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ABSTRACT We develop a computational protocol for mimicking personal gait dynamics with
12-dimensional time series derived from 4 accelerometer sensors found in the MAREA database and then
explore its utilities in line with precision learning of human activities. The foundation of mimicking high
dimensional rhythmic dynamics is explicitly established upon deterministic and stochastic structures found
on structural representations of evolving biomechanical states hidden within all computed gait cycles. Such
a technique enables practitioners to detect and confirm minute structural changes that could last for only
a few cycles with high precision. Our computational developments are step-by-step illustrated via one
subject’s data, while the other 8 subjects’ data are also analyzed and compared accordingly. A common
cyclic composition of evolving biomechanical states of various temporal scales emerges from the 9 subjects’
comparisons.We conclude that mimicking an individual’s gait dynamics offers precise detections of potential
multiscale minute differences against gait dynamics of different time periods or of different persons,
and further offers clues of efficiency on personal walking activity. This mimicking-based capability is a
cornerstone for the proof of concept: dynamics mimicking enables precision learning by improving the
efficiency of learning and performing human activities in competitive sports, social dancing, and physical
rehabilitation, among many others.

INDEX TERMS Biomechanics, complex system, cyclic structural representation, musculoskeletal system,
principal component analysis (PCA).

I. INTRODUCTION
The low-cost, lightweight, easy-to-use inertial measurement
units (IMU), such as accelerometer and gyroscope sensors,
can nowadays be found in many wearable devices, such
as smartphones, smartwatches, and fitness trackers. Such
sensors’ data-collecting efficacy and precision have also
drastically evolved and improved with recent technological
advances in microelectromechanical systems (MEMS) [1].
These wearable sensors indeed liberate the domain of gait
data-collecting regimes from a mechanics lab to wherever a
subject wants to be. They also shift the focus of Gait Anal-
ysis [3] from medical care to all kinds of human activities,
including all sports [2]. Nowadays gait data are collected in
both indoor and outdoor environments.

However, even up to today, gait dynamics related research
primarily focuses on an individual’s gait recognition [4],
[5], [6] and authentication [7], [8]. Our previous work [10],
which analyzed data from the MAREA database [9] and
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another database HuGaDB [11], also focused on recognitions
and authentication.

To see beyond surveillance purposes, viewing gait dynam-
ics through the perspective of human activity’s precision
learning has not been conceived widely yet. Nonetheless,
this perspective would be naturally recognized in near future.
Originally, precision learning is a pedagogical terminology
that represents a type of programmed instruction for under-
represented learners. The teachers will adjust the instructional
tactics and curricula by monitoring the learner-specific needs
and the efficacy of the instruction with the ultimate goal
of providing the best educational outcomes to the learner.
Since nowadays gait data are popularly collected by healthy
individuals who perform all sorts of activities. It will be time
for healthy performers to try to improve their efficiency in
performing activities they love and care about by applying
personal precision learning protocols derived from their own
and others’ activity data.

Commercial wearable sensors typically have various sam-
pling rates when collecting time series data. Some gait time
series data are collected with sampling rates of more than
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100 Hz, that is, every data point is collected per less than
10 ms. For instance, the sampling rate in the MAREA
database is 128 Hz [9]. It is critical to note that a gait pattern
of 10 ms scale is invisible to human raw eyesight, as well
as to video recording. That is, performers can not see that
themselves, and neither could their coaches. This fact pro-
vides a major advantage in learning human activity, including
walking, through analyzing data from wearable sensors.

To make the aforementioned advantages of wearable sen-
sors real, it is necessary to conceptualize that a person’s
human activity consists of a steady, natural, but idiosyn-
cratic series of evolving biomechanical states of varying
temporal scales. Discovering such a personal collection of
biomechanical states is a computing task that has not been
well established in literature yet. In our previous study [10],
we reported findings of alternating cyclic states. Such data-
driven cluster-based states’ variations are too big to be biome-
chanically coherent. That is, cyclic states resulting from any
clustering algorithms need to be reorganized and recomposed
to achieve the stability required by the nature of human
biomechanics [13].

Biomechanical states are known as being not rigid and not
varying too much. Since healthy human walks with coherent
stability. This smooth and steady manner is significantly
distinct from the robot’s rigid and constant walking and from
a drunken person’s erratic walking. Here, the erratic walk-
ing of a drunken person is an example of the irregular and
unrhythmic gait dynamics that can not be thoroughly ana-
lyzed and mimicked due to their instability and randomness.
Therefore, computing coherent biomechanical states within
stable cyclic series is one of the chief tasks in any study of
gait dynamics. Before getting into computing, we first recog-
nize that how human achieves such coherence and stability
seemingly without effort is indeed an amazing mechanistic
phenomenon.

This phenomenal mechanism involves multiple biome-
chanical states of large and fine scales within each cycle.
Though each state varies, however, humans still achieve cycle
stability when summing up varying durations incurred by
these multiple biomechanical states in walking. This stable
phenomenon is apparently achieved by some sort of auto-
matic coordination. Such a coordinating mechanism implies
complicated dependency among all involved states. This
mechanism is supposed to be essential to the efficiency of a
person’s walking activity. To our knowledge, this coordinat-
ingmechanism of biomechanical states is still not well known
in the literature. It is another chief task in our study of gait
dynamics here.

To achieve the two aforementioned chief tasks in this
paper, we formulate two chief computing tasks by devel-
oping: 1) a structural representation of gait cycles; and
2) a dynamics-mimicking protocol based on data from the
MAREA database. We argue and demonstrate that these two
computing tasks jointly serve as a step toward precision
learning of human gait dynamics. In this paper, we do not
analyze data from HuGaDB because of its low sampling rate.

FIGURE 1. Position and orientation of four accelerometer sensors used in
MAREA database [9]. (Figure courtesy of Dr. Siddhartha Khandelwal and
Prof. Nicholas Wickström.)

The design of collecting time series, surface conditions,
and subject selections for the MAREA database were fully
depicted in [9]. We only briefly mentioned sensor related
information here. The position and orientation of the four
accelerometer sensors attached to the Left-foot, Right-foot,
Waist, and Wrist of each subject for the data collection of the
MAREA database are shown in Fig. 1. Each accelerometer
collected x−, y−, and z− three mutually orthogonal direc-
tional time series.

