Journal of Signal Processing Systems
https://doi.org/10.1007/511265-023-01835-1

=

Check for
updates

Design and Implementation of an FPGA-Based DNN Architecture
for Real-time Outlier Detection

Nadya Mohamed'® . Joseph Cavallaro’

Received: 9 June 2022 / Revised: 25 October 2022 / Accepted: 27 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Deep neural networks (DNN5s) have recently become the standard tool for solving practical problems in various applications,
including timely data analysis and near real-time accurate decision-making. DNNs have proven effective in outlier detection,
one of sensor networks’ primary motivating data analysis applications. Despite the great potential of deep neural networks,
their computational resource requirements create a vast gap when it comes to the fast processing time required in real-time
applications using low-power, low-cost edge devices. Special care must be taken into account when designing DNNs compu-
tational units. This work proposes an FPGA-based Deep Neural Network (DNN) architecture for real-time outlier detection
in time series data. The proposed architecture integrates a fine-tuned Autoencoder network and a Long short-term memory
(LSTM) network to predict and detect outliers in real-time. The hardware accelerator of the integrated networks combines
serial-parallel computation with matrix algebra concepts to reduce computational complexity and enhance the throughput.
Experimental results on the resource-constrained Xilinx PYNQ-Z1 board using an open-source sensor network dataset show
that the proposed architecture can efficiently analyze and detect outliers in real-time. The implemented design achieves
0.22 ms average latency and 1GOPS throughput. The proposed design’s low latency and 94mW power consumption make
it suitable for resource-constrained edge platforms.

Keywords Outlier detection - Sensor Networks - FPGA - Accelerator - DNN - Edge computing

1 Introduction underlying generating system. A central network entity, such
as the cloud, is usually used for the task of outlier detection.

The world we live in and the one we are designing for tomor- ~ However, this requires moving the data from the data source,

row is based on monitoring physical systems, specifically the
capability of continuously gathering fine-grained information
from the physical world using sensor networks. The ultimate
goal of sensor networks goes beyond monitoring and data
collection; they are concerned with timely data analysis and
accurate real-time decision-making [1, 2]. Outlier detection
is a primary motivating data analysis application in sensor
networks. Outliers are data points that deviate significantly
from the remaining data to arouse suspicions that a differ-
ent mechanism generated them [3]. The recognition of outli-
ers provides valuable insights into the characteristics of the

P4 Nadya Mohamed
nam7 @rice.edu

Joseph Cavallaro
cavallar@rice.edu

Department of Electrical and Computer Engineering, Rice
University, 6100 Main St, Houston 77005, TX, USA

Published online: 28 January 2023

sensors, to a centralized location in the cloud. Such a scheme
introduces several challenges. Sending data to the cloud for
inference incurs additional propagation delays from the net-
work, leading to failure to satisfy the end-to-end low-latency
requirements for real-time interactive applications. In addi-
tion, uploading data from the sources to the cloud introduces
scalability issues in network resource utilization, especially
when not all the data from all the resources are needed.
Besides, uploading sensitive information to the cloud and
how the cloud or applications will use these data risks privacy.

Hierarchical computing models, Fig. 1, have been intro-
duced to reduce the amount of data uploaded to the cloud
and enable timely data analysis at different network ends.
Fog computing is an extension of the cloud that leverages
computing capabilities within the local cloud network. On the
other hand, edge computing enables analytics to be physically
close to the data source at sensing and aggregation nodes.
Enabling data analytics, including outlier detection close to

@ Springer

http://orcid.org/0000-0001-9887-8345
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01835-1&domain=pdf

Journal of Signal Processing Systems

Cloud

Fog Nodes

Edge
Gateways

Edge

: Py 78 @Y (]
Devices £ & 2 e

=

Physical
World

Figure 1 The general hierarchical computing model proposed to reduce
the amount of data uploaded to the cloud and enable data analytics at
different network ends.

the end devices through edge computing, is a viable solu-
tion to meet the latency, privacy, and scalability challenges
described earlier. The limited computational resources on the
edge nodes and devices motivate the development of light-
weight, energy-efficient outlier detection algorithms.

1.1 Related Work

There is an increasing research interest in the area of outlier
detection in wireless sensor networks (WSNs). Several solu-
tions based on various approaches have been proposed in the
literature [4, 5]. The general idea is to model the distribution
of what is considered “normal” and then check if the new tar-
get data deviate from the distribution to a significant degree.
Various statistical techniques surveyed in [4, 5] model the data
in the form of a closed-form probability distribution, and the
parameters of the models are learned. However, fitting data to
a particular distribution may sometimes be inappropriate. Other
techniques based on thresholding approaches are also surveyed
by [4, 5], but identifying a suitable threshold is challenging. Even
if found, it is hard to generalize to all settings. Therefore, non-
parametric methods are proposed to overcome the limitations of
parametric methods. In [6], the k-nearest neighbors’ algorithm
is proposed to create a hyper-grid around a given data point
and consider the data point abnormal if less than k other data
points lie inside that hyper-grid. The computational complex-
ity of the proposed algorithm is O(2¥~1), where M is the input
data dimension. For high-dimensional data, the complexity of

@ Springer

the algorithm will prohibit its usage. One possible solution to
overcome the limitation of the k-nearest approach proposed in
[6] is to use a distributed algorithm. A distributed algorithm that
relies on message exchange among sensor nodes to detect outliers
is proposed in [7]. It is a classical spatial correlation-based out-
lier detection method. Although the approach is computationally
less intensive, it requires reliable communications among sensor
nodes, which imposes serious power consumption. To reduce the
communication overheads, authors in [8] proposed a distributed
online anomaly detection based on a hyper-ellipsoidal one-class
support vector machine (SVM). The presented approach in [8]
takes advantage of the spatiotemporal correlation between sen-
sor data and updates the SVM ellipsoidal boundary to reflect
the change in the normal sensor data. However, this technique
includes matrix inversions, which are computationally unfavora-
ble to resource-constrained sensors.

