPCI because in this set
ting the conditions can be characterized in terms of 
the entries or eigenvalues of some probability matrices 
being bounded away from zero, which by continuity 
must be the case when Pn is sufficiently close to Pb. 
Importantly, the locally saturated condition on MPCI at 
Pb means that the relevant tangent space is unrestricted. 
(See Section EC.5.1 in the online appendix for a 

Bennett and Kallus: Proximal Reinforcement Learning 
10 Operations Research, Articles in Advance, pp. 1–16, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

32
.1

74
.2

52
.1

79
] o

n 
02

 O
ct

ob
er

 2
02

3,
 a

t 1
2:

17
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



discussion of issues with the tangent space in past work 
in the absence of local saturation.)

Given this setup, we can now present our main effi
ciency result.

Theorem 4. Suppose that Pb is the observational distribu
tion given by a POMDP and logging policy that satisfies 
the conditions of Theorem 2, and let Assumption 4 be given. 
Then, ψDR (τH) � vγ(πe) is the efficient influence function 
for V(P) at P � Pb.

Finally, the following corollary combines this result 
with Theorem 3, which shows that under the same con
ditions, if the nuisances are appropriately estimated 
then the resulting estimator will achieve the semipara
metric efficiency bound relative to MPCI.

Corollary 1. Let the conditions of Theorems 3 and 4 be 
given. Then, the estimator v̂(n)

γ (πe) is semiparametrically 
efficient w.r.t. MPCI.

5.3. Nuisance Estimation
Finally, we conclude this section with a discussion of how 
we may actually estimate q(t) and h(t). The conditional 
moment Equations (2) and (3) defining these nuisances 
are defined in terms of the intervention distributions P∗

t , 
which are not directly observable. Therefore, we provide 
the following lemma, which reframes these as a nested 
series of conditional moment restrictions under Pb.

Lemma 1. Let the conditions of Theorem 2 be given. Then, 
for any collection of functions q(1), : : : , q(H) and h(1), : : : , h(H), 
these functions satisfy Equations (2) and (3) for every t ∈

[H] if and only if for every t ∈ [H], we have

EPb

"

ηt

 

g(Wt, At)q(t)(Zt, At) �
X

a∈A

g(Wt, a)

!#

� 0

∀measurable g
and EPb [ηt f (Zt, At)(h(t)(Wt, At) � 1{Et � At} Yt)] � 0

∀measurable f , 
where ηt and Yt are defined as in Theorem 2.

We can observe that the moment restrictions defining 
q(t) for each t depend only on q(t′) for t′ < t, and those 
defining h(t) for each t depend on h(t′) for t′ > t and on 
q(t′′) for every t′′ ≠ t. This suggests a natural order for 
estimating these nuisances, of q(1) through q(H) first, and 
then h(H) through h(1). We now take this approach, solv
ing an estimate of the continuum of moment conditions 
in each round. (An alternative approach may be to 
jointly solve for all 2H nuisances together.) Set

U(q, t)(q, g) � η̂t

 

g(Wt, At)q(Zt, At) �
X

a∈A

g(Wt, a)

!

U(h, t)(h, f ) � η̂t f (Zt, At)(h(Wt, At) � 1{Et � At} Ŷt), 
where η̂t and Ŷt are estimated by plugging in the 

preceding nuisance estimators (in the ordering described 
previously). Following Bennett and Kallus (2023), the 
continuum of moment conditions {q : EPb U(q, t)(q, g) �

0 ∀g} or {h : EPb U(h, t)(h, f ) � 0 ∀f } can be efficiently 
solved using a regularized, variational reformulation of 
the optimally weighted generalized method of moments 
(Hansen 1982), known as the variational method of 
moments (VMM). This gives our following proposed esti
mators for solving for this nuisance bridge functions.

