PATTON &=: Language Model Pretraining on Text-Rich Networks

Bowen Jin!, Wentao Zhang', Yu Zhang', Yu Meng!,
Xinyang Zhang', Qi Zhu', Jiawei Han'
1University of Illinois at Urbana-Champaign, IL, USA

{bowenj4,wentao4,yuz9, yumeng5,xz43,qiz3,hanj}@illinois.edu

Abstract

A real-world text corpus sometimes comprises
not only text documents, but also semantic
links between them (e.g., academic papers in
a bibliographic network are linked by citations
and co-authorships). Text documents and se-
mantic connections form a texz-rich network,
which empowers a wide range of downstream
tasks such as classification and retrieval. How-
ever, pretraining methods for such structures
are still lacking, making it difficult to build one
generic model that can be adapted to various
tasks on text-rich networks. Current pretrain-
ing objectives, such as masked language mod-
eling, purely model texts and do not take inter-
document structure information into considera-
tion. To this end, we propose our PretrAining
on TexT-Rich NetwOrk framework PATTON.
PATTON! includes two pretraining strategies:
network-contextualized masked language mod-
eling and masked node prediction, to capture
the inherent dependency between textual at-
tributes and network structure. We conduct
experiments on four downstream tasks in five
datasets from both academic and e-commerce
domains, where PATTON outperforms baselines
significantly and consistently.

1 Introduction

Texts in the real world are often interconnected
through links that can indicate their semantic
relationships. For example, papers connected
through citation links tend to be of similar topics;
e-commerce items connected through co-viewed
links usually have related functions. The texts and
links together form a type of network called a text-
rich network, where documents are represented
as nodes, and the edges reflect the links among
documents. Given a text-rich network, people are
usually interested in various downstream tasks (e.g.,
document/node classification, document retrieval,
and link prediction) (Zhang et al., 2019; Wang et al.,

!Code is available at
PeterGriffinJin/Patton

https://github.com/

2019; Jin et al., 2023a). For example, given a com-
puter science academic network as context, it is
intuitively appealing to automatically classify each
paper (Kandimalla et al., 2021), find the authors of
a new paper (Schulz et al., 2014), and provide pa-
per recommendations (Kiigiiktung et al., 2012). In
such cases, pretraining a language model on a given
text-rich network which can benefit a great number
of downstream tasks inside this given network is
highly demanded (Hu et al., 2020b).

While there have been abundant studies on build-
ing generic pretrained language models (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Clark et al., 2020), they are mostly designed for
modeling texts exclusively, and do not consider
inter-document structures. Along another line of
research, various network-based pretraining strate-
gies are proposed in the graph learning domain to
take into account structure information (Hu et al.,
2020a,b). Yet, they focus on pretraining graph
neural networks rather than language models and
cannot easily model the rich textual semantic in-
formation in the networks. To empower language
model pretraining with network signals, LinkBERT
(Yasunaga et al., 2022) is a pioneering study that
puts two linked text segments together during pre-
training so that they can serve as the context of
each other. However, it simplifies the complex net-
work structure into node pairs and does not model
higher-order signals (Yang et al., 2021). Overall,
both existing language model pretraining methods
and graph pretraining methods fail to capture the
rich contextualized textual semantic information
hidden inside the complex network structure.

To effectively extract the contextualized seman-
tics information, we propose to view the knowledge
encoded inside the complex network structure from
two perspectives: token-level and document-level.
At the token level, neighboring documents can help
facilitate the understanding of tokens. For example,
in Figure 1, based on the text information of neigh-

https://github.com/PeterGriffinJin/Patton
https://github.com/PeterGriffinJin/Patton

@

10lay Moisture Coconut' ____________

1
:\ Oasis Body Wash /l Q/O L'Oreal Parls Elvive !
&% 7 /RPELDHL
I ® M
y mmmmmmmm e —mm Do
. HERSHEY'S Assorted | qﬂn’ a) !
|

| Ferrero Rocher Collection,
\Fine Hazelnut Milk Chocolates

SoapBar!) """~~~ "~ S—=—----- N
Chocolate? [.) : .
- ! Experience the ultimate in

225 , smoothness and creaminess
@ S with Dove

Chocolate Candy Mix

Figure 1: An illustration of a text-rich network (a prod-
uct item co-viewed network). At the foken level, from
network neighbors, we can know that the “Dove” at
the top is a personal care brand and the “Dove” at the
bottom is a chocolate brand. At the document level,
referring to the edge in the middle, we can learn that the
chocolate from “Hershey’s” should have some similarity
with the chocolate from “Ferrero”.

bors, we can know that the “Dove” at the top refers
to a personal care brand, while the “Dove” at the
bottom is a chocolate brand. At the document level,
the two connected nodes can have quite related
overall textual semantics. For example, in Fig-
ure 1, the chocolate from “Hershey’s” should have
some similarity with the chocolate from “Ferrero”.
Absorbing such two-level hints in pretraining can
help language models produce more effective rep-
resentations which can be generalized to various
downstream tasks.

To this end, we propose PATTON, a method to
continuously pretrain language models on a given
text-rich network. The key idea of PATTON is
to leverage both textual information and network
structure information to consolidate the pretrained
language model’s ability to understand tokens and
documents. Building on this idea, we propose two
pretraining strategies: 1) Network-contextualized
masked language modeling: We randomly mask
several tokens within each node and train the lan-
guage model to predict those masked tokens based
on both in-node tokens and network neighbors’ to-
kens. 2) Masked node prediction: We randomly
mask some nodes inside the network and train the
language model to correctly identify the masked
nodes based on the neighbors’ textual information.

We evaluate PATTON on both academic domain
networks and e-commerce domain networks. To
comprehensively understand how the proposed pre-
training strategies can influence different down-
stream tasks, we conduct experiments on classifi-
cation, retrieval, reranking, and link prediction.

In summary, our contributions are as follows:

* We propose the problem of language model pre-
training on text-rich networks.

* We design two strategies, network contextual-
ized MLM and masked node prediction to train
the language model to extract both token-level
and document-level semantic correlation hidden
inside the complex network structure.

* We conduct experiments on four downstream
tasks in five datasets from different domains,
where PATTON outperforms pure text/graph pre-
training baselines significantly and consistently.

2 Preliminaries

Definition 2.1. Text-Rich Networks (Yang et al.,
2021; Jin et al., 2023b). A text-rich network can
be denotedas G = (V, £, D), where V, £ and D are
node set, edge set, and text set, respectively. Each
v; € V is associated with some textual information
dy, € D. For example, in an academic citation
network, v € V are papers, e € £ are citation
edges, and d € D are the content of the papers. In
this paper, we mainly focus on networks where the
edges can provide semantic correlation between
texts (nodes). For example, in a citation network,
connected papers (cited papers) are likely to be
semantically similar.