We begin our outline of computational developments and
lay out our contributions in this paper. We plan to first suc-
cessfully capture the structural dependency of 6-dimensional
(dim) time series pertaining to the Left-foot and Right-foot
([LF-vs-RF]) subsystem by applying Hierarchical Clustering
(HC) algorithm on the whole set of data points without their
temporal coordinate information. This [LF-vs-RF] subsys-
tem is understood as being better at preserving gait rhythm
embedded within the entire time series data. Here the HC
algorithm makes good use of its capability in differentiating
time points belonging to various cyclic components within
each cycle. Each cyclic component realistically preserves
a specific form of dependency among the 6 dimensions of
the time series. Further, HC algorithm at the same time
collects similar time points across different cycles. This
fact was established in [10] via Lempel-Ziv complexity
evaluations [12].

With resultant clusters being digital- and color-encoded,
we then recover the temporal coordinates of all members
of all encoded clusters. This simple procedure indeed trans-
forms the observed 6-dim time series into a 1-dim color-
code or digital-code time series that reveals recurrences of
all digital (or color) codes with varying duration across the
entire time series span. Some recurrent patterns are rather
steady in their recurrences, some are not. We algorithmically
discover subject-specific landmark that achieves the most
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regular recurrence. With this computed landmark in hand,
we dissect the entire time series into stable cycles.

Our first major computing task is to develop a structural
representation for all dissected gait cycles. Given that each
cycle is represented by a 1-dim segment of transition of
cluster-based states (without duration information), we stack
these segments by aligning their landmarks, and then subse-
quently align with respect to the next discoverable common
state shared by all cycles. With each row corresponding to
a cycle, such an alignment likely generates empty cluster
states between the landmark state and the first commonly
shared state. After this alignment is manually carried out
one by one, between the first commonly shared state and the
second one, between the second commonly shared state and
the third one, and so forth, the resultant array lattice is seen
to embrace all cycles’ state-transition representations. That
is, this visible matrix format allows us to figure out the deter-
ministic and stochastic structures in terms of states’ evolution.
Next, we recover each code entry’s duration information and
look for groups of adjacent columns that have more or less
constant total temporal lengths. Each such column group is
designated as a biomechanical state. This biomechanical state
representation in matrix format is a structural representation
of all cycles with respect to state-transitions as well as to
state-duration.

Based on the above structural representation of personal
gait dynamics, the second major computing task is to develop
a mimicking protocol that primarily first identifies deter-
ministic and stochastic structural patterns regarding the
information on each biomechanical state’s duration and the
variations of all biomechanical states’ collective behaviors,
and secondly recreates these multiscale patterns accordingly.
In other words, such a mimicking protocol is designed
and constructed to explicitly preserve the evolving rhythm
of biomechanical states and simultaneously conserve gait’s
dynamic multiscale deterministic and stochastic structures
derived from both temporal and 6-dim numerical aspects.
As such, our mimicking protocol produces mimicries of
all observed cycles in one subject’s entire gait dynamics
under the [LF-vs-RF] subsystem. Such computational devel-
opments are likewise carried out by analyzing 3-dim time
series fromWaist andWrist sensors, respectively. Indeed both
structural representation and mimicking protocol computa-
tions with very mild modifications would be applicable to all
rhythmic time series, such as personal heartbeat with multiple
channels or vital signs with body temperature, heart rate,
respiration rate, and blood pressure, among many others.

At the end of this section, we emphasize one of the chief
merits of mimicking protocol: reliability and confidence eval-
uations. Since the human musculoskeletal system is a highly
constrained physical system. Ranges of all biomechanical
states are finite. Such a finiteness property renders the mim-
icking protocol to generate nearly 100% multi-dimensional
manifolds for purposes of reliability and confidence evalu-
ations because we can simulate as many mimicries as we
wish. This chief merit in fact serves as the solid basis for

precision learning of human activities. Specifically speaking
of walking, from the perspective of Left-foot’s or Right-foot’s
3-dim acceleration time series data points in R3 Euclidean
space without temporal coordinates, for example, this chief
merit of mimicking can be explicitly visualized through its
capability of filling in spacing created within the two scatter
plots. Such a filling-in function on open spaces renders that
3D scatter plots can be made into somehow smooth and solid
manifolds by mimicking huge numbers of mimicries, while
leaving out clear open spaces, including their outer space.
Any open space defined by such manifolds is taken as foreign
regions that do not belong to the subject’s gait dynamics
with nearly 100% confidence and reliability. By attuning to
the issue of determining whether open spaces of the original
manifold are occupied after adding new data, not only can
wemake subject-vs-subject comparisons in detail with nearly
complete confidence, but we can also detect even minute
structural shifts within a subject with almost certain relia-
bility. This issue is fundamental to the precision learning
of any human activity. By constructing resolutions of the
above two computational tasks and revealing their merits,
we project that the gait dynamics-mimicking protocol signals
a step forward to precision learning of human activities. These
are the contributions of this paper.

II. PRECISION LEARNING HUMAN PHYSICAL ACTIVITIES
FROM COMPLEX SYSTEM PERSPECTIVE
Human physical activities manifested through sports, dances,
and exercises have created many essential societal dynamics.
For instance, the 36 professional soccer leagues consisting
of 1018 clubs have generated social and economic activities
that become essential parts of life across countries in Europe,
so do 30 teams in Major League Baseball (MLB), 32 teams
in National Football League (NFL), 30 teams in National
Basketball Association (NBA) and hundreds of college sports
teams across the USA, to name just a few. According to
Statista, a German database company, the North American
sports market had a value of about 71.06 billion U.S. dollars
in 2018. This figure is expected to rise to 83.1 billion by
2023. As for dancing, the 778 ballet companies in the USA,
not including contemporary dance companies, also offer a
glimpse of professional dancing activities on top of many
other styles of dances. As for exercises, including walking,
their scales of societal dynamics and their impacts are even
harder to be quantified because it involves almost every-
one, including younger people and the elderly. However,
the learning processes of these human activities for general
people are still done via old fashion way: self-learning by
practicing. Even professional athletes or dancers, who have
private coaches, still more or less rely on this old fashion
learning protocol. Should and could all people practice their
activities effectively and scientifically via their own personal
data-driven protocol?