Proposition 2. Our VMM nuisance estimators for q(1), : : : , 
q(H) and h(1), : : : , h(H) take the form

q(t) � arg min
q∈Q(t)

sup
g∈G(t)

En[U(q, t)(q, g)] �
1
4En[U(q, t)(q̃t, g)

2
]

+ R(q, t)(q) � R(g, t))(g),

h(t) � arg min
h∈H(t)

sup
f ∈F (t)

En[U(h, t)(h, f )] �
1
4En[U(h, t)(h̃t, f )

2
]

+ R(h, t)(h) � R(f , t)(f ), 

and can be sequentially solved for in the order q(1) through 
q(H) then h(H) through h(1), where Q(t) and H(t) are hypothesis 
classes for the functions q(t) and h(t), respectively, G(t) and F (t)

are some critic function classes corresponding to the set of 
moments we are enforcing, R(q, t), R(g, t), R(h, t), and R(f , t) are 
regularizers, and q̃(t) and h̃(t) are some prior estimates of q(t)

and h(t), which are arbitrarily defined and need not necessarily 
be consistent.

There are many existing methods for solving empiri
cal minimax equations of these kinds for different kinds 
of function classes Q(t) and H(t), as well as different 
kinds of corresponding critic classes G(t) and F (t). For 
example, see Bennett and Kallus (2023) for a detailed 
description of how such estimators may be implemen
ted for both kernel and neural classes. In particular, in 
Section EC.6 of the online appendix, we provide a 
detailed derivation and description of an efficient pro
cess for solving these equations when the two critic clas
ses are given by reproducing kernel Hilbert spaces 
(RKHSs), and we regularize them using squared RKHS 
norm, which is very generic and allows for any function 
classes Q(t) and H(t) that we can efficiently minimize 
convex losses over.

6. Experiments
Finally, we present a series of experiments to demon
strate our method and theory. We present two sets of 
experiments. First, we present a simple toy scenario, 
where we explore the behavior of the methodology and 
provide a “proof of concept” of our theory. Second, 
motivated by the findings of our first experiments, we 
benchmark our methodology in a confounded variation 
of the more complex “sepsis simulator” environment of 
Oberst and Sontag (2019), which is a better reflection of 
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real application. For full details of all experiments, see 
our code at https://github.com/CausalML/ProximalRL.

6.1. Experiment 1: Toy Scenario
6.1.1. Experimental Setup. For our first experiment, we 
consider a simple POMDP, which we refer to as NOISYOBS, 
which is a time-homogeneous POMDP with three states, 
two actions, and three observation values. We denote these 
by S � {s1, s2, s3}, A � {a1, a2}, and O � {o1, o2, o3}. We 
detail the state transition, reward, and initial state distribu
tion of the POMDP in Section EC.7 of the online appendix. 
The observation emission process for NOISYOBS is given 
P(t)

O (oi |sj) � 1{i � j} (1 � 3ɛnoise =2) + ɛ=2, where ɛnoise is a 
parameter of the POMDP. This models a noisy observation 
of the state, because we observe the correct state with prob
ability 1 � ɛnoise, or a randomly selected incorrect state oth
erwise. Thus, if ɛnoise � 0 there is no confounding, and 
greater ɛnoise indicate more noisy measurements.

We collected logged data using a time-homogeneous 
behavioral policy πNOISYOBS

b , with a horizon length H� 3. 
We considered three different evaluation policies πeasy

e , 
πhard

e , and πoptim
e , which are all also time-homogeneous 

and depend only on the current observation and are 
detailed in Section EC.7 of the online appendix. These 
polices are so named because πeasy

e and πhard
e are 

designed to have high and low overlap with the logging 
policy, respectively, and πoptim

e is the optimal policy 
when ɛnoise is sufficiently small. Therefore, these cover a 
wide range of different kinds of policies. In all cases, we 
set γ� 1.

We performed policy evaluation with the following 
methods: (1) Ours is the efficient estimator discussed in 
Section 5, with nuisance estimation performed using the 
sequential procedure described in Section 5.3; (2) MEANR is 
a naive unadjusted baseline given by 1

n
Pn

i�1
PH

t�1 γ
tR(i)

t ; 
(3) MDP is a model-based baseline given by fitting a tabu
lar MDP to the observed data, treating the observations as 
states, and computing the value of πe on this model; and 
(4) TIS is a baseline based on the result in Theorem 1, with 
estimated plugged-in nuisances and replacing the expecta
tion under Pind with its empirical analogue. We provide 
more detail about each of these methods in Section EC.7 
of the online appendix. In the case of our method, we 
used a simplified version of the “current and previous 
observation” PCI reduction given by the first row of Table 1, 
where Zt � Ot�1 and Wt� Ot, which is valid because we 
are considering evaluation policies that only depend on Ot.

