
1380 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

Privacy and Efficiency of Communications

in Federated Split Learning
Zongshun Zhang , Andrea Pinto , Valeria Turina , Flavio Esposito ,

and Ibrahim Matta , Senior Member, IEEE

Abstract—Every day, large amounts of sensitive data are dis-
tributed across mobile phones, wearable devices, and other sensors.
Traditionally, these enormous datasets have been processed on a
single system, with complex models being trained to make valuable
predictions. Distributed machine learning techniques such as Fed-
erated and Split Learning have recently been developed to protect
user data and privacy better while ensuring high performance.
Both of these distributed learning architectures have advantages
and disadvantages. In this article, we examine these tradeoffs and
suggest a new hybrid Federated Split Learning architecture that
combines the efficiency and privacy benefits of both. Our evaluation
demonstrates how our hybrid Federated Split Learning approach
can lower the amount of processing power required by each client
running a distributed learning system, and reduce training and
inference time while keeping a similar accuracy. We also discuss
the resiliency of our approach to deep learning privacy infer-
ence attacks and compare our solution to other recently proposed
benchmarks.

Index Terms—Data communications, federated learning,
machine learning, privacy, split learning.

I. INTRODUCTION

C
ENTRALIZED machine learning (ML) training is be-

coming unsustainable [1]. Aside from the advantages of

re-training often to optimize revenues [2], several learning ap-

plications need to run their processes at the edge of the network,

not in the core of a data center, for multiple reasons, including

end-to-end latency minimization by running machine learning

algorithms locally on an end-device, and privacy concerns of

trusting third-party clouds [3]. Several Machine Learning (ML)

models trade user experience improvements on mobile devices

for sensible data exploitation; see e.g., text recommendation in

keyboards [4], [5] or vocal assistants [6]. In these and other ap-

plications, a decentralized learning approach may be preferable

to a centralized system since sensitive data may remain locally

within a client and not transferred over a computer network.

Despite its benefits in several use cases, running machine

learning training and inference jobs within local devices has

Manuscript received 1 February 2023; revised 14 May 2023; accepted 15 May
2023. Date of publication 29 May 2023; date of current version 1 September
2023. This work has been supported by National Science Foundation under
Grants CNS-1908574 and CNS-1908677. Recommended for acceptance by
S. Mohanty. (Corresponding author: Zongshun Zhang.)

Zongshun Zhang and Ibrahim Matta are with the Department of Computer
Science, Boston University, Boston, MA 02215 USA (e-mail: zhangzs@bu.edu;
matta@bu.edu).

Andrea Pinto, Valeria Turina, and Flavio Esposito are with the Department
of Computer Science, Saint Louis University, Saint Louis, MO 63103 USA
(e-mail: andrea.pinto.1@slu.edu; valeria.turina@slu.edu; espositof@slu.edu).

Digital Object Identifier 10.1109/TBDATA.2023.3280405

several limitations: computing capacity is often limited, battery

drains faster with intensive processing, and the mobile or other

end devices have limited memory and storage capabilities. For

example, our experiments show that to fine-tune a VGG-16 [7]

Neural Network, pre-trained on ImageNet [8] with Cifar-10 [9],

tens of minutes are needed to reach 90% accuracy on an NVIDIA

V100 GPU.

Different distributed neural network architectures have been

proposed to preserve privacy and guarantee timely convergence

– for example, Federated Learning (FL) [1], [10], [11], [12],

Split Learning (SL) [13], or hybrid approaches [14], [15], [16].

FL, [10], averages the weights of the learned Neural Network

model on each edge device to create a single model, and updates

the local ones. Previous research has shown that this strategy

can achieve higher accuracy than considering only a local

model [10], [17], [18], [19] and at the same time can preserve

the privacy of the data. SL splits the entire NN into partitions of

layers. Then each partition is executed on a different entity (i.e.,

edge and cloud), and all edge NN partitions can sequentially pair

with one cloud partition. Thus, this approach utilizes distributed

datasets while keeping user data private.

On the one hand, given enough resources to meet training

Service Level Objectives (SLOs), FL can scale to many de-

vices. However, it is impractical in resource-constrained edge

training/inference settings. On the other hand, Split Learning

can train with limited resources, but it does not scale to many

devices well since it is not parallel. Especially, when we pair

different edge devices holding non-independent and identically

distributed (Non-IID) data with the cloud, training may not con-

verge at all [20]. Furthermore, the intermediate data in between

partitions can be costly to transmit and store [21], [22], [23],

[24], and leads to privacy concerns, as it is derived from the

source data.

