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In wearable optical sensing applications whose target tissue is not superficial, such as deep tissue oximetry, the
task of embedded system design has to strike a balance between two competing factors. On one hand, the sensing
task is assisted by increasing the radiated energy into the body, which in turn, improves the signal-to-noise ratio
(SNR) of the deep tissue at the sensor. On the other hand, patient safety consideration imposes a constraint on
the amount of radiated energy into the body. In this paper, we study the trade-offs between the two factors by
exploring the design space of the light source activation pulse.

Furthermore, we propose BASS, an algorithm that leverages the activation pulse design space exploration,
which further optimizes deep tissue SNR via spectral averaging, while ensuring the radiated energy into the
body meets a safe upper bound. The effectiveness of the proposed technique is demonstrated via analytical
derivations, simulations, and in vivo measurements in both pregnant sheep models and human subjects.
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Embedded and cyber-physical systems.
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1 INTRODUCTION
A growing number of applications involve deep tissue optical sensing using wearable-grade electron-
ics. In such systems, light generated by emitters, such as light-emitting diodes (LEDs), is radiated
into the body toward the tissue of interest. The radiated light diffuses into the tissue bed, and a small
fraction of the diffused light is non-invasively detected by light sensors in the wearable system. The
detected light may have propagated through multiple tissue layers, including a deep tissue of interest,
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whose chemical composition regulates light attributes, such as its intensity, thereby enabling the
system to non-invasively sense specific tissue properties [34].

Human tissue is a highly scattering medium for light. As a result, the amount of light energy that
is received by a light detector on the subject’s skin is far smaller than the radiated energy in the
body. This makes the task of embedded system design challenging, as it needs to faithfully sense and
capture very weak signals that are due to the deep tissue of interest.

An illustrative application of deep tissue sensing is non-invasive fetal oximetry, in which the goal
of the wearable system is to perform pulse oximetry on an in utero fetus from outside of the maternal
abdomen [32, 36]. A high-level sketch of this application is shown in Figure 1. The red banana
pattern highlights in the figure illustrate the average path that is traveled from the light emitters to
the detectors by the majority of sensed light photons [6, 21].

Fig. 1. High-level overview of non-invasive fetal pulse oximetry, an illustrative application of deep
tissue optical sensing [10].

The signal detected by the photo-detectors is essentially the photoplethysmogram (PPG) signal,
which is obtained optically. It records the variations in light absorption caused by changes in blood
volume. The PPG signal is commonly used in pulse oximetry applications, where the goal is to
measure a patient’s blood oxygen saturation (𝑆𝑝𝑂2) using a wearable device typically attached to the
finger. Pulse oximetry underpinnings rely on the principle that oxygenated and deoxygenated blood
absorb light differently, depending on the wavelength of the light source [13]. By illuminating the
tissue with two light sources of different wavelengths and measuring the changes in their respective
light absorption, it is possible to establish a correlation between the change in light absorption and
the patient’s 𝑆𝑝𝑂2.

The light signal detected by a sensor placed farther from the light source contains more information
about the deep tissue, however, its detection is potentially challenging due to high attenuation over
the longer path [1, 10]. A naive approach to solve this problem is to increase the amount of radiated
energy into the body, to proportionally increase the detected signal. This approach would not offer a
practical solution, as safety considerations limit the amount of radiated energy into the body [5].

The question then arises of whether the wearable embedded system can be designed to optimize
the quality of the sensed light signal under a given constraint on the emitted optical energy. This
paper addresses this very problem via two methods that complement each other on the light emission
and light detection side of the system.
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Specifically, we first explore the design space of the pulses, characterized by the two LED forward
current (𝐼𝐹𝐷 ) and pulse duty cycle (𝑑) parameters, that are used to activate the light emitter, and
derive pulse activation functions that lead to improved SNR at the detector. Subsequently, we develop
BASS, an application-specific signal averaging technique, which leverages scaled spectral copies of
the signal to improve SNR. Unlike conventional time-domain signal averaging methods [27], which
find limited application in sensing dynamic systems, BASS utilizes scaled replicas of the signal
spectrum that are concurrently sensed.

The objective of this paper is to propose a technique that can alleviate the burden on hardware
design. The fundamental design of an optimized embedded system for deep tissue sensing must take
power efficiency into account and at the same time report reliable readings.

The contributions of this paper are as follows:

• In the context of wearable light-based sensing, we identify, formulate and investigate the
optimization of the light source activation signal to achieve maximum signal-to-noise ratio
(SNR) under a critically-important given radiated energy budget.

• We propose a novel algorithm called BASS, which utilizes multiple scaled replicas of the tissue
signal to improve the SNR of the deep tissue signal to improve the performance of the sensing
modality.

• We provide analytical derivations and simulation results to support the proposed techniques’
effectiveness. Furthermore, we implement the proposed algorithms in an existing deep tissue
sensing system prototype. We report experimental results based on measurements collected
from benchtop tissue phantoms, animal models as well as human subjects.

2 RELATED WORKS
The main issue with deep tissue sensing is that the signal peak is very close to the noise floor and
there have been many attempts in finding means to split the tissue signal from the noise floor. One
application of deep tissue sensing is in fetal oximetry which we alluded to before. In one of our
previous works, we explored the use of particle filters to estimate the fetal signal more accurately
which was tested on pregnant ewe [19]. In another previous work, we looked into using adaptive
noise cancellation techniques to suppress the maternal signal in the mixed signal detected in this deep
tissue sensing modality as seen in [7] which was also explored in related works such as [2, 3]. In
another work, the objective was designing algorithms to track the fetal signal amidst noise, utilizing
prior information about the signal of interest [15]. In addition, spatial information fusion from
multiple light detectors was used to enhance the accuracy of deep tissue oximetry utilizing LED light
sources within the red to near-infrared (NIR) wavelength ranges as explained in [9, 17]. The effect
of measurement depth in oximetry was also explored in related work [24] using spatially resolved
near-infrared spectroscopy.

A non-invasive deep tissue optical sensing system was proposed in previous work [10], which
involves the use of a NIR light source operating at approximately 850𝑛𝑚 within a high-power LED
package. This particular setup is known as the Transabdominal Fetal Pulse Oximetry (TFO) system,
which is specifically designed to extract fetal information from deep within the maternal abdomen
non-invasively. To achieve this objective, improving the SNR of the fetal photoplethysmogram
(PPG) signal in this application is crucial while minimizing exposure to the maternal skin. The
improvements discussed in this paper involve the implementation of a novel and modified TFO
system.

In a different study, researchers explored an invasive system for monitoring deep-tissue oxygen
saturation using a wireless implant. This method utilizes LEDs for sensing oxygen saturation and
allows for implantation within deep tissue, powered by an ultrasound linkage [28]. Additionally,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:4 K. Vali et al.

efforts have been made to develop minimally invasive solutions. In one approach described in [22], an
array of microneedle waveguides is utilized on a patch attached to the skin. These waveguides enhance
the penetration depth of photons emitted by the LEDs, consequently improving the performance of
deep tissue sensing.

In addition, different sensing modalities have been explored for similar deep tissue sensing
applications. For instance, bioimpedance spectroscopy is used to investigate the tissue under contact
points [16, 30] but would require more electronics attached to the skin and might not be suitable for
wearable power-efficient embedded systems.