Problem Definition. (Language Model Pretrain-
ing on Text-rich Networks.) Given a text-rich net-
work G = (V, £, D), the task is to capture the self-
supervised signal on G and obtain a G-adapted lan-
guage model Mg. The resulting language model
M can be further finetuned on downstream tasks
in G, such as classification, retrieval, reranking, and
link prediction, with only a few labels.

3 PATTON
3.1 Model Architecture

To jointly leverage text and network information in
pretraining, we adopt the GNN-nested Transformer
architecture (called GraphFormers) proposed in
(Yang et al., 2021). In this architecture, GNN mod-
ules are inserted between Transformer layers. The
forward pass of each GraphFormers layer is as fol-
lows.

z) = GNN({H{[CLST|y € N,}), (1)

HY =
HY = LN(HY + MHA,,
H(l+1)

Concate(z{V), HY), ()
(H")), ©
LN(HY + MLP(HD")), (4)

where H. Q(f) is token hidden states in the /-th layer
for node x, IV, is the network neighbor set of x, LN

is the layer normalization operation and MHA 5, is
the asymmetric multihead attention operation. For
more details, one can refer to (Yang et al., 2021).
3.2 Pretraining PATTON

We propose two strategies to help the language
models understand text semantics on both the token
level and the document level collaboratively from
the network structure. The first strategy focuses on
token-level semantics learning, namely network-
contextualized masked language modeling; while
the second strategy emphasizes document-level se-
mantics learning, namely masked node prediction.

Strategy 1: Network-contextualized Masked
Language Modeling (NMLM). Masked lan-
guage modeling (MLM) is a commonly used strat-
egy for language model pretraining (Devlin et al.,
2019; Liu et al., 2019) and domain adaptation (Gu-
rurangan et al., 2020). It randomly masks several
tokens in the text sequence and utilizes the sur-
rounding unmasked tokens to predict them. The
underlying assumption is that the semantics of each
token can be reflected by its contexts. Trained
to conduct masked token prediction, the language
model will learn to understand semantic correla-
tion between tokens and capture the contextualized
semantic signals. The mathematical formulation of
MLM is as follows,

Lyiim = — Z log p(w;| H;), 5

€My

where M is a subset of tokens which are replaced
by a special [MASK] token and p(w;|H;) is the
output probability of a linear head fc.q Which
gives predictions to w; (from the vocabulary W)
based on contextualized token hidden states { H; }.

Such token correlation and contextualized se-
mantics signals also exist and are even stronger in
text-rich networks. Text from adjacent nodes in
networks can provide auxiliary contexts for text se-
mantics understanding. For example, given a paper
talking about “Transformers” and its neighboring
papers (cited papers) in the academic network on
machine learning, we can infer that “Transformers”
here is a deep learning model rather than an elec-
trical engineering component by reading the text
within both the given paper and the neighboring pa-
pers. In order to fully capture the textual semantic
signals in the network, the language model needs
to not only understand the in-node text token corre-
lation but also be aware of the cross-node semantic
correlation.

We extend the original in-node MLM to network-
contextualized MLM, so as to facilitate the lan-
guage model to understand both in-node token cor-
relation and network-contextualized text semantic
relatedness. The training objective is shown as
follows.

Lavin = — Y log p(wi|Hy, 2,),
e, ©)

p(wl|HI7 z:t) = SOftmaX(q'l—Eihi)v

where z, denotes the network contextualized token
hidden state in Section 3.1 and h; = HS"[i] (if i
is inside node x). L is the number of layers. gy,
refers to the MLM prediction head for w;. Since
the calculation of h; is based on H, and z,, the
likelihood will be conditioned on H, and z,.
Strategy 2: Masked Node Prediction (MNP).
While network-contextualized MLM focuses more
on token-level semantics understanding, we pro-
pose a new strategy called “masked node predic-
tion”, which helps the language model understand
the underlying document-level semantics correla-
tion hidden in the network structure.

Concretely, we dynamically hold out a subset of
nodes from the network (M, C V'), mask them,
and train the language model to predict the masked
nodes based on the adjacent network structure.

Lynp = — Z log p(v;|Gw,),
v;EM, (7
p(v;|Gy,;) = softmax(ththj)

where G, = {hy,|vy, € N,,} are the hidden
states of the neighbor nodes in the network and ij
is the set of neighbors of v;. In particular, we treat
the hidden state of the last layer of [CLS] as a repre-
sentation of node level, that is, h,; = éf) [CLS].

By performing the task, the language model will
absorb document semantic hints hidden inside the
network structure (e.g., contents between cited pa-
pers in the academic network can be quite semanti-
cally related, and text between co-viewed items in
the e-commerce network can be highly associated).

However, directly optimizing masked node pre-
diction can be computationally expensive since we
need to calculate the representations for all neigh-
boring nodes and candidate nodes for one predic-
tion. To ease the computation overload, we prove
that the masked node prediction task can be theo-
retically transferred to a computationally cheaper
pairwise link prediction task.

2 - MNP A MNP A MNP
a On the [mask]: A ' A ' A

- [Link Prediction |
NMLM !Reranking |

| |and risks of ...

|-

Retrieval]
Classification
mll Classification Classification
head head
A A A A A

«s ¥

[Graph-baséd Aggregation]

] neighbor aggregation
hidden state

[cLs 1

® Finetuning

BB)

1
context;
v

[cLs]

Doc 2 a

[[CLS] token hidden state t

M word token hiddenstate Dog 1 a

B Bg B |
B B)

Input

s

® Pretraining

@® A Text-rich Network

Figure 2: Overall pretraining and finetuning procedures for PATTON. We have two pretraining strategies: network-
contextualized masked language modeling (NMLM) and masked node prediction (MNP). Apart from output layers,
the same architectures are used in both pretraining and finetuning (in our experiment, we have 12 layers). The same
pretrained model parameters are used to initialize models for different downstream tasks. During finetuning, all

parameters are updated.

Theorem 3.2.1. Masked node prediction is equiva-
lent to pairwise link prediction.

Proof: Given a set of masked nodes M, the likeli-
hood of predicting the masked nodes is

H p(U[MASK] = Ui‘vk € N'U[MASK])
vrmask1 €My

X H p(vk S N’U[MASKJ |v[MASK] = vi)
vemask1 €My

= 11 1

VLMASK] EMy vg, ENU[MASK]

= 11 1I

vimask] € Moy Vi€ Nopyagey

p(“k |U[MASK] = Ui)

p(vg — v;)

In the above proof, the first step relies on the Bayes’
rule, and we have the assumption that all nodes
appear uniformly in the network, i.e., p(vpask] =
v;) = p(vmmask] = v;). In the second step, we
have the conditional independence assumption of
neighboring nodes generated given the center node,
i.e., p(Vk, Vs|vpmaskl = i) = p(vk|vimsky = v;) -
P(vs|vrmasks = ;).

