IEEE TRANSACTIONS ON COMPUTERS

A Unified Parallel CORDIC-based Hardware
Architecture for LSTM Network Acceleration
Nadya A. Mohamed, Student Member, IEEE, and Joseph R. Cavallaro, Fellow, IEEE

Abstract—Deep Neural Networks (DNNs) have recently become the standard tool for solving various practical problems in a wide
range of applications with state-of-the-art performance. Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM)
are a subset of DNNs with fully connected single or multi-layer networks. The complex neurons and internal states of LSTM networks
enable them to build a memory of events, making them ideal for time series applications. Despite the great potential of LSTM networks,
their heterogeneous operations and computational resource requirements create a vast gap when it comes to the fast processing time

required in real-time applications using low-power, low-cost edge devices. This work proposes a novel hardware architecture that
combines serial-parallel computation with matrix algebra concepts and efficient low-power computer arithmetics for LSTM network
acceleration. The hardware is based on a systolic ring of outer-product-based processing elements (PEs) and a reusable single
activation function block (AFB). PEs and AFB are implemented using the coordinate rotation digital computer algorithm (CORDIC) in
the linear and hyperbolic modes. Unlike most approaches, the proposed hardware can be configured to perform recurrent and
non-recurrent fully connected layers (FC) computations, making it suitable for various low-power edge applications. The architecture is
validated on the Xilinx PYNQ-Z1 development board using an open-source time series dataset. The implemented design achieves
114us average latency and 1.8GOPS throughput. The proposed design’s low latency and 0.438W power consumption makes it

suitable for resource-constrained edge platforms.

Index Terms—Recurrent neural networks, long short-term memory, serial-parallel computation, systolic, fixed-point arithmetic,

CORDIC, FPGA, accelerator.

1 INTRODUCTION

THE increasing advances in science and technology and
the availability of a vast amount of training data and
computing power have enabled deep neural network mod-
els to excel in solving various practical problems with
state-of-the-art performance [1], [2], [3]. Recurrent Neural
Networks (RNNs) are a subset of DNNs capable of handling
long-term dependencies, making them useful for sequential
data processing such as dynamical system control, speech
recognition, and natural language processing [4], [5], [6].
Unlike Convolutional neural networks (CNNs), which use
filters, RNNs are fully connected single or multi-layer net-
works with complex neurons and internal states. The predic-
tion accuracy of RNNs is further improved by introducing
gating units to let information through the network option-
ally and build a memory of time dependencies. Long Short-
Term Memory and Gated Recurrent Unit (GRU) are the most
popular gated variants of RNNs [7]. LSTM networks were
around 21% of Google’s tensor processing units (TPUs) deep
learning training workload in 2019 [8]. Specifically, LSTM
networks addressed time-series applications targeting small
to medium Internet-of-Things (IoT) and edge devices with
limited computing and memory resources.

The high accuracy of RNNs comes at the cost of in-
creased computational and memory requirements due to the
high dimensionality of input data and the number of com-

o N.A. Mohamed and |.R. Cavallaro are with the Department of Electrical
and Computer Engineering, Rice University, Houston, TX, 77005.
E-mail: nam7@rice.edu; cavallar@rice.edu
This work was supported in part by the US NSF under grants CNS-
2016727, and CNS-1827940, for the “PAWR Platform POWDER-
RENEW”

Manuscript received September 18, 2022.

putations that need to be performed. Cloud computing is a
common approach to meeting the requirements of RNNs.
This approach requires moving the data from the data
source [e.g., IoT sensors and smartphones] to a centralized
location in the cloud. Such a solution introduces several
challenges. Sending data to the cloud for inference incurs
additional propagation delays from the network, leading to
failure to satisfy the end-to-end low-latency requirements
for real-time interactive applications. In addition, unloading
data from the sources to the cloud introduces scalability
issues in network resource utilization, especially when not
all the data from all the resources are needed. Besides,
uploading sensitive information to the cloud and how the
cloud or applications will use these data risks privacy.

Providing computational abilities close to the end de-
vices through edge computing is a viable solution to meet
the earlier latency, scalability, and privacy challenges. Many
research efforts have focused on using CNNs for edge
computing, while less has been reported for RNNs. Spe-
cialized Field-Programmable Gate Array (FPGA) [9], [10]
and Application-Specific Integrated Circuit (ASIC) [11], [12],
[13] accelerators for low power CNN'’s inference have been
proposed. However, these specialized architectures can-
not directly be utilized to accelerate RNNs inference. The
densely connected layers with large memory footprints,
the heterogenous computing patterns, and the necessity of
storing and regularly updating the internal states in RNNs
make their acceleration more difficult, motivating novel
algorithmic and architecture solutions.

This work presents a novel unified parallel CORDIC-
based solution for accelerating recurrent LSTM networks.
The proposed solution combines serial-parallel computa-

IEEE TRANSACTIONS ON COMPUTERS

tion with matrix algebra concepts and coordinate rotation
digital computer algorithm to enhance the accuracy and
throughput of LSTM inference. A systolic ring of outer-
product-based processing elements and a single reusable
activation function block is adopted in the architecture.
The outer product generates and accumulates partial sums
in parallel, eliminating data dependencies and increasing
hardware utilization and system throughput. In addition,
the single activation function block performs nonlinear com-
putations for the whole network. Given the CORDIC algo-
rithm’s ability to perform various computing tasks using
two fundamental operations (shift and add), it used to im-
plement both PEs and AFB. The CORDIC implementation of
the activation function block allows configurable activation
functions (sigmoid/tanh) to maximize hardware utilization.
In addition, the CORDIC implementation of the PEs makes
the proposed solution generic for FPGA and ASIC plat-
forms. Furthermore, the generic unified computing kernel
can be configured to perform recurrent and non-recurrent
fully connected computations, making it suitable for many
IoTs and edge applications. The major contributions of this
work are summarized as follows:

e A hardware architecture that combines serial-parallel
computation with matrix algebra concepts to form
a systolic ring of outer-product-based processing ele-
ments and a single reusable activation function block.
The proposed hardware architecture reduces data de-
pendency, permits pipelining, and increases hardware
utilization and system throughput.

e A CORDIC-based implementation of the processing
elements and activation function block. The CORDIC
algorithm linear mode is employed for the PE MAC
implementation. In addition, it is used together with
the hyperbolic mode to implement the configurable ac-
tivation function block. The CORDIC-based implemen-
tation makes the proposed solution generic for FPGA
and ASIC platforms.

¢ A unified computing kernel with the ability to perform
both recurrent and non-recurrent fully connected layer
computations to improve hardware utilization and sup-
port various applications.

o Experimental validation of the proposed hardware ar-
chitecture on resource-constrained Xilinx PYNQ-Z1 de-
velopment board using an Autoencoder-LSTM network
presented in [34], [42]

The rest of this article is organized as follows. Section
IT presents the background of LSTM networks and reviews
the existing accelerator designs. Section III describes the pro-
posed accelerator design. Section IV details the architecture
implementation. Section V discuss experimental results, and
Section VI concludes the paper.

2 BACKGROUND AND PRELIMINARIES
2.1 LSTM Recurrent Neural Networks

Long short-term memory networks (LSTM) are a special
kind of recurrent neural network (RNNs) capable of learn-
ing long-term dependencies, making them suitable for time
series analysis. They have the form of a chain of repeating
modules called LSTM cells, shown in Fig. 1. Each LSTM cell

Fig. 1. LSTM layer architecture and details of a single LSTM cell. LSTM
Layer has the form of a chain of repeating modules called LSTM cells.
Each LSTM cell consists of layers of neural networks, internal states,
and point-wise operations. The o represents the sigmoid activation
function.

consists of layers of neural networks, internal states, and
point-wise operations. The key to LSTM networks is the cell-
state, ¢;, which could be viewed as the extracted information
from the input sequence at each time step. The LSTM
cell can add or remove information to the cell state using
Gate structures. Gates are ways to let information through
optionally. They are composed of sigmoid and hyperbolic
tangent neural net layers and point-wise operations. The
LSTM cell has three main gates; forget, input, and output.
Forget gate determines the fraction of history information
to be forgotten by multiplying the value of the cell-state,
ct, by a number between 0 (delete) and 1 (keep everything).
The multiplication value is determined by the current input,
x¢, and the LSTM cell hidden-state from the previous time
step, hi—1. The input gate has two parts; the tanh layer,
which creates a vector of new candidate values, u;, and the
sigmoid layer, which decides the amount of new candidates
to be added to ¢;. The LSTM cell hidden-state and also the
LSTM cell’s output, h, is a manipulated version of ¢;. The
cell-state, ¢;, is first passed through a tanh layer to push
the values between -1 and 1, then multiplied by a number
between 0 (no outputs) and 1 (preserve output) generated
using the output gate structure. The size of the LSTM cell is
defined by the number of elements in the hidden state, h;,
and the number of input features per time step (number of
features in x;). The computations in a single LSTM cell with
n hidden-state units and m-dimensional input features are
described using the following set of equations:

fi = sigmoid(Uy x hy—1 + Wy X 24 + by)
iy = sigmoid(U; X hy—1 + W; X x4 + b;)
uy = tanh(Uy, X hy—1 + Wy X 24 + by,)

o = sigmoid(U, X hy—1 + W, X x; + b,)
ce = (fe-ce—1) + (1 - uyg)

he = o¢ - tanh(cy)

)

where fi, 4, ut, 00 € IR™ are the outputs of the forget
gate, the input gate, and the output gate, respectively. The
c¢; and h;, as described earlier, are the cell-state and the
hidden-state/output of the LSTM cell. They are initialized
to zero and updated at each time step, demonstrating the
“recurrent” nature of LSTM. W; € IR™™, U; € IR™" and
b € R" (j = f,i,u,0) are weight and bias parameters
learned during the training process.

