
Biometrika (—-), —-, —-, pp. 1–25
Printed in Great Britain

Efficient Evaluation of Natural Stochastic Policies in Offline
Reinforcement Learning

BY NATHAN KALLUS

Department of Operations Research and Information Engineering and Cornell Tech, Cornell
University 5

2 W Loop Rd, New York, NY, USA
kallus@cornell.edu

MASATOSHI UEHARA

Department of Computer Science and Cornell Tech, Cornell University
2 W Loop Rd, New York, NY, USA 10

mu223@cornell.edu

SUMMARY

We study the efficient off-policy evaluation of natural stochastic policies, which are defined
in terms of deviations from the unknown behavior policy. This is a departure from the litera-
ture on off-policy evaluation that largely consider the evaluation of explicitly specified policies. 15

Crucially, offline reinforcement learning with natural stochastic policies can help alleviate issues
of weak overlap, lead to policies that build upon current practice, and improve policies’ imple-
mentability in practice. Compared with the classic case of a pre-specified evaluation policy, when
evaluating natural stochastic policies, the efficiency bound, which measures the best-achievable
estimation error, is inflated since the evaluation policy itself is unknown. In this paper we de- 20

rive the efficiency bounds of two major types of natural stochastic policies: tilting policies and
modified treatment policies. We then propose efficient nonparametric estimators that attain the
efficiency bounds under lax conditions and enjoy a partial double robustness property.

Some key words: Off-policy evaluation; Dynamic treatment regime; Semiparametric inference; Mobile health

1. INTRODUCTION 25

In many emerging application domains for reinforcement learning, exploration is highly lim-
ited and simulation unreliable, such as in healthcare (Gottesman et al., 2019; Kosorok and
Moodie, 2015). In these domains, we must use offline reinforcement learning, where we eval-
uate and learn new sequential decision policies from existing observational data. A key task in
offline reinforcement learning is that of off-policy evaluation, in which we evaluate a new policy 30

from data logged by another behavior policy (Bibaut et al., 2019; Kallus and Uehara, 2019b;
Murphy, 2003; Nachum et al., 2019; Robins, 2004; Zhang et al., 2013). In many applications
such as mobile health, the horizon, or number of decision stages, is often long (Boruvka et al.,
2018; Liao et al., 2020; Luckett et al., 2018; Shi et al., 2020). For example, in the trial of Liao
et al. (2020), the horizon is 450 while the number of patients is 37. In such settings, the naïve 35

sequential importance sampling estimator (Precup et al., 2000; Robins et al., 1999) suffers from
the curse of horizon (Liu et al., 2018) in the sense that its mean squared error grows exponen-
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2 NATHAN KALLUS, MASATOSHI UEHARA

tially in the horizon. Recent work in off-policy evaluation (Kallus and Uehara, 2019a, 2020a)
has shown how efficiently leveraging problem structure, such as the Markov property, which
means the reward and next state and action are independent of all past observations conditional40

on the current state and action, and time-homogeneity which means the dynamical system does
not change over time, can significantly improve off-policy evaluation and address issues such as
the curse of horizon, i.e., showing that the mean squared error grows only polynomially in the
horizon. Avoiding exponential dependence has been recognized as a central problem in offline
reinforcement learning (Agarwal et al., 2019; Wang et al., 2020).45

In most of the literature on off-policy evaluation, including the above, the policy to be evalu-
ated is pre-specified, that is, it is a given and known function from states to a distribution over
actions. In a departure from this, in this paper we consider the evaluation of natural stochastic
policies, which may depend on the natural value of the action, that is, the treatment that would be
observed in the absence of intervention (Haneuse and Rotnitzky, 2013; Muñoz and Van Der Laan,50

2012; Shpitser and Pearl, 2012). Specifically, we consider policies defined as deviations from the
behavior policy that generated the observed data (also known as propensity scores; Rosenbaum,
1983). In situations where we do not know behavior policies, as we typically see in observational
studies, these policies cannot be pre-specified, which poses a new challenge to derive statistically
efficient algorithms. Throughout this paper, we focus on this setting with an unknown behavior55

policy and unknown target evaluation policy defined in terms of the unknown behavior policy.
There are several primary advantages to natural stochastic policies. The first advantage is

implementability. Subjects are often unable or reluctant to undertake an assigned treatment if
the deviation from the treatment they would have naturally undertaken is large. For example,
consider intervening on leisure-time physical activity to reduce mortality among the elderly (as in60

Díaz and van der Laan, 2018). An evaluation policy assigning a+ δ minutes of weekly activity to
an individual whose current physical activity level is a, also known as the natural value, would be
a realistic intervention for small to moderate δ. On the other hand, evaluation policies assigning
any arbitrary level of physical activity level ignoring the current level of physical activity is
unrealistic and rarely implementable. Another example is intervening on air pollution levels65

to improve the health of children (as in Díaz and van der Laan, 2013). A possible evaluation
policy is enforcing the pollution levels below a certain cutoff point if the observed pollution
level (i.e., the natural value) exceeds the threshold. A second advantage is interpretation. The
value of certain natural stochastic policies can easily be interpreted as the impact of a directional
change. For instance, in the tilting policies proposed by Kennedy (2019), evaluation policies are70

defined in such a way that a parameter δ controls the odds ratio of the evaluation policies and the
current behavior policies. This parameter reflects the magnitude of the intervention’s effect on the
likelihood of receiving treatment. A third advantage is that we can relax or more easily satisfy the
positivity assumption, which requires some overlap between the evaluation and behavior policies
and is fundamentally necessary for off-policy evaluation. Often, we cannot know a priori whether75

the positivity assumption is satisfied for a given intervention in an observational study or how
good is the overlap. We can, however, easily consider policies that only deviate slightly from
the behavior policy, ensuring a good overlap and reliable evaluation by design. Because of these
benefits, natural stochastic policies are commonly applied in medical settings (Díaz and van der
Laan, 2013, 2018; Young et al., 2014, 2019).80

In this paper, we derive efficiency bounds and develop efficient estimators for two key types
of natural stochastic policies: tilting policies and modified treatment policies. We consider three
longitudinal settings: (1) non-Markov decision processes, (2) time-varying Markov decision pro-
cesses, and (3) time-homogeneous Markov decision processes. We derive efficiency bounds in
each setting, which quantify the statistical limits of evaluation by establishing the best-achievable85
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Efficient Evaluation of Natural Stochastic Policies in Offline RL 3

asymptotic mean squared error in each setting. In particular, due to the unknown evaluation pol-
icy, the efficiency bounds are inflated in comparison with the case of a pre-specified evaluation
policy. Irrespective of this inflation, we show the efficiency bound is still polynomial in the hori-
zon in the case of time-varying Markov decision processes and Markov decision processes. Im-
portantly, this indicates the curse of the horizon is surmountable. In fact, we proceed to develop 90

estimators that achieve these efficiency bounds under lax conditions. Our estimator has a unique
partial double robustness property, which is different from the usual double robustness observed
when evaluating pre-specified policies (Jiang and Li, 2016; Kallus and Uehara, 2020a; Robins
et al., 1999). We also demonstrate how efficient estimators for pre-specified policies (Kallus and
Uehara, 2019a, 2020a) break if we just naïvely plug in an estimate of the evaluation policy. 95