As aresult, the masked node prediction objective
can be simplified into a pairwise link prediction
objective, which is

LyvNp = — Z Z log p(v; <> vk)
v; €My UlcEij
ST Y et
- Fexp(hl o) + 2, exp(hL b))’

v €My ’L)kEij
@)

where v, stands for a random negative sample.
In our implementation, we use “in-batch negative
samples” (Karpukhin et al., 2020) to reduce the
encoding cost.

Joint Pretraining. To pretrain PATTON, we opti-
mize the NMLM objective and the MNP objective
jointly:

L = Lxvim + Lynp- ©)

This joint objective will unify the effects of NMLM
and MNP, which encourages the model to conduct
network-contextualized token-level understanding
and network-enhanced document-level understand-
ing, facilitating the joint modeling of texts and net-
work structures. We will show in Section 4.6 that
the joint objective achieves superior performance
in comparison with using either objective alone.

3.3 Finetuning PATTON

Last, we describe how to finetune PATTON for
downstream tasks involving encoding for text in
the network and text not in the network. For text
in the network (thus with neighbor information),
we will feed both the node text sequence and the
neighbor text sequences into the model; while for
texts not in the network (thus neighbor information
is not available), we will feed the text sequence into
the model and leave the neighbor text sequences
blank. For both cases, the final layer hidden state
of [CLS] is used as text representation following
(Devlin et al., 2019) and (Liu et al., 2019).

Table 1: Dataset Statistics.

Dataset #Nodes #Edges #Fine-Classes #Coarse-Classes
Mathematics | 490,551 2,150,584 14,271 18
Geology 431,834 1,753,762 7,883 17
Economics | 178,670 1,042,253 5,205 40
Clothes 889,225 7,876,427 2,771 9
Sports 314,448 3,461,379 3,034 16

4 [Experiments
4.1 Experimental Settings

Dataset. We perform experiments on both aca-
demic networks from Microsoft Academic Graph
(MAG) (Sinha et al., 2015) and e-commerce net-
works from Amazon (McAuley et al., 2015). In
academic networks, nodes are papers and there
will be an edge between two papers if one cites
the other; while in e-commerce networks, nodes
correspond to items, and item nodes are linked
if they are frequently co-viewed by users. Since
MAG and Amazon both have multiple domains,
we select three domains from MAG and two do-
mains from Amazon. In total, five datasets are used
in the evaluation (i.e., MAG-Mathematics, MAG-
Geology, MAG-Economics, Amazon-Clothes and
Amazon-Sports). The statistics of all the datasets
can be found in Table 1. Fine-classes are all the
categories in the network-associated node category
taxonomy (MAG taxonomy and Amazon product
catalog), while coarse-classes are the categories at
the first layer of the taxonomy.

Pretraining Setup. The model is trained for
5/10/30 epochs (depending on the size of the net-
work) on 4 Nvidia A6000 GPUs with a total batch
size of 512. We set the peak learning rate as le-5.
NMLM pretraining uses the standard 15% [MASK]
ratio. For our model and all baselines, we adopt a
12-layer architecture. More details can be found in
the Appendix A.

Baselines. We mainly compare our method with
two kinds of baselines, off-the-shelf pretrained
language models and language model continuous
pretraining methods. The first category includes
BERT (Devlin et al., 2019), SciBERT (Beltagy
et al., 2019), SPECTER (Cohan et al., 2020), Sim-
CSE (Gao et al., 2021), LinkBERT (Yasunaga et al.,
2022) and vanilla GraphFormers (Yang et al., 2021).
BERT (Devlin et al., 2019) is a language model pre-
trained with masked language modeling and next
sentence prediction objectives on Wikipedia and
BookCorpus. SciBERT (Beltagy et al., 2019) uti-
lizes the same pretraining strategies as BERT but
is trained on 1.14 million paper abstracts and full

text from Semantic Scholar. SPECTER (Cohan
et al., 2020) is a language model continuously pre-
trained from SciBERT with a contrastive objective
on 146K scientific papers. SimCSE (Gao et al.,
2021) is a contrastive learning framework and we
perform the experiment with the models pretrained
from both unsupervised settings (Wikipedia) and
supervised settings (NLI). LinkBERT (Yasunaga
et al., 2022) is a language model pretrained with
masked language modeling and document relation
prediction objectives on Wikipedia and BookCor-
pus. GraphFormers (Yang et al., 2021) is a GNN-
nested Transformer and we initialize it with the
BERT checkpoint for a fair comparison. The sec-
ond category includes several continuous pretrain-
ing methods (Gururangan et al., 2020; Gao et al.,
2021). We perform continuous masked language
modeling starting from the BERT checkpoint (de-
noted as BERT.MLM) and the SciBERT check-
point (denoted as SCIBERT.MLM) on our data, re-
spectively. We also perform in-domain supervised
contrastive pretraining with the method proposed in
(Gao et al., 2021) (denoted as SimCSE.in-domain).

Ablation Setup. For academic networks, we pre-
train our model starting from the BERT-base >
checkpoint (PATTON) and the SciBERT * check-
point (SciPATTON) respectively; while for e-
commerce networks, we pretrain our model from
BERT-base only (PATTON). Furthermore, we con-
duct ablation studies to validate the effectiveness
of both the NMLM and the MNP strategies. The
pretrained model with NMLM removed and that
with MNP removed are called “w/o NMLM” and
“w/o MNP”, respectively. In academic networks,
the ablation study is done on SciPATTON, while in
e-commerce networks, it is done on PATTON.

We demonstrate the effectiveness of our frame-
work on four downstream tasks, including classifi-
cation, retrieval, reranking, and link prediction.

4.2 Classification

In this section, we conduct experiments on 8-shot
coarse-grained classification for nodes in the net-
works. We use the final layer hidden state of
[CLS] token from language models as the rep-
resentation of the node and feed it into a lin-
ear layer classifier to obtain the prediction re-
sult. Both the language model and the classi-
fier are finetuned. The experimental results are
shown in Table 2. From the result, we can find

Zhttps://huggingface.co/bert-base-uncased
3https://huggingface.co/allenai/scibert_scivocab_uncased

Table 2: Experiment results on Classification. We show the meangy of three runs for all the methods.