The LSTM network could be a single or multi-layer
network. The network could be layered or stacked by con-
necting the LSTM layer cells” hidden state to the input of

IEEE TRANSACTIONS ON COMPUTERS

the following LSTM layer cells. For final processing, the
hidden state, h;, of the last layer is often connected to
a non-recurrent fully connected layer described using the
following equation:

Yy = AF(Wy X hy + by))

where W, is the weight matrix, b, is a bias vector, h; is the
hidden state of the last LSTM layer, and AF' is the activation
function used in the layer.

2.2 RNNs Acceleration

The complex data dependencies encountered in RNN mod-
els make their acceleration more challenging than feed-
forward neural networks and CNNs. Thus, CPUs and GPUs
have difficulties exploiting RNN'’s fine-grained parallelism,
and they remain underutilized [14]. Various optimization
methods have been proposed to reduce the computa-
tional complexity and memory footprints and accelerate
the RNN’s inference using FPGA and ASIC accelerators.
Proposed methods include pruning, quantization, and spe-
cialized computing units.

2.2.1 Weight Pruning

Weight pruning is a model compression technique pro-
posed to reduce DNNs memory and computation costs.
It removes redundant neuron connections converting the
weight matrices to sparse matrices. Accordingly, convert-
ing the dense matrix-vector multiplication (MxV) to sparse
matrix-vector multiplication (SpMxV) [20]. The resulting
sparse matrices are stored using compressed sparse row
(CSR) or compressed sparse column (CSC) format [21]. A
hardware accelerator with on-chip sparse matrix decoding
ability could reduce the dominant MxV operations by exe-
cuting the multiply-and-accumulate (MAC) operations only
on non-zero weights. However, the irregularity of the Sp-
MxV could challenge the hardware accelerator’s maximum
performance, energy efficiency, and hardware utilization.
Coarser-grained weight pruning methods to induce more
structured sparsity patterns and a scheduler to encode and
partition the compressed model into multiple processing
elements were presented to overcome the limitations above
[22], [23]. The authors in [24], [25] introduced a Bank-
Balanced Sparsity (BBS) that splits the weight matrix row
into multiple equal-sized banks. Then, a fine-grained prun-
ing is performed to obtain a similar sparsity among the
banks. These advanced methods improve RNNs’ memory
and computational costs with minimal performance loss;
however, the training process is relatively complex and
requires additional hyper-parameter to find the particular
structure that would give the optimal performance. Instead
of reducing the number of computations, this work focuses
on reducing the hardware complexity, data dependencies,
and computation patterns, thus increasing hardware utiliza-
tion and throughput.

2.2.2 Quantization

The most used software framework for Deep learning per-
forms inference by adopting the floating-point represen-
tation to ensure the best accuracy. However, considering
hardware implementation on resource-constrained devices,

3

floating-point arithmetic is not optimal for resource utiliza-
tion. Various methods have focused on reducing numerical
precision to reduce computing complexity and memory
footprint. Reduced bit-width floating-point formats such
as IEEE’s half-precision (float16), Google’s brain floating-
point (bfloatl6), and Nvidia’s 18-bit TensorFloat format
have been shown to run effectively without accuracy loss on
a variety of platforms [15], [16]. Various methods were also
proposed to quantize the structure of gates and interlinks
in RNNs to reduce memory footprints and make it possible
to use fixed-point MAC units [17], [18], [19]. These meth-
ods fall into two categories, post-training quantization, and
quantization-aware training. The feedback loop in RNNs
makes quantization-aware training challenging. Given that
the main focus of this work is the efficient hardware ac-
celerator architecture, post-training quantization is utilized
to find the fixed-point representation that would ensure a
suitable precision for the computations and low resource
utilization.

2.2.3 Specialized Computing Units

With the breakthrough of DNN's application, the networks
developed in the process showed the trend of increased
computations for better accuracy. Therefore, it was vital
to develop energy-efficient computing units, specifically
matrix multiplication units. Bit-serial MAC that allows per-
layer precision selection is presented in [26], [27]. Compared
to conventional fixed-point MAC units, the introduced flexi-
ble bit-serial MAC supports various precision and is smaller
in area but would require more cycles to finish the multipli-
cation between high-bit precision operands. Approximate
multipliers are another widely adopted approach that aims
to achieve the best possible trade-off between accuracy
and design efficiency [28]. The approximate logarithmic
multipliers in [29], [30] are based on Mitchell’s method
[31] that utilizes binary logarithms for multiplication. The
presented approaches offer a straightforward design but
exhibit significantly higher computational error than bit-
serial MAC. Conversely, the Booth algorithm-based approx-
imate multipliers in [32], [33] focused on simplifying partial
product generation offering a lower computational error at
higher design complexity. This work proposes a CORDIC-
based MAC unit that could support various precision to
achieve the best possible trade-off between accuracy and
design efficiency.

All previously presented methods reviewed in this sec-
tion contributed to reducing the computation complexity
and memory footprint of the RNNs. However, the computa-
tion kernels’ configurability, stall, and resource parallelism
remain challenging, leaving space for further exploration
and improvement.

3 ACCELERATOR DESIGN

The proposed unified parallel CORDIC-based architecture
accelerates the inference of the LSTM networks in addition
to fully-connected layers. The main computation effort in
the LSTM cells, as described earlier in section 2, comes
from the gates, cell state, and hidden state computations.
Despite the number of input features and the number of
elements in the hidden state which may vary according to

IEEE TRANSACTIONS ON COMPUTERS

the application, the computation patterns in a single LSTM
cell remain the same. This fact makes it possible to propose
a versatile hardware architecture.

3.1 Systolic Outer Product-based Architecture

Optimizing the computation of the gate functions is essen-
tial to accelerate real-time LSTM network inference. With
reference to Fig. 1 and equations listed in (1), each LSTM
gate requires two MACs and element-wise vector additions.
However, given that the weight matrices W; < IR™™,
U; € IR™™ and the bias vector b; € IR" in each gate share
the same first dimension 7, it is possible to combine them
into one matrix of dimension (n x (n 4+ m + 1)). Likewise,
since all the gates share the same dimensionality and input
vector, it is possible to merge the gates’ combined matrices
into one matrix of size ((4n) x (n + m + 1)). Therefore,
rather than optimizing four matrix-vector multiplications,
each time step computations would focus on optimizing
a single matrix-vector multiplication, reducing the pipeline
control complexity.

In general, the matrix-vector multiplication of a matrix

W € IR™™ by vector x € IR™ could be optimized in two
forms:

o Inner product-based: Multiply in parallel all elements
of the input vector x by the matrix row vectors W;.
This would require m multipliers and an adder tree.
In addition, the process should be repeated for all n
rows of the matrix W as shown in Fig. 2 (a). In this
case, the elements of the output vector are computed
sequentially.

e Outer product-based: Multiply in parallel a single ele-
ment of the input vector z by the matrix column vectors
W;. This would require n MAC units, and the process
should be repeated for all m columns of the matrix W
as shown in Fig. 2 (b). In this case, the output vector
elements are computed in parallel.

The conventional designs of the MxV used in most of the ex-
isting LSTM network architectures are of the inner product-
based option. The main drawback of such a structure is
the hardware pipeline stall time imposed by the recurrent
nature of the LSTM networks and the data dependencies
between the output vector of the current time step and
the input vector of the next time step. In such a case, the
system must wait for the newly computed hidden state,
h:, before starting the subsequent step computations. This
indicates that the whole system pipeline must be drained
out before starting the following time step matrix-vector
multiplication. Pipeline latency is critical to achieving a

((o Wo X %
Woq Xo
® - % H 1
g X Wyxx g Wi Wiy X,
S| wa x| |= S X(a|= |#| (=
i 1| K
s s
= Way x Vector s Wa Wi X x2 ‘
® = % = + =
Wy
Matrix W, Vector x Matrix W;, Vector x Elements Vector y |
(a) (b)

Fig. 2. Matrix-vector multiplication (MxV) optimization options: (a) Inner
product-base MxV. (b) Outer product-base MxV.

4

high throughput system. Therefore, our proposed scheme
adopted the outer product-based approach to reduce the
hardware stall time and the data dependencies between
different time step computations. To illustrate the proposed
scheme’s computations, the matrix-vector multiplication in
(3) shows a simplified example of an m-dimensional input
vector with three hidden units. The matrix W represents
the combined parameters matrix described earlier in this
section. Each row in W represents the weight of one hidden
unit, and the first column includes all units’ biases. After
(m + 1) computations, the resulting vector y contains the
sum of the products of each hidden unit. Using as many
multipliers as hidden units working in parallel, the partial
sum of all the units will be simultaneously computed for
each element in the input vector; an example of a single
partial sum is boldly marked in (3). Similarly, each unit’s
final sum of products could simultaneously be obtained
using an arithmetic accumulator per unit.