2. RELATED LITERATURE

Natural stochastic policies are widely studied in the non-sequential setting (Haneuse and Rot-
nitzky, 2013; Muñoz and Van Der Laan, 2012). However, they have not been extensively studied
in the longitudinal setting but for a few exceptions. Kennedy (2019) considers off-policy evalua-
tion with binary actions under a tilting policy in a non-Markov decision process. In comparison, 100

we focus on the Markovian setting that is central to reinforcement learning and mobile health
and where we can overcome the curse of horizon, and we also allow for a possibly continuous
action space. Young et al. (2014) considers off-policy evaluation under a modified treatment pol-
icy in a non-Markov decision process using a parametric approach. In comparison, our methods
are nonparametric and globally efficient, and we focus on the Markovian setting. 105

We emphasize that our setting is quite different from the standard setting in causal inference
and policy evaluation, where the evaluation targets are pre-specified (Kallus and Uehara, 2019a;
Narita et al., 2019; Robins et al., 1994). We discuss these differences in greater detail in Re-
marks 1 to 3 and Section 6.4. As in Haneuse and Rotnitzky (2013); Muñoz and Van Der Laan
(2012), since the target functionals are more complicated due to the fact that evaluation poli- 110

cies are not pre-specified, we need much more careful analysis. Moreover, the efficient influence
functions for evaluating natural stochastic policies do not generally have the usual doubly-robust
structure observed in the pre-specified-policy case. In fact, our findings reveal that the efficient
influence functions in our setting exhibit a partially doubly-robust structure. This means that
certain nuisances need to be estimated consistently to ensure the off-policy evaluation is also 115

consistent, albeit with possibly slow convergence rates. This special structure is explained in
Theorem 3.

3. SETUP AND BACKGROUND

3.1. Problem Setup and Definitions
Consider an H-long time-varying Markov decision process, with states, also known as 120

covariates, st ∈ St, actions at ∈ At, rewards, also known as outcomes rt ∈ R, initial state
distribution p1(s1), transition distributions pt+1(st+1 | st, at), and reward distributions pt(rt |
st, at), for t = 1, . . . ,H . A policy (πt(at | st))t≤H induces a distribution over trajectories
T= (s1, a1, r1, . . . , sT , aH , rH , sH+1):

pπ(T) = p1(s1)

H∏
t=1

πt(at | st)pt(rt | st, at)pt+1(st+1 | st, at). (1) 125

Given an evaluation policy πe, which we consider as unknown in this paper, we are interested
in its value, J = Epπe

(∑H
t=1 rt

)
, where the expectation is taken with respect to (with respect to
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4 NATHAN KALLUS, MASATOSHI UEHARA

.) the density induced by the evaluation policy, pπe . In the off-policy setting, our data consists of
trajectory observations from some fixed policy, πb, known as the behavior policy:

T(1), . . . ,T(n) ∼ pπb , T(i) = (S
(i)
1 , A

(i)
1 , R

(i)
1 , · · · , S(i)

H , A
(i)
H , R

(i)
H ). (Off-policy data)

In observational studies, as we consider herein, πb is unknown, and the observed action A
(i)
j is130

considered the natural value of the action in the sense that it is the one naturally observed in the
absence of our intervention. Our goal is to estimate J from the observed data {T(i)}ni=1. Finally,
while we do not make use of explicit counterfactual notation, our approach is equivalent to the
counterfactual value of following πe instead of πb if we had employed potential outcomes and
assumed the typical sequential ignorability and consistency assumptions (Ertefaie and Strawder-135

man, 2018; Luckett et al., 2018).
We define the q- and v-functions for πe, respectively, as

qt = Epπe

(∑H
k=t rt | st, at

)
, vt = Epπe

(∑H
k=t rt | st

)
.

Further, define the instantaneous (or, one-step), cumulative (or, multi-step), and marginal state
density ratios and marginal state-action density ratio, respectively, as

ηt =
πe
t (at|st)

πb
t (at|st)

, λt =
∏t

k=1 ηk, wt =
pπe (st)
p
πb (st)

, µt = ηtwt,

where pπ(st) is the marginal density at st under pπ. Here, we observe that ηt and λt are fun-
damental components of causal inference, often referred to as inverse probability weights, with
their counterparts in longitudinal settings being described in Young et al. (2014, Equation 11).
We note that in many causal inference settings, evaluation policies of interest are determinis-140

tic constant-action policies that remain invariant with respect to st. The marginal ratio wt, in
contrast, is special to reinforcement learning, where on assumes Markovianness, and it plays an
important role in constructing statistically efficient estimators in time-varying Markov decision
processes. We assume throughout the paper that 0 ≤ rt ≤ Rmax, ηt ≤ C, wt ≤ C ′, ∀t ≤ H . The
latter two bounds constitute an overlap assumption.145

Given trajectory data, T(1), . . . ,T(n), we define the empirical expectation as Pnf =
1
n

∑n
i=1 f(T

(i)). Unless otherwise noted, all expectations, variances, and probabilities are with
respect to pπb . Define the L2 norm by ∥f∥2 = [E{f2(T)}]1/2. We denote convergence in prob-

ability and distribution by
p→ and d→, respectively.

3.2. Natural Stochastic Policies150

In off-policy evaluation, πe is often pre-specified. Our focus is the case where πe depends on
the natural value of the treatment in an observational study. Importantly, in this setting, both πe

and πb are unknown. In this paper, we consider two types of natural stochastic policies: mod-
ified treatment policies and tilting policies. These constructions are inspired by previous work
focusing on the non-dynamic and non-Markov decision process setting (Díaz and Hejazi, 2020;155

Haneuse and Rotnitzky, 2013), which implicitly require that the horizon is short (logarithmic in
the amount of data) due to the curse of horizon mentioned in Section 1. We focus on time-varying
Markov decision process and Markov decision process settings, which permit long horizons. This
is practically significant since long horizons is a common feature of modern mobile health appli-
cations, which target chronic diseases such as obesity (Thomas and Bond, 2015), alcohol abuse160

(Gustafson et al., 2014), and nicotine addiction (Riley et al., 2008).
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Efficient Evaluation of Natural Stochastic Policies in Offline RL 5

DEFINITION 1 (TILTING POLICY). Given ut : At → R, a tilting policy is defined as

πe
t (at | st) = ut(at)π

b
t (at | st)

/∫
ut(ãt)π

b
t (ãt | st)dãt. (2)

Tilting policies tilt the behavior policy slightly toward actions with higher values of ut. For
example, for a binary action, letting ut(1) = δ, ut(0) = 1 yields 165

πe
t (at | st) = I(at = 1)

δπb
t (1 | st)

1 + (δ − 1)πb
t (1 | st)

+ I(at = 0)
δ−1πb

t (0 | st)
1 + (δ−1 − 1)πb

t (0 | st)
, (3)

as considered by Kennedy (2019) in the binary-action non-Markov decision process setting. For
δ = 1 we get πe = πb; as δ shrinks, we tilt toward action 0; and, as δ grows, we tilt toward ac-
tion 1. The parameter δ directly controls the amount of overlap; specifically πe

t (at | st)/πb
t (at |

st) ≤ max(δ, δ−1). For the general case in Definition 1, we have that πe
t (at | st)/πb

t (at | st) ≤ 170

maxãt ut(ãt)/minãt ut(ãt) so that the variation in ut can directly control the overlap. Tilting
policies ensure that πe

t (· | st) is absolutely continuous with respect to πb
t (· | st) so that the den-

sity ratio always exists. Thus, the overlap assumption is automatically satisfied. In contrast, if πe
t

is pre-specified and πb
t is unknown, we cannot always ensure that the density ratio exists.