Method Mathematics Geology Economics Clothes Sports
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
BERT 18.14¢ 07 22.040.32 21.97¢.87 29.630.36 14.17¢.08 19.77¢.12 45.101 47 68.542 25 31.880.23 34.580.56
GraphFormers 18.69¢.52 23.240.46 22.640.92 31.021.16 13.681.03 19.001 44 46.271 92 68.972 46 43.770.63 50.470.78
SciBERT 23.500.64 23.102.23 29.491 25 37.821 89 15.919 48 21.320.66 - - - -
SPECTER 23.370.07 29.830.96 30.400.48 38.54¢0.77 16.16¢.17 19.84¢ .47 - - - -
SimCSE (unsup) 20.12¢.08 26.110.39 38.780.19 38.550.17 14.54¢ 26 19.07¢.43 42.709.32 58.720.34 4191085 59.190.55
SimCSE (sup) 20.390.07 25.560.00 25.660.28 33.890.40 15.030.53 18.641 32 52.820.87 75.540.98 46.690.10 59.190.55
LinkBERT 15.780.91 19.751.19 24.08.58 31.320.04 12.710.12 16.390.22 44.945 59 65.334.34 35.600.33 38.300.09
BERT.MLM 23.440.39 31.750.58 36.310.36 48.040.69 16.600.21 22.711 16 46.980 84 68.000.84 62.21¢.13 75.430.74
SciBERT.MLM 23.340.42 30.110.97 36.94¢.28 46.540.40 16.28¢.38 21.41081 - - - -
SimCSE.in-domain 25.150_09 29.850_2[1 38.910_08 48.93[]_14 18.080_22 23.79[1_44 57.030_20 80416“_31 65.57()‘35 754220.18
PATTON 27.580.03 32.820.01 39.350.06 48.190.15 19.320.05 25.120.05 60.14 25 84.880.09 67.570.08 78.600.15
SciPATTON 27.350.04 31.700.01 39.650.10 48.93) 06 19.91¢ 05 25.68.32 - - - -
“wWONMLM 2591g45 27.79207 38.78019 48.48017 18.86023 24.25026 56.68024 80.27017 65.8302s 76.2do5s
w/o MNP 24.790.65 29.441 50 38.000.73 47.821.06 18.690.59 25.631.44 47.351.20 68.502.60 64.231 53 76.031.67

that: 1) PATTON and SciPATTON consistently out-
perform baseline methods; 2) Continuous pre-
training method (BERT.MLM, SciBERT.MLM,
SimCSE.in-domain, PATTON, and SciPATTON) can
have better performance than off-the-shelf PLMs,
which demonstrates that domain shift exists be-
tween the pretrained PLM domain and the target
domain, and the adaptive pretraining on the target
domain is necessary. More detailed information on
the task can be found in Appendix B.

4.3 Retrieval

The retrieval task corresponds to 16-shot fine-
grained category retrieval, where given a node, we
want to retrieve category names for it from a very
large label space. We follow the widely-used DPR
(Karpukhin et al., 2020) pipeline to finetune all
the models. In particular, the final layer hidden
states of [CLS] token are utilized as dense repre-
sentations for both node and label names. Negative
samples retrieved from BM25 are used as hard neg-
atives. The results are shown in Table 3. From
the result, we can have the following observations:
1) PATTON and SciPATTON consistently outper-
form all the baseline methods; 2) Continuously
pretrained models can be better than off-the-shelf
PLMs in many cases (SciBERT and SPECTER per-
form well on Mathematics and Economics since
their pretrained corpus includes a large number of
Computer Science papers, which are semantically
close to Mathematics and Economics papers) and
can largely outperform traditional BM25. More
detailed information on the task can be found in
Appendix C.

4.4 Reranking

The reranking task corresponds to the 32-shot fine-
grained category reranking. We first adopt BM25
(Robertson et al., 2009) and exact matching as the

retriever to obtain a candidate category name list
for each node. Then, the models are asked to rerank
all the categories in the list based on their similarity
to the given node text. The way to encode the node
and category names is the same as that in retrieval.
Unlike retrieval, reranking tests the ability of the
language model to distinguish among candidate
categories at a fine-grained level. The results are
shown in Table 4. From the result, we can find
that PATTON and SciPATTON consistently outper-
form all baseline methods, demonstrating that our
pretraining strategies allow the language model to
better understand fine-grained semantic similarity.
More detailed information on the task can be found
in Appendix D.

4.5 Link Prediction

In this section, we perform the 32-shot link predic-
tion for nodes in the network. Language models are
asked to give a prediction on whether there should
exist an edge between two nodes. It is worth not-
ing that the edge semantics here (“author overlap”
4 for academic networks and “co-purchased” for
e-commerce networks) are different from those in
pretraining (“citation” for academic networks and
“co-viewed” for e-commerce networks). We utilize
the final layer [CLS] token hidden state as node rep-
resentation and conduct in-batch evaluations. The
results are shown in Table 5. From the result, we
can find that PATTON and SciPATTON can outper-
form baselines and ablations in most cases, which
shows that our pretraining strategies can help the
language model extract knowledge from the pre-
trained text-rich network and apply it to the new
link type prediction. More detailed information on
the task can be found in Appendix E.

*Two papers have at least one same author.

Table 3: Experiment results on Retrieval. We show the meangy of three runs for all the methods.

Method Mathematics Geology Economics Clothes Sports
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
BM25 20.76 24.55 19.02 20.92 19.14 22.49 15.76 15.88 22.00 23.96
BERT 16.730.17 22.660.18 18.82039 25.94039 23.950.25 31.54921 40.77T168 50.40141 32.37100 43.320.96
GraphFormers 164650_12 22441(]_10 18, 920_50 25.940_39 24.48()_36 32.160_40 41.772_()5 51.262_27 32-390.89 43.29112
SciBERT 24.700.17 33.55031 23.Tlpgg 30.94095 29.80066 38.660.52 - - - -
SPECTER 23.860.25 31.11p31 26.56105 34.04132 31.260.15 40.790.11 - - - -
SimCSE (lll‘lSllp) 174910_25 234190_29 20.450_20 26.820_25 25.830_23 33-42().28 44.90()_35 54.76()_38 38.810_35 49.30()_44
SimCSE (sup) 204290_41 264230_51 22.340_45) 29.630_55 28.070_38 36.510_37 44.69()_59 54.70()_77 40.310_43 50.550_41
LinkBERT 17.25030 23.21p47 17.14075 23.05074 22.69930 30.77p36 28.66297 37.79382 31.97054 41.77067
BERT.MLM 20.690.21 2717025 32.13036 41.74042 2713004 36.00014 5241171 63.72179 54.10081 63.140.83
SciBERT.MLM 20.650.21 27.67032 31.65071 40.52076 29.23067 39.180.73 - - - -
SimCSE.in-domain 24.540_05 31.660_09 33.970_07 44.09()'19 28.44031 37.81(127 61.42()‘8,1 72-250,86 53.77022 63.73030
PATTON 27.44015 3497021 3494023 45.01p28 32.10051 42.19962 68.62033 77.540.19 58.63031 68.53(55
_SciPATTON 314005, 4038055 40.6%5, SL3loss 35829 4605060 - M P P
w/o NMLM 30.850.14 39.890.23 39.29007 49.590.11 35.17031 46.07920 65.600.26 75.199.32 57.050.14 67.220.12
w/o MNP 2247007 3020015 31.28089 40.54097 29.54036 39.57057 60.200.73 69.85052 51.73041 60.350.78

Table 4: Experiment results on Reranking. We show the meangy of three runs for all the methods.

