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Abstract
Deep neural networks (DNNs) have recently become the standard tool for solving practical problems in various applications, 
including timely data analysis and near real-time accurate decision-making. DNNs have proven effective in outlier detection, 
one of sensor networks’ primary motivating data analysis applications. Despite the great potential of deep neural networks, 
their computational resource requirements create a vast gap when it comes to the fast processing time required in real-time 
applications using low-power, low-cost edge devices. Special care must be taken into account when designing DNNs compu-
tational units. This work proposes an FPGA-based Deep Neural Network (DNN) architecture for real-time outlier detection 
in time series data. The proposed architecture integrates a fine-tuned Autoencoder network and a Long short-term memory 
(LSTM) network to predict and detect outliers in real-time. The hardware accelerator of the integrated networks combines 
serial-parallel computation with matrix algebra concepts to reduce computational complexity and enhance the throughput. 
Experimental results on the resource-constrained Xilinx PYNQ-Z1 board using an open-source sensor network dataset show 
that the proposed architecture can efficiently analyze and detect outliers in real-time. The implemented design achieves 
0.22 ms average latency and 1GOPS throughput. The proposed design’s low latency and 94mW power consumption make 
it suitable for resource-constrained edge platforms.
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1  Introduction

The world we live in and the one we are designing for tomor-
row is based on monitoring physical systems, specifically the 
capability of continuously gathering fine-grained information 
from the physical world using sensor networks. The ultimate 
goal of sensor networks goes beyond monitoring and data 
collection; they are concerned with timely data analysis and 
accurate real-time decision-making [1, 2]. Outlier detection 
is a primary motivating data analysis application in sensor 
networks. Outliers are data points that deviate significantly 
from the remaining data to arouse suspicions that a differ-
ent mechanism generated them [3]. The recognition of outli-
ers provides valuable insights into the characteristics of the 

underlying generating system. A central network entity, such 
as the cloud, is usually used for the task of outlier detection. 
However, this requires moving the data from the data source, 
sensors, to a centralized location in the cloud. Such a scheme 
introduces several challenges. Sending data to the cloud for 
inference incurs additional propagation delays from the net-
work, leading to failure to satisfy the end-to-end low-latency 
requirements for real-time interactive applications. In addi-
tion, uploading data from the sources to the cloud introduces 
scalability issues in network resource utilization, especially 
when not all the data from all the resources are needed. 
Besides, uploading sensitive information to the cloud and 
how the cloud or applications will use these data risks privacy.

Hierarchical computing models, Fig. 1, have been intro-
duced to reduce the amount of data uploaded to the cloud 
and enable timely data analysis at different network ends. 
Fog computing is an extension of the cloud that leverages 
computing capabilities within the local cloud network. On the 
other hand, edge computing enables analytics to be physically 
close to the data source at sensing and aggregation nodes. 
Enabling data analytics, including outlier detection close to 
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the end devices through edge computing, is a viable solu-
tion to meet the latency, privacy, and scalability challenges 
described earlier. The limited computational resources on the 
edge nodes and devices motivate the development of light-
weight, energy-efficient outlier detection algorithms.

1.1 � Related Work

There is an increasing research interest in the area of outlier 
detection in wireless sensor networks (WSNs). Several solu-
tions based on various approaches have been proposed in the 
literature [4, 5]. The general idea is to model the distribution 
of what is considered “normal” and then check if the new tar-
get data deviate from the distribution to a significant degree. 
Various statistical techniques surveyed in [4, 5] model the data 
in the form of a closed-form probability distribution, and the 
parameters of the models are learned. However, fitting data to 
a particular distribution may sometimes be inappropriate. Other 
techniques based on thresholding approaches are also surveyed 
by [4, 5], but identifying a suitable threshold is challenging. Even 
if found, it is hard to generalize to all settings. Therefore, non-
parametric methods are proposed to overcome the limitations of 
parametric methods. In [6], the k-nearest neighbors’ algorithm 
is proposed to create a hyper-grid around a given data point 
and consider the data point abnormal if less than k other data 
points lie inside that hyper-grid. The computational complex-
ity of the proposed algorithm is O(2M−1) , where M is the input 
data dimension. For high-dimensional data, the complexity of 

the algorithm will prohibit its usage. One possible solution to 
overcome the limitation of the k-nearest approach proposed in 
[6] is to use a distributed algorithm. A distributed algorithm that 
relies on message exchange among sensor nodes to detect outliers 
is proposed in [7]. It is a classical spatial correlation-based out-
lier detection method. Although the approach is computationally 
less intensive, it requires reliable communications among sensor 
nodes, which imposes serious power consumption. To reduce the 
communication overheads, authors in [8] proposed a distributed 
online anomaly detection based on a hyper-ellipsoidal one-class 
support vector machine (SVM). The presented approach in [8] 
takes advantage of the spatiotemporal correlation between sen-
sor data and updates the SVM ellipsoidal boundary to reflect 
the change in the normal sensor data. However, this technique 
includes matrix inversions, which are computationally unfavora-
ble to resource-constrained sensors.