DEFINITION 2 (MODIFIED TREATMENT POLICY). A modified treatment policy is specified 175

by the maps τt : St × At → At and assigns the action τt(st, ãt) in state st where ãt is the natural
action value distributed as ãt ∼ πb

t (· | st).
For example, if for each st, τt(st, ·) has a differentiable inverse τ̃t(st, ·), then πe

t (at | st) =
πb
t (τ̃t(st, at) | st)τ̃ ′t(st, at), where ′ denotes a differentiation with respect to at. The simplest

example of a modified treatment policy is τt(st, at) = at + bt(st) for some function bt(st), for 180

which πe
t (at|st) = πb

t (at − bt(st) | st). The function bt(st) quantifies the deviation from the
natural value. Keeping bt(st) small ensures implementability. While tilting policies are more
descriptive, easily interpretable as an incremental policy change in a particular direction, mod-
ified treatment policies can be more prescriptive, corresponding to a direct change to current
behavior. 185

3.3. Off-Policy Evaluation
Step-wise importance sampling (IS; Precup et al., 2000) and direct estimation of q-functions

(DM; Ernst et al., 2005) are two common approaches for off-policy evaluation. However, the
former is known to suffer from the high variance and the latter from model misspecification. To
alleviate this, the doubly robust estimate combines the two (Jiang and Li, 2016; Murphy et al., 190

2001; Thomas and Brunskill, 2016). However, the asymptotic mean squared error of these can
still grow exponentially in the horizon H . Kallus and Uehara (2020a) show that the efficiency
bound in the time-varying Markov decision process case is actually polynomial in H and gives an
estimator achieving it. When we additionally assume time invariance on time-varying Markov
decision processes, Kallus and Uehara (2019a) show an orders-smaller efficiency bound and 195

develop an efficient estimator leveraging time invariance.
All the above methods focus on the case where πe is given explicitly. If the behavior policy

is known, then natural stochastic policies can also be regarded as given explicitly and these still
apply. When πb is unknown, as in observational studies, we can still operationalize these methods
for evaluating natural stochastic policies by first estimating πb from the data, plugging this into 200

πe , and then treating πe as specified by this estimate. However, this will fail to be efficient, as
we discuss in Section 5. In fact, the efficiency bounds for evaluating natural stochastic policies
are different than the pre-specified case.
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6 NATHAN KALLUS, MASATOSHI UEHARA

Several variants of tilting policies have been widely employed in RL (Agarwal et al., 2021;
Schulman et al., 2015). In these papers, the data is experimental but not observational. Thus,205

behavior and evaluation policies are known. As mentioned, the off-policy evaluation in these
cases is covered by existing off-policy evaluation works. We focus on the case where the data is
observational, and the behavior and evaluation policies are not known a priori, which is common
in medical settings.

3.4. Curse of Horizon210

In the non-Markov decision process model the trajectory distribution is pπ(T) =

p1(s1)
∏H

t=1 πt(at | jst)pt(rt | jat)pt+1(st+1 | jrt), where jat = (s1, a1, r1, · · · , at), jst =
(s1, a1, r1, · · · , st) andjrt = (s1, a1, r1, · · · , rt). This is in contrast to our time-varying Markov
decision process model where the conditional densities can only depend on the most recent state
and action. The non-Markov decision process setting is more standard in the classical literature215

of dynamic treatment regimes when the horizon H is short (Díaz et al., 2020; Kennedy, 2019;
Robins et al., 1994; Zhang et al., 2013). Among these, Kennedy (2019) and Díaz et al. (2020)
consider the evaluation of natural stochastic policies.

We can formally show that efficiency bounds for off-policy evaluation under the non-Markov
decision process model grows exponentially in the horizon, which is often referred to as the curse220

of horizon in reinforcement learning. In our work, by leveraging the Markovian assumption in
time-varying Markov decision processes, we aim to show how we can circumvent the curse of
horizon. For completeness and comparison, in Appendix B, we derive efficiency bounds under
non-Markov decision process and compare them to Kennedy (2019) and the concurrent work of
Díaz et al. (2020).225

4. EFFICIENCY BOUNDS

4.1. Tilting Policies
We calculate the efficient influence function and efficiency bounds for evaluating natural

stochastic policies in reinforcement learning with respect to nonparametric models MTMDP,
which are induced by time-varying Markov decision process distributions. After deriving them230

for off-policy evaluation of tilting policies, we turn to the case of modified treatment policies.
The efficiency bound is the smallest-possible error we can hope to achieve in estimating J . This
is the gold standard to measure the optimality of estimators in causal inference. See van der
Laan and Robins, 2003; van der Vaart, 1998 for more details. Crucially, any efficient estimator
is asymptotically linear with influence function equal to the efficient influence function. Thus,235

efficient influence functions also play important role in constructing efficient estimators.
The following theorem reveals the efficient influence function and efficiency bound for tilting

policies.
THEOREM 1. Let πe be as in Definition 1. Then the efficient influence function and efficiency

bound of J with respect to the model MTMDP are, respectively,240

−J +
∑H

t=1 {µt(rt − vt) + µt−1vt} , ΥTI1 =
∑H

t=0 E[var {µt(rt + vt+1) | st}],

where µ0 = 1, v0 = r0 = 0. Moreover, ΥTI1 is upper bounded by CC ′R2
maxH

2.
The function ut that specifies the tilting policy is implicit in the variables µt, vt above, which

depend on πe
t . While the efficiency bound is larger than in the case of a pre-specified evaluation

policy (Kallus and Uehara, 2020a), the overall order, CC ′R2
maxH

2, is the same. This indicates245

we can possibly circumvent the curse of horizon by using an efficient estimator.
Remark 1 (Comparison to pre-specified evaluation policy). In the pre-specified evaluation

policy case, Kallus and Uehara (2020a) show that the efficient influence function and efficiency
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Efficient Evaluation of Natural Stochastic Policies in Offline RL 7

bound are, respectively,

−J +
∑H

t=1 {µt(rt − qt) + µt−1vt} ,
∑H

t=0 E
{
µ2
tvar (rt + vt+1 | st, at)

}
. (4) 250

Specifically, this is also the efficiency bound for evaluating a tilting policy when πb is known
and πe is also known. To derive our result, compared to Kallus and Uehara (2020a) who deal
with pre-specified policies, we additionally calculate the derivative with respect to behavior
policies. Recall our estimand also depends on behavior policies. Since this additional term is∑

t µt(qt − vt), by adding it to the efficient influence function in (4), the efficient influence 255

function in Theorem 1 is derived. Compared with the efficiency bound in (4), ΥTI1 is larger by∑H
t=1 E

{
w2
t var (ηtqt | st)

}
. Hence, the more the q-function qt(st, at) varies over actions at at

any one state, the greater the difference.
Remark 2 (Non-dynamic case). When H = 1 and the evaluation policy is pre-specified,

the efficient influence function is given by the familiar doubly robust influence function 260

η1 {r1 − q1(s1, a1)}+ v1(s1)− J (Dudik et al., 2014; Robins et al., 1999). In contrast, for
H = 1, the efficient influence function in Theorem 1 for evaluating tilting policies is instead
η1 {r1 − v1(s1)}+ v1(s1)− J , where we used µ1 = η1. The difference to the familiar doubly
robust influence function is η1(q1(s1, a1)− v1(s1)), which is exactly the derivative of J with
respect to πb, that is, the component of the efficient influence function accounting for the uncer- 265

tainty in πb (which is 0 in usual off-policy evaluation where policy value has no dependence on
πb). Intuitively, we can understand it as an optimal control variate for v1(s1).