1.2 Contribution

Inspired by the success of Deep neural networks in solving
various practical problems, our earlier work published in [13]
explored the integration of Deep Autoencoder (AE) and Long
Short-Term Memory (LSTM) networks for outlier detection.
AEs are feedforward multi-layer neural networks for feature
learning. They have significantly impacted areas such as
speech recognition, object recognition, natural language pro-
cessing, and dynamical system control [14, 15, 22]. AE’s pri-
mary objective is to learn a map from the input to itself through
a pair of encoding and decoding phases. The learned map-
ping could then be used as input to another machine-learning
model. LSTM networks are a special kind of Recurrent Neural
Network (RNN) capable of learning long-term dependencies,
making them suitable for sequential data processing [16].
LSTM networks are fully connected single or multi-layer net-
works with complex neurons and internal states at each time
step that enable them to build a memory of time-series events.
The proposed solution in [13] consisted of a fine-tuned deep
Autoencoder to extract the latent features in sensor data, fol-
lowed by an LSTM network to predict the next step and detect
outliers in real-time. The effectiveness of the proposed archi-
tecture is validated on a resource-constrained Xilinx PYNQ-Z1
board using an open-source WSN meteorological dataset.
This work is an extension of [13] and focuses on optimiz-
ing the FPGA hardware implementation of the proposed AE-
LSTM architecture. Deploying DNNs on resource-constrained
devices requires hardware implementations that are energy
efficient. Hardware architectures on resource-constrained
devices and embedded systems face the constraint of com-
puting resources, reduced memory, and memory bandwidth.
Therefore, reducing the computation complexity is critical for
the intended networks on these platforms. Proposed methods

Journal of Signal Processing Systems

to reduce the computation complexity of DNNs include quan-
tization, pruning, and special hardware modules. Quantizing
weights or activations helps reduce the area of arithmetic
units and memory requirement [17-19]. Additionally, pruning
connections with small weight values using special training
methods could help create networks with a small number of
parameters [21], thus reducing the number of computations.
Special hardware modules such as multipliers based on Look-
Up Tables (LUTs) can also be used for area reduction in net-
works with low bit precision parameters [20].

This work presents a unified parallel solution for accelerat-
ing the proposed AE-LSTM network. Our goal in this work
is to reduce the hardware complexity, data dependencies, and
computation patterns and increase hardware utilization and
throughput while considering network performance and power
consumption. The proposed solution combines serial-parallel
computation with matrix algebra concepts to reduce compu-
tational complexity and enhance the throughput. A systolic
ring of outer product-based processing elements (PEs) and
a single reusable activation function block (AFB) is adopted
in the architecture. The outer product generates and accumu-
lates partial sums in parallel, eliminating data dependencies
and increasing hardware utilization and system throughput.
Besides that, the proposed unified computing kernel can per-
form recurrent and non-recurrent fully connected layers (FC)
computations, improve hardware utilization and support vari-
ous applications, including the AE-LSTM network presented
in this work. Furthermore, this work extensively studies the
network performance and effectiveness in detecting different
types of outliers potentially contained in the dataset. This paper
makes the following contributions:

e Present a unified parallel solution that combines serial-
parallel computation with matrix algebra concepts to
accelerate recurrent and non-recurrent fully connected lay-
ers computations in the AE-LSTM network. The unified
parallel solution is generic and could be utilized in other
LSTM and feedforward neural network applications.

e Validate the presented architecture on the Xilinx PYNQ-
Z1 development board using an open-source meteorologi-
cal dataset collected using a multi-hop WSN.

e Present an extensive study of the network performance and
effectiveness in detecting different types of outliers poten-
tially contained in the meteorological dataset.

The rest of this article is organized as follows. Section 2 pre-
sents the background of Autoencoder and RNN LSTM net-
works. Section 3 gives an overview of the proposed Autoen-
coder-LSTM outlier detection system. Section 4 describes
the accelerator architecture and implementation on the Xilinx
PYNQ-Z1 development board. Section 5 discusses experi-
mental results, and Section 6 concludes the article.

2 Background
2.1 Autoencoder Neural Network

Autoencoder neural networks are a common solution for
dimensionality reduction and outlier detection. AEs are
unsupervised learning techniques that leverage artificial
neural networks for feature extraction and representation
learning. Their primary objective is to reconstruct the inputs
instead of predicting target variables. The AE network forces
a compressed knowledge representation of the original infor-
mation by imposing a bottleneck in the network architecture.
If any structure exists in the input data, it could be learned
and compressed into a compact, latent representation. A gen-
eral structure of the AE network with three hidden layers is
shown in Fig. 2. The neural network structure on both sides
of the middle hidden layer is often symmetric. The input and
output layers of the network have the same size. Each input
x; is reconstructed to X; for the ith dimension. The projection
of inputs to reduced representation (code) is termed encode,
while decode reconstructs the outputs from the reduced
representation. The network is trained by minimizing the
aggregated reconstruction error in all d-dimensions. The
reconstruction error £(x, X) measures the difference between
the original input x and the network reconstructed version
X. Using the reconstruction error to penalize the network
forces the network to learn the most important attributes in
the input data and how to best reconstruct the original input
from the reduced representation (code). With the use of non-
linear activation functions at each layer, the Autoencoders
can learn nonlinear relationships, making them a more pow-
erful (nonlinear) generalization to PCA.

(Encode M Decode ¥
Input Layer Output Layer
Y @ -
*1 L 4 Hidden Layers < 4 *1
~ ([A
A A A A .
X } |) - 5 (| X2
@ N 4 N N 4
_ PN 4 — .
X3 X } {) %3
@ @ PN _ @
VAN ”\“ A \ A N
X, / / | X
* N 4 A 4 l &> A 4 *
AN [y1,¥2] AN .
*s 4 Latent Representation (code) < /"‘ *s

Figure 2 A general structure of autoencoder network with three hid-
den layers. The projection of inputs to latent representation (code)
is termed encode, while decode reconstructs the outputs from the
latent representation.

@ Springer

Journal of Signal Processing Systems

To further improve the Autoencoder model and balance
the network sensitivity to input variations, a regularization
term is introduced into the loss function £(x, X). The newly
constructed loss function consists of two terms, the recon-
struction loss and a regularizer.

L(x,3) = L(x,%) + a - regularizer

ey

The reconstruction loss £(x, &) will ensure that the network
model is sensitive enough to the input and can build an accu-
rate reconstruction. In contrast, the regularizer will discour-
age memorizing and overfitting the training data. The scal-
ing parameter @ added in the front of the regularizer term is
called the regularization rate and is used for trading off the

two terms’ objectives. This work utilizes the Mean Abso-
lute Error (MAE) as a loss function and weight decay L2
regularizer. Additional details are provided in the network
training section.

2.2 LSTM Recurrent Neural Network

Long short-term memory networks are a special kind of recur-
rent neural network capable of learning long-term dependen-
cies, making them suitable for time series analysis. They have
the form of a chain of repeating modules called LSTM cells,
shown in Fig. 3. Each LSTM cell consists of layers of neural
networks, internal states, and point-wise operations.