6.1.2. Results. We now present results policy evalua
tion for the previous scenario and policies, using both 
our method and the previous benchmarks. Specifically, 
for each n ∈ {200, 500, 1, 000, 2, 000, 5, 000, 10, 000}, πe ∈ {πeasy

e , 
πhard

e ,πoptim
e }, and ɛ ∈ {0, 0:2}, we repeated the following 

process 100 times: (1) we sampled n trajectories with 
horizon length H� 3, behavior policy πNOISYOBS

b and noise 

level ɛnoise � ɛ; and (2) estimated v1(πe) using these n tra
jectories for each method.

In Figure 4, we display results for the confounded 
case where ɛnoise � 0:2 (i.e., POMDP setting). Here, we 
see that our method is consistent, whereas the MDP 
method, which is only designed to work in MDP set
tings, is not. The only exception is for estimating the 
value of πeasy

e ; however, this is only because MDP just 
happens to have very small bias for estimating this pol
icy. Although our method is consistent, it does have 
more variance than the MDP benchmark as it tackles a 
much more complex estimation problem. As expected, 
the unadjusted MEANR benchmark is inconsistent as it 
only estimates the value of the logging policy. Finally, 
despite our identification theory in Section 4.1, the TIS 
method in general performs very poorly. This is unsur
prising, because as discussed in Section 4.1, the identifi
cation result (as an expectation over Pind) may not lend 
itself to good estimation by plugging in empirical esti
mates into the identification formula. For comparison, in 
Section EC.7 of the online appendix, we present addi
tional results for the unconfounded case, ɛnoise � 0 (i.e., 
MDP setting), where we see that the MDP baseline 
becomes consistent due to the absence of confounding 
and that our method remains consistent and has less 
variance than in the POMDP setting shown here but still 
more than the MDP baseline, which is expected as it still 
solves a more complex estimation problem to adapt to 
both the MDP and POMDP settings.

6.2. Experiment 2: Sepsis Management
6.2.1. Experimental Setup. Next, we consider a more 
“real world”-inspired scenario. Specifically, we consider 
a scenario based on the sepsis management simulator of 
Oberst and Sontag (2019). Their environment considers 
the active management of sepsis for patients, whose 
state is described by heart rate, blood pressure, oxygen 
concentration, glucose level, and whether the patient is 
diabetic. At each time step, the action taken consists of 
three binary components: whether to place the patient 
on/off antibiotics, whether to place them on/off vaso
pressors, and whether to place them on/off a ventilator, 
giving a total of eight unique actions. After taking each 
action, we receive a reward based on the number of 
components of the state taking values within safe 
ranges, with a maximum reward of 1 if all indicators are 
safe and the patient is off all three treatments and a mini
mum reward of �10 if three more indicators are unsafe, 
with various intermediate values. The system uses 
almost identical parameters as in Oberst and Sontag 
(2019) with some minor modifications, and we provide a 
more detailed description in the online appendix.

To introduce confounding, we only observe a cen
sored version of the state; for each patient, with 25% 
probability, we do not observe whether that patient is 
diabetic (i.e., in all observations for that patient the 
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“diabetic” indicator is set to “False” regardless of whether 
the patient is diabetic or not). That is, the true state con
tains both an indicator of whether the patient is diabetic 
or not and whether their diabetes status is censored, but 
for the observed state we instead only observed a possibly 
censored diabetes indicator. Because all other components 
of the state are discrete, this means that both state and 
observation spaces are discrete (i.e., tabular), with a total 
state space size of |S | � 2, 880, and observation space size 
of |O | � 1, 440.