4.2. Modified Treatment Policies
We next handle the case of modified treatment policies. Again, we will see that we can poten-

tially circumvent the curse of horizon with an efficient estimator. 270

THEOREM 2. Let πe be as in Definition 2. Then the efficient influence function and efficiency
bound of J with respect to the model MTMDP are, respectively,

−J +
∑H

t=1 {µt(rt − qt) + µt−1q
τ
t } , ΥMO1 =

∑H
t=0 E

{
µ2
tvar

(
rt + qτt+1 | st, at

)}
(5)

where qτt (st, at) = qt(st, τt(st, at)). Moreover, ΥMO1 is upper bounded by CC ′R2
maxH

2.
Remark 3 (Comparison to pre-specified evaluation policy). To derive our result, compared to 275

Kallus and Uehara (2020a) who deal with pre-specified policies, we additionally calculate
the derivative with respect to behavior policies. This additional derivative is

∑
t(−vt(st) +

qτt (st, at)). Hence, by adding it to the efficient influence function in Theorem 1, the efficient
influence function in Theorem 2 is derived. Compared with the efficiency bound for a pre-
specified evaluation policy, ΥMO1 is larger by

∑H
t=0 E

{
µ2
tvar

(
qτt+1 | st+1

)}
. Hence, the more 280

the q-function qτt (st, at) varies over actions at at any one state, the greater the difference.
Remark 4 (Non-dynamic case). When H = 1, the efficient influence function is

η1 {r1 − q1(s1, a1)}+ qτ1 (s1, a1)− J . This matches the results in Díaz and van der Laan (2013,
2018), where we used µ1 = η1. The difference to the familiar doubly robust influence function
is qτ1 (s1, a1)− v1(s1), which is exactly the derivative of J with respect to πb. Intuitively, we can 285

understand qτ1 (s1, a1) as an unbiased surrogate for v1(s1) = Ea1∼πb
1(·|s1)

[q1(s1, τ(s1, a1)) | s1],
which does not require that we know πb, but, at the same, has higher variance.

5. EFFICIENT AND (PARTIALLY) DOUBLY ROBUST ESTIMATION

5.1. Tilting Policies
Staring with tilting policies, we next propose efficient estimators for natural stochastic policies 290

based on the obtained efficient influence functions. Recalling a general theorem in semiparamet-
ric theory that efficient estimators are asymptotically linear with efficient influence functions,
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8 NATHAN KALLUS, MASATOSHI UEHARA

Algorithm 1 Efficient Off-Policy Evaluation for Natural Stochastic Policies

Take a K-fold random partition of {1, . . . , n} = I1 ∪ · · · ∪ IK such that the size of each fold,
|Ik|, is within 1 of n/K; set Uk = {T(i) : i ∈ Ik}, Lk = {T(i) : i /∈ Ik}
for k ∈ {1, · · · ,K} do

Using only Lk as data, construct nuisance estimators ŵ(k)
t , π̂

b,(k)
t , q̂

(k)
t for t ≤ H

Set π̂e,(k)
t (at | st) = ut(at)π̂

b,(k)
t (at | st)/

∫
ut(ãt)π̂

b,(k)
t (ãt | st)dãt,

η̂
(k)
t (st, at) = π̂

e,(k)
t (at | st)/π̂b,(k)

t (at | st), v̂(k)t (st) =
∫
q̂
(k)
t (st, at)π̂

e,(k)
t (at | st)dat

Set Ĵk = 1
|Ik|

∑
T∈Uk

ϕ̂(k)(T), where

ϕ̂(k)(T) =
H∑
t=1

ŵ
(k)
t (st)η̂

(k)
t (st, at)

{
rt − v̂

(k)
t (st)

}
+ ŵ

(k)
t−1(st−1)η̂

(k)
t−1(st−1, at−1)v̂

(k)
t (st) (6)

end for
Return ĴTI1 =

1
n

∑K
k=1 |Ik|Ĵk

one natural way to obtain efficient estimators is to take empirical averages of approximations of
efficient influence functions.

We propose an estimator ĴTI1 for tilting policies in Algorithm 1. This is a meta-algorithm295

given estimators for the nuisances wt, π
b
t , qt, which we discuss how to estimate in Section 5.3.

This estimator is derived by taking an empirical average of the approximation of the efficient
influence function given by plugging in estimators for the unknown nuisance functions.

We next prove ĴTI1 is efficient under nonparametric rate conditions on nuisance estimators,
which crucially can be slower than Op(n

−1/2). The use of cross-fitting allows us to avoid metric300

entropy conditions (Chernozhukov et al., 2018; Zheng and van Der Laan, 2011). In Appendix D,
we provide a parallel result for the algorithm without cross-fitting but imposing additional con-
ditions on nuisance estimates.

THEOREM 3 (EFFICIENCY). Suppose ∀k ≤ K, ∀j ≤ H , ∥π̂b,(k)
j (aj | sj)− πb

j(aj | sj)∥2 ≤
α1, ∥ŵ(k)

j (sj)− wj(sj)∥2 ≤ α2, ∥q̂(k)j (sj , aj)− qj(sj , aj)∥2 ≤ β, where α2 = Op(n
−1/4),305

α1 = op(n
−1/4), β = Op(n

−1/4), α2β = op(n
−1/2). Then,

√
n(ĴTI1 − J)

d−→ N(0,ΥTI1).
The result essentially follows by showing that |ĴTI1 − J − Pn{ϕ(T)}| ≤ α1α2 + α1β + α2β +
α2
1 + op(n

−1/2), where ϕ(T) is the efficient influence function. Under the above rate assump-
tions, the right-hand side is op(n

−1/2) and the result is concluded from central limit theorem.
Importantly, in this situation, the error is upper-bounded by terms consisting of products of two310

(possibly the same) L2 errors of nuisance estimators. If the right-hand side did not consist of
product terms, we cannot allow for nonparametric rates of nuisance estimators to ensure