To cope with the inefficiencies of the existing dis-

tributed learning systems, we propose Federated Split Learning

(FSL) [25], which combines the benefits of FL and SL while

mitigating their drawbacks. The FSL model is characterized

by multiple edge client – server pairs. Such pairs train their

copies of the NN simultaneously, providing the parallelism

of federated learning and the practicality of split learning by

partitioning the NN across the client and (edge) server. After

some client-edge server pairs have completed certain training

epochs, a “Parameter Server” in the cloud only averages the

(edge) server NN weights Fig. 1(e), an approach adapted from

FedAVG in FL [10].

FSL is generally better than the similar techniques, i.e., Par-

allel Split Learning (PSL [16] or SplitFed [15]), and Federated

2332-7790 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY AND EFFICIENCY OF COMMUNICATIONS IN FEDERATED SL 1381

Fig. 1. Distributed NN Training Architectures: (a) Federated Learning: The NN is in the client. The parameter server calculates the average weights among
clients and overrides the local weights. (b) Split Learning: The server partition sequentially trains with each of the clients. Client weights are shared with the
next training client. (c) Parallel Split Learning: The server trains clients’ output in batches in parallel, but the client’s weights are kept private. (d) Federated

Reconstruction: Multiple clients train local and global shards of weights alternatively in parallel and only the global shards are preserved and averaged in between
epochs. (e) Federated Split Learning: Multiple Edge Server and Client pairs train simultaneously. The Edge Servers’ weights are averaged by a Parameter Server.
The clients weights are kept private.

Reconstruction (FRC) [26], in latency and privacy. Intuitively,

while PSL only use one cloud server node, FSL allows parallel

server computations leading to lower latency. Our naïve FSL also

halves the processing time of FRC, though FRC has a better

privacy level (Section IV-A). FSL, PSL, and other SL-based

systems are prone to privacy concerns as they transmit the

hidden variables (intermediate data) extracted based on client

source data from the client to the (edge) server over the Internet.

To mitigate this limitation, we further proposed a Client-based

Privacy Approach (CPA [25]) to reduce the vulnerable features

in intermediate data, e.g., by avoiding having client layers extract

unnecessary features, or by training using privacy-preserving

client weights. In this article, we further optimize this CPA

approach to reduce overhead by considering the training pipeline

and model partitioning plan.

Contributions: In this article, we evaluate the generality and

benefits of our FSL architecture with different NN models and

tasks: from image classifications to an Internet traffic classifi-

cation [27]. In particular, we evaluate the privacy-performance

tradeoff and discuss insights to enhance the privacy guarantee of

FSL using an improved Client-based Privacy Approach (CPA)

and novel neural network partitioning approaches. Particularly,

we realized that certain ways of partitioning NN could reduce

transmission delay and enhance privacy together. Our exper-

imental results show that by combining different privacy ap-

proaches and NN partitioning methods, our FSL can achieve

low training time, high privacy guarantees, and high accuracy.

The rest of the paper is organized as follows: Section II,

introduces the background and related works for FSL. Then, we

describe our FSL system in Section III. In Section IV we discuss

the Client-based Privacy Approach (CPA) and NN partitioning at

the edge for any split learning-based architecture. Our evaluation

with training metrics is presented in Section V-B, while the

privacy evaluation is presented in Section V-C.

II. DISTRIBUTED LEARNING BACKGROUND

Federated Learning [1], [17], [18], [19], [28] is a decentral-

ized deep learning technique that trains neural network models

using data sources “owned” by multiple clients Fig. 1(a). A

logically centralized parameter server holds the latest neural

network model, and orchestrates the sharing of its weights

between all clients.

The parameter server first sends the same randomly initialized

neural network weights to each client where a local model is

trained using the local dataset. Until the client models reach a

given accuracy threshold, the parameter server repeatly retrieves,

averages and overwrites the client weights (Fig. 1(a) – steps

1 to 3). Thus, the global model could be trained with the

privately-owned (client) datasets which do not get transmitted

over the Internet. Moreover, FL has hyper-parameters to specify

the frequency to average the weights of a group of clients,

which balance s Internet traffic and model accuracy. Thus, FL is

considered scalable in terms of the number of clients, as long as

such clients have enough computation power and storage to meet

the training constraints, or Service Level Objectives (SLOs).

Split Learning [13] is a distributed machine learning tech-

nique that is characterized by a computational split of the neural

network model into two partitions. Each partition could run on

a separate computing node, hence splitting the computational

resource demand. During forward propagation, the output hid-

den variables of the client partition are sent to the server node

— step 1 Fig. 1(b). Then those outputs are used as inputs to the

second NN partition and continue the forward propagation. After

calculating the loss, the server begins the backward propagation.

Once the gradients of the server inputs are calculated, they

are sent and used as the gradient of client outputs to finish

the backward propagation — step 2. Finally, the complete NN

weights are updated with those gradients. Similarly, the server’s

NN partition can also pair with any other client’s NN partition.