1.2 � Contribution

Inspired by the success of Deep neural networks in solving 
various practical problems, our earlier work published in [13] 
explored the integration of Deep Autoencoder (AE) and Long 
Short-Term Memory (LSTM) networks for outlier detection. 
AEs are feedforward multi-layer neural networks for feature 
learning. They have significantly impacted areas such as 
speech recognition, object recognition, natural language pro-
cessing, and dynamical system control [14, 15, 22]. AE’s pri-
mary objective is to learn a map from the input to itself through 
a pair of encoding and decoding phases. The learned map-
ping could then be used as input to another machine-learning 
model. LSTM networks are a special kind of Recurrent Neural 
Network (RNN) capable of learning long-term dependencies, 
making them suitable for sequential data processing [16]. 
LSTM networks are fully connected single or multi-layer net-
works with complex neurons and internal states at each time 
step that enable them to build a memory of time-series events. 
The proposed solution in [13] consisted of a fine-tuned deep 
Autoencoder to extract the latent features in sensor data, fol-
lowed by an LSTM network to predict the next step and detect 
outliers in real-time. The effectiveness of the proposed archi-
tecture is validated on a resource-constrained Xilinx PYNQ-Z1 
board using an open-source WSN meteorological dataset.

This work is an extension of [13] and focuses on optimiz-
ing the FPGA hardware implementation of the proposed AE-
LSTM architecture. Deploying DNNs on resource-constrained 
devices requires hardware implementations that are energy 
efficient. Hardware architectures on resource-constrained 
devices and embedded systems face the constraint of com-
puting resources, reduced memory, and memory bandwidth. 
Therefore, reducing the computation complexity is critical for 
the intended networks on these platforms. Proposed methods 

Figure 1   The general hierarchical computing model proposed to reduce 
the amount of data uploaded to the cloud and enable data analytics at 
different network ends.
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to reduce the computation complexity of DNNs include quan-
tization, pruning, and special hardware modules. Quantizing 
weights or activations helps reduce the area of arithmetic 
units and memory requirement [17–19]. Additionally, pruning 
connections with small weight values using special training 
methods could help create networks with a small number of 
parameters [21], thus reducing the number of computations. 
Special hardware modules such as multipliers based on Look-
Up Tables (LUTs) can also be used for area reduction in net-
works with low bit precision parameters [20].

This work presents a unified parallel solution for accelerat-
ing the proposed AE-LSTM network. Our goal in this work 
is to reduce the hardware complexity, data dependencies, and 
computation patterns and increase hardware utilization and 
throughput while considering network performance and power 
consumption. The proposed solution combines serial-parallel 
computation with matrix algebra concepts to reduce compu-
tational complexity and enhance the throughput. A systolic 
ring of outer product-based processing elements (PEs) and 
a single reusable activation function block (AFB) is adopted 
in the architecture. The outer product generates and accumu-
lates partial sums in parallel, eliminating data dependencies 
and increasing hardware utilization and system throughput. 
Besides that, the proposed unified computing kernel can per-
form recurrent and non-recurrent fully connected layers (FC) 
computations, improve hardware utilization and support vari-
ous applications, including the AE-LSTM network presented 
in this work. Furthermore, this work extensively studies the 
network performance and effectiveness in detecting different 
types of outliers potentially contained in the dataset. This paper 
makes the following contributions:

•	 Present a unified parallel solution that combines serial-
parallel computation with matrix algebra concepts to 
accelerate recurrent and non-recurrent fully connected lay-
ers computations in the AE-LSTM network. The unified 
parallel solution is generic and could be utilized in other 
LSTM and feedforward neural network applications.

•	 Validate the presented architecture on the Xilinx PYNQ-
Z1 development board using an open-source meteorologi-
cal dataset collected using a multi-hop WSN.

•	 Present an extensive study of the network performance and 
effectiveness in detecting different types of outliers poten-
tially contained in the meteorological dataset.

The rest of this article is organized as follows. Section 2 pre-
sents the background of Autoencoder and RNN LSTM net-
works. Section 3 gives an overview of the proposed Autoen-
coder-LSTM outlier detection system. Section 4 describes 
the accelerator architecture and implementation on the Xilinx 
PYNQ-Z1 development board. Section 5 discusses experi-
mental results, and Section 6 concludes the article.

2 � Background

2.1 � Autoencoder Neural Network

Autoencoder neural networks are a common solution for 
dimensionality reduction and outlier detection. AEs are 
unsupervised learning techniques that leverage artificial 
neural networks for feature extraction and representation 
learning. Their primary objective is to reconstruct the inputs 
instead of predicting target variables. The AE network forces 
a compressed knowledge representation of the original infor-
mation by imposing a bottleneck in the network architecture. 
If any structure exists in the input data, it could be learned 
and compressed into a compact, latent representation. A gen-
eral structure of the AE network with three hidden layers is 
shown in Fig. 2. The neural network structure on both sides 
of the middle hidden layer is often symmetric. The input and 
output layers of the network have the same size. Each input 
xi is reconstructed to x̂i for the ith dimension. The projection 
of inputs to reduced representation (code) is termed encode, 
while decode reconstructs the outputs from the reduced 
representation. The network is trained by minimizing the 
aggregated reconstruction error in all d-dimensions. The 
reconstruction error L(x, x̂) measures the difference between 
the original input x and the network reconstructed version 
x̂ . Using the reconstruction error to penalize the network 
forces the network to learn the most important attributes in 
the input data and how to best reconstruct the original input 
from the reduced representation (code). With the use of non-
linear activation functions at each layer, the Autoencoders 
can learn nonlinear relationships, making them a more pow-
erful (nonlinear) generalization to PCA.