We experimented on this scenario over a time horizon 
of H � 3 and a discount factor of γ� 1. We first con
structed our behavioral policy πb by computing the opti
mal policy in the true POMDP π?, and defining πb by 
introducing ɛ-greedy sampling to π? with ɛ � 0:1; that 
is, we defined πb � 0:9π? + 0:1πunif, where πunif is a pol
icy that takes all 8 actions with equal probability. Then, 
we sampled 10,000 observational trajectories using πb, 
and defined πe to be the predicted optimal policy fit on 
these trajectories using dynamic programming on a sim
ple count-based tabular MDP model, treating the obser
vations Ot as the true states St. Because the observations 

Ot are confounded, we expect that πe should not neces
sarily be an estimate of the actual optimal policy π?.

Next, given the fixed policies πb and πe coming from 
the first stage of the experiment, we repeated the follow
ing procedure 50 times: (1) we sampled 10,000 observa
tional trajectories using πb, and (2) we estimated v1(πe)

using those trajectories as input for all methods. We per
formed policy evaluation with our method, as well as 
the MEANR and MDP benchmarks, as in the previous 
experiment. In the case of our method, we experimented 
with a large range of hyperparameter values, as detailed 
in the online appendix. In addition, we used the proxies 
Zt � (Gt�1, Xt) and Wt � (Gt, Xt), where Ot � (Gt, Xt) is a 
partition of the observation into information about dia
betes (Gt) and nondiabetes information (Xt); see online 
appendix for more details.

Finally, because we had observed in our prior experi
ments that our method could be sensitive to hyperpara
meter values, and also since we lack ground truth so 
cannot set these “fairly” using, for example, cross- 
validation, we experimented with the following heuris
tic procedure automatic hyperparameter selection: (1) 

Figure 4. (Color online) Experiment Results with ɛnoise � 0:2 

Notes. In the top, middle, and bottom rows we display results for πeasy
e , πhard

e , and πoptim
e , respectively. On the left, we display the mean policy 

value estimate of each method, where the solid black line corresponds to the true policy value, and the shaded regions correspond to one stan
dard deviation of the policy value estimates. On the right, we display the corresponding mean squared error of these estimates, where the 
shaded regions correspond to 95% confidence intervals for these values.
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we first estimate the policy value using all 81 different 
possible hyperparameter values; (2) we throw away all 
estimates that take values outside of the range of 
observed reward values; and (3) we take the median of 
the remaining estimates. This heuristic is based on the 
observation from our prior experiments that, as long as 
hyperparameter values are within reasonable ranges, 
our method typically gives estimates that are either 
fairly accurate, or wildly out-of-bound. We estimated 
policy value using this heuristic separately for each of 
the 50 experimental replications.

6.2.2. Results. We present the main results of this sec
ond experiment in Table 2. There we present results for 
our method with the single best set of hyperparameters 
out of all tested (in terms of mean squared error across 
the 50 replications), as well using the automatic hyper
parameter selection heuristic described above. We can 
first observe that using the single best hyperparameter 
setup gives policy value predictions that are approxi
mately unbiased, but with very high variance. Qualita
tively, this variance seems to be partially explained by 
unstable predictions in a minority of cases. Conversely, 
our automatic hyperparameter heuristic gives estimates 
results in slightly higher bias, but much lower variance, 
and therefore much lower mean squared error. This 
strong performance of our heuristic vs. choosing the best 
single set of hyperparameters is extremely encouraging, 
since unlike picking a “best” hyperparameter combina
tion, the heuristic is actually feasible in practice, as it 
does not require any ground truth information for 
hyperparameter selection. Finally, as in the prior experi
ments, the benchmark methods, which either do not 
take into account confounding (MDP), or are completely 
noncausal (MEANR), both give extremely biased esti
mates with low variance.