Since practitioners and learners of physical activities
spread across all ages as well as skill levels within each
activity category. The young learners practice to improve
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and become skilled. The skilled ones practice to improve
and become professional. The professional ones practice to
improve and become the best ones. The essence underlying
all these levels of practicing is the search for a personal
learning path. It is because everyone learns differently.

Therefore, from a learner’s perspective, the central issue is:
How to develop a precise personal path of learning a physical
activity? While from the teacher and coach’s perspective,
the ultimate issue is: How to teach or coach every different
individual differently? These two issues from distinct per-
spectives indeed converge to an intuitive concept of precision
learning for physical activities. Previously, this term of pre-
cision learning has been specialized in education for children
with special needs, such as autistic children.

To our limited knowledge, the domain of precision learning
of human physical activities has not been seriously put into
practice in real-world settings yet, either in academia or in the
business world. A rigorous proof of concept is still waiting to
be carried out: Each individual needs a mimicking based
person-specific precision learning to improve this indi-
vidual’s best efficiency in learning any physical activity.
The best efficiency here is referred to the concept: The best
athlete is the one who executes his or her skill the best.
After performing precision learning of a specific activity
of any individual as well as the best athlete, we can tune
and improve the activity performance of the individual by
decreasing the disparity between the individual’s and the best
athlete’s gait dynamics.

In this paper, we develop a computational protocol for
mimicking human gait dynamics to serve as a basis for preci-
sion learning of walking. The reason for studying walking is
obvious because of its fundamental role in all sports, dances,
and exercises. The majority of humans indeed constantly
generate and simultaneously make good use of their gait
dynamics in every minute and second of their awake parts of
daily life. However, healthy people hardly think about their
own gait dynamics as if walking is performed by everyone’s
musculoskeletal system in an entirely automatic fashion. Fur-
ther, since biomechanics, which refers to the study of the
mechanical principles of living organisms, particularly their
movement and structure, underlying gait dynamics seemingly
has been well studied and known [13], and as if there is very
little scientific interest left to be looked for.

However, the above viewpoint is a misconception. Gait
dynamics is still somehow mysterious in our open eyes. It is
still a mystery partly because we are indeed not able to
visualize its collective whole of biomechanical operations.
It is in part due to human raw eyesight being not capable
of seeing the entire scale-spectrum of dynamic patterns that
constitute trajectories of the human musculoskeletal system.
Our eyes can’t clearly detect patterns of 10 ms or finer scales.
So, gait dynamics is basically hidden in plain sight, especially
in sports biomechanics [14].

Further, a person-specific gait dynamics is an idiosyn-
cratic complex system that involves multiple scales of

spatial-oriented forces and angular-momentum of all direc-
tions [15], [16]. Such a multiscale nature indeed not only
makes individuals’ gait dynamics idiosyncratically distinct
but also foretells that better knowledge of a person-specific
gait dynamics, when this person is healthy, should be an
invaluable personal asset. Since its beneficial values would
suddenly become evident at the moment when this person
is injured. It is the case because this person’s idiosyncratic
gait is likely forever altered at the moment in time. Appar-
ently, this concept of preserving healthy persons’ gait dynam-
ics is not yet well perceived in comparison with personal
DNA sequences in this Big Data era, see The Economist
special issue (Feb. 27th, 2010) with the title ‘‘The Data
Deluge.’’

Data pertaining to a person’s gait dynamics is typically
collected in a biomechanic laboratory within a biomechanic
department, which is often an institute or department of a
major medical center or school. In the lab, a person is placed
in a room equippedwith 8-12 cameras and sophisticated com-
puter systems. As this person walks on a specially marked
or constructed strip of floor, data are streamed through cam-
eras into computers and then analyzed with a package that
captures a fixed set of measurements. This data-collecting
approach is constrained and limited from the perspective of
performing human activities. Just like healthy persons hardly
go to a hospital, hardly any healthy person’s gait data are
taken. So hardly data-driven patterns of a healthy person’s
idiosyncratic characteristics are extracted.

However, via recently developed wearable sensors,
person-specific gait dynamics derived from the human’s
musculoskeletal system are going to be opened up for all
persons’ all activities under all out-of-lab environmental
settings. Being free of constraints pertaining to biomechanics
labs, healthy people can seriously and actively collect their
own gait dynamic time series data when performing all sorts
of activities.

From this perspective of data collection, the practical
focus and scientific interests in gait dynamics are placed
on discovering person-specific compositions of multiscale
constituent mechanisms, ranging from the rhythmic cycle,
all biomechanical states within a cycle, and all temporal
patterns within each state, etc. These multiscale mechanisms
are fundamental constructs of this person’s gait dynamics as
a complex system [17]. Thus, when putting such multiscale
pattern-based compositions against the temporal axis, person-
specific gait dynamics would become visible and explainable.
To this goal, we explicitly construct such a display, called
the structural representation of gait dynamics, in this paper.
Further, by revealing such structural representations, healthy
and active persons are able to recognize their own evolving
gait dynamics from the beginning to the end of the activity
with precise details. Such a structural representation is one
major contribution of this paper. Since it resolves questions
of great interest: How to characterize and compute biome-
chanical states? What are the precise characteristics of the
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FIGURE 2. Time series representation with unmarked four cycles.

FIGURE 3. Scatter plots of 3D manifolds based on 3-dim time series observed from the subject-12’s: (a) Left-foot’s and (b) Right-foot’s
accelerometer sensors. See rotatable 3D plots through the two links: (a) https://statistics2022.github.io/3Dplots/Figure2-PanelA;
(b) https://statistics2022.github.io/3Dplots/Figure2-PanelB.

serial biomechanical states within a cycle and across a series
of cycles?

Another major contribution of this paper is the computa-
tional protocol of mimicking a person’s gait dynamics. Such
a mimicking protocol can further address related fundamen-
tal and technical questions of great interest: How to pre-
scribe stability and volatility within a person’s gait dynamics?

How to detect and confirm even minute structural changes?
We explicitly illustrate our mimicking protocol in resolving
these questions.

It is essential to note that mimicking based on struc-
tural representation indeed becomes a precision learning
paradigm. For healthy and active individuals, these questions
are performance oriented. They are far from medical ones.
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FIGURE 4. HC-tree marked with 10 clusters of 6-dim time series, each of which retains distinct
dependency.