Figure 2   A general structure of autoencoder network with three hid-
den layers. The projection of inputs to latent representation (code)  
is termed encode, while decode reconstructs the outputs from the 
latent representation.
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To further improve the Autoencoder model and balance 
the network sensitivity to input variations, a regularization 
term is introduced into the loss function L(x, x̂) . The newly 
constructed loss function consists of two terms, the recon-
struction loss and a regularizer.

The reconstruction loss L(x, x̂) will ensure that the network 
model is sensitive enough to the input and can build an accu-
rate reconstruction. In contrast, the regularizer will discour-
age memorizing and overfitting the training data. The scal-
ing parameter � added in the front of the regularizer term is 
called the regularization rate and is used for trading off the 

(1)L̂(x, x̂) = L(x, x̂) + 𝛼 ⋅ regularizer

two terms’ objectives. This work utilizes the Mean Abso-
lute Error (MAE) as a loss function and weight decay L2 
regularizer. Additional details are provided in the network 
training section.

2.2 � LSTM Recurrent Neural Network

Long short-term memory networks are a special kind of recur-
rent neural network capable of learning long-term dependen-
cies, making them suitable for time series analysis. They have 
the form of a chain of repeating modules called LSTM cells, 
shown in Fig. 3. Each LSTM cell consists of layers of neural 
networks, internal states, and point-wise operations.

Figure 3   LSTM layer architecture and a single LSTM cell details. LSTM 
Layer has the form of a chain of repeating modules called LSTM cells. 
Each LSTM cell consists of layers of neural networks, internal states, and 

point-wise operations. The � represents the sigmoid activation function 
while T the tanh activation function.
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The key to LSTM networks is the cell state, ct , which 
could be viewed as the extracted information from the 
input sequence at each time step. The LSTM cell can add 
or remove information to the cell state using Gate struc-
tures. Gates are ways to let information through optionally. 
They are composed of sigmoid and tanh neural net layers 
and point-wise operations. The LSTM cell has three main 
gates; forget, input, and output. Forget gate determines the 
fraction of history information to forget by multiplying the 
value of the cell state, ct , by a number between 0 (delete) and 
1 (keep everything). The multiplication value is determined 
by the current input, xt , and the LSTM cell hidden state from 
the previous time step, ht−1 . The input gate has two parts; the 
tanh layer, which creates a vector of new candidate values, 
ut , and the sigmoid layer, which decides the amount of new 
candidates to be added to ct . The LSTM cell hidden state and 
also the LSTM cell’s output, ht , is a manipulated version of 
ct . The cell state, ct , is first passed through a tanh layer to 
push the values between -1 and 1, then multiplied by a num-
ber between 0 (no outputs) and 1 (preserve output) generated 
using the output gate structure. The size of the LSTM cell 
is defined by the number of elements in the hidden state, ht , 
and the number of input features per time step (number of 
features in xt ). The computations in a single LSTM cell with 
n hidden state units and m-dimensional input features are 
described using the following set of equations:

where ft, it, ut, ot ∈ IRn are the outputs of the forget gate, the 
input gate, and the output gate, respectively. As described ear-
lier, the ct and ht are the cell state and the hidden state/output 
of the LSTM cell. They are initialized to zero and updated at 
each time step, demonstrating the “recurrent” nature of LSTM. 

(2)

ft = sigmoid(Uf ht−1 +Wf xt + bf )

it = sigmoid(Uiht−1 +Wixt + bi)

ut = tanh(Uuht−1 +Wuxt + bu)

ot = sigmoid(Uoht−1 +Woxt + bo)

ct = (ft ⋅ ct−1) + (it ⋅ ut)

ht = ot ⋅ tanh(ct)

Wj ∈ IRnxm , Uj ∈ IRnxn and bj ∈ IRn  (j = f , i, u, o) are weight 
and bias parameters learned during the training process.

The LSTM network could be a single or multi-layer net-
work. The network could be layered or stacked by connecting 
the LSTM layer cells’ hidden state to the input of the follow-
ing LSTM layer cells. For final processing, the hidden state, 
ht , of the last layer is often connected to a non-recurrent fully 
connected layer described using the following equation:

where Wy is the weight matrix, by is a bias vector, ht is the 
hidden state of the last LSTM layer, and AF is the activation 
function used in the layer.

