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Abstract: This paper presents a Gaussian mixture model based method for estimation of
multiple mobile agent trajectories over time following a social force motion model. From an initial
observation, groups of agents are formed using a bottom-up agglomerate clustering approach.
Each cluster constitutes a component of the Gaussian mixture model, with mean position of
the cluster members. An Adaptive Gaussian Sum filter estimates the future trajectories of the
agent clusters using the Gaussian mixture model input. The proposed algorithm is capable of
reducing the computation time compared to the standard Adaptive Gaussian Sum filter and
provides solutions with lower variance due to utilization of agent groups. The efficacy of the
proposed method is demonstrated via extensive numerical simulations.
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1. INTRODUCTION

Motion prediction is an important component to en-
able safe motion planning for autonomous mobile agents.
An agent (by agents we refer to robots, autonomous or
manned vehicles, humans etc.) in a field populated by dy-
namic and static obstacles needs dependable information
about the future planned motion of the dynamic obstacles.
An accurate prediction assists the agent to identify more
efficient paths in its vicinity with a greater likelihood of
avoiding collisions and avoid computing infeasible paths
leading to freezing Trautman and Krause (2010). Colli-
sion avoidance requires some understanding of an agent’s
future position with a probabilistic variance to account for
the uncertainty in the estimate. Unexpected and sudden
changes in the paths of agents and incomplete information
about the mobile agent may result in inconsistencies be-
tween estimate and reality. In many cases the intent of the
agent may be unknown and is also likely to vary between
different agents. The main aim of this work is identifying
the future motion paths for mobile agents in the field of
view of an autonomous system with minimal information
about the agents apart from the current state/short previ-
ous time history of the state. An Adaptive Gaussian Sum
filter based approach is used to predict the future states by
identifying cluster trends present in the observed states.

Literature Review: Several methods for motion prediction
have been developed for several applications in robotics,
target tracking, aerospace etc. In Brown and Rogers (2017)
and Schulz et al. (2018), a Monte Carlo based approach is
used to quantify the predicted path uncertainty. Hu et al.
(2007) and Zheng et al. (2021) use density-based estima-
tion methods to enable detection of future paths for large-
scale multi-agent systems. In Liu et al. (2017), reachability
sets of all possible states are identified for a kinematic
model representing pedestrian agents. In Fridovich-Keil
et al. (2020) a confidence aware human prediction method,
where the human motion is assumed to try to maximize
a reward function, is proposed and the reliability of the
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result depends on the confidence of the prediction. In
Patterson et al. (2019) a probabilistic representation of the
agent’s future position is found by identifying polynomials
to represent the uncertainty region of predicted paths
using Gaussian process regression. Aoude et al. (2013)
also uses a Gaussian process framework for prediction of
dynamic obstacle paths. Several authors Yokoyama (2018),
Park et al. (2016), Park et al. (2019), Schulz et al. (2018)
and Škovierová et al. (2018) identify the intents of the
agents for different contexts and refine the predicted mo-
tion problem to account for these intents.

Gaussian processes are widely used for predicting the
path of mobile agents Patterson et al. (2019). However,
a single Gaussian process can only encode information
about a single agent while a Gaussian mixture model can
encode information about multiple agents. In Terejanu
et al. (2011), an Adaptive Gaussian Sum filter has been
developed which not only uses new information to update
the Gaussian mixture but also updates the weights in time.
Data clustering has been extensively studied and various
methods exist to accomplish this task including parti-
tioning, hierarchical, density-based (Ester et al. (1996)),
grid based, model based, pattern based etc approaches,
trajectory clustering (Bian et al. (2018), Chen et al. (2011),
Atev et al. (2010)). However, most methods require an
apriori fixed number of clusters throughout the prediction
horizon, which is undesirable for the highly variant sce-
narios for agent motion prediction. Bera et al. (2016) uses
an agglomerative hierarchical clustering approach without
initial cluster number information. Li et al. (2004), Jensen
et al. (2007) and Jeung et al. (2010) implement a method
for clustering moving objects based on a short history of
the agents motion allowing dynamic clusters as well as
groups that are likely to move together to be formed.