In various RF applications, shaping the input signal is standard practice. This technique is com-
monly used in digital communication to reduce signal distortion within the communication channel
[20]. However, in optical sensing, this technique is employed to maximize the performance of LED
emitters. One key difference is that the generated optical signal always has a non-negative amplitude
due to the non-negativity of the LED current. In contrast, in RF applications, the input waveform
is generated by the transmitter and applied to an antenna, which can have positive or negative
amplitudes. Once the waveform reaches the target, it interacts with it causing modulation, and a
portion of the signal is reflected back toward the receiver. Additionally, the amount of RF radiated
power from the antenna is not exactly proportional to the generated signal power in the transmitter
[26]. This necessitates a different optimization problem, which distinguishes it from optical sensing
applications.

Previous studies have demonstrated that utilizing signal averaging methods can improve the SNR
performance of sensing modalities. Traditional time-domain signal averaging techniques, such as
those mentioned in [4, 27] rely on taking multiple measurements to reduce the impact of uncorrelated
noise. However, in the case of the sensing modality proposed in this paper which is designed for
dynamic systems, newly acquired data at different times may not exhibit a strong correlation with
previous data. Therefore, in the proposed algorithm, signal averaging is applied to multiple harmonics
within one frame of acquired PPG data as will be discussed in Section 5.

In RF applications, the measurement bandwidth is usually high, and accessing higher harmonics of
the carrier signal is typically not feasible. Consequently, the wideband application requires capturing
these higher harmonics, which increases the cost, the complexity of the hardware, and the power
consumption [33]. In contrast, in optical sensing applications, the operation frequency is generally
much lower, and accessing higher harmonics is not challenging when using a typical Analog-to-
Digital Converter (ADC). Therefore the algorithm proposed in this paper can be applied within the
software domain which is favorable.

The proposed method in this paper is expected to work on any deep tissue sensing applications
as long as LEDs are used as the light source. Essentially, LEDs are non-ionizing light sources that
pose minimal risks to the tissue but require some additional considerations to achieve desirable
performance. Previous works have looked into lowering the duty cycle of the input signal in an
optical sensing application. Authors in [11, 29] have looked into lowering the duty cycle of a pulse
oximetry system in favor of lowering the power consumption of the system which proved to be
effective. However, it is pivotal to note that these works were studied on single-body patients and
the target was not a deep tissue. So they could achieve desired performance with a low current by
decreasing the duty cycle which is a challenge that will be discussed thoroughly in Section 4.2.

3 BACKGROUND
3.1 Safety Overview
The power of the reflected received signal from the deep tissue is proportional to the intensity of
the emitted light from the light source. The higher the emitted light power, the higher the reflected
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received signal power from the deep tissue will be. However, the increase in the light source power
rises the tissue temperature, which raises safety concerns for the patient.

In the case of human studies, the maximum permissible transmitted optical power is set by
safety regulations. Complying with these standards consequently imposes a limit on the maximum
penetration depth of the optical signal. Given this situation, the reflection from the deep tissue will be
so small that it can be buried under the system’s noise. As a result, the ever-lasting challenge of deep
tissue sensing is the extraction of the reflected signal from the deep tissue of interest, considering the
limitation on the maximum transmitted optical power.

The safety regulations mentioned earlier are defined by IEC 60601-2-57, a Recognized Consensus
Standard approved by the U.S. Food and Drug Administration (FDA) [5]. These regulations apply to
commercial products that utilize non-ionizing radiation sources, similar to the system employed in
this paper, which motivates the problem at hand. Adhering to this standard is crucial as it mandates
that the radiance levels emitted by the system remain below the thresholds for optical signals projected
onto the body, ensuring the system’s compliance for commercial and clinical purposes.

Throughout this paper, the average optical power generated by the light source (𝑃𝐸) over the
measurement capture time is considered a parameter that must be restricted. The findings are
applicable and remain valid for any permitted threshold on 𝑃𝐸 , thus ensuring the generalizability of
the results. The effect of instantaneous generated optical power which arguably has adverse effects
on the skin is not ignored in this paper despite having a pulse with a very short duration.

3.2 Optical Power for an LED
In this work, we utilize a non-ionizing light source to detect a signal buried in deep tissue inside the
body. Specifically, in this paper, we investigate the use of LEDs for sensing, which are incoherent
light sources and generally safer to use on human skin. As explained above, LEDs have more relaxed
safety concerns compared to using lasers as the light source.

In this paper, we assume a linear relationship between the emitted optical power from the light
source and the LED forward current (𝐼𝐹𝐷 ). Additionally, we assume that all the power generated by
the light source is radiated toward the body. For an LED activated using a pulse signal at a fixed
frequency of 𝑓𝑐 , the average power of the emitted light (𝑃𝐸) from the light source can be calculated
using Equation 1. Here, 𝑃 (𝐼𝐹𝐷 ) represents the peak emitted optical power from the LED, which can
be obtained from the LED’s datasheet for a fixed 𝐼𝐹𝐷 . 𝑇𝑝 denotes the pulse duration, and 𝑇 represents
the period of the pulse signal. The ratio of 𝑇𝑝/𝑇 can also be denoted as 𝑑, which refers to the duty
cycle of the activation pulse.

𝑃𝐸 = 𝑃 (𝐼𝐹𝐷 )
𝑇𝑝

𝑇
= 𝑃 (𝐼𝐹𝐷 )𝑑 (1)

This indicates that the average power of emitted light is proportional to the duty cycle at 𝐼𝐹𝐷 , so if
the duty cycle is decreased, effectively the light source power, and hence heat on the skin is decreased
and vice versa.

Later we discuss how the LED activation signal has a direct effect on the optical power limitation
then explain the trade-offs in optimizing the system’s performance while staying below a certain
optical power budget.

3.3 Synchronous Detection
𝑥 (𝑡) is the baseband signal that contains a signal of interest from the deep tissue that is aimed to be
detected using this sensing modality. To detect this signal, the principles of synchronous detection
as discussed in detail in [12] is utilized, where a light source is pulsated using an activation signal
Π(𝑡) with the frequency of 𝑓𝑐 which modulates the 𝑥 (𝑡) to higher frequencies to achieve better SNR
performance. By pulsating the light source using Π(𝑡) and capturing the reflected light from the body,
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(a) The detection of the deep tissue signal by pulsating an LED on the skin.

BPF
@ 𝑓𝑐

LPF
@ 𝑓𝐵𝐵

sin(2𝜋𝑓𝑐𝑡)

Generated pulse waveform 
of fundamental frequency

Data 
Acquisition 

System
𝑦1(𝑡)

Detector 
output

0 𝑓𝐵𝐵- 𝑓𝐵𝐵

Extracted tissue signal spectrum 
of fundamental frequency

(b) The extracted noisy tissue signal from the fundamental frequency of the detected PPG
signal.

Fig. 2. Synchronous Detection procedure

inherently, 𝑥 (𝑡) will be "modulated" to a higher frequency, as shown in Figure 2a. Here it is assumed
that the signal of interest from deep tissue is a physiological signal with a frequency of 𝑓𝐵𝐵 limited to
a few Hertz with the requirement of 𝑓𝑐 ≫ 𝑓𝐵𝐵 .