3 � Proposed System Architecture

3.1 � System Overview

The proposed system integrates a fine-tuned Autoencoder 
and a Long short-term memory (LSTM) neural network for 
real-time outlier detection in time series data. The flow in 
the proposed architecture is illustrated in Fig. 4. The sensor 
data is preprocessed, buffered, and then fed to the AE for 
dimensionality reduction and feature extraction. The pre-
processing step involves data normalization, specifically 
minimax normalization. The normalization step is crucial 
for the subsequent AE and LSTM networks to find trends 
and patterns in the sensor data. The sensor data buffer is a 
sliding window to update the inputs fed to the AE at each 
time step. Generally, in the case of time-series data, a past 
history window is used to analyze outliers. The AE gener-
ates an m-dimensional code using d-dimensional buffered 
sensor data, d ≫ m . The LSTM predictor forecasts the next 
time step using the AE m-dimensional code. Given that in 
time series data, the values in consecutive time steps do not 
change significantly or change smoothly, the forecasted time 
step pi out of the LSTM predictor is compared against the 
new sensed value xi+1 . If the absolute difference between 

(3)yt = AF(Wyht + by)

Figure 4   The general architec-
ture of the proposed deep neural 
network outlier detection system.
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the predicted value and the new sensed value is sufficiently 
high, the new sensed value is flagged as an outlier.

3.2 � Network Training

Training the proposed AE and LSTM networks are done 
using the Keras library running on top of the TensorFlow 
framework [12]. The Grand St. Bernard open-source dataset 
[9] is used to demonstrate the performance of the proposed 
approach. The dataset consists of temperature measure-
ments and other metrological characteristics of the environ-
ment collected for two months from multiple wireless sen-
sor nodes deployed at the Grand St. Bernard pass, located 
between Switzerland and Italy. The network setup consisted 
of 23 sensor nodes deployed in two clusters, as shown in 
Fig. 5. The larger cluster consisted of 18 nodes, while the 
small one had five. Since this work focuses on outlier detec-
tion in univariate series, the temperature measurements from 
the same dataset are only considered.

The Autoencoder and the LSTM networks are trained, 
validated, and tested using the overlapping windows 
extracted from the temperature measurements in both 
clusters’ sensor nodes. A 3 hours window (90 samples) is 
selected to capture the increase and decrease trends in ambi-
ent temperature measurement while maintaining acceptable 

computational complexity of both the AE and the LSTM net-
works. The training set size is [169580, 90], while the vali-
dation and test sets are [36600, 90] each. The 70 : 30 ratio 
is used for dataset separation. Each window of length 90 is 
treated as a 90-dimensional data point. The Autoencoder 
is first trained using the normalized extracted overlapping 
windows. The trained AE model is then used to generate the 
low-dimensional code to train the LSTM predictor. There-
fore, the LSTM predictor training process did not include the 
AE decoding part. The autoencoder encoding part consists 
of two dense layers (AE1, AE2), while the LSTM predictor 
comprises an LSTM layer followed by two fully connected 
layers (FC1, FC2). The autoencoder network is trained for 
500 epochs using the MAE loss function and L2 regularizer 
with regularization rate � = 5 × 10−5 . On the other hand, 
the LSTM network is trained for 200 epochs using the MAE 
loss function. Adam optimizer is used to update both net-
work parameters with a learning rate of 1 × 10−4 . A grid 
search across multiple parameters is used to find the selected 
regularization and learning rates. As a last step in the net-
work training process, the AE and the LSTM networks are 
stacked, as shown in Fig. 6. The dense layers AE2, FC1, and 
FC2, are fine-tuned to improve the prediction performance. 
Table 1 shows a summary of the Keras TensorFlow model 
that gave the desired results in terms of performance and 
computational complexity.

Figure 5   The setup of the wireless sensor network deployed at the Grand St. Bernard pass, Switzerland.
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4 � Accelerator Design and Implementation

The proposed real-time DNN-based outlier detection sys-
tem aims to achieve low complexity, latency, and power 
consumption making it a viable data analysis solution for 
resource-constrained edge devices. The primary focus of this 
work is to optimize the FPGA hardware implementation of 
the proposed system. Figure 7 shows a simplified block dia-
gram of the designed hardware accelerator. The main mod-
ules consist of a central computing module, an input buffer, 

an internal results memory unit, and a control module. The 
central computing module consists of a unified parallel 
architecture that accelerates the inference of the LSTM cells 
and the dense fully-connected layers. The unified parallel 
computing module consists of an array of computationally 
independent processing elements, a parallel-in serial-out 
shift register (PISO), and a single activation function block 
(AFB). The outer product generates and accumulates partial 
sums in parallel, eliminating data dependencies and mak-
ing it possible to use a single activation function block to 
perform nonlinear network computations. The PISO shift 
register interfaces the PEs and the AFB. The AFB consists 
of sigmoid and tanh activation functions implemented using 
piecewise-linear approximation (PLA). Distributed BRAMs 
are used to store internal network results and implement the 
input buffer that will serve as a sliding window to update the 
input to the unified parallel computing module. The control 
module encodes instructions and controls data movements 
and storage. The implemented architecture is generic and 
could be extended in terms of network layers and hidden 
units per layer as long as hardware resources are available.

Figure 6   The general structure of 
the fine-tuned AE-LSTM network.