√
n-

consistency and efficiency.
Notice that if we knew the behavior policy so that α1 = 0, this becomes simply α2β +

op(n
−1/2) and we recover the doubly robust structure of the pre-specified case (Kallus and Ue-315

hara, 2020a): the estimator is consistent if either wt or qt is consistently estimated. In this case,
the error is upper-bounded by terms consisting of products of two different L2 errors of nui-
sance estimators. Unlike this case, in our general setting with α1 ̸= 0, because of the term α2

1,
the consistent estimation of πb is required to estimate J consistently. So, we have a partial dou-
ble robustness in the sense that the estimator is consistent as long as πb and either w or q are320

consistently estimated.
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Efficient Evaluation of Natural Stochastic Policies in Offline RL 9

THEOREM 4 (PARTIAL DOUBLE ROBUSTNESS). Suppose ∀k ≤ K, ∀j ≤ H , for some
w†
j , q

†
j , ∥π̂b,(k)

j (aj |sj)− πb
j(aj |sj)∥2 = op(1), and ∥q̂(k)j (sj , aj)− q†j(sj , aj)∥2 = op(1), and

∥ŵ(k)
j (sj)− w†

j(sj)∥2 = op(1). As long as either q†j = qj or w†
j = wj , we have ĴTI1

p−→ J .
Unlike standard double robustness as described in Hahn (1998); Lawless et al. (1999); Robins 325

et al. (1994), the partial double robustness above arises because behavior policies are no longer
ancillary for the functional of interest. Due to similar reasons, partial double robustness prop-
erties also appear in other contexts, such as certain policy evaluation problems with instrumen-
tal variables (Tchetgen Tchetgen and Vansteelandt, 2013) and dynamic discrete choice models
(Chernozhukov et al., 2019). 330

Remark 5 (Why we cannot simply rely on the efficient influence function for pre-specified policies).
Since we have to estimate πb and πe consistently for our estimator to work, a careful reader
might wonder whether we might as well plug in the estimated πe implied from this estima-
tion into estimators that are efficient for the pre-specified case such as that of Kallus and
Uehara (2020a). But, this must necessarily fail. Consider the case of H = 1 for simplic- 335

ity and replace Eq. (1) in Algorithm 1 with ϕ(k)(T) = ϕpre(s1, a1, r1; π̂
b,(k)
1 , q̂

(k)
1 , π̂

e,(k)
1 )

where ϕpre(s1, a1, r1; π̃
b
1, q̃1, π̃

e
1) =

π̃e
1(s1,a1)

π̃b
1(s1,a1)

(r1 − q̃1(s1, a1)) +
∫
q̃1(s1, ã1)π̃

e
1(ã1 | s1)dã1.

That is, plug in our nuisance estimates into the familiar doubly robust formula. With a
specified evaluation policy, guarantees for this estimator (and its dynamic version in Kallus
and Uehara, 2020a) leverage that the value of any evaluation policy π̃e

1 can be written 340

J(π̃e
1) = Eϕpre(s1, a1, r1;π

b
1, q̃1, π̃

e
1) = Eϕpre(s1, a1, r1; π̃

b
1, q1, π̃

e
1). That is, this formulation

has zero derivative in perturbations to πb
1, q1, with π̃e

1 fixed, so estimation errors in these translate
to negligible downstream errors. However, J(π̃e

1) certainly does not have zero derivative in π̃e
1

at πe
1. Therefore, even small errors in πe

1 must directly propagate to the off-policy evaluation
estimate, inflating variance, possibly introducing

√
n-order bias, and imperiling rates if we use 345

nonparametric estimates. In contrast, in Theorem 3, we leveraged an intermediate result that the
special structure of our estimator affords it evaluation errors that are quadratic in error for πb

t , so
small errors therein will become negligible.

Remark 6 (Estimation of v-functions). Although q̂
(k)
t does not explicitly appear in Eq. (1), we

do need to estimate q̂(k)t first and then compute v̂(k)t based on this estimate as done in Algorithm 1, 350

instead of directly estimating vt, to ensure partial double robustness with respect to wt, π
b
t , qt.

That is, all nuisance estimates have to use the same estimate of πb
t in order for errors to multiply.

5.2. Modified Treatment Policies
We similarly define the estimator ĴMO1 for the case of modified treatment policies by taking

Algorithm 1 and (a) replacing π̂
e,(k)
t (at | st) by π̂

e,(k)
t (at | st) = π̂

b,(k)
t (τ̃t(st, at) | st)τ̃ ′t(st, at) 355

and (b) replacing Eq. (1) by

ϕ̂(k)(T) =
∑H

t=1 ŵ
(k)
t (st)η̂

(k)
t (st, at)

{
rt − q̂

(k)
t (st, at)

}
+ ŵ

(k)
t−1(st−1)η̂

(k)
t−1(st−1, at−1)q̂

(k)
t (st, τt(st, at)).

We then have the following efficiency and full double robustness results.
THEOREM 5 (EFFICIENCY). Suppose ∀k ≤ K, ∀j ≤ H , ∥π̂b,(k)

j (aj |sj)− π
b,(k)
j (aj |sj)∥2 ≤

α1, ∥ŵ(k)
j (sj)− wj(sj)∥2 ≤ α2, ∥q̂(k)j (sj , aj)− qj(sj , aj)∥2 ≤ β where (α2 + α1)β = 360

op(n
−1/2), max{α2, α1, β} = op(1). Then,

√
n(ĴMO1 − J)

d−→ N(0,ΥMO1).
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10 NATHAN KALLUS, MASATOSHI UEHARA

THEOREM 6 (DOUBLE ROBUSTNESS). Assume ∀k ≤ K, ∀j ≤ H , for some πb†
j , q†j , w

†
j ,

∥π̂b
j(aj |sj)− πb†

j (aj |sj)∥2 = op(1), ∥q̂(k)j (sj , aj)− q†j(sj , aj)∥2 = op(1), ∥w(k)
j (sj)−

w†
j(sj)∥2 = op(1). Then as long as either q†j = qj or πb†

j = πb
j , w

†
j = wj , we have ĴMO1

p−→ J .
These theorems arise from the bias structure |ĴMO1 − J − Pn{ϕ(T)}| ≤ (α2 + α1)β +365

op(n
−1/2). Hence, the error is upper-bounded by products of L2 errors for nuisance estimators.

This ensures efficiency even if nuisances converge at nonparametric rates slower than Op(n
−1/2).

The conditions on nuisance estimates in these theorems are weaker than the ones for tilting
policies. Comparing Theorem 3 and 5, the condition in Theorem 5 is satisfied even if some of
α2, α1, β are slower than op(n

−1/4). Comparing Theorems 4 and 6, the condition in Theorem 6370

can be satisfied even if the behavior policy model is misspecified. The intuitive reason is that for
a modified treatment policy, J can be specified in a form not depending on πb, while this is not
true for tilting policies. We again emphasize that plugging in an estimate of πe into the method
of Kallus and Uehara, 2020a can fail to be efficient and even

√
n-consistent. In particular, where

Kallus and Uehara (2020a) uses v̂(k)t (st), our proposal instead uses q̂(k)t (st, τt(st, at)).375

5.3. Nuisance Estimation
Our estimators for both types of stochastic policies require that we estimate πb

t , wt, qt, possibly
at some slow rate. Here we discuss some standard ways to estimate these nuisance functions.