FIGURE 5. Run illustration (a) Time-series marked by color-coded clusters; (b) Illustrations of 4 run series w.r.t 4 clusters.

Based on many dimensional time series data collected from
multiple sensors, we not only identify all visible and invis-
ible biomechanical states involved within each cycle of gait

dynamics of this person of interest, but we also infer multi-
scale deterministic and stochastic structures from the entire
sequence of cycles down to very detailed temporal patterns
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FIGURE 6. Comparing cluster-based and biomechanical states on one cycle of 6-dim time series: (a) cluster-based states;
(b) biomechanical states.

within each biomechanical state. These multiscale determin-
istic and stochastic structures collectively become a basis for
mimicking a person’s specific gait dynamics.

Such fundamental ideas underlying our mimicking proto-
col are also rather essential in following a mechanical sense.
Since a deterministic structure would only allow a specific
kind of stochasticity to occur, a multiscale composition of
deterministic structures would constrain a specifically cor-
responding multiscale composition of stochasticity pertain-
ing to this person’s gait dynamics. Therefore, understanding
where and what deterministic constraints and stochastic vari-
ations are across the entire collection of multi-dimensional
time series is the essential computation in any complex

system study [18]. Such computing indeed makes this study
of gait dynamics another unique study of the complex system.

Thus, by adhering to the complex system perspective, our
mimicking protocol would be a big step towards the preci-
sion learning of human activity, and at the same time would
bring resolutions to all aforementioned questions regarding
stability-volatility and detection of minute structural changes
in gait dynamics.

III. STRUCTURAL DEPENDENCY AND CYCLES EMBEDDED
WITHIN GAIT RHYTHMIC TIME SERIES
We begin this section by discussing structural dependency
embedded within the 6-dim gait rhythmic times series
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FIGURE 7. Computed and marked cycles of biomechanical states of [LF-vs-RF] subsystem. (a) Data-driven cyclic-state compositions are
represented with identified deterministic and stochastic structures in 40-dim digital vectors; (b) Lengths of cyclic states are represented
within a 40-dim digital vector; (c) Color-coded biomechanical states are identified as segments of digital coding having a ‘‘stable’’
duration across all cycles.

pertaining to the [LF-vs-RF] subsystem in general terms in
the first subsection. Also, we explicitly show such evolving
dependency structures through two representations of gait

time series. Then, in the second subsection, we apply a
clustering-based computational approach to encode the 6-dim
time series into one 1-dim categorical time series, with whom
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FIGURE 8. One cyclic representation of 14 biomechanical states.

FIGURE 9. 3D cylinder of tempo-ordered cycles with 14 biomechanical
states. The rotatable 3D plot can be seen through https://statistics2022.
github.io/3Dplots/Figure%208.

an algorithm of computing landmark is developed and the
whole time span is dissected into cycles.

A. DATA VISUALIZATIONS AND REPRESENTATIONS OF
GAIT RHYTHMIC TIME SERIES
We consider two natural representations of directional forces
time series recorded by accelerometer sensors to serve as the

basis for exploring intrinsic patterns of gait dynamics. Such
representations are not only for dynamic gait-pattern recogni-
tion but also for the system’s exploratory computations. The
first natural representation is a joint display of their trajecto-
ries, as seen in Fig. 2. As we look at the 6 trajectories of two
triplets of time series from Left-foot and Right-foot in two
separate panels of Fig. 2, one simple, but the crucial question
arises: Should we explore these two triplets separately or
jointly?

Ideally, if the triplet of 3-dim directional forces time series
from the Left-foot sensor should and could reveal rhythmic
state-patterns pertaining to the Left-foot of a subject’s muscu-
loskeletal system, then the triplet of 3-dim directional forces
time series from the Right-foot sensor should and could reveal
the complimentary rhythmic state-patterns pertaining to the
Right-foot of a subject’s musculoskeletal system. We can
compute such sensor-specific patterns respectively and then
align them together along their common temporal axis. That
is, with respect to their common time axis, computed foot-
specific cycles and their evolving states from the two sensors
would be coupled together to show their interacting relational
patterns. However, this coupling could be too rigid to reflect
intrinsically steady interacting relational patterns. That is, too
many interacting relational patterns are likely to arise because
computed foot-specific states are varying in their durations.
This phenomenonwas shown and concluded in an experiment
in [10] via Lempel-Ziv complexity evaluations.

On the other hand, since Left-foot and Right-foot are two
highly coordinated components of the human musculoskele-
tal system. these 6 time series are supposed to be highly

VOLUME 11, 2023 4525



X. Yang, F. Hsieh: Mimicking Gait Dynamics: A Step Toward Precision Learning of Human Activities

FIGURE 10. One typical gait cycle with ‘‘Sequential Movement’’.

FIGURE 11. Comparing 9 subjects’ gait dynamic rhythms of [LF-vs-RF] subsystem with respect to a biomechanical structural
representation of their 4 gait cycles.

dependent in constituting the biomechanical essence of this
person’s gait dynamics. So, it is natural and intuitive that the
6-dim directional forces time series from the Left-foot and
Right-foot sensors should constitute a full version of struc-
tural dependency pertaining to this subject’s musculoskeletal
[LF-vs-RF] subsystem. In order to capture such structural
dependency well, it is the right choice to compute rhyth-
mic patterns based on the 6 trajectories simultaneously. Not
only we can visualize rhythmic state-patterns better based on
6-dim time series trajectories, but also we can compute these
patterns more precisely. As such, idiosyncratic characteristics

of person-specific gait dynamics can be more effectively
computed and discovered.

In summary, from the perspective of [LF-vs-RF] subsys-
tem, these 6-dim trajectories simultaneously traversing along
the common temporal axis would jointly reveal various kinds
of dynamic structural dependency accordingly embedded
within all visible recurrent patterns (states) in an evolving
fashion within each cycle and across all cycles. Furthermore,
each of such structural dependency based recurrent states
needs to be computationally extracted as one whole. There-
fore, a feasible computational algorithm for such structural
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dependency must be equipped with the essential capability of
preserving various kinds of dependency-constituted patterns
all at once.