Table 1   Summary of fine-tuned AE-LSTM network model.

Layer Type Output Shape Activation Param #

Input Input (90,1) tanh 0
AE1 Dense (60,1) tanh 5460
AE2 Dense (30,1) tanh 1830
LSTM LSTM (40,1) Sigmoid, tanh 6720
FC1 Dense (20,1) tanh 820
FC2 (Output) Dense (1,1) tanh 21
  Total: 14,851
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4.1 � Systolic Outer Product‑based  
Computing Module

The proposed unified parallel architecture accelerates the infer-
ence of the LSTM layer in addition to dense fully-connected 
layers. Given that the LSTM layer latency dominates other 
layers’ latency, the optimization efforts are directed toward 
accelerating the LSTM layer computations. The main com-
putations effort in the LSTM layers, as described earlier in 
Section 2, comes from the computations of the LSTM cell 
gates, cell state, and hidden state. Each LSTM gate requires 
two MACs and element-wise vector additions. However, given 
that the weight matrices Wj ∈ IRnxm , Uj ∈ IRnxn and the bias 
vector bj ∈ IRn in each gate share the same first dimension n, 
it is possible to combine them into one matrix of dimension 
(n × (n + m + 1)) , where n is the number of hidden state units 
and m represent input features dimension. Likewise, since all 
the gates share the same dimensionality and input vector, it is 
possible to merge the gates’ combined matrices into one big 
matrix of size ((4n) × (n + m + 1)) . Thus, rather than optimiz-
ing four matrix-vector multiplications, each time step would 
focus on optimizing a single large matrix-vector multiplica-
tion (MxV), as in dense fully-connected layer computations. In 
general, the matrix-vector multiplication of a matrix W ∈ IRnxm 
by vector x ∈ IRm could be optimized in two forms:

•	 Inner product-based: Multiply in parallel all elements of 
the input vector x by the matrix row vectors Wi . Such a 
structure requires m multipliers and an adder tree. In addi-
tion, the process should be repeated for all n rows of the 
matrix W. The elements of the output vector in this con-
figuration are computed sequentially.

•	 Outer product-based: Multiply in parallel a single ele-
ment of the input vector x by the matrix column vectors 
Wj . Such configuration requires n MAC units. Besides, 
the process should be repeated for all m columns of the 
matrix W. The output vector elements in this structure 
are computed in parallel.

The conventional designs of the MxV used in most of the 
existing DNN network architectures are of the inner product-
based option. The main drawback of such a structure is the 
hardware pipeline stall time imposed by the recurrent nature 
of the LSTM networks and the data dependencies between the 
output vector of the current time step and the input vector of 
the next time step. In such a case, the system must wait for 
the newly computed hidden state, ht , before starting the subse-
quent step computations. This indicates that the whole system 
pipeline must be drained before starting the subsequent time 
step matrix-vector multiplication. Pipeline latency is critical to 
achieving a high throughput system. Therefore, our proposed 
scheme adopted the outer product-based approach to reduce the 
hardware stall time and the data dependencies between different 
time-step computations. To illustrate the proposed scheme’s 
computations, the matrix-vector multiplication in (4) shows a 
simplified example of an m-dimensional input vector with four 
hidden-state units in a single time step. The matrix W represents 
the combined parameters matrix described earlier. Each row 
in W represents the weight of one hidden unit, and the first 
column includes all units’ biases. After (m + 1) computations, 
the resulting vector y contains the sum of the products of each 
hidden unit. Using as many multipliers as hidden units working 
in parallel, the partial sum of all the units will be simultaneously 
computed for each element in the input vector; an example of a 
single partial sum is boldly marked in (4). Similarly, each unit’s 
final sum of products could simultaneously be obtained using 
an arithmetic accumulator per unit.

(4)
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Figure 7   A simplified block dia-
gram of the hardware accelerator.
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After obtaining the result of the hidden units, the output 
values are stored in memory to be evaluated by the acti-
vation function before scheduling the computations of the 
subsequent time step. Given the serial processing nature 
of the input vector, a single activation functions block can 
serve all the hidden units forming a systolic ring topology. 
Accordingly, the subsequent time-step computations could 
start without waiting for the system pipeline to be drained. 
Additionally, the hardware could iteratively be reused to 
compute all the time steps, reducing the hardware complex-
ity and power consumption.

A simplified block diagram of the proposed systolic outer 
product-based architecture is shown in Fig. 8. The main 
modules consist of an array of computationally independent 
processing elements for MxV, a parallel-in serial-out shift 
register, and a single activation function block.

Each processing element consists of two main parts: a sin-
gle port Block RAM (BRAM) and a MAC unit. The BRAMs 
hold the stationary network parameters (weights, biases), 
and the MAC units perform the MxV computations. Since 
the available external memory bandwidth on low-power IoT 
and edge devices is limited, the distributed on-chip BRAMs 
are used to enable the concurrent operation of the PEs. In 
this case, the external I/O communication is substantially 
reduced to only loading new features, sharing results, and 
updating the network parameters when needed. In addition, 
to maintain a regular structure and reduce memory address-
ing complexity, equal-sized distributed BRAMs are used. 
Each PE BRAM contains the weight values of one neuron 
unit per layer. The network input data are sequentially intro-
duced and multiplied concurrently by their corresponding 
weights in each PE. The accumulator register in each PE 

holds the sum of products of the input data by the corre-
sponding weights. The final sums of products from all PEs 
are passed to the PISO shift register to be shifted through 
the activation function block. The activation function block 
is a configurable activation block. It handles the dense fully-
connected layer activations, LSTM gates activation, the cell 
state update, and the hidden state computations.