Method Mathematics Geology Economics Clothes Sports
NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10
BERT 37.150.64 44.760.59 56.591.18 68.210.96 42.650.70 53.550.76 62.190.63 72.000.70 44.680.56 57.540.55
GraphFormers 37.850.32 47.890.69 58.321.92 69.911.19 41.820.65 52.670.76 62.11p.87 72.020.73 44.490.71 57.350.50
SciBERT 40.730.50 53.220.51 57.041.05 69.47¢.92 43.24¢.79 55.220.67 - - -
SPECTER 38.950.67 52.170.71 57.790.69 69.570.46 43.41; 10 55.801.02 - - -
SimCSE (unsup) 32.340.43 42.590.44 49.601 04 61.511.03 36.370.67 47.180.76 57.03;.27 68.161.04 43.290.16 55.410.09
SimCSE (sup) 34.850.60 44.760.59 48.070.54 59.790.51 37.010.40 48.050.44 52.740.55 64.28 .52 42.000.09 53.920.13
LinkBERT 38.501.15 50.741.12 59.570.96 71.41¢.93 44.001 12 55.780.95 58.241 93 70.481 58 48.451 02 61.631.01
BERT.MLM 39.24¢.47 51.18¢.35 60.580.29 72.520.28 44.300.68 55.840.69 60.51¢.31 71.360.28 45.704.49 57.084.60
SciBERT.MLM 39.030.48 52.34¢.39 62.010.55 74.580.47 46.430.21 58.600.21 - - -
SimCSE.in-domain ~ 40.37.30 53.800.24 61.130.75 73.890.57 45.270.13 58.330.13 64.810.49 75.770.24 50.050.62 62.560.29
PATTON 42.080.17 55.300.17 61.41¢0.62 74.020.49 46.520 53 59.250.44 66.26 51 77.01) 55 52.160.44 64.96¢.37
SciPATTON 47.10¢ 49 60.86 55 63.48) 25 75.860.18 51.190.33 63.86 34 - - -
“W/ONMLM 4143p55 55.280:1 = 6284179 75.36143 46.05004 5939191 6371111 7475081 5212013 6535014
w/o MNP 43.560.53 57.14¢ 52 62.420 47 74.910.40 48.070.30 60.57¢.32 63.880.47 74.010.36 47.810.56 59.68¢.54

4.6 Ablation Study

We perform ablation studies to validate the effec-
tiveness of the two strategies in Tables 2-5. The
full method is better than each ablation version in
most cases, except R@ 100 on Economy retrieval,
NDCG@10 on Sports reranking, and link predic-
tion on Amazon datasets, which indicates the im-
portance of both strategies.

4.7 Pretraining Step Study

We conduct an experiment on the Sports dataset
to study how the pretrained checkpoint at different
pretraining steps can perform on downstream tasks.
The result is shown in Figure 3. From the figure, we
can find that: 1) The downstream performance on
retrieval, reranking, and link prediction generally
improves as the pretraining step increases. This
means that the pretrained language model can learn
more knowledge, which can benefit these down-
stream tasks from the pretraining text-rich network
as the pretraining step increases. 2) The down-
stream performance on classification increases and
then decreases. The reason is that for downstream
classification, when pretrained for too long, the
pretrained language model may overfit the given

text-rich network, which will hurt classification
performance.

4.8 Scalability Study

We run an experiment on Sports to study the time
complexity and memory complexity of the pro-
posed pretraining strategies. The model is pre-
trained for 10 epochs on four Nvidia A6000 GPU
devices with a total training batch size set as 512.
We show the result in Table 6. From the result, we
can find that: 1) Pretraining with the MNP strategy
is faster and memory cheaper than pretraining with
the NMLM strategy. 2) Combining the two strate-
gies together will not increase the time complexity
and memory complexity too much, compared with
NMLM pretraining only.

Further model studies on finetune data size can
be found in Appendix F.

S Attention Map Study

We conduct a case study by showing some attention
maps of PATTON and the model without pretraining
on four downstream tasks on Sports. We randomly
pick a token from a random sample and plot the
self-attention probability of how different tokens (x-

Table 5: Experiment results on Link Prediction. We show the meangy of three runs for all the methods.

Method Mathematics Geology Economics Clothes Sports
PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR
BERT 6.60016 1296031 624076 12.96131 412008 923005 2417041 34.20045 1648045 25.350.2
GraphFormers 6.910.29 13.42¢.34 6.521 17 13.341 81 4.160.21 9.280.28 23.7%.69 33.79.66 16.69036 25.740.4s
SciBERT 14.08011 2362010 715026 14.1lgs 501105 10.4879 :) - ;
SPECTER 13.44¢ 5 21.730.65 6.850.22 13.370.34 6.330.29 12.419.33 - - - -
SimCSE (unsup) 9.850.10 16.280.12 7AToss 1424089 5.72026 11.02034 30.51p09 40.400.10 22.990.07 32.470.06
SimCSE (sup) 10.35¢.52 17.019.72 10.100.04 17.800.07 5.720.26 11.02¢.34 35.420.06 46.070.06 27.070.15 37.44¢.16
LinkBERT 8.050.14 13.91¢.09 6.400.14 12.999.17 2.970.08 6.790.15 30.33056 39.59064 19.830.00 28.320.04
BERT.MLM 17.550.25 29.22¢.96 14.13p.19 25.360.20 9.02¢.09 16.720.15 42.710.31 54.54¢.35 29.360.09 41.600.05
SciBERT.MLM 2244008 34.22905 16.22003 27.02907 9.800.00 17.720.01 - - - -
SimCSE.in-domain ~ 33.55005 46.070.07 24.56006 36.890.11 16.770.10 26.930.01 6041003 71.86006 49.17004 63.480.03
PATTON 70.410.11 80.21p04 44.760.05 5T7.Tlpos 57.04005 6835004 58.59012 70.12012 46.68p09 60.960.23
SciPATTON 7122017 80.790.10 4495024 57.84p25 57.36026 68.713; - - - -
“w/oNMLM 71.04013 80.600.0r 44.33023 57-20020 56.6dgo5 6812046 60.300.03 71.67007 49.72006 63.7600s
w/o MNP 63.060.23 74.26011 33.84060 47.02065 44.46003 57.05004 49.62006 61.61p01 36.05020 49.780.25

0.80 /
0.58

u'_'l_ 0.79 o
007 \n
IS 0-78 n©:0.56
= 0.77
0.76 0.54
5k 15k 25k 35k 45k 55k 65k 5k 15k 25k 35k 45k 55k 65k
step step
(a) Classification (b) Retrieval

0.47

0.65 W 2 il
o _ 046
= 0.64
® go.z:s
Q
Q063 & 0.44
o o
Z 062 043

0.61 0.42

5k 15k 25k 35k 45k 55k 65k 5k 15k 25k 35k 45k 55k 65k
step step
(c) Reranking (d) Link Prediction

Figure 3: Pretrain step study on Amazon-Sports. The downstream performance on retrieval, reranking and link
prediction generally improves when pretrained for longer, while the performance on classification improves and

then drops.