The second natural representation is done by giving up the
temporal coordinates of data points via a 3D scatter plot for
each sensor. Such a 3D plot reveals a unique sensor-specific
geometric manifold that provides one sensor-specific view
of the stability and volatility of gait dynamics in a visible
fashion. Geometries of this kind indeed afford a global view
of idiosyncratic characteristics of a person’s gait dynamics,
so via mimicking they play particularly essential roles in
detecting minute structural changes.

This second natural representation of gait time series data
is formally described as follows. An accelerometer sensor
gives rise to X−, Y−, and Z− directional acceleration mea-
surements in time series format. For expositional simplicity,
we denote the 3 time series from the left foot sensor as
(Lx ,Ly,Lz), and the 3 time series from the right foot sensor
as (Rx ,Ry,Rz) without using a temporal index, such as t .
The 3D scatter plots of (Lx ,Ly,Lz) and (Rx ,Ry,Rz) display
two geometric manifolds, as seen respectively in the two
panels in Fig. 3 and two rotatable 3D plots through the two
links provided in the legend of this figure. Such geometries
evidently reveal aspects of structural dependency within each
of the two triplets of measurements of ‘‘directional forces
in R3,’’ which are very distinct from structural dependency
revealed by 6-dim time series trajectories along their temporal
axis.

B. COMPUTING CYCLES, LANDMARK, AND STATES
WITHIN TIME SERIES
As seen in Fig. 2, Left-foot (LF) and Right-foot (RF) versions
of structural dependency act in concert with the gait dynam-
ics of the [LF-vs-RF] subsystem. Therefore, here the first
computational task is to compute and analyze the subject’s
authentic structural dependency embraced in 6-dim time
series (Lx ,Ly,Lz,Rx ,Ry,Rz) as the first step of discovering
rhythmic patterns of this subject’s biomechanics.

The 6-dim trajectory of (Lx ,Ly,Lz,Rx ,Ry,Rz) is rhyth-
mic. This rhythmicity means that all involving biomechanical
states in a subject’s gait dynamics are all recurrent. That is,
similar 6-dim data points must be seen across all cycles. Even
within a cycle, some biomechanical states proceed smoothly,
such as Stance, Toe-Off, and Swing, and some states proceed
via more volatile fashions, such Heel-Strike. Thus, similar
6-dim data points are also seen within each cycle. Such recur-
rent and smoothly evolving similarity-based patterns of 6-dim
data points indicate explicitly visible structural dependency.
The intuitive idea is to collect, mark and encode all similar
6-dim data points across the entire temporal span.

To collect various kinds of similar 6-dim data points,
we stacked the 6-dim time series by arranging them onto
6 rows of a data matrix with all time points being arranged
along the column-axis. We apply the HC algorithm among all
6-dim column vectors by simply using Euclidean distance and
aWard-D2 module. That is, we take off data points’ temporal

coordinates in this clustering step. The clustering results are
reported in Fig. 4, for example.

As shown in Fig. 4, there are 10 marked branches as
10 clusters for encoding purposes. When each cluster is
encoded with a color code, each time point is encoded with
a color code. Via this color-coding scheme, we reduce the
6-dim time series of (Lx ,Ly,Lz,Rx ,Ry,Rz) into a 1-dim
color-code time series, which exhibits color-codes’ segment-
wise duration and transitions, as illustrated in Fig. 5a. Each
color-coded segment of this 1-dim time series in this panel is
termed a cluster-based state. Though these recurrent cluster-
based states along the temporal axis can preliminarily expose
the hidden rhythm of gait dynamics, the chief utility of such a
1-dim color-coded time series is that it becomes the basis for
computationally identifying a so-called landmark state, with
which we dissect the whole time span into cycles.

In Fig. 5b, we illustrate 4 series of colored runs induced
from the time series of color codes with respect to cluster-
states {#1, #2, #3, #7}. Each run is a period of time of one sin-
gle color continuum. They all seemingly reveal very regular
cyclic patterns, but they come with different precisions. Here
the precision can be defined via the variations of recurrence-
time series of the beginning or end of a series of single-
color runs. For this subject, the most stable cyclic pattern
is calculated and found on the #7 cluster state. This is then
called the landmark of the [LF-vs-RF] subsystem of this
subject. It is essential to note that every subject has his/her
own landmark. That is, it is far from being a universal trait
of human gait dynamics. The chief merits of a computed
landmark are rather diverse. It is used to dissect a subject’s
whole gait time series into cycles. The representation of such
a cycle surely constitutes the first visible impression of a
subject’s gait dynamics, as seen in Fig. 6a.

A landmark also very importantly serves as the starting
point for alignment across all cycles in order to bring out
the biomechanical states, as would be discussed in the next
section. For the contrasting and comparing purpose, the same
cycle would be featuredwithwould-be computed biomechan-
ical states as shown in Fig. 6b.

IV. STRUCTURAL REPRESENTATIONS OF GAIT CYCLES
The human musculoskeletal system and its biomechanics are
very robust even for walking on slightly uneven pavement.
In sharp contrast, wearable sensors are relatively sensitive
to even tiny deviations in forces and directions of walking.
Though a computed landmark can manage to dissect rather
stable cycles in length, all cycles’ compositions of cluster-
based states and states’ duration could vary to some visible
degrees, as shown in Fig. 7a and Fig. 7b. These kinds of
variations are more related to sensors than to the subject’s
musculoskeletal system and biomechanics. In other words,
the compositions of biomechanical states of cycles in human
gait dynamics are expected to be stable in both aspects:
cyclic evolving series and state-specific durations. That is, the
collection of computed cluster-based coded states needs to be
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FIGURE 12. Computed and marked cycles of biomechanical states of the waist.

transformed into a collection of ‘‘biomechanical states’’ that
can retain stability in both aspects.

We develop an ‘‘Biomechanical Structural Representation
Algorithm’’ to computationally construct and identify a com-
position of biomechanical states for each dissected gait cycle
in this section. This algorithm is carried out via 2 steps of
data-driven computations given as follows.