First, the trained weights in the last client are moved to the

new client — step 3. Then the server trains with the new

client as mentioned above — steps 4 and 5. The SL algorithm

preserves data privacy but suffers from a long convergence time

with Non-Independent and Identically Distributed (non-IID)

data sources (Fig. 2), and large intermediate data to transmit.

Moreover, training with more than one client is sequential,

hence poorly scalable. Some remedies attempted to mitigate the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

1382 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

Fig. 2. Accuracy degradation with Non-IID data.

transmission delay of such intermediate data by compressing the

model and intermediate data with Knowledge Distillation [24]

and BottleNeck layers [21], [22], or avoiding computing the

complete model with Early Exits [23].

A. Hybrid Split-Federated Learning

In this article, we consider hybrid split-federated learning sys-

tems to combine benefits and minimize drawbacks of Federated

Learning and Split Learning.

Combining Split and Federated Learning: Parallel Split

Learning (PSL [16]) and SpliltFed [15] (Fig. 1(c)) train multiple

client NN partitions in parallel for low latency. During Forward

Propagation, different clients’ outputs are sent to a single remote

server as one batch or sequentially. Then for Backward Propa-

gation, the gradients of the server inputs are sliced (matching the

outputs of multiple clients) and sent to each client sequentially.

Model Specific Approaches: FedSL [14] is one example for

Recurrent Neural Networks (RNN). They unroll the RNN’s

feedback loop and split the recurrent NN partition to different

nodes holding the sequence data segments. After each epoch,

devices average and overwrite their weights. This approach im-

proves training efficiency for RNNs by using extra computation

resources to increase parallelism.

FL Extensions: Prior work has focused on extending the FL

paradigm. For example, Federated Reconstruction (FRC) [26]

prioritize s user data privacy while trading off training efficiency.

Their model is partitioned into global and local shards which are

both deployed and alternatively trained in each edge device, i.e.,

first each client device trains the randomly initialized local shard

with the frozen trained global shard; Second, it trains the global

shard with the frozen trained local shard. A parameter server then

retrieves the updated global shards for averaging, disregards the

local shards, and sends the global shards to the clients for the

next epoch. This design makes the training stateless, local, and

highly scalable for storage.

B. Source Data Privacy

One advantage of these edge training systems is the high

perceived level of source data privacy: a user’s data does not

leave the client device. However, previous work have explored

threats based on weights and hidden variables.

Weight Attack: The adversaries can learn the source data by

applying gradient descent on a random noise input given a NN

and label [29], [30]. Our FSL and the previous PSL and FRC

do not share the client weights, so they can better mitigate this

leakage.

Hidden Variables Attack: The adversaries can also use the

hidden variables to reconstruct client source data with an autoen-

coder NN [31]. Edge intelligence systems that partition Neural

Networks and transmit intermediate data in between partitions

are vulnerable to this threat. Previous works proposed different

mitigations. NoPeek [31] adds a Distance Correlation (DC) loss

to the original loss function, so that they can maximize accuracy

as well as the difference between the partition’s source data

and output (intermediate data) by solving a Multi-Objective Op-

timization Problem. Differential Privacy (DP-SGD) is another

widely used lightweight algorithmic approach [32], [33]. They

add (gaussian) noise to gradients when training a NN, so that the

outputs of a trained privacy-preserving NN partition can confuse

the adversary.

Compared with Homomorphic Encryption (HE) or Secure

Multi-Party Computation (SMPC), training with DC or DP-SGD

fits better in our client and edge server setup. Encryption and de-

cryption steps cause long latency overhead and can drain battery

quickly. There are also other methods, i.e., model compression

([21], [24], [34]), that can potentially enhance privacy guarantee

and consume power less than HE or SMPC but higher than

training with DC or DP-SGD.

III. PRIVACY-OBLIVIOUS FSL

In this section, we detail our Federated Split Learning (FSL)

architecture, which we originally proposed in [25]. FSL is a

hybrid approach that combines the advantages of SL and FL. It

avoids sending users’ source data or sharing the complete NN

parameters through the network while being scalable.

Our FSL architecture shown in Fig. 1(e) has three types

of entities: (i) edge servers, (ii) clients, and (iii) parameter

servers. To train a NN with FSL, we first set up an authentication

protocol [35], [36] among the entities to pair each client with

one edge server, and edge servers with a parameter server. After

pairs are found, the communications are sent without encryption.

Then, in each client and server pair, we partition the complete

NN into the client’s partition and (edge) server’s partition.

FSL has three training steps. In step 1, the client forward

propagates with source data and transmits the intermediate data

to the edge server. The server then finishes propagation and

calculates loss. In step 2, the server backward propagates to the

client source data. In step 3, after a few epochs, the parameter

server averages the weights in the edge servers.