Table 6: Time scalability and memory scalability study
on Amazon-Sports.
Attribute ~ NMLM MNP NMLM+MNP

Time 15h 37min 14h 53min 15h 39min
Memory 32,363MB 30,313MB 32,365MB

axis), including neighbor virtual token ([n_CLS])
and the first eight original text tokens ([tk_x]), will
contribute to the encoding of this random token
in different layers (y-axis). The result is shown
in Figure 4. From the result, we can find that the
neighbor virtual token is more deactivated for the
model without pretraining, which means that the
information from neighbors is not fully utilized
during encoding. However, the neighbor virtual
token becomes more activated after pretraining,
bringing more useful information from neighbors
to enhance center node text encoding.

6 Related Work

6.1 Pretrained Language Models

Pretrained language models have been very suc-
cessful in natural language processing since they
were introduced (Peters et al., 2018; Devlin et al.,
2019). Follow-up research has made them stronger
by scaling them up from having millions of pa-
rameters (Yang et al., 2019; Lewis et al., 2020;
Clark et al., 2020) to even trillions (Radford et al.,

2019; Raffel et al., 2020; Brown et al., 2020). An-
other way that these models have been improved
is by using different training objectives, including
masked language modeling (Devlin et al., 2019),
auto-regressive causal language modeling (Brown
et al., 2020), permutation language modeling (Yang
et al., 2019), discriminative language modeling
(Clark et al., 2020), correcting and contrasting
(Meng et al., 2021) and document relation mod-
eling (Yasunaga et al., 2022). However, most of
them are designed for modeling texts exclusively,
and do not consider the inter-document structures.
In this paper, we innovatively design strategies to
capture the semantic hints hidden inside the com-
plex document networks.

6.2 Domain Adaptation in NLP

Large language models have demonstrated their
power in various NLP tasks. However, their per-
formance under domain shift is quite constrained
(Ramponi and Plank, 2020). To overcome the neg-
ative effect caused by domain shift, continuous
pretraining is proposed in recent works (Gururan-
gan et al., 2020), which can be further categorized
into domain-adaptive pretraining (Han and Eisen-
stein, 2019) and task-specific pretraining (Howard
and Ruder, 2018). However, existing works mainly
focus on continuous pretraining based on textual in-

[0-16 -0.16

9 1011
9 1011

014 -0.14

8
8

0.12 0.12

0.10 0.10
0.08 0.08

0.06 0.06

Transformer Layer
Transformer Layer

0.04 0.04

0.02 0.02

012345867
012345867

0.00 0.00

(b) Retrieval w/o pretrain

-0.175

9 1011
9 1011

-0.150

8
8

0.125

0.100

0.075

Transformer Layer

012345867
Transformer Layer

012345867

0.050

0.025

0.000

(e) Classification w/ pretrain (f) Retrieval w/ pretrain

Transformer Layer

012345867

Transformer Layer

-0.16

9 1011
9 1011

-0.14

8
8

0.12

0.10

0.08

0.06

Transformer Layer

0.04

0.02

012 3 4567
012 3 4567

0.00

(d) Link Prediction w/o pre-
train

(c) Reranking w/o pretrain

0175 -0.175

9 1011
9 1011

-0.150 0-150

8
8

0.125 -0.125

0.100 -0.100

0.075 -0.075

Transformer Layer

012345867

0.050 -0.050

0.025 -0.025

0.000 -0.000

(g) Reranking w/ pretrain (h) Link Prediction w/ pretrain

Figure 4: Attention map study on Amazon-Sports. [n_CLS] refers to network neighbor virtual token and [tk_x]s refer
to word tokens. [n_CLS] is more activated after pretraining (PATTON), which means that more useful information
from network neighbors is extracted to enhance center node text encoding.

formation, while our work tries to conduct pretrain-
ing utilizing textual signal and network structure
signal simultaneously.

6.3 Pretraining on Graphs

Inspired by the recent success of pretrained lan-
guage models, researchers are starting to explore
pretraining strategies for graph neural networks
(Hu et al., 2020b; Qiu et al., 2020; Hu et al., 2020a).
Famous strategies include graph autoregressive
modeling (Hu et al., 2020b), masked component
modeling (Hu et al., 2020a), graph context predic-
tion (Hu et al., 2020a) and constrastive pretraining
(Qiu et al., 2020; Velickovic et al., 2019; Sun et al.,
2020). These works conduct pretraining for graph
neural network utilizing network structure informa-
tion and do not consider the associated rich textual
signal. However, our work proposes to pretrain the
language model, adopting both textual information
and network structure information.

7 Conclusions

In this work, we introduce PATTON, a method to
pretrain language models on text-rich networks.
PATTON consists of two objectives: (1) a network-
contextualized MLM pretraining objective and (2)

a masked node prediction objective, to capture the
rich semantics information hidden inside the com-
plex network structure. We conduct experiment
on four downstream tasks and five datasets from
two different domains, where PATTON outperforms
baselines significantly and consistently.

Acknowledgments

We thank anonymous reviewers for their valu-
able and insightful feedback. Research was sup-
ported in part by US DARPA KAIROS Program
No. FA8750-19-2-1004 and INCAS Program No.
HRO01121C0165, National Science Foundation
IIS-19-56151, 1IS-17-41317, and IIS 17-04532,
and the Molecule Maker Lab Institute: An Al Re-
search Institutes program supported by NSF under
Award No. 2019897, and the Institute for Geospa-
tial Understanding through an Integrative Discov-
ery Environment (I-GUIDE) by NSF under Award
No. 2118329. Any opinions, findings, and con-
clusions or recommendations expressed herein are
those of the authors and do not necessarily rep-
resent the views, either expressed or implied, of
DARPA or the U.S. Government. The views and
conclusions contained in this paper are those of the
authors and should not be interpreted as represent-
ing any funding agencies.

Limitations

In this work, we mainly focus on language model
pretraining on homogeneous text-rich networks and
explore how pretraining can benefit classification,
retrieval, reranking, and link prediction. Interest-
ing future studies include 1) researching how to
conduct pretraining on heterogeneous text-rich net-
works and how to characterize the edges of differ-
ent semantics; 2) exploring how pretraining can
benefit broader task spaces including summariza-
tion and question answering.