Main Contributions: In this work, we consider the motion
prediction problem for large groups of agents taking into
account their likeliness to move together in smaller groups.
We assume access to an initial observation of each agent’s
position and velocity and observations of their state at
specified intervals. The closeness between agents is ex-
ploited to cluster them into groups that are assumed to



move closely together for at least a portion of the simu-
lation time. The motion of the agent clusters is predicted
using an Adaptive Gaussian Sum filter which propagates
the states to a future time incorporating clusters of agents
as components of the Gaussian mixture model. The vari-
ance of the estimate is also predicted by the filter giving
a probabilistic prediction for the position occupied by the
agents. The main aim of this work is to provide a new
algorithmic framework for motion prediction of dynamic
agents using a Gaussian sum filter setup while reducing
computation time and (large) uncertainties by making use
of the relation between paths of agents. Outline: In Section
II we introduce and set up the background information
required for the motion prediction problem; the Adaptive
Gaussian Sum filter and the hierarchical agglomerative
clustering technique for identifying agent groups. Section
III outlines the problem definition and proposed algorithm
based on elements from Section II. Section IV provides
simulation results using this proposed algorithm with rel-
evant examples and scenarios. Section V concludes the
paper with final remarks and future steps.

2. PRELIMINARIES

This section introduces all the background relevant to the
proposed solution.

2.1 Adaptive Gaussian Sum Filter

Consider a group of N agents moving in a known do-
main. The state of agent i in the group is given by
xi = [pix, v
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T its velocity in the 2-dimensional space.

The state xi for i = 1 : N is a Gaussian random
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agents, the Gaussian mixture model for the group is ini-
tialized with N components; one for each agent. Each
component of the Gaussian mixture follows a Gaussian
probability distribution. The probability density of the
mixture model associated with the state vector x =
[(x1)
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]T at time t is represented by p(x(t)) =
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mean and state covariance of agent i at time t. wi
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the weight of each component of the Gaussian mixture
at time t, initially set to a common value for all i = 1 : N .
The weights are selected such that wi

0 = 1/N for t = 0,

wi ≥ 0 and
∑N

i=1 w
i = 1 for i = 1 : N and ∀t ≥ 0.

The resulting mixture is propagated using the Adaptive
Gaussian Sum Filter (AGSF) described next. Assume each
of the N agents follow the discrete-time dynamical model
governed by the following stochastic differential equation
and measurement model:

xi
k+1 = f(tk, x

i
k) + ηik zik = h(tk, x

i
k) + vik (1)

where xi
k ∈ R

n represents the state vector at time tk
and ηik ∈ R

n represents the zero mean white Gaussian
noise with covariance function Qk ≥ 0 ∈ R

n×n. The
measurements zik assume to follow (1) with the non-linear
function h representing the measurement model and zero
mean white Gaussian noise vik ∈ R

n with covariance
Rk ≥ 0 ∈ R

n×n. The measurement noise vk is assumed
to be uncorrelated and ηik and vik are independent of each

other, that is, E[ηik(v
i
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T] = 0. Let Zk = [(z1k)
T . . . (zNk )T]T

for k = 1 : To be the vector of measurements of the
states of the N agents for some observation time To. The
conditional PDF for the Gaussian mixture given state
measurements Zk is given by a weighted finite sum of the
individual Gaussian components:
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mean and covariance of the ith Gaussian component. The
weights are constrained to positivity, wi

k > 0 and unity,
∑N
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k = 1. The filter estimates the mean and covari-

ance for each component according to the conventional
Extended Kalman Filter time update equations in (2):
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The evolution of the true PDF of the agent states (xk)
obeys the Chapman-Kolmogorov partial differential equa-
tion. The time update for the component weights mini-
mizes the square difference between the true PDF and the
Gaussian mixture approximation:
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The goal of the optimization problem given in (4) is to find
the optimal weights of the GM components to account for
changes in the distribution over time. The resulting PDF
for each agent is calculated using (1) from the results of
(2)-(4) (also refer to Terejanu et al. (2011)).