Pointwise Multiplication f) Pointwise Addition (@) (o)
OB t' Ct—1 t° Ut
Ct—1 — £ > Ct
Cell state OQO OOO l Cell state
) () G
(e ue) l
f Pointwise Multiplication ~ Pointwise Multiplication
t
. OO0 OO0
lt T ut T Ot
o) (o) @ a)\a)\a (&) (&
& 4 y&@ W@ J y & & \ /‘\ /H\ /‘ ‘\A/‘
T T Input gate T
Forget gate output gate
he_q . h;
Hidden ey Hidden
state Vector Conci]tenatlon St
YVt
LSTM Layer
Ct—1 é ﬁ -
Cell state LSTM Co LSTM 1 m—1 LSTM ht
Cell Cell Cell Hidden
}1[71 N > = — state
Hidden hg hy hor
state T T _
V1)4, VYm

Input Sequence

Figure 3 LSTM layer architecture and a single LSTM cell details. LSTM
Layer has the form of a chain of repeating modules called LSTM cells.
Each LSTM cell consists of layers of neural networks, internal states, and

@ Springer

point-wise operations. The o represents the sigmoid activation function
while T the tanh activation function.

Journal of Signal Processing Systems

The key to LSTM networks is the cell state, c,, which
could be viewed as the extracted information from the
input sequence at each time step. The LSTM cell can add
or remove information to the cell state using Gate struc-
tures. Gates are ways to let information through optionally.
They are composed of sigmoid and tanh neural net layers
and point-wise operations. The LSTM cell has three main
gates; forget, input, and output. Forget gate determines the
fraction of history information to forget by multiplying the
value of the cell state, c,, by a number between 0 (delete) and
1 (keep everything). The multiplication value is determined
by the current input, x,, and the LSTM cell hidden state from
the previous time step, /,_,. The input gate has two parts; the
tanh layer, which creates a vector of new candidate values,
u,, and the sigmoid layer, which decides the amount of new
candidates to be added to c¢,. The LSTM cell hidden state and
also the LSTM cell’s output, #,, is a manipulated version of
c,. The cell state, c,, is first passed through a tanh layer to
push the values between -1 and 1, then multiplied by a num-
ber between 0 (no outputs) and 1 (preserve output) generated
using the output gate structure. The size of the LSTM cell
is defined by the number of elements in the hidden state, &,,
and the number of input features per time step (number of
features in x,). The computations in a single LSTM cell with
n hidden state units and m-dimensional input features are
described using the following set of equations:

Ji = sigmoid(Ush,_, + W;x, + by)
i, = sigmoid(U;h,_; + Wx, + b;)
u, = tanh(U,h,_, + W,x, + b,)

o, = sigmoid(U h,_; + W x, + b,)
=)+, - u)

h, = o, - tanh(c,)

@

where f,,i,,u,,0, € R" are the outputs of the forget gate, the
input gate, and the output gate, respectively. As described ear-
lier, the ¢, and A, are the cell state and the hidden state/output
of the LSTM cell. They are initialized to zero and updated at
each time step, demonstrating the “recurrent” nature of LSTM.

Figure4 The general architec-
ture of the proposed deep neural
network outlier detection system.
> Data

Sensor
Preprocess

W, € R"™, U, € R"" and b; € R" (j =f,i,u,0) are weight
and bias parameters learned during the training process.

The LSTM network could be a single or multi-layer net-
work. The network could be layered or stacked by connecting
the LSTM layer cells’ hidden state to the input of the follow-
ing LSTM layer cells. For final processing, the hidden state,
h,, of the last layer is often connected to a non-recurrent fully
connected layer described using the following equation:
Y =AF(W,h, + b,) 3)
where Wy is the weight matrix, by is a bias vector, £, is the
hidden state of the last LSTM layer, and AF is the activation
function used in the layer.

3 Proposed System Architecture
3.1 System Overview

The proposed system integrates a fine-tuned Autoencoder
and a Long short-term memory (LSTM) neural network for
real-time outlier detection in time series data. The flow in
the proposed architecture is illustrated in Fig. 4. The sensor
data is preprocessed, buffered, and then fed to the AE for
dimensionality reduction and feature extraction. The pre-
processing step involves data normalization, specifically
minimax normalization. The normalization step is crucial
for the subsequent AE and LSTM networks to find trends
and patterns in the sensor data. The sensor data buffer is a
sliding window to update the inputs fed to the AE at each
time step. Generally, in the case of time-series data, a past
history window is used to analyze outliers. The AE gener-
ates an m-dimensional code using d-dimensional buffered
sensor data, d > m. The LSTM predictor forecasts the next
time step using the AE m-dimensional code. Given that in
time series data, the values in consecutive time steps do not
change significantly or change smoothly, the forecasted time
step p; out of the LSTM predictor is compared against the
new sensed value x;,,. If the absolute difference between

DNN Model
[Xi—a+1: Xi—a+2s
% | Sensor Data - %i-1 %l D’?;tgs:ig?\gﬁtry L
Buffct Reduction
I—bxm Compare — WA
P Predictor D1, Vs
aial=tly ym]

Normal L Outlier

J

@ Springer

Journal of Signal Processing Systems

the predicted value and the new sensed value is sufficiently
high, the new sensed value is flagged as an outlier.

3.2 Network Training

Training the proposed AE and LSTM networks are done
using the Keras library running on top of the TensorFlow
framework [12]. The Grand St. Bernard open-source dataset
[9] is used to demonstrate the performance of the proposed
approach. The dataset consists of temperature measure-
ments and other metrological characteristics of the environ-
ment collected for two months from multiple wireless sen-
sor nodes deployed at the Grand St. Bernard pass, located
between Switzerland and Italy. The network setup consisted
of 23 sensor nodes deployed in two clusters, as shown in
Fig. 5. The larger cluster consisted of 18 nodes, while the
small one had five. Since this work focuses on outlier detec-
tion in univariate series, the temperature measurements from
the same dataset are only considered.

The Autoencoder and the LSTM networks are trained,
validated, and tested using the overlapping windows
extracted from the temperature measurements in both
clusters’ sensor nodes. A 3 hours window (90 samples) is
selected to capture the increase and decrease trends in ambi-
ent temperature measurement while maintaining acceptable

computational complexity of both the AE and the LSTM net-
works. The training set size is [169580, 90], while the vali-
dation and test sets are [36600, 90] each. The 70 : 30 ratio
is used for dataset separation. Each window of length 90 is
treated as a 90-dimensional data point. The Autoencoder
is first trained using the normalized extracted overlapping
windows. The trained AE model is then used to generate the
low-dimensional code to train the LSTM predictor. There-
fore, the LSTM predictor training process did not include the
AE decoding part. The autoencoder encoding part consists
of two dense layers (AE1, AE2), while the LSTM predictor
comprises an LSTM layer followed by two fully connected
layers (FC1, FC2). The autoencoder network is trained for
500 epochs using the MAE loss function and L, regularizer
with regularization rate @ = 5 X 1075. On the other hand,
the LSTM network is trained for 200 epochs using the MAE
loss function. Adam optimizer is used to update both net-
work parameters with a learning rate of 1 x 10™. A grid
search across multiple parameters is used to find the selected
regularization and learning rates. As a last step in the net-
work training process, the AE and the LSTM networks are
stacked, as shown in Fig. 6. The dense layers AE2, FC1, and
FC2, are fine-tuned to improve the prediction performance.
Table 1 shows a summary of the Keras TensorFlow model
that gave the desired results in terms of performance and
computational complexity.