Ethics Statement

While it has been shown that PLMs are powerful in
language understanding (Devlin et al., 2019; Lewis
et al., 2020; Raffel et al., 2020), there are studies
highlighting their drawbacks such as the presence
of social bias (Liang et al., 2021) and misinforma-
tion (Abid et al., 2021). In our work, we focus
on pretraining PLMs with information from the
inter-document structures, which could be a way to
mitigate bias and eliminate the contained misinfor-
mation.

References

Abubakar Abid, Maheen Farooqi, and James Zou. 2021.
Persistent anti-muslim bias in large language models.
In AIES.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: Pretrained language model for scientific text. In
EMNLP.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurlPS.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
ICLR.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S. Weld. 2020. SPECTER:
Document-level Representation Learning using
Citation-informed Transformers. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. NAACL.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In EMNLP.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
adapt language models to domains and tasks. ACL.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsuper-
vised domain adaptation of contextualized embed-
dings for sequence labeling. EMNLP.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
ACL.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zit-
nik, Percy Liang, Vijay Pande, and Jure Leskovec.
2020a. Strategies for pre-training graph neural net-
works. ICLR.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei
Chang, and Yizhou Sun. 2020b. Gpt-gnn: Gener-
ative pre-training of graph neural networks. In KDD.

Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. 2023a.
Edgeformers: Graph-empowered transformers for
representation learning on textual-edge networks. In
ICLR.

Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. 2023b.
Heterformer: Transformer-based deep node represen-
tation learning on heterogeneous text-rich networks.
KDD.

Bharath Kandimalla, Shaurya Rohatgi, Jian Wu, and
C Lee Giles. 2021. Large scale subject category
classification of scholarly papers with deep attentive
neural networks. Frontiers in research metrics and
analytics, 5:600382.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. EMNLP.

Onur Kiiciiktung, Erik Saule, Kamer Kaya, and Umit V
Catalytirek. 2012. Recommendation on academic
networks using direction aware citation analysis.
arXiv preprint arXiv:1205.1143.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
ACL.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understanding
and mitigating social biases in language models. In
ICML.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

http://arxiv.org/abs/arXiv:1903.10676
http://arxiv.org/abs/arXiv:1903.10676

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In SIGIR.

Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett,
Jiawei Han, Xia Song, et al. 2021. Coco-lm: Cor-
recting and contrasting text sequences for language
model pretraining. NeurIPS.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,
Hongxia Yang, Ming Ding, Kuansan Wang, and Jie
Tang. 2020. Gcce: Graph contrastive coding for graph
neural network pre-training. In KDD.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-
pervised domain adaptation in nlp—a survey. COL-
ING.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Foundations and Trends in Information Re-
trieval.

Christian Schulz, Amin Mazloumian, Alexander M Pe-
tersen, Orion Penner, and Dirk Helbing. 2014. Ex-
ploiting citation networks for large-scale author name
disambiguation. EPJ Data Science.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June Hsu, and Kuansan Wang. 2015. An
overview of microsoft academic service (mas) and ap-
plications. In Proceedings of the 24th international
conference on world wide web, pages 243-246.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian
Tang. 2020. Infograph: Unsupervised and semi-
supervised graph-level representation learning via
mutual information maximization. /CLR.

Petar Velickovic, William Fedus, William L Hamil-
ton, Pietro Li0, Yoshua Bengio, and R Devon Hjelm.
2019. Deep graph infomax. /CLR.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous
graph attention network. In WWW.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo
Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. 2021. Graphform-
ers: Gnn-nested transformers for representation learn-
ing on textual graph. In NeurIPS.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. NeurIPS.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. Linkbert: Pretraining language models with
document links. ACL.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram
Swami, and Nitesh V Chawla. 2019. Heterogeneous
graph neural network. In KDD.

A Pretrain Settings

To facilitate the reproduction of our pretraining
experiment, we provide the hyperparameter config-
uration in Table 7. All reported continuous pretrain-
ing and in-domain pretraining methods use exactly
the same set of hyperparameters for pretraining
for a fair comparison. All GraphFormers (Yang
et al., 2021) involved methods have the neighbor
sampling number set as 5. Paper titles and item
titles are used as text associated with the nodes
in the two kinds of networks, respectively. (For
some items, we concatenate the item title and de-
scription together since the title is too short.) Since
most paper titles (88%) and item titles (97%) are
within 32 tokens, we set the max length of the in-
put sequence to be 32. The models are trained
for 5/10/30 epochs (depending on the size of the
network) on 4 Nvidia A6000 GPUs with a total
batch size of 512. The total time cost is around 24
hours for each network. Code is available at https:
//github.com/PeterGriffinJin/Patton.

B Classification

Task. The coarse-grained category names for aca-
demic networks and e-commerce networks are
the first-level category names in the network-
associated category taxonomy. We train all the
methods in the 8-shot setting (8 labeled train-
ing samples and 8 labeled validation samples for
each class) and test the models with hundreds of
thousands of new query nodes (220,681, 215,148,
85,346, 477,700, and 129,669 for Mathematics,
Geology, Economics, Clothes, and Sports respec-
tively). Detailed information on all category names
can be found in Table 8-12.

Finetuning Settings. All reported methods use
exactly the same set of hyperparameters for fine-
tuning for a fair comparison. The median results
of three runs with the same set of three different
random seeds are reported. For all the methods,
we finetune the model for 500 epochs in total. The
peak learning rate is le-5, with the first 10% steps
as warm-up steps. The training batch size and the
validation batch size are both 256. During training,
we validate the model every 25 steps and the best
checkpoint is utilized to perform prediction on the
test set. The experiments are carried out on one
Nvidia A6000 GPU.

C Retrieval

Task. The retrieval task corresponds to fine-
grained category retrieval. Given a node in the
network, we aim to retrieve its fine-grained labels
from a large label space. We train all the com-
pared methods in the 16-shot setting (16 labeled
queries in total) and test the models with tens of
thousands of new query nodes (38,006, 33,440,
14,577, 95,731, and 34,979 for Mathematics, Geol-
ogy, Economics, Clothes, and Sports, respectively).
The fine-grained label spaces for both academic net-
works and e-commerce networks are constructed
from all the labels in the network-associated tax-
onomy > . The statistics of the label space for all
networks can be found in Table 1.

Finetuning Settings. We finetune the models
with the widely-used DPR pipeline (Karpukhin
et al., 2020). All reported methods use exactly
the same set of hyperparameters for finetuning for
a fair comparison. The median results of three runs
with the same set of three different random seeds
are reported. For all the methods, we finetune the
model for 1,000 epochs with the training data. The
peak learning rate is le-5, with the first 10% steps
as warm-up steps. The training batch size is 128.
The number of hard BM25 negative samples’ is
set as 4. We utilize the faiss library ® to perform
an approximate search for nearest neighbors. The
experiments are carried out on one Nvidia A6000
GPU.