2.2 Clustering

The AGSF, introduced in Section 2.1, permits the use
of a Gaussian mixture to propagate the state position
and velocity for groups of agents that are correlated.
This section details the clustering process used to identify
the number and composition of the components of the
Gaussian mixture. An agglomerate clustering algorithm is
applied to determine agent groups based on various crowd
features such as closeness in distance and velocity. To this
aim, consider two agents i and j with states xi and xj in
close proximity, with similar features including speed and
orientation. The position, velocity and direction of motion
of an arbitrary agent i is represented by pi, vi and ϕi





the agent and the interaction with static obstacles in the
agent’s path.

The formulation for the social force model is given below
for the force acting on an agent A with state xA interacting
with another agent B with state xB and a stationary
obstacle O which is located at (xO, yO). For a given agent
A, provided information about its intent location I and
desired speed v0A with which it attempts to reach its goal,
we define the destination force F des

A as follows:

eA(t) :=
rA − rA(t)

∥rkA − rA(t)∥
F des =

1

τ
(v0AeA − vA), (7)

where rA(t) denotes the actual position of A, rkA is the
desired location, eA is the desired direction to be taken
towards the goal and vA is the actual velocity of A at
the current time step. The interaction of agent A with
another agent B is given by the interaction force, F int,
between them which is a repulsive force ensuring they do
not collide during motion.

F int = Aint exp
dAB

Bint
+ k1 max(dAB , 0)nAB

+ k2 max(dAB , 0)∆vABtAB

(8)

where Aint and Bint are constant parameters of the
interaction force, dAB is the effective distance between A
and B, nAB is the unit normal in the direction from A
to B, tAB is the unit perpendicular to nAB and ∆vAB is
the difference in velocity between A and B. The repulsion
force between agent A and a static obstacle in its path O,
is modeled by the obstacle force, F obs, which is defined as:

F obs = Aobs exp
RA − dAO

Bobs
+ k1 max(RA − dAO, 0)nAO

+ k2 max(RA − dAO, 0)vAtAO (9)
where Aobs and Bobs are constant parameters of the
interaction force, RA is the radius of the agent, dAO is
the distance between the agent and the obstacle, nAO is
the unit normal in the direction from A to O, tAO is the
unit perpendicular to nAO and vA is the velocity of agent
A. The net force on an agent A as a result of every other
agent and obstacle in the field of view is given by the sum

of forces, FA =
∑N

A ̸=j,j=1 F
j
A = F des

A + F int
A + F obs

A .

3.4 Problem Definition

Let a group of N agents in motion in an M × L domain
with states denoted by xi for i = 1 : N be given
and let the field of view be a bird’s eye view of the
domain. Each agent follows the dynamic model described
in Section 3.1. Time series data of state observations
for all N agents is available for time t = t0. The PDF
of the clustered agent distribution is initially given by

p(t0, x(t0)) =
∑Nc

i=1 w
i
t0ρN (x(t0);µ

i
t0 , P

i
t0). The objective

of this work is to predict the density evolution of the
agent clusters. The initial state observations providing
position and velocity data for the agents are used to
group agents into appropriate clusters that capture agent
motion patterns. Further the motion of the agent clusters
are predicted using the AGSF which propagates the state
estimate of the agent clusters to future time steps. The
main aim is to predict the future PDF of the clusters from
the initial time to the final simulation time tf .