Figure 2a illustrates that after pulsating the LED with a periodic signal, 𝑥 (𝑡) will be modulated to
harmonics of 𝑓𝑐 in the PPG signal received at the optical detector placed at a certain distance from
the LED. The PPG signal is heavily attenuated as it has to traverse through and back from multiple
shallower tissues as well as the deep tissue of interest. If we assume the tissue response to the LED
is linear throughout all harmonics, we can express the PPG signal as such assuming that Π(𝑡) is a
periodic even signal:

𝑝𝑝𝑔(𝑡) = 𝐿𝑥 (𝑡) · Π(𝑡)

= 𝐿
∑︁
𝑖

𝑥 (𝑡) · 𝑎𝑖𝑐𝑜𝑠 (𝑖𝜔𝑐𝑡) (2)

In Equation 2, 𝐿 is a constant comprised of multiple coefficients including but not limited to the
tissue loss, the responsivity of the LED to the driver current, the responsivity of the detector to the
received light, the area of the detector, and the gain of the data acquisition system. Here, 𝑥 (𝑡) is the
deep tissue signal, and Π(𝑡) is the driving signal of the light source. In this paper, we assume that 𝐿
remains constant across different frequencies, as well as across various amplitudes and shapes of
Π(𝑡).
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Next, the PPG signal is sampled using a data acquisition system with a sampling rate of 𝐹𝑠
assuming that the bandwidth of the data acquisition system is unlimited. The optical detector front-
end and data acquisition pipeline will induce a noise added to the modulated signal. It is assumed this
additive noise is a White Gaussian Noise (WGN) with the distribution of 𝑁 (0, 𝜎2

𝑁
) and only affects

the amplitude of the PPG signal.
Finally, as outlined in Figure 2b, the noisy tissue signal𝑦1 (𝑡) can be extracted from the fundamental

frequency of the detected PPG signal. The sampled PPG signal is passed from a bandpass filter
(BPF) centered at the fundamental frequency 𝑓𝑐 and then mixed with a sinusoidal signal with the
frequency of 𝑓𝑐 which has the same phase as Π(𝑡), followed by a final lowpass filter (LPF) to ensure
that the outcome signal is band-limited to 𝑓𝐵𝐵 . Here we "demodulate" the signal from 𝑓𝑐 back to the
baseband.

4 LED ACTIVATION SIGNAL
Knowing the underpinnings of synchronous detection, it’s crucial to point out that the LED activation
signal Π(𝑡) has an essential role in achieving optimum performance while maintaining the safety
requirements of the application. The noisy tissue signal, which is extracted from the fundamental
harmonic (𝑓𝑐 ) of the PPG signal, can be represented as 𝑦1 (𝑡) = 𝑠1 (𝑡) + 𝑛1 (𝑡), where 𝑠1 (𝑡) denotes the
tissue signal modulated at 𝑓𝑐 in the PPG signal, and 𝑛1 (𝑡) is the WGN of the data acquisition system
present around 𝑓𝑐 as seen in Figure 2b. Here 𝑠1 (𝑡) is uncorrelated to noise (𝐸 [𝑠1 (𝑡−𝜏)𝑛1 (𝑡)] = 0,∀𝑡, 𝜏).
SNR1 is defined around 𝑓𝑐 of the detected PPG signal formulated in Equation 3.

SNR1 =
𝑠21 (𝑡)

𝐸
[
𝑛21 (𝑡)

] =
𝑆1

𝑁1
(3)

Here, the power of the tissue signal 𝑆1 is the average sum of squares for all the samples in 𝑠1 (𝑡),
and 𝑁1 is the expected noise power at around 𝑓𝑐 . The LED activation signal Π(𝑡) will be converted to
an optical signal by the LED which in turn assuming that the tissue responds linearly to the input
optical signal, will affect the detected PPG signal from the deep tissue. This means that 𝑆1 is directly
affected by the shape of the input signal Π(𝑡).

4.1 Optimal LED Activation Signal
The primary objective is to determine the optimal periodic signal for LED activation, ensuring the
best SNR1 performance while keeping the average emitted power by the LED (𝑃𝐸) below a certain
threshold. For the general case, it is assumed the LED activation signal can have infinite bandwidth.
So Π(𝑡) can have any shape or format as long as it’s a periodic signal with a period of 𝑇 = 1/𝑓𝑐
and has a non-negative value at each sample with an average below a certain threshold since the
activation signal of the LED can not be negative. Furthermore, the average of Π(𝑡) is bounded in the
conditions because it will correlate with the average emitted power of the optical light on which the
optical power budget is enforced (𝑃𝐸 ∝ Π(𝑡)).

Assuming Π(𝑡) is an even periodic function of 𝑡 , which only has cosine coefficients in Π(𝑡) Fourier
series

∑
𝑎𝑖𝑐𝑜𝑠 (2𝑖𝜋𝑡/𝑇 ), in order to maximize 𝑆1, one can maximize the first cosine coefficient in Π(𝑡)

Fourier series (𝑎1). Assuming a sampling rate 𝐹𝑠 ≫ 2𝑓𝑐 , the signals will be sampled with sampling
period 𝑇𝑠 = 1/𝐹𝑠 . In this case, we have Π[𝑛] = Π(𝑛𝑇𝑠 ) where the sampled Π has 𝑁 = 𝑇 /𝑇𝑠 samples
in a period (Π[𝑛 + 𝑁 ] = Π[𝑛]). This will translate to the following optimization problem in the
discrete domain which is a linear programming problem:
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max
𝑁−1∑︁
𝑛=0

Π[𝑛]𝑐𝑜𝑠 ( 2𝑛𝜋
𝑁

)

s.t. Π[𝑛] ≥ 0, 𝑛 = 0, 1, . . . , 𝑁 − 1
𝑁−1∑︁
𝑛=0

Π[𝑛] ≤ Γ.

Here Γ is selected such that the average emitted optical power 𝑃𝐸 is within the specifications of the
application.

THEOREM 4.1. The solution to this problem in the discrete domain is a periodic Kronecker delta
function that has a positive value when 𝑐𝑜𝑠 (2𝑛𝜋/𝑁 ) = 1 and zero for the rest. This Value can be Γ
to satisfy the requirements. As a result, Π′ is the feasible and optimal solution to the problem, and
within one period:

Π′ =

{
Γ if 𝑛 = 0
0 if 𝑛 = 1, . . . , 𝑁 − 1

(4)

which maximizes the objective function at
∑

𝑛 Π
′ [𝑛]𝑐𝑜𝑠 (2𝑛𝜋/𝑁 ) = Γ.

PROOF. Suppose Π′ is not optimal. Then, ∃Π★, a feasible and optimal solution to the linear
programming problem above, such that Π★ maximizes

∑
𝑛 Π[𝑛]𝑐𝑜𝑠 (2𝑛𝜋/𝑁 ). Since Π′ is not optimal:

𝑁−1∑︁
𝑛=0

Π★[𝑛] ≥
𝑁−1∑︁
𝑛=0

Π★[𝑛]𝑐𝑜𝑠 ( 2𝑛𝜋
𝑁

), as Π★ ≥ 0

𝑁−1∑︁
𝑛=0

Π★[𝑛]𝑐𝑜𝑠 ( 2𝑛𝜋
𝑁

) >
𝑁−1∑︁
𝑛=0

Π′ [𝑛]𝑐𝑜𝑠 ( 2𝑛𝜋
𝑁

)

⇒
𝑁−1∑︁
𝑛=0

Π★[𝑛] > Γ,

An optimal solution has to be feasible as well. Π★ is a feasible solution ⇔ ∑
𝑛 Π

★[𝑛] ≤ Γ & Π★ ≥ 0.
Here Π★ does not satisfy the first feasibility requirements so it cannot be an optimal solution.

So Π′ [𝑛] = Γ𝛿 [𝑛 ± 𝑘𝑁 ] where 𝑘 = 0, 1, 2, . . . is the optimal periodic function to use as the LED
activation signal which maximizes 𝑆1 and adheres to limits enforced over 𝑃𝐸 . □

Realistically, in the time domain, a signal with a high value at a specific time and zero for the
rest has infinite bandwidth and even if we use it as the activation signal of conventional high-power
LEDs, the emitted optical signal has limited bandwidth. Thus, we settle for a pulse train instead with
a short duty cycle but high amplitude to drive the LED.