4.2 � Activation Function Block

4.2.1 � Nonlinear Activation Functions

The nonlinear activation function is one of the main com-
ponents of the artificial neural network computational units. 
Each neuron in the hidden and output layers needs an activa-
tion function. The output of the MAC units passes through 
the nonlinear activation function to compute the final out-
put of each neuron. Logistic sigmoid and hyperbolic tangent 
(tanh) functions are the most widely used activation func-
tions. In addition, they are the primary activation functions 
in the LSTM cell. The logistic sigmoid output is defined in 
the [0, 1] range, while the tanh is in the [−1, 1] range. Math-
ematically, the sigmoid and tanh functions are defined as,

The straightforward implementation of these functions is costly, 
given that both of them require computing the exponential and 
division. Various methods have been proposed for implementing 
activation functions on hardware. These methods generally fall 

(5)
tanh(z) =

ez − e−z

ez + e−z

sigmoid(z) =
1

1 + e−z

Figure 8   A simplified block dia-
gram of the systolic outer product-
based computing unit. The main 
modules consist of an array of 
processing elements (PEs) for 
MxV, a parallel-in serial-out shift 
register (PISO), and a single acti-
vation function block (AFB).
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into two main categories, piecewise-linear approximation and 
look-up table-based (LUT) approaches. This work adopts the 
PLA approach to achieve high-fidelity approximations without 
sacrificing the network performance. Given the symmetrical 
nature of both activation functions, the approximation in this 
work focused on the positive side and interpreted the results for 
the opposing side by flipping and rotating. In addition, given 
that the sigmoid function converges to 1 for inputs greater than 
5, the input range [0, 5] is only considered in the approximation 
process. Similarly, the input range [0, 3] is considered for the 
tanh activation function approximation. An 11-line approxima-
tion is used for the logistic sigmoid, while the hyperbolic tangent 
requires a 16-line approximation to give a comparable MAE. 
Each line is described using y = Sx + B , where S controls the 
slope of the line and B is the function intercept. The approxi-
mation performance is plotted in Fig. 9. The top part of Fig. 9 
shows the similarity in shape between the real-valued functions 
using (5) and the PLA approximation for both sigmoid and tanh 
activations. The bottom part of the same figure shows the abso-
lute error of the approximations. The mean absolute error of 
both approximations is in the order of ∼ 2.5 × 10−4.

Implementing the adopted PLA approach achieves low 
latency and requires low hardware resources. The computa-
tion process requires a 3 clock cycle pipeline delay, and the 
resource utilization, i.e., the amount of LUTs, registers, and 
DSP blocks, is negligibly small in both activation functions. 
Therefore, the adopted PLA approach is a viable solution for 
low-latency applications on resource-constrained devices.

4.2.2 � LSTM Cell Activation Pipeline

As mentioned earlier, the activation function block is a config-
urable activation block that handles the dense fully-connected 
layer activation, the LSTM gates activation, the cell state update, 
and the hidden state computations. To reduce the implementa-
tion complexity and enable activation function and arithmetic 
units reuse, the LSTM gates activation and point-wise operations 
are pipelined. Figure 10 shows the data flow in the LSTM cell 
activation six stage pipeline, S0 − S5 . The LSTM cell formula-
tion shown in (2) is divided into six steps; each corresponds to 
one pipeline stage. The inputs to the activation pipeline are the 
matrix-vector multiplication results of the forget gate, input gate, 
and output gate shown in Fig. 3 and expressed in the LSTM cell 
formulation shown in (2).

4.3 � Data Representation

The most used software frameworks for Deep learning per-
form inference by adopting the floating-point representation 
to ensure the best accuracy. However, considering hardware 
implementation on resource-constrained devices, floating-
point arithmetic is not optimal for resource usage. Therefore, 
this work uses fixed-point representations to ensure a suit-
able precision for the computations and low resource usage. 
A software version of the AE-LSTM network exploiting the 
fixed-point toolbox included in the python environment is 
used to test different fixed-point configurations and evaluate 

Figure 9   Activation functions approximation performance. The left plots show the similarity in shape between the real-valued sigmoid using (5) 
and the PLA and the absolute error of the approximation. The right plots show the same but for the tanh activation function.
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the error between the floating-point-based implementation 
and the fixed-point one. The performed experiments showed 
that the optimal solution is obtained using an 18 bits repre-
sentation, 4 bits for the signed integer part, and the remain-
ing 14 bits for the fractional part. All network parameters 
and normalized input vectors are quantized into the same 
18 bits Q4.14 fixed-point representation. The mean squared 
error between the floating-point and the fixed-point imple-
mentation is in the order of ∼ 10−4.