Measurements are taken at regular intervals to reduce
uncertainty. The filter provides estimates of the cluster
mean state and its covariance. The covariance indicates
the potential area occupied by the cluster due to uncer-
tainty in the estimate attributed to various factors such

as measurement and modeling errors. The posterior PDF
distribution of agent states is a Gaussian mixture repre-
senting the agent cluster position and velocity estimates
at time tf using initial observed data which is given by

p(tf , x(tf )) =
∑Nc

i=1 w
i
tf
ρN (x(tf );µ

i
tf
, P i

tf
). We identify

the PDF depicting the position of the agent in the domain
for the entire time span of the simulation (t ∈ [t0, tf ]).
This provides a state estimate of every agent cluster at
each time across the span and an overall density estimate
of the occupied area in the domain.

4. PROPOSED SOLUTION APPROACH

Consider a group of N agents, each characterised by an
initial observed state xi

0 for i = 1 : N . The initial
observation provides information about the position as
well as the velocity of each agent. This information is used
by the clustering algorithm to initiate clusters based on
position, orientation and speed which provides Nc number
of clusters where Nc ≤ N . An agent may be placed into a
cluster comprising of only itself (in which case the cluster
reduces to a singleton) or may be grouped with other
agents that are estimated to move together in the future.

For clusters comprising of a group of agents, the group
dynamics follow the cluster dynamics given in Section
3.2. The mean position and velocity of the group define
the overall position and speed attributed to the cluster.
It is also assumed that once the clusters are defined,
new clusters will not be formed. This initial distribution
of agents across clusters provides Ci clusters where i =
1 : Nc. Propagation of mean and covariance of the
clusters is performed using the Adaptive Gaussian Sum
Filter detailed in Section 2.1. The AGSF is initialized
with a Gaussian mixture with Nc components, one for
each cluster. The filter propagates the states to a future
time using the motion model described in Section 3.
The periodic measurement update of the AGSF allows
the predicted states to be more accurate, have a lower
variance, and correct for errors that may occur due to
lack of information about agent intent. The measurement
update is implemented when the variance of the system

grows above a threshold, τcov ≥ 3σ
1/2
x , thereby managing

the variance of the prediction from growing out of bounds.
Additionally, the regular measurement update allows any
differences in the cluster composition to be identified and
corrected if two agents that were initially moving together
separate their paths at a future time.

Algorithm 1 outlines the basic steps in the trajectory
estimation process for the group of N moving agents.
In step 1, the initial state of the system is set to the
observed state at time t0. In steps 2-5, the agents are
clustered (Section 2.2) and the cluster parameters are
identified for the Gaussian mixture model. Steps 6-10
utilize the AGSF from Section 2.1 to find the future
estimate of the mean (x1

Tf
. . . xN

Tf
) and covariance for each

cluster of agents. The social force model described in
Section 3.3 is used to approximate the agents’ motion
while capturing the interaction between them and their
environment (obstacles). The AGSF further calculates the
estimate for the future position over the interested time
span which is refined using frequent state observations.

5. SIMULATION RESULTS

This section presents the results of using the AGSF with
the clustering algorithm and a benchmark without cluster-
ing. A maximum grid size of 20×20[m2] is assumed for the



Algorithm 1 Agent motion prediction algorithm

Require: N ≥ 0, x1
0 . . . x

N
0 , Tf

1: xi ← xi
0

2: Cluster agents into groups Cj
3: Calculate cluster mean cj
4: Find Gaussian mixture model
5: wi ← 1/Nc
6: for t = 1 : Tf do
7: Run Adaptive Gaussian Sum Filter
8: Update weights
9: end for

10: x1
Tf

. . . xN
Tf
← N(µ,Σ)

field of view and movement of the agents. The simulations
have a run time of 10 seconds with an increment of 0.1[s].
Each run considers the motion of 20 agents with double
integrator dynamics, where the acceleration is determined
by the social force model described in Section 3.3 to sim-
ulate the interaction between agents and static obstacles.

While the composition of clusters may change for the
duration of the simulation, the number of clusters remain a
constant from when they are first defined. The observation
update for the filter is performed when the covariance of
the prediction increases above a threshold, where τcov = 5.