Figure 5 The setup of the wireless sensor network deployed at the Grand St. Bernard pass, Switzerland.

@ Springer

Journal of Signal Processing Systems

Figure6 The general structure of
the fine-tuned AE-LSTM network.

Autoencoder
Dimensionality
Reduction

4 Accelerator Design and Implementation

The proposed real-time DNN-based outlier detection sys-
tem aims to achieve low complexity, latency, and power
consumption making it a viable data analysis solution for
resource-constrained edge devices. The primary focus of this
work is to optimize the FPGA hardware implementation of
the proposed system. Figure 7 shows a simplified block dia-
gram of the designed hardware accelerator. The main mod-
ules consist of a central computing module, an input buffer,

Table 1 Summary of fine-tuned AE-LSTM network model.

Layer Type Output Shape Activation Param #

Input Input (90,1) tanh 0

AEl Dense (60,1) tanh 5460

AE2 Dense (30,1) tanh 1830

LSTM LSTM (40,1) Sigmoid, tanh 6720

FC1 Dense (20,1) tanh 820

FC2 (Output) Dense (1,1) tanh 21
Total: 14,851

Input Layer Q Q @
Dense Layer (AE1) <> Q Q

Dense Layer (AE2)
[yli Y2, --- ym]
LSTM Layer

~
Cell
State Cf—l
o Hidden
s _g State ht—1
=
a g
o

Input Sequence

[Xi—g41s Xi—a+2s Xieas3s » Xi]

O

LSTM Co Cm 1 LSTM
Cell 0) Cellm
ﬁ ﬁ
hO hm—l

Dense Layer (FC1) Q Q @

— Dense Layer (FC2)

bi

an internal results memory unit, and a control module. The
central computing module consists of a unified parallel
architecture that accelerates the inference of the LSTM cells
and the dense fully-connected layers. The unified parallel
computing module consists of an array of computationally
independent processing elements, a parallel-in serial-out
shift register (PISO), and a single activation function block
(AFB). The outer product generates and accumulates partial
sums in parallel, eliminating data dependencies and mak-
ing it possible to use a single activation function block to
perform nonlinear network computations. The PISO shift
register interfaces the PEs and the AFB. The AFB consists
of sigmoid and tanh activation functions implemented using
piecewise-linear approximation (PLA). Distributed BRAMs
are used to store internal network results and implement the
input buffer that will serve as a sliding window to update the
input to the unified parallel computing module. The control
module encodes instructions and controls data movements
and storage. The implemented architecture is generic and
could be extended in terms of network layers and hidden
units per layer as long as hardware resources are available.

@ Springer

Journal of Signal Processing Systems

Figure 7 A simplified block dia-
gram of the hardware accelerator.

Control

Module

v

\ 4 Outer Product-based Computing Module
\ 4
i o Internal
x; —®» IBUF » PE Array 2] AFB » Results > p;
~ e Memory
4
AE-LSTM

4.1 Systolic Outer Product-based
Computing Module

The proposed unified parallel architecture accelerates the infer-
ence of the LSTM layer in addition to dense fully-connected
layers. Given that the LSTM layer latency dominates other
layers’ latency, the optimization efforts are directed toward
accelerating the LSTM layer computations. The main com-
putations effort in the LSTM layers, as described earlier in
Section 2, comes from the computations of the LSTM cell
gates, cell state, and hidden state. Each LSTM gate requires
two MACs and element-wise vector additions. However, given
that the weight matrices W, e R™™, U; R™ and the bias
vector b; € R" in each gate share the same first dimension 7,
it is possible to combine them into one matrix of dimension
(n X (n + m + 1)), where n is the number of hidden state units
and m represent input features dimension. Likewise, since all
the gates share the same dimensionality and input vector, it is
possible to merge the gates’ combined matrices into one big
matrix of size ((4n) X (n + m + 1)). Thus, rather than optimiz-
ing four matrix-vector multiplications, each time step would
focus on optimizing a single large matrix-vector multiplica-
tion (MxV), as in dense fully-connected layer computations. In
general, the matrix-vector multiplication of a matrix W € R™"
by vector x € IR could be optimized in two forms:

e Inner product-based: Multiply in parallel all elements of
the input vector x by the matrix row vectors W,. Such a
structure requires m multipliers and an adder tree. In addi-
tion, the process should be repeated for all n rows of the
matrix W. The elements of the output vector in this con-
figuration are computed sequentially.

e Outer product-based: Multiply in parallel a single ele-
ment of the input vector x by the matrix column vectors
W;. Such configuration requires n MAC units. Besides,
the process should be repeated for all m columns of the
matrix W. The output vector elements in this structure
are computed in parallel.

@ Springer

The conventional designs of the MxV used in most of the
existing DNN network architectures are of the inner product-
based option. The main drawback of such a structure is the
hardware pipeline stall time imposed by the recurrent nature
of the LSTM networks and the data dependencies between the
output vector of the current time step and the input vector of
the next time step. In such a case, the system must wait for
the newly computed hidden state, /,, before starting the subse-
quent step computations. This indicates that the whole system
pipeline must be drained before starting the subsequent time
step matrix-vector multiplication. Pipeline latency is critical to
achieving a high throughput system. Therefore, our proposed
scheme adopted the outer product-based approach to reduce the
hardware stall time and the data dependencies between different
time-step computations. To illustrate the proposed scheme’s
computations, the matrix-vector multiplication in (4) shows a
simplified example of an m-dimensional input vector with four
hidden-state units in a single time step. The matrix W represents
the combined parameters matrix described earlier. Each row
in W represents the weight of one hidden unit, and the first
column includes all units’ biases. After (m + 1) computations,
the resulting vector y contains the sum of the products of each
hidden unit. Using as many multipliers as hidden units working
in parallel, the partial sum of all the units will be simultaneously
computed for each element in the input vector; an example of a
single partial sum is boldly marked in (4). Similarly, each unit’s
final sum of products could simultaneously be obtained using
an arithmetic accumulator per unit.

_ 1
Y1 by Wop Wor - Wom Xy
V2| _|b1 Wio Wit - Wi X,
V3 by Wy Wy ... Wy, .
V4 [D3 W3p W3 ... W3y, i
Km (€]

by + WygXg + WoiX| ... WopX

_ by + WypXg + Wi X) .o Wy,tx,,

by + WXy + Wy X| .. Wy, X,

| D3 + W3gXg + W3 X ... W3,,X,

Journal of Signal Processing Systems

After obtaining the result of the hidden units, the output
values are stored in memory to be evaluated by the acti-
vation function before scheduling the computations of the
subsequent time step. Given the serial processing nature
of the input vector, a single activation functions block can
serve all the hidden units forming a systolic ring topology.
Accordingly, the subsequent time-step computations could
start without waiting for the system pipeline to be drained.
Additionally, the hardware could iteratively be reused to
compute all the time steps, reducing the hardware complex-
ity and power consumption.