5 � Experimental Results

5.1 � Experimental Setup

Xilinx PYNQ-Z1 FPGA development board is used to analyze 
the performance of the proposed architecture on hardware 
[10]. The development board consists of an XC7Z020 ZYNQ 
series FPGA containing a Dual ARM Cortex-A9 core proces-
sor. In addition, it is a hardware platform for the PYNQ open-
source framework, which comprises software running on the 
ARM CPUs and a base hardware library. Xilinx’s Vivado 
tools are used to design the proposed system hardware accel-
erator [11]. After quantizing the trained network and acti-
vation function parameters into Q4.14 fixed-point represen-
tation, the parameters are extracted into a C++ header file 
and used in Xilinx’s Vivado HLS tool to design the proposed 
custom accelerator hardware. After verifying the functional-
ity of our custom-designed accelerator modules, the designed 
hardware accelerator is exported to Xilinx Vivado Design 
Suite to build the hardware overlay. The resulting hardware 
overlay is loaded on the PYNQ-Z1 board. A python code is 
developed to interface with the hardware overlay. The network 
parameters are loaded into the PL-distributed BRAMs using 
the AXI high-performance (HP) port. Then, a single sensor 
reading is transferred from the ARM core processing system 
(PS) to the accelerator using the AXI4-Lite interface at each 
time step. The accelerator outputs are extracted and evaluated 
offline to measure the performance.

5.2 � Hardware Resource Utilization

The top-level diagram of the hardware implementation using 
Xilinx Vivado tools on the PYNQ-Z1 board is shown in Fig. 11. 
With reference to Fig. 4, the sensor data buffer, AE, and LSTM 
predictors are implemented on the programmable logic (PL), 
while the rest are implemented on the PS. Table 2 shows the 
PL resource utilization of the proposed accelerated fixed-point 
architecture. With reference to the initial design reported in [13], 
the LUT and LUTRAM utilization are reduced by ∼ 50% . The 
flip-flop utilization is reduced by ∼ 75% . Increased BRAM 
and DSP utilization are expected, given the parallel outer 
product-based implementation of the matrix-vector multiplica-
tion. The estimated response time of the accelerator using the 
global 100MHz clock that drives the PL from the PS is 0.22ms. 
This average latency outperforms the one reported in the initial 
design in [13] by a factor of 5. Besides, the implemented design 
achieves 1GOPS throughput.

5.3 � Power Measurement

The Xilinx Power Analyzer is used to estimate the dynamic 
and static power of the proposed architecture on the PYNQ-Z1 
board. Table 3 shows the analyzer breakdown. As per the break-
down, the accelerator consumes ∼ 94mW on average. Access-
ing the DDR3 to load the network parameters to PL-distributed 
BRAMs is the most power-hungry, but this happens only when 
parameters are loaded for the first time or when an update is 
required. A USB power meter is used to verify the total power 
consumption reported by the analyzer. As shown experimentally 
in Fig. 12, the whole PYNQ-Z1 system board burns at most 
∼ 1.54W when the accelerator is up and running. The reported 
power consumption is very close to the total noted in Table 3.

5.4 � Outlier Detection Accuracy

The Grand St. Bernard dataset used in this work is unlabeled, 
and previous examples of interesting outliers are unavailable; 
therefore, it is an unsupervised scenario. The deviation of sensor 

Figure 10   Data flow in the 
LSTM cell activation pipeline. 
The inputs to the activation 
pipeline are the matrix-vector 
multiplication results of the for-
get gate, input gate, and output 
gate. The outputs are the cell 
state c

t
 and the hidden state h

t
.
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reading from the proposed model prediction is used to quantify 
each data point’s level of outlierness. The deviation vector of the 
normalized training set is modeled to fit a Gaussian distribution, 
X ∼ N(�, �2) , as shown in Fig. 13. A sensor reading is flagged 
as an outlier if its likelihood p ≤ � and � is set to 0.01 to give a 
sufficient confidence interval of 99%. The calculated deviation 
threshold to flag a data point as an outlier using the 99% confi-
dence interval is 0.15. The calculated threshold is equivalent to 6 
°C in the original scale. Figures 14, 15, 16, and 17 are four exam-
ples of the system response to sensor readings from the Grand 
St. Bernard dataset. The results are presented in the [−1, 1] scale, 
which is the scale the AE-LSTM network uses for prediction. The 
results can be scaled back to the original sensor scale without 

affecting the detection accuracy. However, we wanted to present 
the results obtained directly from the hardware accelerator.

Figure 14 illustrates the system response to regular sensor 
readings from node three located in the large sensor network 
cluster shown in Fig. 5. The absolute difference between the 
scaled sensor reading x and the AE-LSTM system prediction 
p is lower than the predefined threshold, indicating that the 
gradual increase and decrease in the temperature measure-
ments within 3 hours window is within the normal range. 
The second example, Fig. 15, presents the system response 
to noisy sensor readings from node 32, located in the small 
network cluster. The absolute difference between the sensor 
reading x and the AE-LSTM prediction p is slightly beyond 

Figure 11   Top-level diagram of 
the proposed system architec-
ture on PYNQ-Z1 board.