First, estimating πb
t amounts to conditional density estimation. Once we fit πb

t , we also im-
mediately have an estimate of πe

t . We can then use standard methods for estimating wt and qt380

that assume πe
t is given by plugging in our estimate for it as follows. Generally speaking, if the

estimate for qt or wt would have had some convergence rate rn if πe
t were given exactly, then

this rate does not deteriorate as long as the plugged-in estimate for πe
t also has rate at least rn.

Next, we discuss the estimation of q-functions. In the tabular case (i.e., finite state and action
spaces), a model-based approach is the most common way to estimate q-functions from off-385

policy data, wherein we directly estimate the transition and reward distribution and then compute
q-functions from these. In the non-tabular case, we have to rely on some function approximation.
In particular, we can rely on the Bellman equation: qt(st, at) = E {rt + qt+1(st+1, π

e) | st, at},
where qt(st, π) =

∫
qt(st, at)π(at | st)dat. One of the most common ways to operationalize

this is using fitted q-iteration (Antos et al., 2008; Duan and Wang, 2020; expressed here using an390

estimated evaluation policy, π̂e): set q̂H+1 ≡ 0, and for t = H, . . . , 1 estimate q̂t by regressing
rt + q̂t+1(st+1, π̂

e) onto st, at using any given (possibly nonparametric) regression method.
Finally, we discuss estimating wt. In tabular cases, we can use a model-based approach (Yin

and Wang, 2020), computing the density ratios directly from the estimated transition densities. In
non-tabular cases, we must rely on function approximation. Here, we can use the relation wt =395

E(ηt−1wt−1 | st). Then, we can use an iterative procedure: for each t = 2, . . . , (1) estimate πb
t−1

using any flexible regression method and use it to construct an estimate η̂t−1, (2) estimate wt by
ŵt by regressing η̂t−1ŵt−1 on st using any flexible regression method, with ŵ1 = 1.

6. EXTENSION TO TIME-HOMOGENEOUS MARKOV DECISION PROCESSES

6.1. Setting400

We next extend our results to time-homogeneous time-varying Markov decision pro-
cesses where transitions, rewards, and policies do not depend on t, i.e., pt(r|s, a) =
p(r|s, a), pt(s′|s, a) = p(s′|s, a), πb

t = πb, τt = τ . Here, the estimand we consider is an average
discounted reward, J(γ) = (1− γ) limT→∞ Eπe(

∑T
t=1 γ

t−1rt) when the initial state distribu-
tion is p(1)e (s). Although we can still apply methods developed for the time-varying Markov deci-405
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Efficient Evaluation of Natural Stochastic Policies in Offline RL 11

sion process in the Markov decision process case, if we correctly leverage the time-homogeneity
of Markov decision process, we should do much better in that the asymptotic rate of mean
squared error should be O(1/NH), not O(1/N), when we observe N trajectories of length H .
Especially, this difference is significant when H is much larger than N as seen in modern mo-
bile health applications. In this section, we derive the efficient influence function and efficiency 410

bound of J(γ) with respect to the Markov decision process model denoted by MMDP. Then, we
compare to the efficiency bound and estimators for pre-specified evaluation policies.

Following the standard offline reinforcement learning setting (Agarwal et al., 2021), we
consider the observed data to be n i.i.d. draws from the following offline distribution: for
i = 1, . . . , n, 415

(s(i), a(i), r(i), s′(i), a′(i)) ∼ pb(s, a, r, s
′, a′) = pb(s)π

b(a | s)p(s′|s, a)p(r|s, a)πb(a′ | s′).

Given N trajectories of length H , we can convert it into the above n = NH transition tuples.
We note that our theory holds for any pb(s). In practice, pb(s) is often taken to be the stationary
distribution associated with the policy πb. Taking pb(s) as such, we can handle the case where the
data is not independent and identically distributed but instead comes from observing N = n/H 420

trajectories of length H , if we impose some additional mixing assumptions and let H → ∞,
following the approach in Kallus and Uehara (2019a).

In this section, we consider a fully nonparametric model MMDP in that we make no restrictions
on the above distributions. We define q(s, a) = Epπe

(∑∞
t=1 γ

t−1rt|s1 = s, a1 = a
)
, qτ (s, a) =

q(s, τ(s, a)), v(s) = Eπe(a|s) {q(s, a)|s}, w∗(s) = p
(∞)
e,γ (s)/pb(s), and µ∗(s, a) = w∗(s)η(s, a). 425

Per Kallus and Uehara (2019a); Liu et al. (2018), we can rewrite J(γ) as

J(γ) = Es∼pb(s),a∼πb(a|s),r∼p(r|s,a)[r p(∞)
e,γ (s)πe(a | s)/{pb(s)πb(a | s)}], (7)

where p
(∞)
e,γ (s) is the γ-discounted average state visitation distribution associated with the

Markov decision process, policy πe, and the initial state distribution p
(1)
e (s).

6.2. Tilting Policies
THEOREM 7. Let πe be as in Definition 1. The efficient influence function and efficiency bound 430

of J(γ) with respect to MMDP are, respectively,

µ∗(s, a)
{
r + γv(s′)− v(s)

}
, ΥTI2 = E

(
var

[
µ∗(s, a)

{
r + γv(s′)

}
| s

])
.

Again this is different from the pre-specified-policy case (Kallus and Uehara, 2019a). We
discuss the differences in detail in Section 6.4.

We can construct an efficient estimator by following a similar but slightly different cross-fitting 435

strategy as before. With additional data s
(j)
1 ∼ p

(1)
e (s), j = 1, . . . ,m where m = Ω(n) ( if p(1)e

is known), and given nuisance estimators π̂b,(k), q̂(k), ŵ∗(k), we propose the estimator ĴTI2 for
J(γ) by taking Algorithm 1 and replacing Ĵk with

Ĵk = 1−γ
m

∑m
j=1 v̂

(k)(s
(j)
1 ) (8)

+ 1
|Ik|

∑
i∈Ik ŵ

∗(k)(s(i))η̂(k)(s(i), a(i)){r(i) + γv̂(k)(s
′(i))− v̂(k)(s(i))}, 440

π̂e,(k)(a | s) = u(a)π̂b,(k)(a | s)
/
∫ u(ã)π̂b,(k)(ã | s)dã,

η̂(k)(s, a) = π̂e,(k)(a | s)/π̂b,(k)(a | s), v̂(k)(s) = ∫ q̂(k)(s, a)π̂e,(k)(a | s)da. (9)
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12 NATHAN KALLUS, MASATOSHI UEHARA

To estimate πb, we can follow Section 5.3. To estimate w∗, q, we can solve the following set of
moment conditions given test functions F, G (cf. Kallus and Uehara, 2019a; Liu et al., 2018):

0 = (1− γ)E
s1∼p

(1)
e
{f(s1)}+ E(s,a,s′)∼pb

[
γw∗(s)

{
η(s, a)f(s′)− f(s)

}]
∀f ∈ F, (10)445

0 = E(s,a,r,s′)∼pb

[
g(s, a)

{
r + γv(s′)− q(s, a)

}]
∀g ∈ G. (11)

Then, by leveraging the idea of minimax estimation, with function classes Q ⊂ [S× A→
R], G⊂ [S× A→ R], we can estimate q(·) by

q̂ = argminq∈Qmaxg∈G
1
n

∑n
i=1

[
g(s(i), a(i))

{
r(i) + γq(s′(i), π̂e)− q(s(i), a(i))

}]
.