D Reranking

Task. The reranking task corresponds to fine-
grained category reranking. Given a retrieved cate-
gory list for the query node, we aim to rerank all
categories within the list. We train all the methods
in the 32-shot setting (32 training queries and 32
validation queries) and test the models with 10,000
new query nodes and candidate list pairs. The cat-
egory space in reranking is the same as that in
retrieval. In our experiment, the retrieved category
list is constructed with BM25 and exact matching
of category names.

Finetuning Settings. All reported methods use
exactly the same set of hyperparameters for fine-

Shttps://www.microsoft.com/en-
us/research/project/academic/articles/visualizing-the-
topic-hierarchy-on-microsoft-academic/

®http://jmcauley.ucsd.edu/data/amazon/links.html

"https://github.com/dorianbrown/rank_bm25

8https://github.com/facebookresearch/faiss

https://github.com/PeterGriffinJin/Patton
https://github.com/PeterGriffinJin/Patton

Table 7: Pretraining hyper-parameter configuration.

Parameter Mathematics ~ Geology Economics Clothes Sports
Max Epochs 30 10 30 5 10
Peak Learning Rate le-5 le-5 le-5 le-5 le-5
Batch Size 512 512 512 512 512
Warm-Up Epochs 3 1 3 0.5 1
Sequence Length 32 32 32 32 32
Adam € le-8 le-8 le-8 le-8 le-8
Adam (1, 52) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9, 0.999)
Clip Norm 1.0 1.0 1.0 1.0 1.0
Dropout 0.1 0.1 0.1 0.1 0.1
Table 8: Class names of MAG-Mathematics.
0 mathematical optimization 5 econometrics 10 control theory 15 computational science
1 mathematical analysis 6 mathematical physics 11 geometry 16 mathematics education
2 combinatorics 7 statistics 12 applied mathematics 17 arithmetic
3 algorithm 8 pure mathematics 13 operations research
4 algebra 9 discrete mathematics 14 mathematical economics

tuning for a fair comparison. The median results
of three runs with the same set of three different
random seeds are reported. For all the methods,
we finetune the model for 1,000 epochs in total
with the training data. The peak learning rate is
le-5, with the first 10% steps as warm-up steps.
The training batch size and validation batch size
are 128 and 256, respectively. During training, the
model is validated every 1,000 steps and the best
checkpoint is utilized to conduct inference on the
test set. The experiments are carried out on one
Nvidia A6000 GPU.

E Link Prediction

Task. The task aims to predict if there should
exist an edge with specific semantics between two
nodes. It is worth noting that the semantics of the
edge here is different from the semantics of the
edge in the pretraining text-rich network. In aca-
demic networks, the edge semantics in the pretrain-
ing network is “citation”, while the edge semantics
in downstream link prediction is “author overlap’
9. In e-commerce networks, the edge semantics in
the pretraining network is “co-viewed”, while the
edge semantics in the prediction of the downstream
link is “co-purchased”. We train all the methods in
the 32-shot setting (32 training labeled pairs and 32
validation labeled pairs) and test the models with
10,000 new node pairs. We utilize in-batch sam-
ples as negative samples in training to finetune the
model and in testing to evaluate the performance

B

*Two papers have at least one same author.

of the methods.

Finetuning Settings. All reported methods use
exactly the same set of hyperparameters for fine-
tuning for a fair comparison. The median results
of three runs with the same set of three different
random seeds are reported. For all the methods,
we finetune the model for 200 epochs in total. The
peak learning rate is le-5, with the first 10% step
as warm-up steps. The training batch size and val-
idation batch size are 128 and 256, respectively.
During training, we validate the model in 20 steps
and use the best checkpoint to perform the predic-
tion on the test set. The experiments are carried out
on one Nvidia A6000 GPU.

F Finetuning Data Size Study

We conduct a parameter study to explore how ben-
eficial our pretraining method is to downstream
tasks with different amounts of finetuning data on
the four tasks on Sports. The results are shown in
Figure 5, where we can find that: 1) As finetuning
data increases, the performance of both PATTON
and the model without pretraining (GraphForm-
ers) improves. 2) The performance gap between
PATTON and the model without pretraining (Graph-
Formers) becomes smaller as finetuning data in-
creases, but PATTON is consistently better than the
model without pretraining (GraphFormers).

Table 9: Class names of MAG-Geology.

0 geomorphology 5 paleontology 10 petrology 15 mining engineering
1 seismology 6 climatology 11 geotechnical engineering 16 petroleum engineering
2 geochemistry 7 atmospheric sciences 12 soil science
3 mineralogy 8 geodesy 13 earth science
4 geophysics 9 oceanography 14 remote sensing
Table 10: Class names of the MAG-Economics
0 mathematical economics 10 economy 20 development economics 30 economic policy
1 labour economics 11 monetary economics 21 international trade 31 market economy
2 finance 12 operations management 22 keynesian economics 32 environmental economics
3 econometrics 13 actuarial science 23 positive economics 33 classical economics
4 macroeconomics 14 industrial organization =~ 24 agricultural economics 34 management science
5 microeconomics 15 political economy 25 international economics 35 management
6 economic growth 16 commerce 26 demographic economics 36 welfare economics
7 financial economics 17 socioeconomics 27 neoclassical economics 37 economic system
8 public economics 18 financial system 28 natural resource economics 38 environmental resource management
9 law and economics 19 accounting 29 economic geography 39 economic history
Table 11: Class names of Amazon-Clothes.
0 girls 3 luggage 5 fashion watches 7 boys
1 men 4 baby 6 shoes 8 adidas
2 novelty
Table 12: Class name of Amazon-Sports.
0 accessories 4 cycling 8 golf 12 paintball & airsoft
1 action sports 5 baby 9 hunting & fishing & game room 13 racquet sports
2 boating & water sports 6 exercise & leisure sports 10 outdoor gear 14 snow sports
3 clothing 7 fan shop 11 fitness 15 team sports
0.8 0.5
0.8
— n
Loy ®°7 'é)' 0.4
< 9 O
Qo6 gos6 Yos
= —— GraphFormers —— GraphFormers = —— GraphFormers o —— GraphFormers
0.5 0.4 0.5
Ours Ours Ours 0.2 Ours
0 2000 4000 6000 8000 0 20000 40000 60000 0 10000 20000 30000 0 10000 20000 30000
data data data data
(a) Classification (b) Retrieval (c) Reranking (d) Link Prediction

Figure 5: Finetuning data size study on Amazon-Sports. As finetuning data size increases, both the performance
of our proposed PATTON and the model without pretraining (GraphFormers) improves. PATTON consistently
outperforms the language model without pretraining (GraphFormers).