A simplified block diagram of the proposed systolic outer
product-based architecture is shown in Fig. 8. The main
modules consist of an array of computationally independent
processing elements for MxV, a parallel-in serial-out shift
register, and a single activation function block.

Each processing element consists of two main parts: a sin-
gle port Block RAM (BRAM) and a MAC unit. The BRAMs
hold the stationary network parameters (weights, biases),
and the MAC units perform the MxV computations. Since
the available external memory bandwidth on low-power IoT
and edge devices is limited, the distributed on-chip BRAMs
are used to enable the concurrent operation of the PEs. In
this case, the external I/O communication is substantially
reduced to only loading new features, sharing results, and
updating the network parameters when needed. In addition,
to maintain a regular structure and reduce memory address-
ing complexity, equal-sized distributed BRAMs are used.
Each PE BRAM contains the weight values of one neuron
unit per layer. The network input data are sequentially intro-
duced and multiplied concurrently by their corresponding
weights in each PE. The accumulator register in each PE

holds the sum of products of the input data by the corre-
sponding weights. The final sums of products from all PEs
are passed to the PISO shift register to be shifted through
the activation function block. The activation function block
is a configurable activation block. It handles the dense fully-
connected layer activations, LSTM gates activation, the cell
state update, and the hidden state computations.

4.2 Activation Function Block
4.2.1 Nonlinear Activation Functions

The nonlinear activation function is one of the main com-
ponents of the artificial neural network computational units.
Each neuron in the hidden and output layers needs an activa-
tion function. The output of the MAC units passes through
the nonlinear activation function to compute the final out-
put of each neuron. Logistic sigmoid and hyperbolic tangent
(tanh) functions are the most widely used activation func-
tions. In addition, they are the primary activation functions
in the LSTM cell. The logistic sigmoid output is defined in
the [0, 1] range, while the tanh is in the [—1, 1] range. Math-
ematically, the sigmoid and tanh functions are defined as,

I _ p— <
tanh(z) = %

. . 1 ®)
sigmoid(z) = e

The straightforward implementation of these functions is costly,
given that both of them require computing the exponential and
division. Various methods have been proposed for implementing
activation functions on hardware. These methods generally fall

Figure8 A simplified block dia-
gram of the systolic outer product-
based computing unit. The main
modules consist of an array of
processing elements (PEs) for
MXxV, a parallel-in serial-out shift
register (PISO), and a single acti-
vation function block (AFB).

Control
Module

x; =P IBUF —»

PE Array
| | Tl
PE2 i PE1 PEO
1
| BRAM2 i BRAM1 1 BRAMO
1 1 1
1 1
| [was W15 | [Wos

y A
Internal
Register | Register —»| Register % AFB ¥ Results —» p;
Memory

PISO I

@ Springer

Journal of Signal Processing Systems

into two main categories, piecewise-linear approximation and
look-up table-based (LUT) approaches. This work adopts the
PLA approach to achieve high-fidelity approximations without
sacrificing the network performance. Given the symmetrical
nature of both activation functions, the approximation in this
work focused on the positive side and interpreted the results for
the opposing side by flipping and rotating. In addition, given
that the sigmoid function converges to 1 for inputs greater than
5, the input range [0, 5] is only considered in the approximation
process. Similarly, the input range [0, 3] is considered for the
tanh activation function approximation. An 11-line approxima-
tion is used for the logistic sigmoid, while the hyperbolic tangent
requires a 16-line approximation to give a comparable MAE.
Each line is described using y = Sx + B, where S controls the
slope of the line and B is the function intercept. The approxi-
mation performance is plotted in Fig. 9. The top part of Fig. 9
shows the similarity in shape between the real-valued functions
using (5) and the PLA approximation for both sigmoid and tanh
activations. The bottom part of the same figure shows the abso-
lute error of the approximations. The mean absolute error of
both approximations is in the order of ~ 2.5 X 1074,
Implementing the adopted PLA approach achieves low
latency and requires low hardware resources. The computa-
tion process requires a 3 clock cycle pipeline delay, and the
resource utilization, i.e., the amount of LUTs, registers, and
DSP blocks, is negligibly small in both activation functions.
Therefore, the adopted PLA approach is a viable solution for
low-latency applications on resource-constrained devices.

1.0
0.8
X 06
i
o
go.a
3
0.2
mmmm Real-Valued
- PLA
0.0
-5 -4 -3 -2 -1 0 1 2 3 4 5
0.0008
.
g 0.0006
L
8
S 0.0004
]
2 Al {\ n ALA {\ N a [IMAE
<0’0002\/\/VVV W VVVV\/
0.0000

4.2.2 LSTM Cell Activation Pipeline

As mentioned earlier, the activation function block is a config-
urable activation block that handles the dense fully-connected
layer activation, the LSTM gates activation, the cell state update,
and the hidden state computations. To reduce the implementa-
tion complexity and enable activation function and arithmetic
units reuse, the LSTM gates activation and point-wise operations
are pipelined. Figure 10 shows the data flow in the LSTM cell
activation six stage pipeline, SO — S5. The LSTM cell formula-
tion shown in (2) is divided into six steps; each corresponds to
one pipeline stage. The inputs to the activation pipeline are the
matrix-vector multiplication results of the forget gate, input gate,
and output gate shown in Fig. 3 and expressed in the LSTM cell
formulation shown in (2).

4.3 Data Representation

The most used software frameworks for Deep learning per-
form inference by adopting the floating-point representation
to ensure the best accuracy. However, considering hardware
implementation on resource-constrained devices, floating-
point arithmetic is not optimal for resource usage. Therefore,
this work uses fixed-point representations to ensure a suit-
able precision for the computations and low resource usage.
A software version of the AE-LSTM network exploiting the
fixed-point toolbox included in the python environment is
used to test different fixed-point configurations and evaluate

1.00
0.75
0.50
— 025
X
£ 0.00
C
©
+ -0.25
-0.50
-0.75 mmmm Real-Valued
~1.00 1
-3 -2 -1 0 1 2 3
0.0008
& 0.0006
e
=
w
]
“5’ 0.0004
©
2 MAE
o A
< 0.0002 VVV
0.0000

Figure 9 Activation functions approximation performance. The left plots show the similarity in shape between the real-valued sigmoid using (5)
and the PLA and the absolute error of the approximation. The right plots show the same but for the tanh activation function.