Table 2   Resource utilization of the proposed system implementation 
on PYNQ-Z1 board.

LUT LUTRAM FF BRAM DSP

Available 53200 17400 106400 140 220
Floating-Point Implementation reported in [13]
Utilization 24807 650 22585 30 111
Utilization % 46.63% 3.74% 21.23% 21.43% 50.45%
Fixed-Point Implementation reported in [13]
Utilization 12544 448 11922 28.50 17
Utilization % 23.58% 2.57% 11.20% 20.36% 7.73%
Proposed Accelerated Fixed-Point Implementation
Utilization 6172 231 2899 82.50 163
Utilization % 11.60% 1.33% 2.72% 58.93% 74.09%

Table 3   Proposed architecture power consumption breakdown on PYNQ-
Z1 board using Xilinx power analyzer.

Part Power (W) Percentage

Dynamic Power

PS ARM Cortex-A9 0.27 83%
DDR3 0.63
PLLs 0.344
Peripherals 0.012

Accelerator 0.094 6%
Interconnect 0.009 1%
Static Power
PL static 0.147 10%
  Total: 1.506
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the predefined threshold around time steps 1137, 1172, and 
1350. Given that the deviation is insignificant and the sam-
ples are not in consecutive time steps, these data points are 
considered weak outliers or noise.

In Fig. 16, we present the system response to abnormal 
sensor readings from node 7 in the large cluster. The absolute 
difference between the sensor reading x and the AE-LSTM 
prediction p is significantly beyond the predefined threshold 
at different parts of the plot. The first deviation region, time 
steps 0 to 50, is due to the input buffer warmup time. The 
input buffer is initialized to zero, and as the sensor readings 
are passed to the input buffer, the prediction gets closer to the 

actual measurements. The warmup time is usually shorter, as 
in Figs. 14 and 15 when the input sensor readings are close 
to average readings in the input buffer. In the second region, 
time steps 1250 to 1500; the readings are within the normal 
scaled temperature range. However, they are not maintaining 
the gradual increase or decrease shape expected in the stand-
ard ambient temperature measurements. Therefore, the predic-
tion system flags them as outliers. In the third region, around 
time step 1650, the input sensor readings returned to normal. 
However, given the difference between the input buffer aver-
age and the sensor readings, the system treated the readings as 
outliers until a gradual change was discovered. The last region 

Figure 12   Total power meas-
urement using a USB power 
meter. The whole PYNQ-Z1 
system board burns at most 
∼ 1.54W when the accelerator is 
up and running.

Figure 13   Histogram of the 
training set prediction error with 
fitted Kernel Density Estimation 
(KDE) using Gaussian kernel 
with bandwidth = 0.004. The 
� ∼ 0 and the �2 ∼ 0.06.
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Figure 14   System response to regular sensor readings. Actual sensor readings (blue) and corresponding Accelerator predictions (black). The 
absolute difference between the sensor observations and the system prediction is below the predefined threshold indicating a regular sequence.

Figure 15   System response to noisy sensor readings. The absolute difference is slightly beyond the predefined threshold around time steps 1137, 
1172, and 1350. These data points are considered weak outliers or noise.
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Figure 16   System response to abnormal sensor readings. The absolute dif-
ference between the sensor readings and the proposed system prediction 
goes beyond the predefined threshold, indicating an irregular sequence. 

The regions identified as outliers are due to random patterns or the out-of-
context increase and decrease in the sensor readings.

Figure 17   Another example of the system response to abnormal sensor 
readings. The regions identified as outliers are due to the random patterns 
in the sensor readings, as in the region from time step 150 to 950, or the 

out-of-context increase and decrease in the sensor readings, around time 
step 1150, as an example.
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is the same as the second region in terms of interpretation. 
Figure 17 is another example of abnormal sensor readings 
obtained from sensor node 29 in the small cluster. The inter-
pretation of the results in Fig. 17 is the same as in Fig. 16. 
The regions the system identified as outliers are either due to 
random patterns or the out-of-context increase and decrease 
in the sensor readings.

6 � Conclusion

This work introduced an FPGA-based Deep Neural Network 
architecture for real-time outlier detection in time series data. 
The presented architecture integrates an Autoencoder and a 
Long short-term memory network to predict and detect outli-
ers in real-time. The architecture computational complexity 
and throughput are improved using serial-parallel computa-
tion and matrix algebra concepts. A unified computing ker-
nel is designed to perform recurrent and non-recurrent fully 
connected layers computations, improve hardware utilization 
and support various applications, including the AE-LSTM 
network presented in this work. In addition, the designed 
kernel is generic and can be extended in terms of the num-
ber of LSTM layers and cells per layer as long as hardware 
resources are available. An open-source meteorological 
dataset is used to validate the effectiveness of the design in 
detecting outliers in real-time. Experimental results on the 
Xilinx PYNQ-Z1 development board achieved low average 
latency and power consumption, making the proposed solu-
tion suitable for resource-constrained edge platforms.
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