1

Y1 [b0 Woo wo1 Wom | | Xg
y2| = |b1 Wi wn1 Wim
Ys by wao wor Wam :

- T 3)

[bo + Wooxo + wo121 WormLm

= [b1 + Wi0Xo + w1121 Wit
| b2 + W20Xo + wo171 WomTm

Given the serial processing nature of the input vec-
tor in the outer product-based scheme, a single activation
function block (AFB) performing both activation and point-
wise operations can serve all the hidden units forming a
systolic ring topology. Fig. 3 demonstrates the computa-
tion sequence in the proposed scheme. Steps 1 through 3
compute and accumulate MxV partial products. The final
results of the MxV are stored in a parallel-in serial-out
shift register (PISO), step 4. The activation function block
in step 5 uses the MxV results stored in the PISO register
to compute the LSTM cell or the FC layer output vector,
which also serves as an input to the subsequent matrix-
vector multiplication. In step 6, the AFB updates the input
vector with the newly computed output vector elements
one at a time. Once the first element in the output vector
is computed, the subsequent matrix-vector multiplication
could immediately start. While the MxV kernel performs
step 1 computations, the AFB would update step 2 input,
and the same process repeats for the rest of the elements.
The proposed architecture allows the following subsequent
MxV to start without waiting for the system pipeline to be

o W, |

X X
1 3 = Input Vector | x, | g
1 x
X2
s Waxx & I

g2 [[x|= |#| |= 5| AFB

Vo waxx, . 4 3 |

>
.
s ® E = + = | »
x -
Vectory ¢ PIsO Y

Matrix W;; Partial Products

Fig. 3. Computation sequence in the proposed systolic outer product-
based architecture.

IEEE TRANSACTIONS ON COMPUTERS

drained. Additionally, the hardware is iteratively reused to
compute the output of either the LSTM cell or the FC layer,
reducing the hardware complexity and power consumption.

3.2 CORDIC-based Computing Units
3.2.1 Overview

The Coordinate Rotational Digital Computer algorithm is
an iterative technique to evaluate elementary functions [35].
The CORDIC algorithm’s basic idea is to rotate a two-
dimensional vector through an angle to obtain some ele-
mentary functions such as sine, cosine, inverse tangent, hy-
perbolic sine, hyperbolic cosine, inverse hyperbolic tangent,
multiplication, division, and square root. These functions
could be further processed to obtain other functions such
as tangent, logarithms, and exponential functions [36]. The
CORDIC algorithm can evaluate three classes of functions:
linear, circular, and hyperbolic. It computes the results using
three variables: x, y, and z. The initialization of these vari-
ables depends on the implemented arithmetic operation or
mathematical function. After initializing the three variables,
a set of iterative equations is repeatedly applied to these
variables until they converge to the results. The generalized
iterative equations are:

Tit1 1 maiéi xZ;
= 4
[%H} [%‘5@ 1 } Lh] @)
Zit1 = 2 + 0;0;

where ¢ is the index of iteration, m determines the class of
function being evaluated: linear (m = 0), circular (m =
+1), hyperbolic (m = —1). The value of ¢; is either —1 or
+1 and is chosen to either drive y or z toward zero and
obtain the desired function. In addition, «; is set to 277,
this setting simplifies the computations performed in (4) to
simple shift and add binary operations. The rotation angle
0; for each of the three classes is computed using tanh ™' ;
for (m = —1), a; for (m = 0), and tan—! «; for (m = +1).
This work utilizes the CORDIC algorithm linear and
hyperbolic modes. The linear mode is employed for the
MAC implementation. In addition, it is used together with
the hyperbolic mode to implement the configurable activa-
tion function block. Table 1 summarizes the available basic
CORDIC functions in linear and hyperbolic modes. In Ta-
ble 1 2y, Yin, and z;,, represent the initial values of variables

5

x,y, and z respectively. The factor K} in hyperbolic mode is
a constant that corrects the amplification introduced by the
linearized “rotation” in x and y coordinates and is given by

N
Kp=]]1- (2792 (5)
=1

The accuracy of the functional results in Table 1 depends
on the convergence of the CORDIC algorithm, which is
how closely the y or z variable is driven toward zero. The
y or z variable can theoretically be driven to zero if the
initial point (;n,¥in) or the initial value z;, is within a
specific range. This specific range is known as the “range of
convergence” and is limited by the sum of rotation angles
On + Z;V:z 41 0j. Due to the incomplete representation of
the hyperbolic rotation angles 0;, some iterations must be
repeated to satisfy the convergence theorem. In [36], it was
recommended that every (4, 13,40, 121, ...)" iteration be re-
peated to complete the angle representation. The numerical
values of each class range of convergence are also given in
Table 1. These convergence ranges are further discussed in
the context of DNN in the coming sections.

3.2.2 MAC Units

Given the CORDIC algorithm’s ability to perform various
computational tasks using two fundamental inexpensive
operations (shift and add), it is used to realize the MAC
computations in the proposed architecture. As noted from
Table 1, operating in the linear rotation mode yields the sum
of the product (z;zin) and the input y;,. For the CORDIC
algorithm to converge to the desired results, the initial value
of z;n should be within [—1,1]. The limited convergence
range is one of the major shortcomings of the CORDIC
algorithm. The authors in [37] proposed expanding the set
of iteration indextoi = - M, —-M+1,...,—1,0,1,2,..., N to
expand the convergence range to [—2M+1 2M+1] Such an
expansion comes at the cost of increased data word length
or roundoff error in a fixed-point hardware implementation.

Expanding the convergence range may not necessarily
be needed for neural network implementation. Feature scal-
ing, an essential preprocessing step in many machine learn-
ing algorithms, including deep neural networks, would
scale the range of the input features. More specifically, nor-
malization transforms feature values to a standard range,

TABLE 1
Summary of basic CORDIC algorithm in linear and hyperbolic modes.

Hyperbolic
m = —1
1=1,2,3,..,N
Repeat Iterations (4, 13, 40, 121, ...)

Linear
m =0
i=1,2,3,..., N

Vectoring Mode (y — 0)

~ 2 2
TN R Kp V Zin = Yin

TN = Zin

ifz; >0

-1
6"'7{ +1 ifz; <0

YN R Kn[Tin sinh(zin) + yin cosh(zin)]

|zin| < 1.1182

-1 ifz;y; <0 —1/Yin Yin
0; = { 41 iy >0 ZN R zin + tanh ™ (Z2 ZN R Zin + G
|tanh ™' (%in)| < 1.1182 |Yin| < 1
n n
Rotation Mode (z — 0) N X Kp[zin cosh(2zin) + Yin sinh(ziy)] TN = Tin

YN R Yin + TinZin

|Zin| <1

IEEE TRANSACTIONS ON COMPUTERS

usually [0,1] or sometimes [—1,1]. Accordingly, the con-
vergence range of the CORDIC algorithm should not be a
limitation for the input features. Similarly, the output range
of the most commonly used activation functions in DNN
models is also within the [—1, 1] range. Therefore, the in-
ternal results between the hidden layers are also within the
required [—1, 1] range. Furthermore, when the output range
of the activations is not within the [—1, 1] range, a batch
norm layer is usually inserted between a hidden layer and
the next layer. The inserted batch norm layer normalizes the
outputs from the first hidden layer before passing them as
input to the next layer. Hence, the range of the passed input
would also be within the CORDIC algorithm range. Given
that the main focus of this paper is the LSTM network,
the LSTM cell formulation in (1) is used to demonstrate
the MAC units’ input range within the cell. Assuming the
LSTM cell input, x; is normalized to zero mean and unit
variance, and the h; vector is initialized to zero. Passing z;
and h; vector elements as z;, in the CORDIC MAC units
would satisfy the CORDIC algorithm convergence range
requirement. In addition, given that the two main activation
functions used in the LSTM cell structure are the sigmoid
and tanh, the output of f, i, u¢, 0; € [—1, 1]. Consequently,
the newly computed h;, which would also be used as an
input in the following MAC computations, would also be
in the required [—1, 1] range. Thus, the CORDIC algorithm
could efficiently be used to perform the required MAC
computations within the LSTM cell and other general neural
network types without expanding the convergence range.

The recursive nature of the CORDIC algorithm creates
another hard lower limit on the algorithm latency. As no-
ticed from the generalized iterative equations in (4), the di-
rection of the subsequent microrotation depends on the cur-
rent iteration result. Consequently, the standard CORDIC
implementation is sequential and therefore slow. This work
adopts a prediction-based approach to speed up the serial
CORDIC implementation in the linear rotation mode. The
main idea is to examine the binary representation of the
input z;, and generate the bipolar values corresponding
to the rotation directions d;. To explain the underlying
idea, we will assume that the initial value of z;,, is given
in 2’s complement binary notation. Using the binary-to-
bipolar recoding (BBR) method, the corresponding rotation
directions are obtained as follows:

N-1
Zin — (71)0) + Z bj27j

Z .
_

= (=bo) +

N .
=) &2t —27N
i=1
where b; € {0,1},6; € {—1,1} and

01 =2byp—1
oo .)
6i —1—2[)1‘,17 Z—2,3,...,N

2777+ (20, - 127771 (6)

Il
-

Using (6) (7), the N rotation directions (d; to dy) could
directly be derived in parallel eliminating the z-datapath,
hence reducing the implementation area. In addition, the

6

speed of the proposed algorithm could further be improved
using tree-structured adders for the y microrotations. Com-
pared to conventional fixed-point MAC units, consisting of a
multiplier and an adder block, the proposed CORDIC-based
MAC could be fully pipelined, eliminating the adder block
idle time in the conventional MAC units. Additionally, it
could support various precision to achieve the best possible
trade-off between accuracy and design efficiency.