The estimation of w⋆(s) is similarly performed. We next prove ĴTI2 is efficient and partially450

doubly robust, mirroring the time-varying Markov decision process case.
THEOREM 8 (EFFICIENCY). Suppose ∀k ≤ K, ∥π̂b(a|s)− πb(a|s)∥2 ≤ α1, ∥ŵ∗(k)(s)−

w∗(s)∥2 ≤ α2, ∥q̂(k)(s, a)− q(s, a)∥2 ≤ β, where α2 = Op(n
−1/4), α1 = op(n

−1/4), β =

Op(n
−1/4), α2β = op(n

−1/2). Then,
√
n(ĴTI2 − J)

d→ N(0,ΥTI2).
THEOREM 9 (PARTIAL DOUBLE ROBUSTNESS). Assume ∀k ≤ K, for some455

w∗†(s), q†(s, a), ∥ŵ∗(k)(s)− w∗†(s)∥2 = op(1), ∥π̂b(a|s)− πb(a|s)∥2 = op(1), ∥q̂(k)(s, a)−
q†(s, a)∥2 = op(1). Then, as long as w∗†(s) = w∗(s) or q†(s, a) = q(s, a), ĴTI2

p→ J.

The result again essentially follows by showing that |ĴTI1 − J − Pn{ϕ(s, a, r, s′)}| ≤
α2α1 + α2β + α1β + α2

1 + op(n
−1/2), where ϕ(s, a, r, s′) is the efficient influence function.

Under the above rate assumptions, the right-hand side is op(n−1/2) and the result is concluded460

from central limit theorem. Similar to the time-varying Markov decision process case, the esti-
mator can be efficient even if α2, β are slower than op(n

−1/4), but α1 must be op(n
−1/4). This

mirrors the partial double robustness in Section 5.

6.3. Modified Treatment Policies
THEOREM 10. Let πe be as in Definition 2. The efficient influence function and efficiency465

bound of J(γ) with respect to MMDP are, respectively,

µ∗(s, a)
{
r + γqτ (s′, a′)− q(s, a)

}
, ΥMO2 = E

[
µ∗2(s, a)var

{
r + γqτ (s′, a′) | s, a

}]
.

The derived efficient influence function differs significantly from the pre-specified case in
Kallus and Uehara (2019a), which in particular does not at all involve a′. We compare the effi-
ciency bound in Section 6.4.470

We construct an efficient estimator as follows. With additional data (s(j), a(j)) ∼
p
(1)
e (s)πb(a | s), j = 1, . . . ,m where m = Ω(n), and nuisance estimators ŵ∗(k), π̂b,(k), q̂(k), we

propose the estimator ĴMO2 by taking Algorithm 1 and replacing Ĵk with

Ĵk = 1
|Ik|

∑
i∈Ik ŵ

∗(k)(s)η̂(k)(s(i), a(i))
{
r(i) + γq̂(k)τ (s

′(i), a
′(i))− q̂(k)(s(i), a(i))

}
+ (1−γ)

m

∑m
j=1 q̂

(k)τ (s(j), a(j)), π̂e,(k)(at | st) = π̂b,(k)(τ̃(st, at) | st)τ̃ ′(st, at),475

and η̂(k), v̂(k) are as in Eq. (9). To estimate w∗ we can use Eq. (10) and to estimate q we can use:

0 = E(s,a,r,s′,a′)∼pb [g(s, a)
{
r − q(s, a) + γqτ (s′, a′)

}
] ∀g ∈ G. (12)

We next prove ĴMO2 is efficient and doubly robust, mirroring the time-varying Markov decision
process case.
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Efficient Evaluation of Natural Stochastic Policies in Offline RL 13

THEOREM 11 (EFFICIENCY). Assume ∀k ≤ K, ∥ŵ∗(k)(s)− w∗(s)∥2 ≤ 480

α2, ∥π̂b,(k)(a|s)− πb(a|s)∥2 ≤ α1, ∥q̂(k)(s, a)− q(s, a)∥2 ≤ β, where (α2 + α1)β =

op(n
−1/4),max{α2, α1, β} = op(1). Then,

√
n(ĴMO2 − J)

d→ N(0,ΥMO2).
THEOREM 12 (DOUBLE ROBUSTNESS). Assume ∀k ≤ K, for some w∗†, πb†, q†,

∥ŵ∗(k)(s)− w∗†(s)∥2 = op(1), ∥π̂b,(k)(a|s)− πb†(a|s)∥2 = op(1), ∥q̂(k)(s, a)− q†(s, a)∥2 =
op(1). Then, as long as w∗† = w∗, πb† = πb or q† = q, ĴMO2

p→ J . 485

The result again essentially follows by showing that |ĴTI1 − J − Pn{ϕ(s, a, r, s′)}| ≤ α1β +
α2β + op(n

−1/2), where ϕ(s, a, r, s′) is the efficient influence function. Under the above rate
assumptions, the right-hand side is op(n

−1/2) and the result is concluded from central limit
theorem.

6.4. Comparison with the case of pre-specified evaluation policy 490

Comparison with Kallus and Uehara (2019a): When the evaluation policy is pre-specified,
Kallus and Uehara (2019a) proposed an estimator that is similar but uses q̂(k)(s(i), a(i)) in
place of the last v̂(k)(s(i)) in Eq. (8). Under similar rate conditions to Theorem 8, they
prove it is efficient when the evaluation policy is pre-specified, achieving the efficiency
bound ΥPR = E

[
µ∗2(s, a)var {r + γv(s′) | s, a}

]
. Notice that ΥPR is smaller than ΥTI2 by 495

E
(
w∗2(s)var [η(s, a)q(s, a) | s]

)
. Hence the more q-functions vary over actions, the greater the

difference. As in Remark 5, naïvely plugging in an estimated πe can fail to be efficient or even√
n-consistent for evaluating natural stochastic policies.
Comparison with Tang et al. (2020): In the case of a pre-specified evaluation policy and known

behavior policy, Tang et al. (2020) propose an estimator with a form similar to Eq. (8) without 500

sample splitting and where v̂ is directly estimated (rather than computed as a function of other
nuisance estimates). The similarity to Eq. (8) appears to be coincidental and superficial. In the
case of pre-specified evaluation policy, even if we used oracle values for all nuisances, the es-
timator of Tang et al. (2020) is inefficient since its variance would be equal to ΥTI2, which is
larger than ΥPR. Tang et al. (2020) do not study the asymptotic properties of their estimator, but 505

we can show that using cross-fitting of nuisance estimates, the asymptotic mean squared error
of the estimator is also equal to ΥTI2. See Appendix A. Again, this is inefficient in the case of
a pre-specified evaluation policy. And, in the case of a natural stochastic policy, v̂ must be com-
puted in a fashion compatible with q̂ and π̂b, that is, v̂(s) =

∫
q̂(s, a)π̂e(a | s)d(a) in order to

ensure the partially doubly robust structure and hence efficiency. 510

7. EMPIRICAL STUDY

7.1. Taxi Environment
In this section, we first confirm the doubly robust property of the proposed estimators, then

examine the performance of different off-policy evaluation estimators in a time-invariant infinite-
horizon Markov decision process setting. We use two standard environments also used in Liu 515

et al. (2018). In Appendix F, we examine the performance of proposed estimators in a time-
variant finite-horizon Markov decision process setting.