5.1 Comparison of Effect of Clustering

As a benchmark, the predicted motion of the unclustered
crowd data is found using the AGSF in Figure 3. The
observed data prior to clustering is the initial condition for
the simulation. In this case, each individual pedestrian rep-
resents a component of the Gaussian mixture distributed
with equal weight. The simulation is completed for a 10s
time span with 0.1s increments.

The evolution of the PDF, representing the position and
variance of the cluster states, is illustrated in Figure 2.
Agent clusters represent both clusters composed of indi-
vidual agents and those with multiple agents comprising
one cluster. Each cluster forms a component of the Gaus-
sian mixture and the propagated states represent the mean
and covariance of the cluster state as a whole. The red
points in Figures 2 and 3 represent the mean position of
each cluster while the peaks represent the mean of the asso-
ciated PDF for each Gaussian component. Both clustered
and un-clustered distributions are similar initially but the
singleton clusters separate and spread out to a greater
degree over time. Table 5.1 indicates the qualitative differ-
ences between both cases. It is observed that the total area
occupied by the state position estimate and the associated
variance is larger for the unclustered case. As a result the
available clearance for maneuvering around these agents is
tighter. The prediction with clusters retains this grouping
information allowing the estimated state positions to be
more accurate over time. Figure 4 depicts the comparison
between the trajectories generated by both cases. The left
plot depicts the clustered case and has fewer agents as well
as less variance in the state position estimate. The right
plot represents the single agent clusters case and we notice
greater variance in the estimate.

Table 5.1: Clustered vs unclustered results
Type Simulation Time [s] Occupied Area [%]

Unclustered 121.43 0.6495
Clustered 93.4 0.4547

(a) T = 0 (b) T = 2s (c) T = 4s

(d) T = 6s (e) T = 8s (f) T = 10s

Fig. 2. PDF of estimates of future motion (position and variance)
of moving agents with clustered centers (red) representing the
centers of each group of agents.

(a) T = 0 (b) T = 2s (c) T = 4s

(d) T = 6s (e) T = 8s (f) T = 10s

Fig. 3. PDF of estimates of future motion (position and variance)
of moving agents with centers (red) representing the centers of
individual agents.

(a) Clustered (b) Unclustered

Fig. 4. Comparison of predicted path for clustered (left) vs individ-
ual (right) agents with uncertainty region (light red) around
the predicted path. The static obstacle locations are depicted
with green circles and the initial position for each cluster with
a triangle.



(a) T = 0 (b) T = 2s (c) T = 4s

(d) T = 6s (e) T = 8s (f) T = 10s

Fig. 5. PDF of estimates of future motion (position and variance) of
a large group of moving agents with centers (red) representing
the centers of agent clusters.

5.2 Multi-Agent System Scenario

We have also tested our algorithm in a scenario with a
group of N = 100 agents. The clustering process identified
48 agent clusters. The simulation time span is set to 10[s]
with an interval of 0.1[s]. The PDF in Figure 5 indicates
the position and its variance for the 48 agent clusters.
Initially all the clusters are close together but over time
high density cluster regions are formed by clusters in close
vicinity to each other. The predicted mean and variance
of the position allow for maneuvering around the larger
agent cluster groups and high density areas.

6. CONCLUSION AND FUTURE WORK

This work proposes a Gaussian mixture based method for
motion prediction of dynamic agents while accounting for
formation and interaction of clusters. Agents are clustered
according to their relative proximity and orientation in-
dicating similarity in expected trajectories. The Adaptive
Gaussian Sum filter propagates the state for the clusters as
a mixture model and provides an estimate of their future
state. Our numerical experiments indicate that the predic-
tions from the cluster method is more efficient than those
computed by standalone Gaussian Mixture models. Future
work aims to update clusters based on new observations
while the filter is running to improve cluster composition.
and also to incorporate information about motion intent.
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