@ Springer

Journal of Signal Processing Systems

Figure 10 Data flow in the

LSTM cell activation pipeline.

The inputs to the activation

(Uo* he—y + Wy * yr + bo)

LSTM Cell Activation Pipeline

pipeline are the matrix-vector
multiplication results of the for-
get gate, input gate, and output
gate. The outputs are the cell
state ¢, and the hidden state h,.

Uix he—q + Wi * ye + by)

(Uy* ht—y + Wy xye +by) — Tanh

Up* he_y + We xy +be) —9

the error between the floating-point-based implementation
and the fixed-point one. The performed experiments showed
that the optimal solution is obtained using an 18 bits repre-
sentation, 4 bits for the signed integer part, and the remain-
ing 14 bits for the fractional part. All network parameters
and normalized input vectors are quantized into the same
18 bits Q4.14 fixed-point representation. The mean squared
error between the floating-point and the fixed-point imple-
mentation is in the order of ~ 107,

5 Experimental Results
5.1 Experimental Setup

Xilinx PYNQ-Z1 FPGA development board is used to analyze
the performance of the proposed architecture on hardware
[10]. The development board consists of an XC7Z020 ZYNQ
series FPGA containing a Dual ARM Cortex-A9 core proces-
sor. In addition, it is a hardware platform for the PYNQ open-
source framework, which comprises software running on the
ARM CPUs and a base hardware library. Xilinx’s Vivado
tools are used to design the proposed system hardware accel-
erator [11]. After quantizing the trained network and acti-
vation function parameters into Q4.14 fixed-point represen-
tation, the parameters are extracted into a C++ header file
and used in Xilinx’s Vivado HLS tool to design the proposed
custom accelerator hardware. After verifying the functional-
ity of our custom-designed accelerator modules, the designed
hardware accelerator is exported to Xilinx Vivado Design
Suite to build the hardware overlay. The resulting hardware
overlay is loaded on the PYNQ-Z1 board. A python code is
developed to interface with the hardware overlay. The network
parameters are loaded into the PL-distributed BRAMs using
the AXIT high-performance (HP) port. Then, a single sensor
reading is transferred from the ARM core processing system
(PS) to the accelerator using the AXI4-Lite interface at each
time step. The accelerator outputs are extracted and evaluated
offline to measure the performance.

v
T s GO *

L fe

S1 S2 S3 S4 S5

5.2 Hardware Resource Utilization

The top-level diagram of the hardware implementation using
Xilinx Vivado tools on the PYNQ-Z1 board is shown in Fig. 11.
With reference to Fig. 4, the sensor data buffer, AE, and LSTM
predictors are implemented on the programmable logic (PL),
while the rest are implemented on the PS. Table 2 shows the
PL resource utilization of the proposed accelerated fixed-point
architecture. With reference to the initial design reported in [13],
the LUT and LUTRAM utilization are reduced by ~ 50%. The
flip-flop utilization is reduced by ~ 75%. Increased BRAM
and DSP utilization are expected, given the parallel outer
product-based implementation of the matrix-vector multiplica-
tion. The estimated response time of the accelerator using the
global 100MHz clock that drives the PL from the PS is 0.22ms.
This average latency outperforms the one reported in the initial
design in [13] by a factor of 5. Besides, the implemented design
achieves 1GOPS throughput.

5.3 Power Measurement

The Xilinx Power Analyzer is used to estimate the dynamic
and static power of the proposed architecture on the PYNQ-Z1
board. Table 3 shows the analyzer breakdown. As per the break-
down, the accelerator consumes ~ 94mW on average. Access-
ing the DDR3 to load the network parameters to PL-distributed
BRAMs is the most power-hungry, but this happens only when
parameters are loaded for the first time or when an update is
required. A USB power meter is used to verify the total power
consumption reported by the analyzer. As shown experimentally
in Fig. 12, the whole PYNQ-Z1 system board burns at most
~ 1.54W when the accelerator is up and running. The reported
power consumption is very close to the total noted in Table 3.

5.4 Outlier Detection Accuracy
The Grand St. Bernard dataset used in this work is unlabeled,

and previous examples of interesting outliers are unavailable;
therefore, it is an unsupervised scenario. The deviation of sensor

@ Springer

Journal of Signal Processing Systems

Figure 11 Top-level diagram of

the proposed system architec- .
ture on PYNQ-Z1 board. PG DDR3
PS i
DDR3
Controller
Central PL-Memory
—P
Interconnect il EPY Interconnect
GP AXI | "o oamer [HP AXI
Int ~ t P s-axi m-axi Interﬁg(r:nect
nterconnec AE-LSTM
Accelerator
PL

reading from the proposed model prediction is used to quantify
each data point’s level of outlierness. The deviation vector of the
normalized training set is modeled to fit a Gaussian distribution,
X ~ Mu, ¢*), as shown in Fig. 13. A sensor reading is flagged
as an outlier if its likelihood p < 7 and 7 is set to 0.01 to give a
sufficient confidence interval of 99%. The calculated deviation
threshold to flag a data point as an outlier using the 99% confi-
dence interval is 0.15. The calculated threshold is equivalent to 6
°C in the original scale. Figures 14, 15, 16, and 17 are four exam-
ples of the system response to sensor readings from the Grand
St. Bernard dataset. The results are presented in the [— 1, Iscale,
which is the scale the AE-LSTM network uses for prediction. The
results can be scaled back to the original sensor scale without

Table 2 Resource utilization of the proposed system implementation
on PYNQ-Z1 board.

LUT LUTRAM FF BRAM DSP
Available 53200 17400 106400 140 220
Floating-Point Implementation reported in [13]
Utilization 24807 650 22585 30 111
Utilization % 46.63% 3.74% 21.23% 21.43% 50.45%
Fixed-Point Implementation reported in [13]
Utilization 12544 448 11922 28.50 17
Utilization % 23.58% 2.57% 11.20% 20.36% 7.73%

Proposed Accelerated Fixed-Point Implementation
6172 231 2899 82.50 163
11.60% 1.33% 272% 58.93% 74.09%

Utilization
Utilization %

affecting the detection accuracy. However, we wanted to present
the results obtained directly from the hardware accelerator.
Figure 14 illustrates the system response to regular sensor
readings from node three located in the large sensor network
cluster shown in Fig. 5. The absolute difference between the
scaled sensor reading x and the AE-LSTM system prediction
p is lower than the predefined threshold, indicating that the
gradual increase and decrease in the temperature measure-
ments within 3 hours window is within the normal range.
The second example, Fig. 15, presents the system response
to noisy sensor readings from node 32, located in the small
network cluster. The absolute difference between the sensor
reading x and the AE-LSTM prediction p is slightly beyond

Table 3 Proposed architecture power consumption breakdown on PYNQ-
Z1 board using Xilinx power analyzer.