Biomechanical Structural Representation Algorithm
1) Identifying and aligning conserved cluster-state-codes:

Display all dissected cycles’ cluster-coding segments
by aligning their landmark state and stacking them
in a manner of ‘‘one row one cycle’’ with respect
to their temporal ordering, and then proceed to iden-
tify the first conserved cluster-code across all cycles
and then align them. This alignment operation might

create empty spaces along the row axis for some cycles.
Then we proceed to identify the 2nd conserved cluster
code across all cycles and align them. We continue
such operations of identifying conserved cluster code
to the end of all cycles. Then, we mark the identified
series of conserved cluster codes across all cycles,
as demonstrated in Fig. 7a. At the end of the first
step, all cycles’ cluster-based code segments together
with inserted empty spaces form a cluster-based code
matrix;

2) Transforming and grouping columns: Transform the
resultant cluster-based code matrix into a duration
matrix by replaying each cluster-based code with its
duration, as demonstrated in Fig. 7b. We then manually
group neighboring columns when they achieve stable
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FIGURE 13. Cyclic correspondence between rhythms of [LF-vs-RF] subsystem and Waist.

sums of durations across all cycles. Each of such col-
umn groups is marked and termed one biomechanical
state. They are demonstrated in Fig. 7c. This version of
the duration matrix marked with biomechanical states
is termed the structural representation of all involved
cycles, and so is the version of the cluster-based code
matrix marked with biomechanical states.

The structural representation of 30 cycles of subject-12’s
gait time series is displayed in Fig. 7c. One single cycle’s
composition of biomechanical states is displayed with respect
to the 6-dim time series in Fig. 6b and also in a circular
fashion in Fig. 8, while this subject’s 163 cycles are stacked
into a 3D cylinder in Fig. 9. Fig. 10 is an illustration of a
typical gait cycle which can be compared with Fig. 8 for
better understanding. From the latter, we can see that the
cyclic presence of biomechanical states and their durations
are indeed rather stable. Such stability is the consequence of
the structural representation of gait dynamics. This biome-
chanical structural representation of gait dynamics will serve
as the right platform for comparing gait dynamics across
different subjects. As shown in Fig. 11, 9 subjects’ [LF-vs-
RF] gait dynamics are compared. This is one of several key
merits of biomechanical structural representation.

A. COMPUTED RHYTHMIC DYNAMICS OF WAIST
AND WRIST
We apply a similar computational protocol used for the 6-dim
time series of [LF-vs-RF] subsystem and the ‘‘Biomechani-
cal Structural Representation Algorithm’’ on the 3-dim time
series observed through an accelerometer sensor tied to the

waist of subject-12, as illustrated in Fig. 12. The waist’s
12 biomechanical states are shown to be very much in syn-
chrony with the computed rhythm of [LF-vs-RF] subsystem,
as demonstrated in Fig. 13, via a sine-wave representation.
This synchrony between theWaist and [LF-vs-RF] subsystem
can be further viewed through time series presentation in the
top three panel rows of Fig. 14. Such evident synchrony will
serve as a basis to investigate the interacting patterns between
the Waist and [LF-vs-RF] subsystem within subject-12’s gait
dynamics.

It is further noted that, when we apply the same compu-
tational protocol onto 3-dim time series observed from an
accelerometer sensor tied to subject-12’s wrist, we only find
its synchrony with [LF-vs-RF] subsystem in one time period
near the beginning of the recording, as shown in the bottom
panel-row of Fig. 14. We found only an out-of-sync pattern
with the rest of the period of recording.

V. MIMICKING
In this section, we demonstrate the chief merit of the struc-
tural representation of all gait cycles as demonstrated in
Fig. 6. The structural representation would serve as the base
to build our mimicking protocol for any person-specific gait
dynamics, at least for the [LF-vs-RF] subsystem.We organize
this section as follows. In the first subsection, we build our
mimicking protocol to first mimic the large and medium-
scale structures visible across all computed gait cycles as
shown in Fig. 9 in the previous subsection. In the second
subsection, we mimic the fine-scale structures. In the third
subsection, we apply our mimicking protocol to fill in the
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FIGURE 14. Drifting patterns observed on time series of Wrist with respect to rhythms of [LF-vs-RF] subsystem.

spacing of Left-foot and Right-foot specific scatter plots into
manifolds, respectively, for the purposes of precise detecting
and learning minute changes.

A. MIMICKING LARGE AND MEDIUM SCALE STRUCTURES
OF RHYTHMIC GAIT CYCLES
It is intuitive and observable that some cycles are more
similar to some cycles than other cycles. Such similarity
with varying degrees among cycles is indeed fully reflected
through the durations of 14 biomechanical states in a col-
lective fashion. That is, if two cycles have similar dura-
tions across their 14 biostates, then they are similar. This
similarity renders similar cycle lengths. To further con-
firm this intuition with observable patterns, it is natural
to build a matrix with all involved cycles arranged along
the column axis, and each cycle’s 14 state-durations are
arranged along the row axis. We term this matrix: biostate-
duration matrix. We simply apply the HC algorithm with
Euclidean distance and Ward-D2 module, then we build a
HC-tree on the collection of cycles and superimpose
this HC-tree on the column-axis of this biostate-duration
matrix. Likewise, we also build a HC-tree on its row-axis.

After respectively superimposing two HC-trees on the
column- and row-axes, this biostate-duration matrix becomes
a heatmap, as shown in Fig. 15. We then mark and map out
the block patterns in this heatmap, which somehow reveal the
deterministic patterns of biostate durations.

As one marked HC-tree branch on the column-axis reveals
a cluster of similar gait cycles, its corresponding series
of blocks as computed deterministic structures reveals the
characteristics of durations across the 14 biomechanical
states. In fact, each block found in this heatmap clearly
embraces the stochastic patterns among similar cycles. It is
essential to recognize that such stochasticity is indeed con-
strained by deterministic structures. Our mimicking proto-
col would be based on such deterministic and stochastic
patterns.

Specifically speaking, if we want to mimic the k-th gait
cycle, we need to locate which branch this cycle is from, then
we know all cycles similar to the k-th cycle. This is structural
information on a large scale. Further, this collection of similar
gait cycles would offer proper stochasticity for each of the
14 biomechanical states. This is structural information of the
medium scale.
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FIGURE 15. Heatmap of 14 biomechanical states’ lengths of [LF-vs-RF] subsystem.