Next, in practice, we are often more concerned about 
predicting whether πe is an improvement on πb or not 
rather than the exact policy value of πe. Accurately 
answering this question is important in many applica
tions, where the baseline policy πb reflects current best 
practices or business as usual, and πe represents a pro
posed new policy. For example, here we could think of 
πb representing how physicians currently manage sep
sis, and πe as a proposed automated algorithm for sepsis 

management. We have v1(πe) ≈ �2:275 and v1(πb) ≈

�1:799, so we would like any method of policy evalua
tion to be able to correctly predict that the new proposed 
algorithm (πe) is worse than standard physician care 
(πb). Specifically, we evaluate each method by what per
centage of the time the policy value estimate is smaller 
than the observational mean reward (MEANR), as the lat
ter is an unbiased estimate of v1(πb). We list these results 
in the final column in Table 2. Our method with the best 
hyperparameters usually correctly predicts that πe is 
worse than πb, and with our automatic hyperparameter 
selection heuristic this prediction is always correct. On 
the other hand, the MDP benchmark, which fails to take 
into account confounding from the censored diabetes 
measurements, always incorrectly predicts that πe is an 
improvement on πb.

7. Conclusion
In this paper, we discussed the problem of OPE in an 
unknown POMDP as a model for the problem of offline 
RL with general unobserved confounding. First, we ana
lyzed the recently proposed approach for identifying 
the policy value for tabular POMDPs (Tennenholtz et al. 
2020). We showed that, although it could be placed 
within a more general framework and extended to con
tinuous settings, it suffers from some theoretical limita
tions due to the unusual form of the identification 
formulation, which brings its usefulness for constructing 
estimators with good theoretical properties into ques
tion. Motivated by this, we proposed a new framework 
for identifying the policy value by sequentially reducing 
the problem to a series of proximal causal inference pro
blems. Furthermore, we extended this identification 
framework to a framework of estimators based on dou
ble machine learning and cross-fitting (Chernozhukov 
et al. 2018) and showed that under appropriate condi
tions such estimators are asymptotically normal and 
semiparametrically efficient. Finally, we constructed a 
concrete algorithm for implementing such an estimator 
and provided an empirical proof of concept of our the
ory by applying algorithm in a toy synthetic setting with 
confounding due to noisy measurements, as well as a 
complex sepsis management setting with confounding 
due to missing measurements of diabetes.

Table 2. Results of Our Sepsis Experiments

Method v̂1(πe) Bias RMSE Improvement accuracy

OURS (best hyperparameters) �2:370 6 0:597 �0.096 0.599 82%
OURS (auto hyperparameters) �2:459 6 0:182 �0.184 0.258 100%
MDP �1:261 6 0:054 1.014 1.015 0%
MEANR �1:799 6 0:025 0.476 0.477 —

Notes. For reach method, we list the average policy value prediction (with one standard deviation error), along 
with the empirical bias and root mean squared error. In addition, for each method other than MEANR, we list 
the method’s accuracy of predicting whether v1(πe) > v1(πb) or not. For reference, the true policy values were 
v1(πe) � �2:275 and v1(πb) � �1:799.
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Perhaps the most significant scope for future work on 
this topic is in the development of more practical algo
rithms. Indeed, although our experiments were only 
intended as a proof of concept of our methods and the
ory, they also show that our actual proposed estimators 
can often have high variance even in a simple toy 
POMDP with a moderate number (e.g., 1,000) of trajecto
ries. There may be ways to improve on this; for example, 
it may be beneficial to solve the conditional moment pro
blems defining the q(t) and h(t) functions simultaneously 
rather than sequentially as we proposed, which may 
result in cascading errors. Another important topic for 
future work would be to explore hyperparameter optimi
zation strategies, such as the heuristic method we pro
posed for our sepsis experiments; although we found this 
heuristic worked well empirically, it may introduce other 
challenges such as dealing with postselection inference.

Another area where there is significant scope for future 
work is on the topic of semiparametric efficiency. Extend
ing our model to allow for multiple nuisances, in a way 
where the parameter of interest is still well defined, is an 
important open challenge. Additional issues are dis
cussed in Section EC.5.1 of the online appendix.

Finally, in terms of future work, there is the problem of 
how to actually apply our theory and policy value estima
tors in real-world sequential decision-making problems 
involving unmeasured confounding. Although our work 
is largely theoretical, we hope that it will be impactful in 
motivating progress toward solving such real-world chal
lenges in practice.
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