Part Power (W) Percentage
Dynamic Power
PS ARM Cortex-A9 0.27 83%
DDR3 0.63
PLLs 0.344
Peripherals 0.012
Accelerator 0.094 6%
Interconnect 0.009 1%
Static Power
PL static 0.147 10%
Total: 1.506

@ Springer

Journal of Signal Processing Systems

Figure 12 Total power meas-
urement using a USB power
meter. The whole PYNQ-Z1
system board burns at most

~ 1.54W when the accelerator is
up and running.

the predefined threshold around time steps 1137, 1172, and
1350. Given that the deviation is insignificant and the sam-
ples are not in consecutive time steps, these data points are
considered weak outliers or noise.

In Fig. 16, we present the system response to abnormal
sensor readings from node 7 in the large cluster. The absolute
difference between the sensor reading x and the AE-LSTM
prediction p is significantly beyond the predefined threshold
at different parts of the plot. The first deviation region, time
steps 0 to 50, is due to the input buffer warmup time. The
input buffer is initialized to zero, and as the sensor readings
are passed to the input buffer, the prediction gets closer to the

&
g
@
@
g
- &
:8
85
£8
3

actual measurements. The warmup time is usually shorter, as
in Figs. 14 and 15 when the input sensor readings are close
to average readings in the input buffer. In the second region,
time steps 1250 to 1500; the readings are within the normal
scaled temperature range. However, they are not maintaining
the gradual increase or decrease shape expected in the stand-
ard ambient temperature measurements. Therefore, the predic-
tion system flags them as outliers. In the third region, around
time step 1650, the input sensor readings returned to normal.
However, given the difference between the input buffer aver-
age and the sensor readings, the system treated the readings as
outliers until a gradual change was discovered. The last region

Figure 13 Histogram of the 35 T T

training set prediction error with : 99% Confidence interval : — KDE
fitted Kernel Density Estimation 30 4 I 1
(KDE) using Gaussian kernel : :
with bandwidth = 0.004. The 1 !
u ~ 0and the 52 ~ 0.06. 251 : :
1 1
1 1
220+ i i
0 1 1
5 : |
a 15 1 1 1
1 1
1 1
10 1 I 1
1 1
: |
51 1 1
1 1
1 1

0 . - . - :
-0.20 -0.15 0.00 0.15 0.20

Training Set Prediction Error

@ Springer

Journal of Signal Processing Systems

< 0.307
(o]
=
ﬁ 0.20 Threshold
5 010
2 LAMMWWMMWM.WM
8 0.001
0.6 1
0.5 1

I
>
f

Scaled Temp.
o
w

0.2
0.1 1
—— Sensor Reading (x)
0.01 ! —— Accelerator Prediction (p)
0 250 500 750 1000 1250 1500 1750 2000

Time Steps

Figure 14 System response to regular sensor readings. Actual sensor readings (blue) and corresponding Accelerator predictions (black). The
absolute difference between the sensor observations and the system prediction is below the predefined threshold indicating a regular sequence.

0.30

0.20) Threshold

0.10

Absolute Error

0.00

0.0
—— Sensor Reading (x)

—— Accelerator Prediction (p)

—0.2 1

Scaled Temp.

—0.81

_10 4
0 250 500 750 1000 1250 1500 1750 2000
Time Steps

Figure 15 System response to noisy sensor readings. The absolute difference is slightly beyond the predefined threshold around time steps 1137,
1172, and 1350. These data points are considered weak outliers or noise.

@ Springer

Journal of Signal Processing Systems

+ 0.301
£
5 0.201 Threshold A
]
5 0.104
?
9 0.00

_0.2 4

ANVUTIA HN A lnlln‘x,

—0.4 1 T
s \
IS
L
g 06 L
© Q
O
n

—0.81 ‘ ‘

r\ 3
—— Sensor Reading (x) Vikaw 4
- W
—1.0{ —— Accelerator Prediction (p)
0 250 560 750 10I00 12I50 15‘00 17I50 20.00
Time Steps
Figure 16 System response to abnormal sensor readings. The absolute dif- The regions identified as outliers are due to random patterns or the out-of-

ference between the sensor readings and the proposed system prediction context increase and decrease in the sensor readings.
goes beyond the predefined threshold, indicating an irregular sequence.

o
W
o

Threshold

o
N
o

o
o
)

Absolute Error
o
=
o

0.6 —— Sensor Reading (x)
—— Accelerator Prediction (p)
0.4 1
S o2
£
5 |
b
© 0.0
O
n
-0.2
-0.4
0 2!50 560 750 10IOO 12I50 15,00 17I50 20100
Time Steps
Figure 17 Another example of the system response to abnormal sensor out-of-context increase and decrease in the sensor readings, around time
readings. The regions identified as outliers are due to the random patterns step 1150, as an example.

in the sensor readings, as in the region from time step 150 to 950, or the

@ Springer

Journal of Signal Processing Systems

is the same as the second region in terms of interpretation.
Figure 17 is another example of abnormal sensor readings
obtained from sensor node 29 in the small cluster. The inter-
pretation of the results in Fig. 17 is the same as in Fig. 16.
The regions the system identified as outliers are either due to
random patterns or the out-of-context increase and decrease
in the sensor readings.

6 Conclusion

This work introduced an FPGA-based Deep Neural Network
architecture for real-time outlier detection in time series data.
The presented architecture integrates an Autoencoder and a
Long short-term memory network to predict and detect outli-
ers in real-time. The architecture computational complexity
and throughput are improved using serial-parallel computa-
tion and matrix algebra concepts. A unified computing ker-
nel is designed to perform recurrent and non-recurrent fully
connected layers computations, improve hardware utilization
and support various applications, including the AE-LSTM
network presented in this work. In addition, the designed
kernel is generic and can be extended in terms of the num-
ber of LSTM layers and cells per layer as long as hardware
resources are available. An open-source meteorological
dataset is used to validate the effectiveness of the design in
detecting outliers in real-time. Experimental results on the
Xilinx PYNQ-Z1 development board achieved low average
latency and power consumption, making the proposed solu-
tion suitable for resource-constrained edge platforms.

Author Contributions Both authors contributed to the study concep-
tion and design.

Funding This work was supported in part by the US NSF under grant
CNS-2016727.

Data Availability The dataset analysed during the current study are
available in the Zenodo repository. https://urldefense.com/v3/__
https://doi.org/10.5281/zenod0.2654726__;!'NLFGqXoFfo8MMQ!
qpTJPWLSLhIFyH93DgHul-vIX-0Yqoczd9YfMmyBAXohn9PMvIT
Ccdy5xpWxvQz40VaGq8guaRzcFnwHwuxDwHDblirkJ8xc VHzI$

Declarations

Conflicts of Interest The authors have no conflicts of interest to declare
relevant to this article content.