4.2 SNR vs Duty Cycle of the LED Activation Pulse
Henceforth Π(𝑡) will be denoted as the LED activation "pulse", which is a periodic pulse train with a
duty cycle of 𝑑 , frequency of 𝑓𝑐 , and current amplitude of𝐴 expressed as Π(𝑡) = 𝐴𝑑+∑∞

𝑖=1 𝑎𝑖𝑐𝑜𝑠 (𝑖𝜔𝑐𝑡).
Here 𝑎𝑖 = 2𝐴𝑑𝑠𝑖𝑛𝑐 (𝑖𝑑) where 𝑠𝑖𝑛𝑐 (𝑖𝑑) = 𝑠𝑖𝑛(𝜋𝑖𝑑)/(𝜋𝑖𝑑). As indicated in Equation 1, the peak
emitted optical power from the LED is proportional to the LED forward current (𝐼𝐹𝐷 ) which is
defacto the amplitude of the pulse train (𝐴). In addition, here we assume that tweaking 𝑃 and 𝑑,
will not affect the system noise. The extracted tissue signal from 𝑓𝑐 in the detected PPG signal

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



BASS: Safe Deep Tissue Optical Sensing for Wearable Embedded Systems 1:9

Fig. 3. SNR improvement of 𝑦1 for different duty cycles compared to 𝑑 = 50% with constant 𝑃𝐸 .

is 𝑆1 = 𝑠21 (𝑡) = 𝐿2𝐴2𝑑2𝑠𝑖𝑛𝑐2 (𝑑)𝑥2 (𝑡) if the LED activation pulse has a duty cycle of 𝑑 and pulse
amplitude of 𝐴, assuming constant loss term 𝐿.

Yet, we have to make sure the average emitted optical power complies with the power budget. 𝑃𝐸
must be contained which translates to keeping the average of activation pulse (Π) constant, and as
such Π = 𝐴1𝑑1 = 𝐴2𝑑2. Thus the SNR improvements for two design points with different duty cycles
of 𝑑1 and 𝑑2 but the same 𝑃𝐸 will be:

SNR1 (𝑑2)
SNR1 (𝑑1)

=
𝑆1 (𝑑2)
𝑆1 (𝑑1)

=
𝐴2
2𝑑

2
2𝑠𝑖𝑛𝑐

2 (𝑑2)
𝐴2
1𝑑

2
1𝑠𝑖𝑛𝑐

2 (𝑑1)
=
𝑠𝑖𝑛𝑐2 (𝑑2)
𝑠𝑖𝑛𝑐2 (𝑑1)

(5)

Considering the SNR of the extracted tissue signal from 𝑓𝑐 (SNR1) after activating an LED with
a pulse train with 𝑑 = 50% and a period of 1/𝑓𝑐 as the baseline, the SNR improvement for various
duty cycles while maintaining constant 𝑃𝐸 is expected to follow Figure 3 with theoretical SNR
improvement of ∼ 3.89𝑑𝐵 for activating the LED with 𝑑 = 5% and 10× higher amplitude compared
to 𝑑 = 50%.

5 SELECTIVE SPECTRAL AVERAGING
We propose BASS (Band Averaged Sensing Scheme), which employs scaled copies of the tissue
signal spectrum that are simultaneously captured. Essentially by utilizing the fact that a pulse train
has harmonics at not just the fundamental frequency but also integer multiples of the fundamental
frequency in the frequency spectrum. As mentioned in Section 2, the technique discussed here
operates on a single data frame collected.

This algorithm calculates an averaged extracted tissue signal which was initially modulated to the
harmonics of the light carrier (𝑖 𝑓 𝑐) by spectrum band averaging to reduce the noise floor of the tissue
signal. As indicated before, it is assumed that the tissue has a linear response to the LED activation
pulse which translates into the linear scaling of all the harmonics in the detected PPG signal.

5.1 Proposed Algorithm
Harmonic content 𝑀: Assuming that the data acquisition system has unlimited bandwidth, 𝑀
denotes the amount of Harmonic content in the average extracted tissue signal. This indicates that
the tissue signal copies are extracted from the first 𝑀 harmonics of the PPG signal and selected to
average.
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In Figure 4, the high-level process of the BASS algorithm is depicted where the PPG signal
from the light detector, which carries the tissue information modulated over all harmonics of the
LED signal, is filtered around each harmonic 𝑖 𝑓𝑐 where 𝑓𝑐 is the fundamental frequency of the LED
activation signal and 𝑖 = 1, 2 . . . 𝑀 and brought back to the baseband by employing synchronous
detection principles. Here slightly more advanced technique than the conventional synchronous
detection method which was demonstrated in Figure 2b is utilized. After the detected PPG signal is
passed from band-pass filter (BPF) banks centered at each harmonic (𝑖 𝑓𝑐 ), each output is mixed with
a generated sine wave with the frequency of 𝑖 𝑓𝑐 and phase-synced to each signal with a phase-locked
loop (PLL) which will be called the In-Phase component (I). Here the concept of I/Q demodulation
is utilized where in addition to the In-Phase component, the phase-synced sine wave is shifted by 90°
and mixed again with the output of each BPF, and the output signal will be denoted as the Quadrature
component (Q) [20]. Finally, the magnitude of the mixed signal which is the root sum of squares of I
and Q components is passed from LPF banks, all with the same cutoff frequency of 𝑓𝐵𝐵 , to extract
the demodulated tissue signal from the 𝑀 harmonics, as seen in Figure 4.

However, as mentioned before the extracted tissue signal from this algorithm is noisy. Here,
𝑦avg (𝑡) = 1

𝑀

∑𝑀
𝑖=1 𝑦𝑖 (𝑡), where 𝑦𝑖 (𝑡) is the noisy extracted tissue signal from each harmonic of

the fundamental frequency of the detected PPG signal. Here, the noisy extracted signal is 𝑦𝑖 (𝑡) =
𝑠𝑖 (𝑡) + 𝑛𝑖 (𝑡), where 𝑠𝑖 (𝑡) is the copy of the tissue signal which was modulated to 𝑖 𝑓𝑐 and 𝑛𝑖 (𝑡) is
WGN present around the 𝑖𝑡ℎ harmonic. The copies of tissue signal 𝑠𝑖 (𝑡) are uncorrelated to the noise
around the corresponding harmonic (𝐸 [𝑠𝑖 (𝑡 − 𝜏)𝑛𝑖 (𝑡)] = 0,∀𝑡, 𝜏).

SNR𝑎𝑣𝑔 is defined to measure the signal-to-noise ratio of the average tissue signal𝑦avg(𝑡) calculated
from the BASS algorithm and formulated in Equation 6.

SNR𝑎𝑣𝑔 =
𝑆𝑎𝑣𝑔

𝑁𝑎𝑣𝑔

=

1
𝑀2 (

∑𝑀
𝑖=1 𝑠𝑖 (𝑡))2

1
𝑀2 𝐸

[
(∑𝑀

𝑖=1 𝑛𝑖 (𝑡))2
] =

(∑𝑀
𝑖=1 𝑠𝑖 (𝑡))2

𝐸
[
(∑𝑀

𝑖=1 𝑛𝑖 (𝑡))2
] (6)

In Equation 6, 𝑆𝑎𝑣𝑔 is the average power of 𝑀 tissue signal copies 𝑠𝑖 (𝑡) modulated at 𝑖 𝑓𝑐 , 𝑖 =

1, . . . , 𝑀 , and 𝑁𝑎𝑣𝑔 is the average power of noise 𝑛𝑖 (𝑡) at corresponding harmonics. It is assumed that
the WGN of the data acquisition system is stochastic throughout the spectrum, which means the noise
floor in all harmonics is the same 𝑁1 = 𝐸 [𝑛21 (𝑡)] = · · · = 𝐸 [𝑛2

𝑀
(𝑡)]. By averaging the noise from the

first 𝑀 harmonics, 𝑁𝑎𝑣𝑔 will be 𝑁1/𝑀 assuming that noises around each harmonic are uncorrelated
with each other (𝐸 [𝑛𝑖 (𝑡 − 𝜏)𝑛 𝑗 (𝑡)] = 0, 𝑖 ≠ 𝑗,∀𝑡, 𝜏).
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Fig. 4. The high-level BASS algorithm scheme. 𝑀 indicates the depth of each filter.
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A pulse train is used as the LED activation signal having components at integer multiples of 𝑓𝑐 in
the frequency spectrum, which means the same baseband signal will be modulated to all the above
harmonics, per modulation theorem, [25]. So the corresponding tissue signal copies at each of these
harmonics (𝑠𝑖 (𝑡)) are actually correlated with each other.