3.2.3 Activation Functions

The nonlinear activation function is one of the main compo-
nents of the artificial neural network computational units.
Each neuron in the LSTM cell and FC layers needs an
activation function. The output of the MAC units passes
through the activation function to compute the final output
of each neuron. Sigmoid and hyperbolic tangent functions
are the most widely used activation functions and are the
primary activation functions in the LSTM cell. The sigmoid
and tanh functions are mathematically defined as follows:
sinh(z) €* —e™*?

tanh(z) = cosh(z) T e te s ®)

1 1
1 +cosh(z) +sinh(z) 1+e =

sigmoid(z)

)

The straightforward implementation of these functions on
hardware is costly, given that both require computing the
exponential and division. Various methods have been pro-
posed to achieve high-fidelity approximations [39]. These
methods generally fall into two main categories, piecewise
linear approximation and look-up table-based (LUT) ap-
proaches. In both categories, the implementations tend to
use more resources and latency to achieve high-accuracy
approximations. This work focuses on the efficient hard-
ware implementation of the activation functions using an
optimized CORDIC algorithm that simplifies the approx-
imation method without sacrificing the network accuracy.
The CORDIC algorithm in the hyperbolic rotation mode
allows the computation of the hyperbolic sinh and cosh
functions, and in the linear vectoring mode, it could be
used to perform division. The integration of the two modes
allows the computation of the sigmoid and tanh activation
functions using two relatively inexpensive operations.

(a) CORDIC Hyperbolic sinh and cosh
I. Expanding the Basic Range of Convergence

The CORDIC hyperbolic convergence range reported in
Table 1 is not large enough to cover the range of the
sigmoid and tanh activations where the activations are
not saturated. The tanh activation function saturates to —1
for inputs less than —3 and 1 for inputs greater than 3.
On the other hand, the sigmoid activation converges to
0 for inputs less than —5 and 1 for inputs greater than
5. The approach presented in [37] is adopted to expand
the hyperbolic CORDIC convergence range. The authors
in [37] proposed expanding the set of iteration index to
t=-M,-M+1,..,-1,0,1,2,..., N and thus augmenting
the iteration angle list with §; = tanh™'(1 — 2'=2) for
i < 0. Based on the new augmented 6,’s list, the algorithm
iterations presented in (4) are modified to,

IEEE TRANSACTIONS ON COMPUTERS

fori <0

Tit1| 1 751(]. — 2i72) X;
{yiﬂ} B {—51'(1 —-27%) 1 } L/J 10

Zit1 = % + 05 tanh_l(l — 21-72)
fori >0

Tit1| 1 —51‘2_i Z;
Yit1 ;27" 1 Yi

Ziv1 = % + 0; tanh71(2_i)

(11)

Accordingly, the new convergence range is obtained using,

0
|zin] < Z tanh~'(1 —272) +
i=—M
N .
tanh ™1 (27N) + Ztanh_l(Z_’) (12)
i=1
|zin| = 3.44 (for M =1)
|zin| = 5.16 (for M =2)

Including negatively indexed iterations in finite word-
length implementation may introduce larger arithmetic er-
rors than those caused by only the positively indexed itera-
tions. Therefore, the scale factor K}, introduced in (5) should
be extended to accommodate the amplification introduced
by the negatively indexed iterations. The K}, factor could be
redefined as,

0 N
Ky, = { II vyi-a- 22‘2)2] [H V11— (21‘)2}
i=—M i=1 (13)
Ky~ 02652 (for M =1)
Kp~ 0.0923 (for M =2)

As noticed from (13), the constant K} is less than one in
magnitude, and the inclusion of more iterations makes Kj,
even smaller. In a fixed-point implementation, the hyper-
bolic CORDIC results computed using the smaller K} will
use less of the dynamic range of the three CORDIC vari-
ables, x,y, and z, detailed in Table 1. Because the CORDIC
output’s relative error depends on the LSB’s weight, the
smaller K} will lead to a higher error. Therefore, the number
of negatively indexed iterations should be limited to as few
as possible. In our implementation of the CORDIC-based
activation function, we evaluate the sigmoid activation as
a scaled version of the tanh using the relationship detailed
next.

z —z
tanh(z) = %
_ef e 2"
e
_ 2e7%
T
=1- 1 (14)

Since the sigmoid function is symmetric around the origin,

1 — sigmoid(z) = sigmoid(—=z) = (15)

1+e?

—e— Hyperbolic ATR
—— Linear Radix-2

I
iS

ATR Value
I
N

—#~— Error

Mag. (Log Scale)
=
o
&

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Iteration Index

Fig. 4. Hyperbolic ATR and linear radix-2 constants. The top plot com-
pares the actual values of the hyperbolic ATRs and the linear radix-2
constants. The bottom plot displays the approximation error assuming
that radix-2 constants are the same as hyperbolic ATRs.

Using (14) and (15),

tanh(z) = 1 — 2sigmoid(—2z)
1 +tanh(3)

sigmoid(z) = 5

(16)
The above-detailed relationship enables the implementation
of the two activation functions using a single configurable
hardware unit that requires only two additional bit shifters
and an adder. In addition, it limits the number of the nega-
tively indexed iterations to M = 1, thus limiting the increase
in the relative error caused by the additional negatively
indexed iteration required to cover the sigmoid input range.

II. Partitioning the Radix Set

As pointed out earlier, the sequential determination of the
value ¢; limits the speed of the conventional CORDIC
rotation. In this paper, we show that the computation of
the positively indexed rotation directions in the hyper-
bolic class could be partially parallelized, thus reducing
the overall latency without affecting the accuracy. The
CORDIC algorithm performs rotation iteratively by break-
ing the rotation angle z;, into a set of predefined small
angles that could be implemented using low hardware costs
(4). For the hyperbolic class, this set is: {0;,60s,...,0n} =
{tanhf1 271 tanh™'272 .. tanh™* 27N}, The 6 terms are
referred to as Arc Tangent Radix (ATR) constants. The
hyperbolic ATR constants approach the linear radix-2 con-
stants gradually for increasing values of the CORDIC iter-
ation index. Fig. 4 compares the hyperbolic ATR and the
linear radix-2 constants. The error in assuming that the
hyperbolic ATRs are the same as the linear radix-2 constants
for the large iteration index i in fixed-point representation
is negligible. Therefore, if the linear radix-2 is assumed
for the least significant part of the rotation directions, the
precision in the least significant part will be about the same
as the conventional ATRs. Accordingly, the prediction-based
approach adopted in the CORDIC MAC for the parallel
generation of the rotation directions could also be utilized
for the least significant part of the hyperbolic rotations.
Using the earlier observation on hyperbolic ATRs ap-
proximation using linear radix-2 constants, we define the

IEEE TRANSACTIONS ON COMPUTERS

Hybrid Hyperbolic ATR :

most significant part

{tanh ™' 27! tanh™' 272 . tanh~'27"Fl 27n 9N}
————
least significant

The defined set is a mix of conventional hyperbolic ATRs
for the most significant part and the linear radix-2 con-
stants for the least significant part. The most significant
part iterations, along with the negatively indexed iterations
introduced in the previous part, are performed using the
conventional sequential CORDIC iterations. On the other
hand, the iterations corresponding to the least significant
part are parallelized using the binary-to-bipolar recoding
method as in the linear mode. Because the CORDIC iter-
ations related to the most significant part may change the
value of the bits in the least significant part, the evaluation
of the least significant part rotation directions is performed
after the rotations of the most significant parts to avoid
errors. To identify the partitioning index that will preserve
the full accuracy, the error introduced by assuming that the
hyperbolic ATR is the same as the linear radix-2 constant is
used.

€, =tanh 127" —27° (17)
Using the Taylor series approximation of tanh ™! 277,
P PR B .
€= |27 4273 4 Zo7% | —27t
3 5
i 1 (18)
=_27% 4 27y
3 * 5 T

This error should be less than the smallest representable an-
gle, 2-N+1 for N bits fixed-point representation with NV — 1

bits in the fractional part. Given that 3273 + 1275 4 <
2732'71,

4 1,3, 1, 5
27N+1 > 273171 > 6 = §2*31 + 52752 =+ ... (19)

Solving for i,
27N+1 > 2732’71

N-2 (20

i>

Hence, the minimum index value ¢ that will preserve the
full accuracy is ¢ ~ % and is approximately close to the
minimum index reported in [38] which focused only on the
CORDIC circular mode.

In order to use the binary-to-bipolar recoding method
presented in subsection 3.2.2 in the parallel generation of
the least significant part rotation directions, the record-
ing method should be extended to accommodate for the
hyperbolic repeated iterations. Assuming that the rotation
angle is in the standard binary representation, Table 2
summarizes the cases to consider in the parallel generation
of the hyperbolic repeated iteration directions. It has been
noticed that the incomplete representation of the hyperbolic
rotation angles may affect the binary representation of the
most significant part of the z output used in the parallel
generation of the rotation directions in the least significant
part. More specifically, the most significant part of the z
output may not be zero. This usually happens when the first

TABLE 2
Summary of cases to consider in the parallel generation of hyperbolic
repeated iteration directions.

Case 1: The iteration to be repeated is the first iteration in
the least significant part.

bo (Sign

bit) bi—1 bi b; (Re}ifﬂed) dit1
0 0 0 -1 +1 -1
0 0 1 -1 -1 +1
0 1 0 -1 -1 -1
1 0 1 +1 +1 +1
1 1 0 +1 +1 -1
1 1 1 +1 -1 +1

Case 2: The iteration to be repeated is not the first iteration
in the least significant part.