References

1. Oliveira, L. M., & Rodrigues, J. J. (2011). Wireless sensor networks:
a survey on environmental monitoring. Journal of Communications,
6(2), 143-151.

2. Hua, G., Li, Y., & Yan, X. (2011). Research on the wireless sensor
networks applied in the battlefield situation awareness system.
International Conference ECWAC, 2011(April), 16-17.

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detec-
tion: A survey. ACM Computing Surveys, 41(3), 15:1-15:58.
Rajasegarar, S., Leckie, C., & Palaniswami, M. (2008). Anomaly detection
in wireless sensor networks. IEEE Wireless Communications, 15(4).
O’Reilly, C., Gluhak, A., Imran, M. A., & Rajasegarar, S. (2014,
Third Quarter). Anomaly detection in wireless sensor networks
in a non-stationary environment. [EEE Communications Surveys
and Tutorials, 16(3), 1413-1432. https://doi.org/10.1109/SURV.
2013.112813.00168

Xie, M.,Hu,J.,Han, S., & Chen, H.-H. (2013). Scalable hypergrid k-NN
based online anomaly detection in wireless sensor networks. /[EEE
Transactions on Parallel and Distributed Systems, 24(8), 1661-1670.
Chen, P.-Y., Yang, S., & McCann, J. A. (2015). Distributed real-
time anomaly detection in networked industrial sensing systems.
IEEE Transactions on Industrial Electronics, 62(6), 3832-3842.
Zhang, Y., Meratnia, N., & Havinga, P. J. (2013). Distributed online
outlier detection in wireless sensor networks using ellipsoidal sup-
port vector machine. Ad hoc networks, 11(3), 1062-1074.
Barrenetxea, G. (2019). Sensorscope Data [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.2654726

PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA
SoC. Digilent [online]. Retrieved June 6, 2013, from https://
urldefense.com/v3/__https://store.digilentinc.com/pynq-
z1-python-productivity-for-zynq-7000-arm-fpgasoc/__;!!
NLFGqXoFfo8MMQ!qpTIPWLSLhIFyH93DgHul-vIX-
0Yqoczd9Y{fMmyBAXohn9PMvITCcdySxpWxvQz40VaGq8g
uaRzcFnwHwuxDwHbIirk]Zkg6D6s$

Vivado Design Suite. Xilinx [online]. Retrieved June 6, 2013, from
https://urldefense.com/v3/__https://www.xilinx.com/products/
design-tools/vivado.html__;!!NLFGqXoFfo8MMQ!
qpTIPWLSLhIFyH93DgHul-vIX-0Yqoczd9Y{fMmyBAXohn9
PMVJTCc4y5xpWxvQz40VaGg8guaRzcFnwHwuxDwHblirk
JWiUTbuQ$

Chollet, F., et al. (2015). Keras. Retrieved June 6, 2013, from https://
urldefense.com/v3/__https://keras.io__;!!NLFGqXoFfoSMMQ!
qpTIPWLSLhIFyH93DgHul-vIX-0Yqoczd9YfMmyBAXohn9
PMVJTCc4y5xpWxvQz40VaGg8guaRzcFnwHwuxDwHblirk
JLILb30ES$

Mohamed, N. A., & Cavallaro, J. R. (2021). Real-time FPGA-based
outlier detection using autoencoder and LSTM. 2021 55th Asilo-
mar Conference on Signals, Systems, and Computers (pp. 1195—
1199). https://doi.org/10.1109/IEEECONF53345.2021.9723300
Guo, W., Wang, J., & Wanga, S. (2019). Deep multimodal repre-
sentation learning: A survey. IEEE Access, 7, 63373-63394.
Cho K, Van Merriénboer B, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H et al (2014) Learning phrase representations using RNN
encoder-decoder for statistical machine translation. Proceedings of
the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). https://doi.org/10.3115/v1/d14-1179
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term mem-
ory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.
1162/neco.1997.9.8.1735

Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H.,
Yao, S., Wang, Y., et al. (2017). ESE: Efficient speech recognition
engine with sparse LSTM on FPGA. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (pp. 75-84). ACM.

Chang, A. X. M., & Culurciello, E. (2017). Hardware accelerators
for recurrent neural networks on FPGA. In 2017 [EEE International
Symposium on Circuits and Systems (ISCAS), ser. ISCAS ’17.
Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen, X., Sun, G.,
Zhang, W., & Cong, J. (April 2017). FP-DNN: An automated frame-
work for mapping deep neural networks onto FPGAs with RTL-
HLS hybrid templates. In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM) (pp. 152-159).

https://zenodo.org/record/2654726#.Y9OhOUBuJ9A
https://zenodo.org/record/2654726#.Y9OhOUBuJ9A
https://zenodo.org/record/2654726#.Y9OhOUBuJ9A
https://zenodo.org/record/2654726#.Y9OhOUBuJ9A
https://doi.org/10.1109/SURV.2013.112813.00168
https://doi.org/10.1109/SURV.2013.112813.00168
https://doi.org/10.5281/zenodo.2654726
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://doi.org/10.1109/IEEECONF53345.2021.9723300
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Journal of Signal Processing Systems

20.

21.

22.

Shin D., Lee J., Lee J., & Yoo, H. (Feb 2017). 14.2 DNPU: An
8.1TOPS/W reconfigurable CNN-RNN processor for general-
purpose deep neural networks. In 2017 IEEE International Solid-
State Circuits Conference (ISSCC) (pp. 240-241).

Han, S., Mao, H., & Dally, W. J. (2015). Deep Compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman Coding, CoRR, vol. abs/1510.00149. [Online]. Pre-
print retrieved from http://arxiv.org/abs/1510.00149

Que, Z., Liu, Y., Guo, C., Niu, X., Zhu, Y., & Luk, W. (2019).
Real-time anomaly detection for flight testing using autoencoder
and LSTM. International Conference on Field-Programmable

Technology (ICFPT), 2019, 379-382. https://doi.org/10.1109/
ICFPT47387.2019.00072

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer

http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/ICFPT47387.2019.00072
https://doi.org/10.1109/ICFPT47387.2019.00072

	Design and Implementation of an FPGA-Based DNN Architecture for Real-time Outlier Detection
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Background
	2.1 Autoencoder Neural Network
	2.2 LSTM Recurrent Neural Network

	3 Proposed System Architecture
	3.1 System Overview
	3.2 Network Training

	4 Accelerator Design and Implementation
	4.1 Systolic Outer Product-based Computing Module
	4.2 Activation Function Block
	4.2.1 Nonlinear Activation Functions
	4.2.2 LSTM Cell Activation Pipeline

	4.3 Data Representation

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Hardware Resource Utilization
	5.3 Power Measurement
	5.4 Outlier Detection Accuracy

	6 Conclusion
	References