The first environment is the Taxi environment is a commonly used tabular Markov decision
process environment for off-policy evaluation, which has S= {1, . . . , 2000}, A= {1, . . . , 6}
(Dietterich, 2000; we also refer the reader to Liu et al., 2018, Section 5 for more details), and we 520

consider separate experiments for the case of tilting and modified treatment policies. We consider
our data coming from observing a single trajectory of varying length n ∈ {1, 2.5, 5, 10} × 104.
For each n we run 60 replications of the experiment. We compare the marginal IS estimator
ĴMIS (Liu et al., 2018), the direct method ĴDM, and one of our proposed estimators ĴTI2, ĴMO2,

Acc
ep

ted
 M

an
us

cri
pt

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad059/7284104 by C

ornell U
niversity user on 02 O

ctober 2023



14 NATHAN KALLUS, MASATOSHI UEHARA

depending on whether we are considering tilting or modified treatment policies. Note ĴMIS525

and ĴDM are given by setting v̂(k) = 0 and ŵ(k) = 0, respectively, in ĴTI2, ĴMO2 (that is, the
target policies are unknown in both ĴMIS and ĴDM and we use a plug-in estimate). We do
not compare to step-wise IS (Precup et al., 2000) and DR (Jiang and Li, 2016) as these es-
timators do not converge when given single-trajectory data (as shown in Kallus and Uehara,
2019a, Section 7). Behavior and evaluation policies are set as follows. We run 150 iterations530

of q-learning to learn a near-optimal policy for the Markov decision process and define this to
be πb. We consider evaluating either a tilting policy with u(a) = ⌈a/2⌉ or a modified treat-
ment policy with τ(s, a) = (s+ a)mod 6. We set γ = 0.98. We estimate πb as π̂b(a | s) =∑n

i=1 I
[
a(i) = a, s(i) = s

]
/
∑n

i=1 I
[
s(i) = s

]
and w∗- and q-functions by solving Eqs. (10)

to (12) using {I[s = i] : i = 1, . . . , 2000} and {I[s = i, a = j] : i = 1, . . . , 2000, j = 1, . . . , 6}535

as test functions, respectively. We use these nuisance estimates to construct all estimators. To val-
idate double robustness, we also add Gaussian noise N(3.0, 1.0) to either the q- or w∗-function
estimates to simulate misspecification. In Fig. 1–6, we report the mean squared error of each
estimator over the 60 replications (1/60

∑60
ℓ=1 |Ĵℓ − J |2) with 95% confidence intervals. The

mean squared error results are virtually the same with cross-fitting, Algorithm 1, or without540

cross-fitting, Algorithm 2.
We find the performance of ĴTI2, ĴMO2 is consistently good, with or without of model specifi-

cation due to double robustness. While MIS and DM fail when their respective model is misspeci-
fied, they do well when well-specified. Since either parametric misspecification or nonparametric
rates for w∗ and q is unavoidable in practice for large or continuous state-action spaces, ĴTI2 and545

ĴMO2 are seen to be superior to ĴDM and ĴMIS.

7.2. CartPole Environment
We next consider the CartPole environment where the state space is continuous and four-

dimensional and the action space is binary (Brockman et al., 2016). We set the target and be-
havior policy in the following way. First, we run Deep Q-Network (DQN) in an online manner550

to learn q∗, following OpenAI’s default implementation. Then, we define the behavior policy as
πb(a | s) ∝ exp(q∗(s, a)), and we consider a tilting evaluation policy with u(a) = exp(2.0a).
The training data is generated by executing the behavior policy with a fixed horizon length
H = 1000. In other words, if the agent visits the terminal absorbing state before 1000 steps,
the rest of the trajectory will consist of repeating the last state. We consider observing N ∈555

[50, 100, 200, 400] trajectories, i.e., n = N ×H ∈ {5, 10, 20, 40} × 104 transitions.
We compare to ĴMIS, ĴDM, and ĴDRL, the latter being the the DRL estimator of Kallus and

Uehara (2019a) with naïvely plugged-in target evaluation policy as discussed in Section 6.4, and
our proposed estimator ĴTI2 using πb-, w- and q-estimators as explained in Appendix E. We
also compare these to DualDICE (Nachum et al., 2019), which is a variant of ĴMIS where w is560

estimated in a minimax fashion using two neural networks. We choose hyperparameters to be the
same as in the implementation of Kallus and Uehara (2019a).

Results and Discussion: We run 60 replications of the experiment for each N . To enhance
interpretability, we consider the mean squared error of each algorithm relative to (J − Jπb)2,
where Jπb is the value of the behavior policy πb. To estimate the latter normalizer, we estimate565

each of J, Jπb as a simple sample average using 1000 on-policy trajectories following Kallus and
Uehara (2019a).

In Table 1, we report the log mean squared error for varying N along with standard errors.
We observe that ĴTI2 clearly outperforms the other estimators. MIS always performs worse than
ĴTI2 and ĴTI2. This suggests that w-estimation is more challenging than q-estimation in this570
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Table 1: Comparison of estimators in Cartpole with varying N ∈ [50, 100, 200, 400]. We report
log relative mean squared errors and their estimated standard errors. In Fig. 1,3,4,6, the orange
line overlaps with the green line.

50 100 200 400

DM −1.05(−0.03) −1.46(−0.02) −1.73(−0.02) −1.82(−0.03)
MIS −0.52(−0.10) −0.84(−0.23) −0.87(−0.13) −0.92(−0.09)

DualDICE −0.32(−0.07) −0.34(−0.09) −0.31(−0.07) −0.30(−0.09)
Naïve DRL −1.13(−0.04) −1.45(−0.03) −1.75(−0.02) −1.81(−0.02)

TI2 (proposed) −1.21(−0.03) −1.53(−0.03) −1.79(−0.02) −1.92(−0.02)

environment.We observe DualDICE has the worst performance, which can be attributed to the
instability of the minimax optimization of the two neural networks in its w-estimation. The
mean squared error results are virtually the same with cross-fitting, Algorithm 1, or without
cross-fitting, Algorithm 2.

8. CONCLUSIONS 575

We considered the evaluation of natural stochastic policies in reinforcement learning, both
in finite and infinite horizons. We derived the efficiency bounds and proposed estimators that
achieved them under lax conditions on nuisance estimators that permit flexible machine learning
methods. An important next question is learning natural stochastic policies. More specifically,
we can apply a policy-based learning approach in the sense that we optimize our policy-value 580

estimates among the class of natural stochastic policies. As mentioned in Kennedy (2019), this
direction can be important in making natural stochastic policies more prescriptive. Another im-
portant next direction is considering what other natural stochastic policies beyond tilting and
modified treatment policies admit doubly or partially doubly robust evaluation.
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