Oor1l 0 0 +1 +1 -1
Oorl 0 1 +1 -1 +1
Oor1l 1 0 -1 +1 -1
Oorl 1 1 -1 -1 +1

iteration in the least significant part is one of the iterations
to be repeated, case 1. Therefore, the bit at iteration index
i — 1 should be compared against the sign bit. If the two bits
match, the prediction of the repeated iteration direction will
be based on the bit at iteration index .

21

On the other hand, if the bit at iteration index ¢ — 1 did
not match the sign bit, then the direction of the repeated
iteration should be obtained using,

61' (Repeated) — (1 - 2b0) : (1 - 2bi—l) . (1 - 2bz)

The second case details the generation of the rotation di-
rection when the repeated iteration is not the first in the
least significant part. This case is straightforward and only
requires evaluating the bit at the iteration index of the
repeated iteration as in (21). For all the abovementioned
cases, the rotation direction of the iteration following the
repeated iteration will always depend on the inverse of the
bit at the index of the repeated iteration.

§i+1 = (2()2 — 1)

61’ (Repeated) — (1 - 2bz)

(22)

(23)

(b) CORDIC Linear Division

Given the limited range of the sigmoid and tanh activa-
tion functions, which also fall within the CORDIC linear
mode’s convergence range, the hyperbolic sinh and cosh
division is implemented using the CORDIC algorithm in
linear vectoring mode. Unlike the CORDIC rotation mode,
the CORDIC vectoring mode rotation direction depends
on both x and y components, making it more challenging
to derive the rotation directions in parallel. Therefore, the
CORDIC divider in this work is implemented using the
standard iterative CORDIC method. It is worth mentioning
that the CORDIC divider could be fully pipelined to reduce
the overall latency, making it a practical choice for low-
power edge computing solutions.

4 HARDWARE IMPLEMENTATION

This section presents the FPGA implementation details of
the proposed hardware architecture introduced in section 3.

IEEE TRANSACTIONS ON COMPUTERS

The architecture was coded in C++ using the Xilinx Vivado
HLS tool targeting the Xilinx PYNQ-Z1 FPGA development
board. The development board consists of an XC7Z020
ZYNQ series FPGA containing a Dual ARM Cortex-A9 core
processor. In addition, it is a hardware platform for the
PYNQ open-source framework, which comprises software
running on the ARM CPUs and a base hardware library.
After verifying the functionality of our custom-designed
accelerator modules, the designed hardware accelerator was
exported to Xilinx Vivado Design Suite for synthesis and
implementation. A simplified block diagram of the imple-
mented hardware architecture is shown in Fig. 5. The main
modules consist of an array of computationally independent
processing elements, a parallel-in serial-out shift register, a
single activation function block, and a control module.

Each processing element consists of two main parts: a
single port on-chip Block RAM (BRAM) and a CORDIC-
based MAC unit. The BRAM holds the stationary network
parameters (weights, biases), and the CORDIC-MAC unit
performs the corresponding MxV computations. Each PE
BRAM holds the parameters of one neuron unit per layer.
The on-chip BRAMs are used in the implementation to
reduce the external I/O communication and to enable con-
current operation of the PEs. The AFB is a configurable
CORDIC-based activation block. It could be configured to
handle LSTM gates activations, cell state updates, hidden
state computations, and FC layer activations. Last is the
control module, which encodes instructions and controls the
order of operations, data movements, and storage. Given
that the LSTM layers and cells reuse the hardware, the ar-
chitecture described above is generic and could be extended
in terms of the number of hidden units in the LSTM gates
and the input vector size as long as the hardware resources
are available.

The general data flow in the proposed architecture is as
follows; the network input data are sequentially introduced
and concurrently multiplied by their corresponding weights
in each PE. The multiplication results are added to the
accumulator register in each PE. The final sums of products
from all PEs are passed to the PISO shift register to be
shifted through the activation function block. The outputs

PE Array
PE2 PE1 PEO
BRAM2 BRAM1 BRAMO
W25 Wis Wo,5
W24 W14 Wo,4
Control Wa3 Wis Wo3
Module Vs Wi Woo
W21 Wi Wo1
W20 Wio Wo,0
sel by by by
x ! y !
t=> X, CORDIC | 1$X(CORDIC _;C CORDI!
MAC MAC MAC c
hey t-1
PISO |} v CORDIC AFB
Internal
En Register H Register H Register }—- Results Ve
Memory

Configure

Fig. 5. The hardware architecture of the proposed unified parallel
CORDIC-based accelerator. The main modules consist of an array of
computationally independent Processing elements, a parallel-in serial-
out shift register, a single activation function block, and a control module.

9

of the activation function block (¢, h;) are stored in internal
memory to be used in the next-time step computations or
passed to the output.

4.1 CORDIC MAC Units

As described earlier, the architecture PEs include CORDIC-
based MAC units implemented using the binary-to-bipolar
recoding method presented in subsection 3.2.2. Algorithm
1 describes the CORDIC-MAC computations using the BBR
method. The iterations in the first loop, which corresponds
to rotation direction prediction, are independent; accord-
ingly, the loop could be unrolled to obtain the rotation
directions in parallel. The obtained rotation directions are
then used in the second loop implemented using bit shifting
and tree-structured adders to compute the corresponding
multiply and accumulate computations.

Algorithm 1 CORDIC-based MAC unit using BBR method
Require: —1 < z;, <1
Input: Zin, Yin, Zin
Output: yi, + ZTinZin
n < number of fractional bits
dirln] < 0
Y < Yin
if z;, <0 then dir[0] = +1 else dir[0] = —1
fori =1,i <ndo
if zjp[n —i] ==0 then dir[i] =41 else dir[i] = —1
end for
forj =0, j <ndo
Treg < Tin >> (j+ 1)
if dir[j] == +1 then Z,eq ¢ —Treq
Y Y+ Tpeg
end for
return y

The implemented parallel CORDIC MAC unit using a
16-bit fixed-point representation, 4 bits for the signed integer
part, and 12 bits for the fractional part has a latency of 3
clock cycles with single-cycle data throughput. Comparing
the performance of the implemented CORDIC-based MAC
unit against the Xilinx DSP48E using the same data repre-
sentation and with reference to floating-point multiplication
gives relative mean absolute error (MAE) results. The MAE
of the CORDIC-based MAC is ~ 5.8 x 107%, while it is
~ 4.5 x 107* for the DSP48E. The absolute error heat maps
of the two implementations are shown in Fig. 6. The output
quantization error in the CORDIC-based implementation
is higher than the DSP48E. The quantization error in the
CORDIC-based implementation can be split into two parts;
the first part is due to the input samples quantization, while
the second is caused by the truncation of z and y after
shifting them to the right at each iteration. The truncation
error is equivalent to adding random variables to each of
the newly computed x and y in addition to the accumulated
error terms from the prior stage. In section 5.5, we will show
that the accuracy loss in the designed network using the
proposed CORDIC-based MAC units is negligible.

4.2 CORDIC AFB

Implementing the CORDIC-based activation functions con-
sists of cascading three CORDIC processors, as illustrated

IEEE TRANSACTIONS ON COMPUTERS

DSP48E Absolute Error

Cordic Absolute Error
0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Fig. 6. The absolute error heat maps of the CORDIC-based MAC unit
and the Xilinx DSP48E using 16 bits fixed-point data representation. The
z and z are the multiplication operands.

in Fig. 7. The first two processors are for the hyperbolic
sinh and cosh computations, while the third processor per-
forms the division. The first hyperbolic processor generates
and applies the rotation directions sequentially as in the
conventional CORDIC algorithm using negatively indexed
microrotation angles and angles defined in the most sig-
nificant part of the Hybrid Hyperbolic ATR set introduced
in the previous section. This first processor uses the input
rotation angle z;, in addition to initial vector coordinates
Zin and y;y,, to compute 2, £,, and y, at the end of first n
iterations. The input rotation angle z;,, is connected to the
output of the CORDIC-MAC unit and PISO unit as shown
in Fig. 5, while z;,, is set to 1/K}, and y;,, = 0. The second
hyperbolic processor eliminates the z data path through the
parallel generation of the rotation directions using z,. The
implementations of the on-the-fly converter and the second
hyperbolic processor are based on the approach detailed in
3.2.3. The generated rotation directions by the on-the-fly
converter are applied to z,, and ¥, to compute the final
value of the hyperbolic sinh and cosh. The third CORDIC
processor uses the computed sinh and cosh and performs
the division using the conventional CORDIC algorithm in
linear vectoring mode.

The implemented CORDIC-based activation functions
using 16-bit fixed-point representation have a latency of 21
clock cycles. Furthermore, if we were also to pipeline the
first hyperbolic and the third linear processors, then this
would enable a single-cycle data throughput and reduce
the latency to 13 clock cycles at the cost of additional
hardware resources. Evaluating the performance of the im-
plemented CORDIC-based activation functions gives MAE

10

of ~ 2.8 x 10~ for the tanh activation and ~ 1.6 x 10~* for
the sigmoid using (16) . Fig. 8 shows the similarity in shape
between the real-valued and the CORDIC-based approxima-
tion, along with the absolute error for both activations over
the range of interest. The output quantization error in the
hyperbolic CORDIC implementation includes, in addition
to input sample quantization and truncation errors, angle
approximation error caused by the quantized representation
of the CORDIC rotation angle using a finite number of
elementary angles. Compared with the activation function
implementations reported in [39], the proposed CORDIC-
based activation function achieves higher approximation
accuracy, making it suitable in applications with minimal
accuracy loss requirements.