B. MIMICKING FINE SCALE TRAJECTORIES OF A
BIOMECHANICAL STATE WITHIN A RHYTHMIC
GAIT CYCLE
In Fig. 15, we explore and see the large-scale structures of
the designated k-th cycle through the HC-tree branch it falls
into on the column-axis. That is, all gait cycles falling into
the same marked branch as this k-th cycle falling into are
indeed structurally similar in the sense that they all have
similar state-specific durations across all 14 biomechanical
states. For instance, if k = 11, then it belongs to a branch
that contains 9 structurally similar cycles as listed in Cycle-
column of Table 1.

That is, we can recognize this k-th cycle’s medium-
scale structures of all its 14 biomechanical states’ durations
through a series of blocks under the marked HC-tree branch
it belongs to. Specifically speaking, these block-specific or
even state-specific structures of medium scales clearly indi-
cate the information of which cycles do share a similar dura-
tion of each biomechanical state. Based on such available
information, we further explore the temporal-related fine-
scale deterministic and stochastic structures pertaining to
each biomechanical state’s 6-dim measurements.

Our explorations of such fine scale pattern information
begin by collecting all state-specific time points’ 6-dim mea-
surements of all cycles falling into the same marked HC-tree
branch. Since a state-specific trajectory in general consists of
different temporal segments: beginning, middle, and ending
parts. Thus, we make use of HC to perform data-driven
partitions.We choose the number of focal clusters being equal

to the median duration of this state, and we call them biostate-
tempo-clusters.

For instance, Table 1 lists time-points’ 6-dim measure-
ments of a small part of #1-biostate-tempo-cluster #1. We see
that some cycles’ 1st and 2nd time points are falling into
the same #1-biostate-tempo-cluster #1. In contrast, some
cycles have their 1st and 2nd time points’ 6-dim mea-
surements falling into different #1-biostate-tempo-clusters.
Therefore, these two examples of #1-biostate-tempo-clusters
will together offer two binomial random variables, with
which simulated 6-dim measurements of the 1st and 2nd time
points will come from. Likewise, multiple multinomial ran-
dom variables are accordingly created when a biomechanical
state has multiple biostate-tempo-clusters.

To mimic by simulating a 6-dim measurement from a
biostate-tempo-cluster, we construct a Principle Component
Analysis (PCA) based protocol as follows.We apply the PCA
algorithm onto a collection of 6-dim measurements, which is
denoted as:

{vi = (x i(L), y
i
(L), z

i
(L), x

i
(R), y

i
(R), z

i
(R))|i = 1, . . . , n},

belonging to a generic focal biostate-tempo-cluster. Based
on PCA, its 6 eigenvectors are extracted and denoted as
{V1, . . . ,V6}. And let the 6 × 6 matrix M [V ] have the
6 eigenvectors as its row-vectors.

Denote εij = VT
j v

i with j = 1, . . . , 6. That is, the 6-dim
vector εi = (εi1, . . . , ε

i
6) is a projection of vi with respect to
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TABLE 1. The #1 biomechanical state or landmark state’s temporal coordinates in [LF-vs-RF] subsystem and their corresponding cluster # of their 6-dim
measurement vectors. This state is the color-coded cluster #7 in the HC-tree.

FIGURE 16. One observed and mimicked the cycle of Left-foot and Right-foot rhythm.

the 6 eigenvectors, that is, for all i = 1, . . . , n, we have

εi = M [V ]vi. (1)

Then, we build one histogram, say Hj, based on the collec-
tions: {εij|i = 1, . . . , n} with j = 1, . . . , 6. It is essential to
note that these 6 histograms define 6 stochastically indepen-
dent random variables. Thus, we can simulate 6 components

of 6-dim vector εi∗ from the 6 histograms {Hj|j = 1, . . . , 6},
respectively. Then, we convert εi∗ into a mimicked 6-dim vi∗

as follows:

εi∗ = M [V ]vi∗. (2)

With this PCA-based protocol, we can simulate as many
copies of vi∗ as we wish to generate. Therefore, by applying
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FIGURE 17. Observed (a) and its mimicked (b) 3D manifolds of Left-foot rhythm. The corresponding rotatable 3D plots:
(a) https://statistics2022.github.io/3Dplots/Figure15-PanelA; (b) https://statistics2022.github.io/3Dplots/Figure15-PanelB.

FIGURE 18. Observed (a) and its mimicked (b) 3D manifolds of Right-foot rhythm. The corresponding rotatable 3D plots:
(a) https://statistics2022.github.io/3Dplots/Figure16-PanelA; (b) https://statistics2022.github.io/3Dplots/Figure16-PanelB.

the PCA-based protocol on the state-specific biostate-tempo-
clusters’ multinomial random variable, we can mimic this
focal state’s trajectory as many times as we wish to gener-
ate. We demonstrate the results of our mimicking protocol
via three versions of mimicries. In Fig. 16, we compare
the 6 Left-foot and Right-foot time series of an observed
cycle with 6 time series of its mimicked cycle. We can see
that all large- and medium-scale characteristics are almost
equal, while some small deviations are visible on fine-scale
structures. In Fig. 17 and Fig. 18, we compare the observed
3D manifold of subject-12’s 14 biomechanical states with
the mimicked 3D manifold on the Left-foot and Right-
foot, respectively. We demonstrate the very close similarity
between the observed and mimicked manifolds and this high-
level similarity indeed proves the accuracy of our developed
computational protocol.

C. PRECISION-DETECTIONS OF FINE-SCALE-DEPARTURES
VIA MIMICKED MANIFOLDS
In this subsection, we discuss and illustrate one of the chief
merits of mimicking gait dynamics: precision detections of
fine-scale departures within any biomechanical state. The
idea behind precision detection is the fact that mimicking
can fill in all stochasticity-related spacings allowed by the
constraints of deterministic structures. That is, all filled-in
(solid) spaces supported by stochasticity are taken as confi-
dence regions, while any empty spaces are out-of-confidence
regions allowed by the deterministic constraints. With this
rationale, we build a subject-specific 100% 3D confidence
manifold to facilitate our precision-detection of exogenous
time series from ‘‘different’’ subjects. In this fashion, any
minute departures within any biomechanical state will be
detected with precision. We illustrate two such departures
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FIGURE 19. Observed manifold of Right-foot’s ‘‘before Heel-Strike’’ state of subject-12 (in Red) (a) and its mimicked manifold (in Dark Red)
(b) and comparing subjects-19’s observed manifold of the same state (in Blue) (c). See the rotatable 3D plot through the link:
https://statistics2022.github.io/3Dplots/Figure17.