So, it is relatively safe to assume the extracted tissue signal from the 𝑖𝑡ℎ harmonic of the PPG
signal is a scaled replica of the tissue signal copy from the fundamental frequency of the PPG signal
where 𝑠𝑖 (𝑡) = 𝛼𝑖𝑠1 (𝑡) for the same duty cycle. In Equation 7, 𝛼2

𝑖 represents the ratio of the tissue
signal power extracted from the 𝑖-th harmonic compared to the extracted tissue signal power from the
fundamental. This ratio can be calculated based on the relationship between 𝑠1 (𝑡) and 𝑠𝑖 (𝑡), where
𝑠1 (𝑡) ∝ 𝑎1𝑥 (𝑡) and 𝑠𝑖 (𝑡) ∝ 𝑎𝑖𝑥 (𝑡).

=⇒ 𝑆𝑖

𝑆1
=
𝑠2
𝑖
(𝑡)

𝑠21 (𝑡)
=
𝑎2𝑖

𝑎21
=
𝑠𝑖𝑛𝑐2 (𝑖𝑑)
𝑠𝑖𝑛𝑐2 (𝑑) = 𝛼2

𝑖 (7)

As seen in Equation 6, the term (∑𝑖 𝑠𝑖 (𝑡))2 can be replaced with
∑

𝑖 𝛼
2
𝑖 𝑠

2
1 (𝑡) due to the correlated

nature of the tissue signal copies around harmonics. Therefore, Equation 6 can be reformatted to
Equation 8 for calculating the SNR of the first 𝑀 extracted tissue signals averaged with duty cycle of
𝑑 :

SNR𝑎𝑣𝑔 (𝑑,𝑀) =
(∑𝑀

𝑖=1 𝑠𝑖 (𝑡))2

𝐸
[
(∑𝑀

𝑖=1 𝑛𝑖 (𝑡))2
] =

( ∑𝑀
𝑖=1 𝛼𝑖

)2
𝑀

· 𝑆1
𝑁1

=
(∑𝑀

𝑖=1 𝛼𝑖 )2
𝑀

SNR1 (8)

A limitation of this method is that even though the noise floor is reduced, the averaged extracted
signal from different harmonics will have lower power compared to the extracted tissue signal from
the fundamental. This is evident by analyzing the Fourier series of the LED activation pulse, where
the magnitude of the Fourier coefficients decreases as the harmonic number increases. However, if
the focus is shifted to pulse trains with a lower duty cycle (less than 10% duty cycle), the Fourier
coefficients diminish less, resulting in similar magnitudes. This leads to tissue signal copies around
the harmonics having more comparable amplitudes.

5.2 BASS in a Simulated Setup
The signal from the deep tissue was simulated as a sinusoidal wave with a frequency of 2.5𝐻𝑧 and the
activation pulse as a pulse train with a frequency of 𝑓𝑐 . In this simulated setup, the average emitted
optical power 𝑃𝐸 was kept constant while varying the LED duty cycle. We considered the baseline
case with a duty cycle of 𝑑 = 50% and an LED activation pulse amplitude of 𝐴 = 1. For other duty
cycles, we adjusted the pulse amplitude by increasing it by 0.5/𝐴 to maintain a constant average
activation pulse (Π) as explained previously. The PPG signal was generated by mixing the modeled
tissue signal with the modeled optical signal from the LED activated by a pulse train. This PPG
signal was then sampled with a frequency of 𝐹𝑠. In these simulations, the WGN noise was stochastic
and randomly generated with a predetermined variance of 𝜎2

𝑁
and then was added as an amplitude

noise to the sampled PPG signal.
Figure 5 displays the Power Spectral Density (PSD) of the average extracted tissue signal in two

examples. In Figure 5a, the SNR of the extracted tissue signal from the fundamental of the PPG
signal is compared between two cases: LED duty cycle of 50% and LED duty cycle of 33%, while
keeping the average activation pulse (Π) constant. As shown in Figure 5a, the SNR of 𝑦1 for a duty
cycle of 𝑑 = 50% is approximately 11.81𝑑𝐵. An improvement of approximately 2.3𝑑𝐵 is achieved

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:12 K. Vali et al.

(a) 𝑦1 PSD for two cases when 𝑑 = 50% vs 𝑑 = 33% with
constant Π.

(b) 𝑦𝑎𝑣𝑔 PSD when 𝑑 = 33% for two cases when 𝑀 = 1
vs 𝑀 = 2.

Fig. 5. Examples of averaged extracted tissue signal PSD.

when switching to 1.5× higher LED activation pulse amplitude and a duty cycle of 𝑑 = 33%, which
aligns with the expectations from Equation 5, and Figure 3. The noise floor remains roughly the same
between these two cases but the peak of the tissue signal improves from −103.47𝑑𝐵 to −101.17𝑑𝐵.

In Figure 5b, only the LED activation signal with 𝑑 = 33% is simulated, and the SNR of the
extracted tissue signal (𝑦1) from 𝑓𝑐 is compared to the SNR of the averaged extracted tissue signal
(𝑦𝑎𝑣𝑔) from 𝑓𝑐 and 2𝑓𝑐 in the PPG signal. As shown in Figure 5b, by averaging two copies of the
signal located at the fundamental and the 2𝑛𝑑 harmonic in the simulated PPG signal, the peak of the
tissue signal slightly decreases (approximately 1.91𝑑𝐵), while the noise power decreases by half (
3𝑑𝐵). The decrease in the noise floor is greater than the decrease in the peak, resulting in an increase
in the overall SNR of 𝑦𝑎𝑣𝑔 by 1.09𝑑𝐵 which aligns with the expectation from Equation 8 when 𝑀 = 2.

These simulated examples demonstrate the potential of the BASS algorithm where an overall SNR
improvement of approximately 3.39𝑑𝐵 was achieved by using an LED activation pulse with 𝑑 = 33%
and averaging the extracted tissue signal from 𝑓𝑐 and 2𝑓𝑐 compared to the conventional method of
activating the LED using a pulse signal with 𝑑 = 50% and extracting the tissue signal only from 𝑓𝑐 .
This improvement in SNR is achieved without exceeding the baseline case’s threshold for average
emitted optical power (𝑃𝐸).

6 SNR OPTIMIZATION
In this section, we formulate the design space of the extracted tissue signal as a multi-objective
optimization problem based on the BASS algorithm. The problem arises from the limitation on the
optical power that can be emitted on the skin from the light source, which directly affects the detected
PPG signal. In this case, we assume that the heat from the LED is proportional to the optical power
emitted by the light source.