As pointed out earlier, the activation function block is a
configurable activation block that handles the LSTM gates
activation, the cell state update, the hidden state compu-
tations, and the dense fully-connected layer activation. To
reduce the implementation complexity and enable activa-
tion function and arithmetic units reuse, the LSTM gates
activation and point-wise operations are pipelined as shown

0.002
0.001 A I A ”' M
0.000

1.0

Error

0.5

0.0

tanh(x)

-0.5

m== Real-Valued
= Cordic

=== Real-Valued
= Cordic

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Fig. 8. CORDIC-based activation functions performance. The top plot
shows the real-valued tanh and the CORDIC-based approximation
along with the corresponding absolute error. The bottom plot shows the
same but for the sigmoid activation function.

Hyperbolic CORDIC h
Processor 1
6; P .
> - ¥ p On-the-Fly Converter Linear CORDIC
2 > Register G " Processor
: 5 4
Zin & sign(a) v 8 8ns1, - 6
~
|—> - Hyperbolic CORDIC Processor 2

=] i G & oy

s Register
Xin > > Register Register

Yin >

A\ J

~
P
>0 =L ~
Y
% - >n n+1 > N
Register

= Yn

|—) | Reglster Reglster Reglster

cosh(z)

N Y
[g

ﬂ BN
“nh(7m) egls er

>>N

Fig. 7. The implemented CORDIC- based activation function consists of cascading three CORDIC processors. The first two processors are used to
compute the hyperbolic sinh and cosh, while the third performs the division to compute the final result of tanh(z;,). The input rotation angle z;,, is
connected to the output of the CORDIC-MAC unit, while z;,, is setto 1/K}, and y;, = 0.

IEEE TRANSACTIONS ON COMPUTERS

in Fig. 9. The LSTM cell formulation in (1) is divided into
six pipeline stages S0 — S5. The inputs to the activation
pipeline are the matrix-vector multiplication results of the
forget gate, input gate, and output gate shown in Fig. 1 and
expressed in the LSTM cell formulation in (1). The outputs
are the cell state and the hidden state. In the cases when
the layer is of a fully-connected type, only the first pipeline
stage would be activated, and the computed activation
result is passed to the output.

CORDIC AFB Pipeline
Wit by + Wi+ v+) —9@——@
Uut by + Wity b)) — x—>+
WUp*heoy + Wy * ye + by) ——)@——/» X
A

5 X > he
e "T
.
(Uo* hees + Wy * ye +by) o
S0 S1 S2 S3 S4 S5

Fig. 9. CORDIC Activation function block pipeline. The inputs to the
CORDIC AFB pipeline are the matrix-vector multiplication results of the
forget gate, input gate, and output gate. The outputs are the cell state
and the hidden state.

5 EVALUATION AND ANALYSIS
5.1 Experimental Setup

The Grand St. Bernard open-source dataset [40] is used
to demonstrate the performance of the designed hard-
ware accelerator in a real-case application. The dataset
consists of temperature measurements and other metro-
logical characteristics of the environment collected for two
months from multiple wireless sensor nodes deployed at
the Grand St. Bernard pass, located between Switzerland
and Italy. The performance and the flexibility of the de-
signed unified computing kernel in performing recurrent
and non-recurrent fully connected layers computations are
validated using an Autoencoder-LSTM network trained
in Keras Tensorflow using the dataset mentioned above
[34], [42]. The trained network integrates Autoencoder and
LSTM neural networks for real-time temperature forecasting
on resource-constrained devices. Table 3 summarizes the
trained Autoencoder-LSTM network model. The autoen-
coder consists of two FC dense layers (FC1, FC2), while the
LSTM network comprises an LSTM layer followed by two
fully connected dense layers (FC3, FC4). The LSTM layer
has a hidden size of 40 and an input dimension (or sequence
length) of 30-time steps.

The LSTM layer computations dominate the number of
computations in the trained network. The number of MAC

TABLE 3
Summary of the trained Autoencoder-LSTM network model.
Layer Output Shape | Activation Param #
Input (90,1) - 0
FC1 (Dense) (60,1) tanh 5460
FC2 (Dense) (30,1) tanh 1830
LSTM (40,1) Sigmoid, tanh | 6720
FC3 (Dense) | (20,1) tanh 820
FC4 (Dense) (1,1) tanh 21
[Total: 14,851

11

computations processed by our accelerator for the LSTM
layer only is approximately ~ 0.2 while it is ~ 8K for the
rest of the network. Therefore, to reduce the latency and in-
crease the throughput, the number of processing elements in
the implemented design is set to four times the LSTM layer
hidden size to enable the parallel computation of the LSTM
cell gates. Furthermore, to maintain the trained network
accuracy while considering the limited hardware resources
on resource-constrained devices, a 16-bit fixed-point data
representation, 4 bits for the signed integer part, and 12 bits
for the fractional part is adopted in the implementation.
After verifying the functionality of our custom-designed
accelerator modules in Xilinx’s Vivado HLS tool, the de-
signed hardware accelerator is exported to Xilinx Vivado
Design Suite to build the hardware overlay. The resulting
hardware overlay is loaded on the PYNQ-Z1 board. The
top-level diagram of the hardware overlay on the PYNQ-
Z1 board is shown in Fig. 10. A python code is developed to
interface with the hardware overlay. The quantized network
parameters are loaded into the programmable logic (PL)
distributed BRAMs using the AXI high-performance (HP)
interface. Then, sensor readings are transferred from the
ARM core processing system (PS) to the accelerator using
the AXI general-purpose (GP) interface. The accelerator
outputs are extracted and evaluated offline to measure the
performance.

5.2 Hardware Resource Utilization

Table 4 shows the PL resource utilization of the AE-LSTM
network using the proposed unified parallel CORDIC-based
implementation with reference to sequential floating-point
implementation and fixed-point implementation presented
in [34]. In the reference sequential floating-point imple-
mentation and fixed-point implementation from [34], the
network layers are stacked as presented in Table 3. Each
Dense layer is implemented using one MAC unit and a
single tanh activation. On the other hand, the LSTM layer
consists of one reusable LSTM cell of 4 MACs, two sigmoid
activations, and one tanh activation. Of the 111 DSPs used
in the floating-point implementation, 35 are used for the
MAC computations, while the activation functions use the
rest. Each exponential computation in the floating-point
activation requires 7 DSPs in addition to Flip-Flops (FF) and
LUTs. In the fixed-point implementation, the DSP utiliza-
tion has substantially been reduced using 20-bit fixed-point
representation and piece-wise linear approximation of the
activation functions.

PYNQ-Z1
PS PL
Central AXI
Interconnect G~ | Interconnect
¢ AXI
s-axi ;

Accelerator

Control Module

ARM

cPU AFB

internal
Memory

m-axi PE Array [

D
o 3
<> DDR3 o PL-Memory > AXI
'; Controller | T

HP
Axi

Fig. 10. Top-level diagram of the implemented accelerator on Xilinx
PYNQ-Z1 FPGA development board.

IEEE TRANSACTIONS ON COMPUTERS

TABLE 4
Resource utilization of the proposed design on Xilinx PYNQ-Z1 FPGA
development board.

Lur Slice Logic FF BRAM DSP
Avail. 53200 13300 106400 140 220
Reference Floating-Point Implementation presented in [34]
Util. 24807 8498 22585 30 111
Util. % | 46.63% 63.89 % 21.23% | 21.43% | 50.45%
Fixed-Point Implementation presented in [34]

Util. 12544 4816 11922 28.50 17
Util. % | 23.58% 36.21% 11.20% | 20.36% 7.73%
Proposed Unified Parallel CORDIC-based Implementation
Util. 36285 10912 24042 82.5 -
Util. % 68.20% 82.05% 22.60% | 58.93% -

Given that the proposed parallel CORDIC-based imple-
mentation is multiplier-less, DSP units are not utilized. The
shift and add nature of the CORDIC-based PEs and AFB
increases the LUT, slice logic, and FF utilization. Around
30% of the LUT utilization and 50% of the slice logic are
caused by the PEs, and the rest are used by the activation
functions, control module, and internal results storage. The
outer product-based implementation of the matrix-vector
multiplication in which each PE comprises an internal
BRAM unit increases the utilization of distributed BRAMs
compared to the reference designs in which each layer’s
parameters are kept together either in a single BRAM unit
or multiple units.

The estimated response time of the proposed paral-
lel CORDIC fixed-point implementation using the global
100M H z clock that drives the PL from the PS is ~ 114us,
achieving ~ 1.8GOPS throughput. Compared to the se-
quential floating-point implementation with an estimated
response time of ~ 5ms and the fixed-point implementation
with ~ 1.13ms response time, the reduction is substantial
considering the slight increase in the hardware resources
detailed in Table 4.

5.3 Power Measurement

The Xilinx Power Analyzer is used to estimate the dynamic
and static power of the proposed architecture on the PYNQ-
71 XC7Z020 chip. Table 5 shows the analyzer breakdown.
As per the breakdown, the accelerator consumes ~ 0.438W
on average. A USB power meter is used to verify the
analyzer’s total power consumption, including other board
components. As shown experimentally in Fig. 11, the whole
PYNQ-Z1 system board burns at most ~ 2 when the
accelerator is up and running. The meter reported power
consumption is very close to the Zynq chip total noted in
Table 5.