FIGURE 20. Observed manifold of Right-foot’s ‘‘after Heel-Strike’’ state of subject-12 (in Red) (a) and its mimicked manifold (in Dark Red)
(b) and comparing subjects-19’s observed manifold of the same state (in Blue) (c). See the rotatable 3D plot through the
link:https://statistics2022.github.io/3Dplots/Figure18.

during two biomechanical states: i) before Heel-strike in
Fig. 19; ii) after Heel-strike in Fig. 20, of subject-12.
In Fig. 19a, the 3D scatter plot presents data points of the

biomechanical state of ‘‘before Heel-strike’’ on the Right-
foot. We see the spacing among all observed data points, and
then wonder where are covered by stochasticity and where
are not. In Fig. 19b, after mimicking, we realize and confirm
the domain of stochasticity.With such confirmation, themim-
icked manifold precisely marks where spacing are belonging
to this biomechanical state of subject-12, and where it is not.
In Fig. 19c, we clearly see the departure when superimposing
data points belonging to the same state of a different subject.
A similar illustration of the biomechanical state of ‘‘after
Heel-Strike’’ is revealed in Fig. 20 for the Right-foot.

This mimicking-based approach for precision-detection
of fine-scale departures for any state of any subject is an
important step towards precision learning of walking. It is not
only suited for checking whether one subject’s gait activities
recorded at two or multiple time periods are the same or not,
but also for figuring out minute differences in all biomechan-
ical states belonging to two subjects. This approach certainly
can be expanded and applied to other kinds of activities far
beyond walking, such as dancing and others. And we believe
that its merits include far-reaching potentials and impacts

through precision learning in many competitive sports, such
as track and field. A companion work on Tango dance is
ongoing in the author’s group.

VI. CONCLUSION
Based on many dimensional subject-specific acceleration
time series of walking derived from wearable sensors found
in the MAREA database, we develop computational method-
ologies for the structural representation of cycles of biome-
chanical states and for mimicking personal gait dynamics
to facilitate very precise detections for minute structural
changes on the personal walking activity as well as on person-
vs-person activity comparison. This capability lays the fun-
damental step toward precision learning of human walking
activity. Recently, this step is further expanded in a series
of ongoing precision learning projects in our research group.
We mention two projects here. One project involves two very
experienced tango dancers: the reasonably good tango dancer
tries to learn and catch up with a very good tango dancer
who is also a professional dancer by training. Another project
involves two student-athletes in track-and-field running: the
good runner tries to improve and catch up with the better
runner. As far as our research shows us, we envision that such

4534 VOLUME 11, 2023



X. Yang, F. Hsieh: Mimicking Gait Dynamics: A Step Toward Precision Learning of Human Activities

a dynamics-mimicking based precision learning will work for
a wide spectrum of human activities in the not-distant future.

Further, we are confident that the concept and technique of
our computational developments on the multiscale structural
representation of personal biomechanical gait cycles could
have significant merits in scientific areas beyond human
activities. This confidence is indeed emboldened by the
results of an application of similar computational develop-
ments to bring out characteristics of a person’s heartbeat
dynamics. In our recent study on computational cardiology,
based on multiple heartbeat time series recorded by multiple
channels, once again the structural representation compu-
tations effectively show very promising deterministic and
stochastic structures regarding the periodic R-R interval evo-
lution, which is a critical feature of any heartbeat dynamics.
This experience makes us to further believe that this concept
and technique could be proved very effective in dealing with
very general rhythmic dynamics.

Furthermore, the concept of mimicking observed data can
be traced back to Kolmogorov complexity: the shortest uni-
versal computer program to regenerate the observed data.
While this complexity is uncomputable, mimicking is prac-
tical and applicable in all data analyses, see details in [19].
The nature of the concept of mimicking is also very distinct
from bootstrapping in statistics since it requires analysts to
recognize the deterministic and stochastic structures embed-
ded within data. This requirement needs serious, but doable
efforts to achieve. In the setting of rhythmic dynamics, the
structural representation of rhythmic cycles provides the plat-
form for fulfilling this requirement.

One chief merit of mimicking gait dynamics, as men-
tioned in the Introduction section, is to provide reliability
and confidence evaluations with nearly complete certainty by
simulating as many mimicries as we can afford. The resul-
tant characteristic manifolds allow us to build a mimicking-
based precision learning protocol that can detect and confirm
minute structural changes with temporal persistence lasting
only for a few cycles in a row. Once again, we reiterate that
this capability is a proof of concept toward precision learning
of any human activities, in which achieving perfection and
efficiency are critical. It is worth reemphasizing that many
key and critical patterns of human activities are of 10 ms
or finer scales. These patterns are beyond the raw eyesight
of persons of interest and their coaches. Thus, our precision
learning protocol can be expected to outperform the old-
fashioned self-learning by practicing as well as video anno-
tation and analysis specialized and popularized nowadays in
sports technology aiming at improving sports performance
with efficiency and accuracy. This is one unique perspective
to view the potential of precision learning based on wearable
sensors.

Though our computational developments of structural
representation of gait dynamics are illustrated step-by-step
through analysis of only one subject’s time series data,
the results of structural representations of the remaining

8 subjects contained in the same database are also obtained
and show almost universal cyclic evolutions of biomechani-
cal states of gait dynamics. We project this universal cyclic
dynamics to be valid for all healthy humans’ gait dynam-
ics. With such universality of structural representation of
gait dynamics, we project our mimicking protocol developed
coherently based on 6-dim gait time series data from the
[LF-vs-RF] subsystem to be valid for all healthy humans’
gait dynamics as well. Thus, the merits of such a scientific
precision learning protocol are far wider and beyond machine
learning based gait identification and authentication.

Lastly, though our precision learning protocol is tuned to
achieve efficiency and even excellence in performing human
activities throughout this paper, we also confidently envision
that our computational precision learning protocol still can
offer a very wide spectrum of applications in the medical
field. That is, its merits in medical precision care are also
clear and evident. Since this protocol can be geared to help
detect minor gesture changes in individuals’ walking and
other activities as well as transient structural changes in vital
signs and beyond, such as physiological and circadian signals,
to serve as early warning signals of certain diseases [2].
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