The objective would be to maximize the SNR of the averaged extracted tissue signal (𝑦𝑎𝑣𝑔) while
staying below a specific budget for the emitted optical power, as shown in Equation 9. The design
space parameters include 𝑃𝐸 , which represents the average emitted optical power, 𝑑 , the duty cycle
of the pulse train activating the LED, and Harmonic Content 𝑀 . It is important to note that the limit
imposed on 𝑃𝐸 can easily be translated to a limit on the average of the LED activation pulse Π.

Equation 8 was derived to calculate the SNR of the averaged extracted tissue signal for the case
when 𝑑 is constant. However, as discussed in Section 4.2, the Equation 8 can be used to compare
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the SNR of the average extracted tissue signal with different duty cycles (𝑑1 and 𝑑2), as long as
the average emitted optical power (𝑃𝐸) is kept constant for these two cases, which implies that
Π = 𝐴1𝑑1 = 𝐴2𝑑2. This leads to a multi-parameter optimization problem similar to those discussed in
[8, 35]:

max SNR(𝜒)
s.t. 𝑃𝐸 (𝜒) ≤ 𝜌

𝜒 ∈ 𝑋

(9)

The deep tissue optical sensing system can be configured by adjusting the design parameter (𝜒)
within the feasible design space solutions (𝑋 ) to achieve optimal performance while ensuring that the
heat generated on the skin remains within acceptable limits (𝑃𝐸 ≤ 𝜌). The design space is as follows:

• LED activation pulse amplitude (𝐴) or LED forward current (𝐼𝐹𝐷 ): This parameter is
controlled by the LED driver and for LED activation pulse, 𝐴 corresponds to the forward
current (𝐼𝐹𝐷 ). The peak emitted optical power (𝑃) is determined by 𝐼𝐹𝐷 and can be obtained
from the LED’s datasheet. Increasing 𝐴 can enhance the SNR of the tissue signal, but it also
leads to an increase in 𝑃𝐸 resulting in higher heat generation on the skin.

• The pulse train duty cycle 𝑑: This parameter defines the ratio of the LED pulse on time to the
LED pulse duration. The duty cycle affects both the SNR and the average emitted power, as
discussed earlier. Increasing 𝑑 can improve the system performance, but it also raises 𝑃𝐸 and
subsequently increases heat generation on the skin.

• Harmonic content number 𝑀: This parameter determines the number of PPG signal harmon-
ics from which the tissue signal is extracted to calculate the average tissue signal 𝑦𝑎𝑣𝑔. This
parameter does NOT affect the heat output but helps reduce the system’s noise floor.

By maintaining a constant 𝑃𝐸 at the limit 𝑃𝐸 = 𝜌, the relationship between 𝐴 and 𝑑 can be
determined as Π = 𝐴𝑑 = const, because 𝑃𝐸 is a linear function of Π. As a result, the design space
effectively becomes two-dimensional for exploration. Any design parameter, such as 𝜒 = (𝑑,𝑀) is a
possible solution if it’s feasible and the objective is to find optimal solutions that maximize the SNR
while adhering to the power constraint imposed by the light source.

Here the average emitted optical power 𝑃𝐸 is fixed, and the baseline SNR is derived from the design
parameter 𝜒0 = (𝑑 = 50%, 𝑀 = 1) which represents the conventional sensing method, where the LED
is activated using a pulse train with 𝑑 = 50% and only the information present on the fundamental is
preserved while discarding the rest of the harmonics. it is assumed that all the emitted optical power
by the LED is transmitted into the body, the response of the tissue to the input light is linear, and the
loss inside the tissue is constant across the frequency spectrum. These assumptions must hold true
for the baseline SNR calculation.

Figure 6 illustrates the exploration of the design space and the theoretically expected improvements
for each design point 𝜒 = (𝑑,𝑀) compared to the baseline 𝜒0 = (𝑑 = 50%, 𝑀 = 1) while keeping 𝑃𝐸
constant. As observed in Figure 6, the performance of the LED activation pulse with a duty cycle of
𝑑 = 50% consistently deteriorates when the tissue signal is extracted using more harmonics than the
fundamental harmonic. This makes sense looking at the Fourier coefficients of a pulse train with
𝑑 = 50% duty cycle. Consequently, when utilizing the BASS algorithm, the SNR of the average tissue
signal (𝑦𝑎𝑣𝑔) starts to degrade from 𝑀 = 2 onwards in this case.

It’s important to note that the first measurable improvement using the BASS algorithm is obtained
using an LED activation pulse with 𝑑 = 33% and incorporating harmonic content from both 𝑓𝑐 and
2𝑓𝑐 (design point 𝜒 = (𝑑 = 33%, 𝑀 = 2)) to extract tissue signal. This design point is expected to
yield an average improvement of approximately 0.6𝑑𝐵 compared to extracting the tissue signal solely
from the fundamental frequency (design point 𝜒 = (𝑑 = 33%, 𝑀 = 1)). In this case, the overall SNR
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Fig. 6. SNR improvements at each 𝜒 = (𝑑,𝑀) design point compared to baseline 𝜒0 = (50%, 1) for
theoretical and experimental results.

performance increases by approximately 2.9𝑑𝐵 compared to the baseline SNR of 𝜒0. It’s worth noting
that when using an activation pulse with 𝑑 = 33%, there is no advantage in averaging the extracted
tissue signal from 𝑀 = 3 harmonic contents (𝑓𝑐 , 2𝑓𝑐 , and 3𝑓𝑐 ) as the SNR of the average signal would
degrade compared to using 𝑀 = 2 harmonic contents (𝑓𝑐 and 2𝑓𝑐 ).

As mentioned earlier, the BASS algorithm demonstrates greater effectiveness when the duty cycle
is lower. The results of the design space exploration support this assertion, as it is observed that
for LED activation using a pulse train with 𝑑 ≤ 25%, there are more potential gains to be achieved
by averaging extracted tissue signals from two or more harmonics. A periodic pulse function with
a lower duty cycle approaches closer to a periodic impulse function, which we established as the
optimal LED activation signal in Section 4.1.

Theoretically, we anticipate that the best-performing design parameter would be 𝜒 = (5%, 𝑀)
with a higher 𝑀 if possible. However, certain constraints, such as the limited bandwidth of the data
acquisition system, impose a maximum limit on 𝑀 . In real-world data, the maximum value of 𝑀
is restricted to 𝑀 < 𝐹𝑠/(2𝑓𝑐 ), where 𝐹𝑠 represents the sampling frequency of the data acquisition
system, in order to prevent aliasing. Additionally, the dynamic nature of the system can sometimes
make direct comparisons between different design parameters challenging, as we will discuss in the
next section.

7 EXPERIMENTAL RESULTS
The ideas presented in this paper are validated through three experimental methods. First, a test bench
experiment is conducted where a high-power LED is pulsed from the bottom into a tissue phantom
that simulates the optical properties of human abdominal tissue. The PPG signal is received by an
optical probe placed on top of the phantom as shown in Figure 7. The effectiveness of the techniques

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



BASS: Safe Deep Tissue Optical Sensing for Wearable Embedded Systems 1:15

Fig. 7. The setup on a tissue phantom with LED underneath.

proposed in this paper is demonstrated using a modified TFO system, which was previously reported
in our work [10]. Furthermore, the setup is validated in vivo using a pregnant sheep model. In this
case, the optical probe is placed on the belly of a pregnant sheep to capture the reflected light from
the deep lamb tissue. This experiment aims to evaluate the performance of the proposed techniques in
a realistic physiological scenario. Finally, the BASS algorithm is tested on a pregnant patient during
a Non-Stress Test (NST) to confirm its functionality in real-world applications involving deep tissue
sensing, such as non-invasive fetal signal detection.