5.4 Efficiency Comparison

To illustrate the benefit of our proposed architecture, a com-
parison with an existing LSTM accelerator [41] designed us-
ing a comparable benchmark and implemented on the same
FPGA board is detailed in Table 6. The table lists the chip
name, target frequency, data type, number of operations,
inference latency, throughput, and power consumption. It
should be noted that the architecture in [41] has only accel-
erated the LSTM gates MxV and unloaded the results to the
PS for activation. On the other hand, our proposed design

12

TABLE 5
Proposed architecture power consumption breakdown on PYNQ-Z1
XC7Z020 chip using Xilinx Power Analyzer.

Part [Power (W) [Percentage
Dynamic Power
PS 1.256 67.5%
MAC Units 0.207
AFB 0.125
Accelerator | Control Module 0.002 23.5%
BRAMs 0.004
Clocks 0.1
Accelerator Total 0.438
AXI Interconnects 0.011 0.5%
Static Power
PL static 0.157 8.5%
Total 1.862

Fig. 11. Total power measurement using a USB power meter. When the
accelerator is up and running, the whole PYNQ-Z1 system board burns
at most ~ 2W.

accelerates both the LSTM MxV and activation performing
all the required computations on the PL, thus reducing the
I/O communication to parameters loading and final result
unloading. With reference to the scheme described above,
the latency and throughput reported in Table 6 for [41]
are based on the MxV computation time, the I/O commu-
nication, and the activation computations delay were not
reported in the paper.

In terms of design scalability, while considering the
available resources on the PYNQ-Z1 FPGA, the authors in
[41] reported that with 180 DSP-based PEs, the architecture
utilizes around 97% of the available LUTs. Therefore, the
maximum parallel MAC operations could not be extended
beyond 180. On the other hand, our architecture could be
expanded, given the available resources detailed in Table 4.
More specifically, with each PE consuming on average 63

TABLE 6
Efficiency comparison with previous LSTM implementation on
PYNQ-Z1 FPGA.

Proposed [41]
Chip XC7Z020 XC7Z020
Frequency 100MHz 150MHz
Precision fixed-16 fixed-16
E;r;(c)trlons in Accel- griﬁféitﬁrgroposed Only MxV

Functions in ARM- Activation and point-

core None wise operations
Operations 0.2M 0.1984M

of PE 160 180

MxV Latency 30.46us 46.7us

MxV Throughput 6.5 GOPS 4.25 GOPS
Overall Latency 114ps -

Overall Throughput | 1.8 GOPS -

Power 2W 229 W

IEEE TRANSACTIONS ON COMPUTERS

TABLE 7
Proposed architecture logic synthesis results using 45nm technology.

Total # of cells 213,606

Area 870, 523.8 pm?
Cell Internal Power 36.56 mW

Net Switching Power | 110.1 mW

Cell Leakage Power 4.65 mW

Total Power 0.151 W

LUT, 55 FF, and 35 slice logic, the number of PEs could
be raised to 216. The utilization report of our expanded
architecture on PYNQ-Z1 FPGA shows that the expansion
resulted in 90.6%, 30%, and 99.8% utilization of the available
LUT, FE and Slice Logic, respectively.

To further demonstrate the proposed architecture’s ef-
ficiency, the architecture’s RTL is synthesized, and Design
Compiler-Synopsys produced results presented in Table 7.
It can be observed that the proposed design achieves suf-
ficiently low area and power compared to the FPGA-based
implementation.

5.5 Network Accuracy

The accuracy of the implemented prediction network is
evaluated on the test set from the Grand St. Bernard dataset
to study the impact of using CORDIC-based computing
units on the overall network prediction performance. The
implemented CORDIC-based prediction network achieves
a mean absolute error of 20 x 1073. Compared with the
reference floating-point version, with 16 x 1073 MAE, the
performance degradation may be acceptable in many appli-
cations given reduced bit width and CORDIC quantization
error. Fig. 12 presents an example of system response col-
lected from the PYNQ-z1 board to sensor readings from the
same dataset. The results are presented in the [—1, 1] scale,
which is the scale the AE-LSTM network uses for prediction.
The absolute difference between the sensor data and the AE-
LSTM system prediction is also presented in both plots. With
reference to the floating-point implementation, the effect of
quantization noise on network prediction is more evident in
the region where the sensor data are less noisy.

of
°
5

—— Accelerator prediction
—— Ref. Floating-point prediction

bsolute Error
°
3

Al
°
2
8

Scaled Temp.
°
8

—— Sensor data
—— Accelerator prediction
—— Ref. Floating-point prediction

o 250 500 750 1000 1250 1500 1750 2000
Time Steps

Fig. 12. Prediction network results collected from the PYNQ-Z1 board.
The bottom plot shows actual sensor readings (orange), corresponding
CORDIC-based accelerator predictions (green), and reference floating-
point predictions (black). The top plot presents the absolute differ-
ence between sensor observations and the network prediction for the
CORDIC and floating-point implementations.

6 CONCLUSION

This paper presented a novel unified configurable paral-
lel CORDIC-based architecture for accelerating recurrent

13

LSTM and non-recurrent fully connected computations in
DNN architectures. The implemented solution consists of
a systolic ring of outer product-based processing elements
and a single reusable activation function block. The outer
product generates and accumulates partial sums in par-
allel, eliminating data dependencies and increasing hard-
ware utilization and system throughput. The serial pro-
cessing nature of the input vector in the outer product-
based scheme enables a single activation function block
(AFB) to serve the whole network, decreasing overall sys-
tem complexity. The CORDIC implementation of the PEs
and activation function block makes the proposed solu-
tion generic for FPGA and ASIC platforms. In addition,
given the CORDIC algorithm’s ability to perform many
elementary functions using the same shift and add scheme,
the utilization of the proposed CORDIC-based computing
kernels could further be extended to other functionality
beyond the MAC units and activation functions. Experi-
mental validation of the proposed hardware architecture
on a resource-constrained Xilinx PYNQ-Z1 development
board using an open-source time-series dataset achieves low
average latency and power consumption, making the pro-
posed solution suitable for resource-constrained IoTs and
edge platforms. Future work could exploit automating the
generation of efficient CORDIC-based architecture for accel-
erating recurrent LSTM and non-recurrent fully connected
computations in DNN architectures while considering ap-
plication requirements and available hardware resources.

REFERENCES

[1] 1. Arel, D. C. Rose and T. P. Karnowski, “Research frontier: Deep
machine learning-a new frontier in artificial intelligence research, ”
Comp. In tell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.

[2] W. G. Hatcher and W. Yu, “A Survey of Deep Learning: Platforms,
Applications and Emerging Research Trends,” in IEEE Access, vol.
6, pp- 24411-24432, 2018, doi: 10.1109/ ACCESS.2018.2830661.

[3] S. Shamshirband, T. Rabczuk and K. -W. Chau, “A Survey of
Deep Learning Techniques: Application in Wind and Solar Energy
Resources,” in IEEE Access, vol. 7, pp. 164650-164666, 2019, doi:
10.1109/ ACCESS.2019.2951750.

[4] T. W.S. Chow, Xiao-Dong Li and Yong Fang, “A real-time learning
control approach for nonlinear continuous-time system using recur-
rent neural networks,” in IEEE Transactions on Industrial Electron-
ics, vol. 47, no. 2, pp. 478-486, April 2000, doi: 10.1109/41.836364.

[5] A.B. Nassif, I. Shahin, I. Attili, M. Azzeh and K. Shaalan, “Speech

Recognition Using Deep Neural Networks: A Systematic Review,”

in IEEE Access, vol. 7, pp. 19143-19165, 2019, doi: 10.1109/AC-

CESS.2019.2896880.

T. Young, D. Hazarika, S. Poria and E. Cambria, “Recent Trends

in Deep Learning Based Natural Language Processing [Review

Article],” in IEEE Computational Intelligence Magazine, vol. 13,

no. 3, pp. 55-75, Aug. 2018, doi: 10.1109/MCI.2018.2840738.

[7] S. Hochreiter and]J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997, doi:
10.1162/neco. 1997.9.8.1735.

[8] N. P. Jouppi et al., “A domain-specific supercomputer for training
deep neural networks,” Commun. ACM, vol. 63, no. 7, pp. 67-78,
Jun. 2020.

[9] J. Wang, J. Lin and Z. Wang, “Efficient Hardware Architectures
for Deep Convolutional Neural Network,” in IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 6, pp. 1941-1953,
June 2018, doi: 10.1109/TCSI.2017.2767204.

[10] T.Yuan, W. Liu, J. Han and F. Lombardi, “High Performance CNN
Accelerators Based on Hardware and Algorithm Co-Optimization,”
in IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
68, no. 1, pp. 250-263, Jan. 2021, doi: 10.1109/TCSI.2020.3030663.

[6

—_

IEEE TRANSACTIONS ON COMPUTERS

[11] Y. Lin and T. S. Chang, “Data and Hardware Efficient Design for
Convolutional Neural Network,” in IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 5, pp. 1642-1651, May
2018, doi: 10.1109/TCSI1.2017.2759803.

[12] E Conti, P. D. Schiavone and L. Benini, “XNOR Neural Engine:
A Hardware Accelerator IP for 21.6-f]/op Binary Neural Network
Inference,” in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2940-2951, Nov.
2018, doi: 10.1109/TCAD.2018.2857019.