7.1 Test Bench Setup
The optical tissue phantom, with a thickness of 5 cm, was custom-made to mimic the optical
properties (absorption and scattering) of maternal abdominal tissue in term pregnancy. The optical
properties were determined using parameters obtained from [7, 14]. The TFO system, as described in
[10], was placed on top of the optical phantom, and an LED was positioned at the bottom which was
activated with a pulse train with programmable amplitude and duty cycle. In this experiment, four
different duty cycles were selected: 𝑑 = 50%, 33%, 25%, and 20%. The amplitude of the activation
pulse was adjusted inversely proportional to the duty cycle to maintain a constant average activation
pulse. Consequently, the forward current of the LED was set to 𝐴 = 200𝑚𝐴, 300𝑚𝐴, 400𝑚𝐴, and
500𝑚𝐴 for each respective duty cycle. The measurements were conducted for approximately 10
minutes, and the output of the photo-detector was sampled using a data acquisition system with a
sampling frequency of 𝐹𝑠 = 8𝑘𝑆𝑝𝑠.

As the test bench setup does not include a tissue signal, only the DC component of 𝑦𝑎𝑣𝑔 was used
to calculate the SNR. However, the rest of the analysis is conducted similarly to the case where
there is a pulsating signal from the deep tissue. Table 1 presents the SNR of 𝑦𝑎𝑣𝑔 for each test case.
Additionally, we measured the system’s noise floor as a reference when the LED was turned off.
The results are provided in Table 1. The trend in the noise floor aligns with our expectations, with a
reduction in noise power of approximately 𝑀 times when averaging extracted signals from the first
𝑀 harmonics compared to only fundamental (𝑀 = 1).

The SNR values in this table are relatively high and do not precisely represent the situation in
deep tissue sensing, such as non-invasive fetal pulse oximetry. This is because there are no pulsating
components present from the deep tissue, and the SNR calculation is based on the DC component of
the light carrier injected into the phantom. As a result, the SNR values appear higher. The best result
from each measurement is indicated in bold text. It can be observed that there are SNR improvements
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when using lower duty cycles while increasing the pulse amplitude (𝐴) to maintain a constant 𝑃𝐸 .
Additionally, there are mostly improvements when averaging more harmonics for duty cycles of
𝑑 = 25% and 𝑑 = 20%. The optimal design point, in this case, would be 𝜒 = (20%, 3).

Uncorrelated Noise: The noise present at each harmonic is uncorrelated which was verified by
looking at the cross-correlation of 𝑦𝑖 (𝑡) excluding the DC which should approximate 𝑛𝑖 (𝑡). Here an
infinitesimal correlation value was observed between 𝑛𝑖 (𝑡) and 𝑛 𝑗 (𝑡) where 𝑖 ≠ 𝑗 .

7.2 Case Study on a Pregnant Sheep
The design space exploration results from the BASS technique were tested on a novel TFO system,
focusing on detecting a lamb’s PPG signal inside the ewe’s abdomen using pregnant sheep models.
The data was acquired using the modified TFO system placed on the ewe’s belly, as depicted in
Figure 8, by pulsating an 850𝑛𝑚 light source located at a distance of 7𝑐𝑚 from the light detector.
Measurements were conducted at various duty cycles while maintaining a fixed current, with each
measurement lasting for 5 minutes. In this experiment, the deep tissue of interest was the fetal tissue
located approximately 2𝑐𝑚 deep from the maternal skin., and the signal of interest was the fetal heart
rate signal, which was externally measured at approximately 3.02𝐻𝑧 or 185 beats-per-minute (bpm).
The lamb’s signal is indicated by the red box in Figure 9, while the remaining peaks are related to

Table 1. 𝑦𝑎𝑣𝑔 SNR from test bench setup at various (𝑑,𝑀) where 𝑃𝐸 is kept constant.

Average Extracted Tissue Signal SNR

𝑀 = 1 𝑀 = 2 𝑀 = 3 𝑀 = 4 𝑀 = 5

D
ut

y
C

yc
le

(𝑑
) 50% 90.90dB 88.55 dB 88.95dB 88.10dB 88.19dB

33% 93.59dB 94.52dB 93.07dB 92.84dB 92.91dB

25% 94.80dB 96.68dB 96.48dB 95.45dB 95.18dB

20% 95.28dB 97.64dB 98.07dB 97.79dB 97.10dB

Noise Power

-144.90dB -148.05dB -149.76dB -151.04dB -152.14dB

(a) Illustration of the study [31]. (b) TFO placement in the study.

Fig. 8. Deep tissue optical sensing in a hypoxic sheep model
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Table 2. 𝑦𝑎𝑣𝑔 SNR in a sheep model at various (𝑑,𝑀) for activation pulse.

Average Extracted Tissue Signal SNR

𝑀 = 1 𝑀 = 2 𝑀 = 3 𝑀 = 4 𝑀 = 5
D

ut
y

cy
cl

e

50% 53.72dB 50.83dB 51.39dB 50.16dB 50.36dB

33%★ 56.24dB 56.87dB 55.14dB 55.10dB 55.09dB

10%★ 58.51dB 61.30dB 62.57dB 63.30dB 63.71dB

5%★ 57.36dB 60.31dB 61.82dB 62.85dB 63.63dB

the ewe’s physiological system. The noise floor was recorded when the LED was not activated, as
previously mentioned. It is important to note that all procedures used in this study were evaluated
and approved by the UC Davis Institutional Animal Care and Use Committee (IACUC).

Due to limitations in this experiment, the pulse amplitude was not adjusted to maintain the same
average emitted optical power (𝑃𝐸) while varying the duty cycle. As a result, when the duty cycle was
decreased, the effective 𝑃𝐸 also decreased. Consequently, there was a decrease in the extracted tissue
signal power as the duty cycle increased, without compensating for the change in pulse amplitude.
The data in Table 2 is reported as if the LED activation pulse amplitude was adjusted to account for
the reduction in duty cycle. Therefore, when comparing the measurements to the baseline with a
duty cycle of 𝑑 = 50%, the SNR values highlighted with ★ are adjusted in post-processing to consider
the increase in the LED activation pulse amplitude by 20 log(0.50/𝑑) dB for other duty cycles. This
adjustment is made under the assumption of a constant tissue attenuation multiplier.

Here, the optimal design parameter is 𝜒 = (10%, 5), followed by the expected optimal design
parameter 𝜒 = (5%, 5). If the system’s bandwidth allowed, capturing more harmonics of the PPG
signal would have further improved the SNR of the average extracted tissue signal. The trend
observed in this study mostly aligns with the theoretical analysis pattern depicted in Figure 6, except
for the optimal design parameter. This inconsistency can be attributed to the dynamic nature of the
experiment, where the lamb is active. In such conditions, the lamb’s signal and dynamics vary, leading
to deviations from the expected results. In a stable condition, where the lamb’s signal and dynamics
remain relatively constant, the results would follow expectations more closely. Unfortunately, in the
next case study, the unstable dynamics of the physiological system also persist.

Fig. 9. PPG spectrogram when 𝑑 = 50%. Here the whereabouts of the lamb’s signal are indicated with
red over time.
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Table 3. 𝑦𝑎𝑣𝑔 SNR and noise power in an experiment on a pregnant patient.

Average Extracted Tissue Signal SNR

𝑀 = 1 𝑀 = 2 𝑀 = 3 𝑀 = 4 𝑀 = 5

D
ut

y
cy

cl
e(

d) 50% 11.28dB 8.31dB 9.44dB 9.01dB 9.30dB

33% 0.04dB 0.46dB -0.98dB -0.20dB -0.62dB

25% 9.78dB 11.38dB 11.59dB 11.12dB 11.11dB

Noise Power

-99.76dB -102.77dB -105.08dB -107.15dB -108.36dB

7.3 Case Study on a Pregnant Patient
This protocol was approved by the UC Davis Institutional Review Board (IRB) to test this novel
system in conjunction with the Non-Stress Test (NST) during antenatal visits of the pregnant patients
participating in the study. Furthermore, the skin temperatures of the patients were closely monitored
to ensure that increasing 𝐴 and reducing 𝑑 would not result in excessive heat emitted from the LEDs.

This setup was tested in experiments designed to evaluate non-invasive fetal oximetry in pregnant
women, similar to the study conducted in [18]. The TFO system was placed on the pregnant mother’s
belly, as shown in Figure 10, to detect the reflected light from the deep fetal tissue. In this case,
the tissue signal was defined as the signal present at approximately 2 − 2.5𝐻𝑧, corresponding to
the fetus’s heart rate in this experiment (120-150 bpm). The main focus of this experiment was to
study the effect of increasing the Harmonic Content 𝑀 and observe the SNR improvement obtained
by averaging multiple copies of the tissue signal. The average emitted optical power 𝑃𝐸 was kept
constant throughout the experiments. For these measurements, duty cycles of 𝑑 = 50%, 𝑑 = 33%, and
𝑑 = 25% were selected, with pulse amplitudes of 𝐴 = 400𝑚𝐴, 600𝑚𝐴, and 800𝑚𝐴 respectively, to
drive the high-power LED with a wavelength of 𝜆 = 850𝑛𝑚 mounted on the optical probe, and the
photo-detector was positioned 4.5cm away from the source. Each measurement took approximately
2 minutes to capture, and the nature of these measurements was highly unpredictable, as the mother
moved around and the fetus exhibited high activity levels.

Fig. 10. TFO on a human experiment.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



BASS: Safe Deep Tissue Optical Sensing for Wearable Embedded Systems 1:19

We considered the noise floor to be constant across the experiments and used the average noise
floor obtained from the three experiments, as reported in Table 3. It is important to note that the
human experiment had an inherently higher noise floor compared to the animal experiment due
to increased motion and a more dynamic measurement environment. This is why the dark noise
floor from the previous case studies was not utilized in the SNR calculation for this case study. As
observed in Table 3, it is challenging to draw a direct conclusion regarding the optimal setup when
lowering the duty cycle. The dynamic nature of the system, with fast changes in the fetus’ location,
can result in a lower fetal signal at times, as observed in the case of 𝑑 = 33%. This implies that the
SNR of 𝑦1 SNR does not precisely follow the pattern depicted in Figure 3 when 𝑀 = 1 and the duty
cycle is changed. Additionally, it should be noted that the patient in the experiment was moving,
which influenced the readings obtained from the TFO device. In an ideal scenario where the patient is
completely stationary and measurements are taken simultaneously, we would expect an improvement
in SNR from 𝑑 = 50% to 𝑑 = 25% that aligns with Equation 5, resulting in approximately a 3dB
improvement.

However, when we shift our focus to the SNR improvement for the average extracted tissue signal
(𝑦𝑎𝑣𝑔) at different duty cycles, we observe a pattern in the human data that aligns well with the results
from the test bench and animal experiments. Figure 11 illustrates the change in SNR resulting from
averaging more harmonic content for different duty cycles individually. Each data point in this figure
represents the SNR difference between the design parameters 𝜒 = (𝑑,𝑀) and 𝜒 = (𝑑, 1), where
𝑑 represents the duty cycle and 𝑀 represents the total averaged harmonic content. For example,
in the case where 𝑑 = 25%, the optimal design point is achieved at 𝑀 = 3, where the drop in the
noise floor is more compared to the drop in the peak of the average extracted signal compared to
𝑀 = 1 as expected. These observations provide further evidence of the effectiveness of the BASS
algorithm. By conducting more measurements, we can continue to demonstrate the efficacy of the
BASS algorithm and further validate its performance.
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Fig. 11. SNR improvements at each 𝜒 = (𝑑,𝑀) design points with respect to 𝜒0 = (𝑑, 1).
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8 DISCUSSION AND FUTURE WORK
The results presented in this paper were obtained using an LED with a wavelength of 𝜆 = 850𝑛𝑚
based on its favorable penetration and absorption properties, which make it suitable for deep tissue
signal sensing [23]. However, depending on the specific requirements of the application, a different
peak wavelength for the light source can be chosen. It is important to note that the discussions and
findings in this paper remain applicable and valid for the selected wavelength corresponding to
the specific requirements of the deep tissue application. The validation of this algorithm involved
conducting experiments at different time intervals, with slight modifications to the hardware used in
each experiment. The sheep experiment was conducted prior to the human study, and at that time,
the system did not reliably support increasing LED power. Despite these challenges, diligent efforts
were made to test various duty cycles within a short timeframe for each study, aiming to provide
multiple samples and scenarios to validate the BASS algorithm.

The test bench setup represents an ideal scenario and clearly demonstrates that the experimental
results align with the expectations set by the BASS algorithm. However, it is essential to note
that the stability of the physiological system was not consistent in both empirical case studies,
particularly during the human study, where significant maternal motion was observed. To mitigate
environmental turbulence and improve the reliability of the optical sensing system, various measures
can be implemented. For example, incorporating motion reduction techniques and additional sensors
can help reduce turbulence. Additionally, using accelerometers to detect motion and vibration
artifacts, along with adaptive filtering techniques, can be explored to mitigate their impact on the data.
Furthermore, employing multiple detectors and utilizing simultaneous information captured from
different locations can enhance confidence in deep tissue signal acquisition. These strategies can help
overcome the challenges posed by the dynamic nature of the physiological system and improve the
robustness of the optical sensing system.

In future work, it would be interesting to investigate the optimization of harmonic selection in a
broader sense. This would involve selecting harmonics with a weight assigned to them, considering all
harmonics captured within the data acquisition bandwidth, rather than being limited to the summation
of the first 𝑀 harmonics of the fundamental, as discussed in the BASS algorithm presented in this
paper. This approach resembles the feature selection problem, where the optimal number of features
is selected to maximize system performance given information around each captured harmonic as
a feature where the features are located at 𝑓𝑐 and its harmonics. Machine learning methods can
be explored to tackle this problem, aiming to maximize performance by utilizing time-domain or
frequency-domain information extracted from each harmonic of 𝑓𝑐 . This could potentially enhance
the robustness and accuracy of the deep tissue sensing system.

9 CONCLUSION
In this paper, we have investigated the specific challenges associated with wearable optical sensing
applications, particularly in the context of deep tissue sensing. The importance of optimizing the
LED activation signal to maximize the SNR of the deep tissue signal is discussed while adhering to
the constraints on optical power emitted onto the body. Additionally, the impact of varying the duty
cycle of the LED activation pulse on the SNR of the extracted tissue signal is examined under safety
considerations and limitations.

To overcome these challenges, the BASS algorithm is introduced, which employs multiple scaled
copies of the tissue signal obtained from the PPG signal to enhance performance. The algorithm’s
effectiveness has been theoretically analyzed to evaluate its potential benefits. Furthermore, the
effectiveness of this algorithm is validated through a comprehensive analysis conducted on an optical
phantom in a test bench setting. Finally, in vivo measurements were conducted by acquiring data
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from both a pregnant ewe and a pregnant patient, aiming to non-invasively sense deep tissue and
specifically target fetal tissue within the mother’s abdomen. The effectiveness of the proposed
algorithm in overcoming the SNR challenge in wearable deep tissue optical sensing applications was
underscored by the findings.
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