[13] R. Andri, L. Cavigelli, D. Rossi and L. Benini, “YodaNN: An Ar-
chitecture for Ultralow Power Binary-Weight CNN Acceleration,”
in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 1, pp. 48-60, Jan. 2018, doi:
10.1109/TCAD.2017.2682138.

[14] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan
and D. Marr, “Accelerating recurrent neural networks in analytics
servers: Comparison of FPGA, CPU, GPU, and ASIC,” 2016 26th
International Conference on Field cite and Applications (FPL), 2016,
pp- 1-4, doi: 10.1109/FPL.2016.7577314.

[15] D. Kalamkar et al, “A study of BFLOAT16 for deep
learning training,” arXiv:1905.12322, 2019, [online] Available:
http:/ /arxiv.org/abs/1905.12322.

[16] N. Ho and W. Wong, “Exploiting half precision arith-
metic in Nvidia GPUs,” 2017 IEEE High Performance Ex-
treme Computing Conference (HPEC), 2017, pp. 1-7, doi:
10.1109/HPEC.2017.8091072.

[17] Q. He et al., “Effective quantization methods for recurrent
neural networks,” arXiv:1611.10176, 2016, [online] Available:
http:/ /arxiv.org/abs/1611.10176.

[18] M. Z. Alom, A. T. Moody, N. Maruyama, B. C. Van Essen and
T. M. Taha, “Effective Quantization Approaches for Recurrent
Neural Networks,” 2018 International Joint Conference on Neural
Networks (IJCNN), 2018, pp. 1-8, doi: 10.1109/IJCNN.2018.8489341.

[19] L. Hou, J. Zhu, J. Kwok, F. Gao, T. Qin and T.-Y. Liu, “Normal-
ization helps training of quantized LSTM,” Proc. Adv. Neural Inf.
Process. Syst., pp. 7344-7354, 2019.

[20] S. Han, J. Pool, J. Tran and W. Dally, “Learning both weights and
connections for efficient neural network,” Proc. Adv. Neural Inf.
Process. Syst., vol. 28, pp. 1135-1143, 2015.

[21] S. Han, H. Mao and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning trained quantization and
Huffman coding,” Proc. Int. Conf. Learn. Represent., pp. 1-14, 2016.

[22] S. Anwar, K. Hwang and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM J. Emerg. Technol. Comput.
Syst., vol. 13, no. 3, pp. 32, 2017.

[23] S.Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, pp. 75-84, Feb. 2017.

[24] S. Cao et al, “Efficient and effective sparse LSTM on FPGA
with bank-balanced sparsity,” Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, pp. 63-72, Feb. 2019.

[25] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti and]. Seo, “An
8.93 TOPS/W LSTM Recurrent Neural Network Accelerator Fea-
turing Hierarchical Coarse-Grain Sparsity for On-Device Speech
Recognition,” in IEEE Journal of Solid-State Circuits, vol. 55, no.
7, pp. 1877-1887, July 2020, doi: 10.1109/JSSC.2020.2992900.

[26] P. Judd,]. Albericio, T. Hetherington, T. M. Aamodt and
A. Moshovos, “Stripes: Bit-serial deep neural network comput-
ing,” 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1-12, doi: 10.1109/MI-
CRO.2016.7783722.

[27] O. Bilaniuk, S. Wagner, Y. Savaria and J. David, “Bit-Slicing FPGA
Accelerator for Quantized Neural Networks,” 2019 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5,
doi: 10.1109/ISCAS.2019.8702332.

[28] H.Jiang, F.J. H. Santiago, H. Mo, L. Liu and J. Han, “Approximate
Arithmetic Circuits: A Survey, Characterization, and Recent Appli-
cations,” in Proceedings of the IEEE, vol. 108, no. 12, pp. 2108-2135,
Dec. 2020, doi: 10.1109/JPROC.2020.3006451.

[29] M. S. Kim, A. A. Del Barrio Garcia, H. Kim and N. Bagherzadeh,
“The Effects of Approximate Multiplication on Convolutional Neu-
ral Networks,” in IEEE Transactions on Emerging Topics in Com-
puting, doi: 10.1109/TETC.2021.3050989.

[30] M. S. Ansari, B. F. Cockburn and J. Han, “An Improved Loga-
rithmic Multiplier for Energy-Efficient Neural Computing,” in IEEE
Transactions on Computers, vol. 70, no. 4, pp. 614-625, 1 April 2021,
doi: 10.1109/TC.2020.2992113.

14

[31] J. N. Mitchell, “Computer Multiplication and Division Us-
ing Binary Logarithms,” in IRE Transactions on Electronic
Computers, vol. EC-11, no. 4, pp. 512-517, Aug. 1962, doi:
10.1109/TEC.1962.5219391.

[32] Y. -J. Chang, Y. -C. Cheng, S. -C. Liao and C. -H. Hsiao, “A Low
Power Radix-4 Booth Multiplier With Pre-Encoded Mechanism,”
in IEEE Access, vol. 8, pp. 114842-114853, 2020, doi: 10.1109/AC-
CESS.2020.3003684.

[33] H. Zhang, H. Xiao, H. Qu and S. -B. Ko, "FPGA-Based Approxi-
mate Multiplier for Efficient Neural Computation,” 2021 IEEE In-
ternational Conference on Consumer Electronics-Asia (ICCE-Asia),
2021, pp. 1-4, doi: 10.1109/ICCE-Asia53811.2021.9641971.

[34] N. A. Mohamed and J. R. Cavallaro, “Real-time FPGA-Based Out-
lier Detection using Autoencoder and LSTM,” 2021 55th Asilomar
Conference on Signals, Systems, and Computers, 2021, pp. 1195-
1199, doi: 10.1109/IEEECONF53345.2021.9723300.

[35] J. E. Volder, “The CORDIC Trigonometric Computing Technique,”
in IRE Transactions on Electronic Computers, vol. EC-8, no. 3, pp.
330-334, Sept. 1959, doi: 10.1109/TEC.1959.5222693.

[36] J.S. Walther, “A unified algorithm for elementary functions,” Pro-
ceedings of the May 18-20, 1971, spring joint computer conference
on - AFIPS ‘71 (Spring), 1971.

[37] X. Hu, R. G. Harber and S. C. Bass, “Expanding the range of con-
vergence of the CORDIC algorithm,” in IEEE Transactions on Com-
puters, vol. 40, no. 1, pp. 13-21, Jan. 1991, doi: 10.1109/12.67316.

[38] S. Wang, V. Piuri and E. E. Swartzlander, “Hybrid CORDIC
algorithms,” in IEEE Transactions on Computers, vol. 46, no. 11,
pp- 1202-1207, Nov. 1997, doi: 10.1109/12.644295.

[39] T. Yang et al., “Design Space Exploration of Neural Network
Activation Function Circuits,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 10,
pp. 1974-1978, Oct. 2019, doi: 10.1109/TCAD.2018.2871198.

[40] G. Barrenetxea. (2019). Sensorscope Data [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.2654726

[41] X.Zhang, W. Jiang and J. Hu, “Achieving Full Parallelism in LSTM
via a Unified Accelerator Design,” 2020 IEEE 38th International
Conference on Computer Design (ICCD), 2020, pp. 469-477, doi:
10.1109/1CCD50377.2020.00086.

[42] N. A. Mohamed and J. R. Cavallaro, “Design and Implementation
of Autoencoder-LSTM Accelerator for Edge Outlier Detection,”
2021 IEEE Workshop on Signal Processing Systems (SiPS), 2021,
pp- 134-139, doi: 10.1109/5iPS52927.2021.00032.

Nadya A. Mohamed received the B.S. degree in
Information Technology Computer System Engi-
neering major from United Arab Emirates Uni-
versity, Al Ain, UAE, in 2008, and the M.S. de-
gree in Microsystems Engineering from Masdar
Institute of Science and Technology, Abu Dhabi,
UAE, in 2012. She is currently pursuing the
Ph.D. degree with the Department of Electri-
cal and Computer Engineering, Rice University,
Houston, TX, USA. Her current research inter-
ests include deep learning hardware accelera-
tion with a focus on time series applications and resource management
in wireless sensor networks and Internet-of-Things systems.

Joseph R. Cavallaro received the B.S. degree
from the University of Pennsylvania, Philadel-
phia, Pa, in 1981, the M.S. degree from Prince-
ton University, Princeton, NJ, in 1982, and the
Ph.D. degree from Cornell University, Ithaca, NY,
in 1988, all in electrical engineering. In 1988, he
joined the faculty of Rice University, Houston,
TX, where he is currently a professor of elec-
trical and computer engineering. His research
interests include computer arithmetic, and DSP,
GPU, FPGA, and VLSI architectures for applica-
tions in wireless communications.

	Introduction
	Background and Preliminaries
	LSTM Recurrent Neural Networks
	RNNs Acceleration
	Weight Pruning
	Quantization
	Specialized Computing Units

	Accelerator Design
	Systolic Outer Product-based Architecture
	CORDIC-based Computing Units
	Overview
	MAC Units
	Activation Functions

	Hardware Implementation
	CORDIC MAC Units
	CORDIC AFB

	Evaluation and Analysis
	Experimental Setup
	Hardware Resource Utilization
	Power Measurement
	Efficiency Comparison
	Network Accuracy

	Conclusion
	References
	Biographies
	Nadya A. Mohamed
	Joseph R. Cavallaro