Comparison With Other Hybrid Methods: Consequently, FSL

will have multiple advantages compared to the other approaches

discussed. FSL is more practical at the edge as its clients

have lower computation and memory demand, i.e., fewer NN

layers to train, compared with FL. Also, FSL only averages the

weights in the edge servers, instead of the complete weights in

FedAVG. Therefore, FSL reduces the risk of suffering model

inversion attacks [29], [30]. FSL also provides better scalability

than SL, since client and server pairs can train independently.

Compared with FRC [26], FSL is more efficient in training

time. FRC updates one weight shard per forward and backward

propagation pipeline and runs multiple times to update the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY AND EFFICIENCY OF COMMUNICATIONS IN FEDERATED SL 1383

full model. Compared with PSL [16], FSL has four potential

advantages. Scalability: FSL allows Client-Edge Server pairs

to train independently, which allows it to scale to more clients.

On the other hand, the PSL server can either work with each

client sequentially, or enlarge the batch size accommodating the

number of clients and waiting for all intermediate data. In the

worst case, when n clients arrive at the same time, the lower

bound on waiting time for each PSL client to begin backward

propagation is O(n). Robustness: We also observe that FSL

has to maintain fewer states in each independent pair. The PSL

server would temporarily store multiple batches of intermediate

data simultaneously, so it needs a sophisticated logging and

compaction storage system to avoid or recover from failures.

Consequently, FSL is more robust than PSL. Resilience: In FSL,

failure in one pair would not prevent other pairs from training or

inference. However, the PSL design may suffer from resiliency

problems when the single server failed. Bandwidth Congestion:

For FSL, each edge server only processes intermediate data

from its client, which leads to lower communication overhead.

Meanwhile in PSL, since all intermediate data will be sent to

and processed by the single server, bandwidth and computation

resources at the server node may get overwhelmed. Our findings

are presented in Section V.

IV. PRIVACY-AWARE FSL

We have discussed the efficiency and resilience of FSL. In this

section, we consider instead the privacy-preserving properties

and propose our privacy-aware FSL. In particular, we discuss

how to complement general split learning-based architectures

to mitigate the privacy concerns of sharing hidden variables or

weights over an honest but curious network. We first give a

formal definition of our privacy attacker model, and then we

discuss how a Client-based Privacy Approach and certain ways

of partitioning Neural Networks help to avoid such attacks.

A. Privacy Attacker Model and Assumptions

We assume that the attacker knows the structure of the

client NN (Client), the Intermediate Data (Client(xSou))
transmitted from the client to the edge server in plaintext and

an auxiliary dataset (xAux) with features similar to the client

source data (xSou). Then, following (1), the adversary can train

an AutoEncoder NN with an Encoder (Enc) and a Decoder

(Dec) [37] to reconstruct xAux by minimizing a Mean Squared

Error (MSE) loss comparingxAux and the AutoEncoder output

Dec ◦ Enc(xAux) where Enc has the same NN structure of

Client.

argmin
Dec,Enc

(MSE(xAux, Dec ◦ Enc(xAux))) (1)

And then the trained Decoder (Dec) can reconstruct the client

source data (xSou) based on the intermediate data generated by

client model (Client(xSou)), as shown in (2).

xRec = Dec ◦ Client(xSou) (2)

Details of using this attack are discussed in Section V-C2.

B. Attack Resilience

Given the attacker model, in order to compare the level

of privacy guarantee among different privacy approaches, we

define an Attack Resilience metric (τ) as:

τ = 1−
‖correct‖

‖reconstructed‖
(3)

It measures the misclassification rate. ‖correct‖ counts

the number of reconstructed images, which can be cor-

rectly classified by a trained classifier (Section V-C3). And

‖reconstructed‖ is the total number of reconstructed images.

Then we can compare the misclassification rate of the trained

classifier based on the reconstructed datasets. The higher value

means the reconstructed images have fewer features to be

correctly recognized by the attacker’s classifier, which is an

indicator for higher attack resilience.

C. Client-Based Privacy Approach in Distributed Setting Via

Distance Correlation (CPA-DC)

Motivated by NoPeek [31], where they minimize Cross-

Entropy while maximizing Distance Correlation (DC) in one

loss function, we optimize the two loss functions alternatively in

two rounds, as shown in equation (4): At epoch e, if emod F==
0, given Frequency F , the regular round minimizes the cross-

entropy loss functionLoss(·)with results of the inference model

(server NN g(·) takes outputs of client NN f(·) based on input x)

and ground truth labels in the (edge) server. Otherwise, the DC

round maximizes the DC loss function comparing client source

data x and output f(x) in the client node. Then by balancing the

two rounds with loss multiplier m and Frequency F , we achieve

high accuracy and privacy guarantee as only important features

are preserved for training.

L =

{

Loss(g ◦ f(x), label) if e mod F == 0
m ·DC(x, f(x)) otherwise,

(4)

Our Client-Based Privacy Approach (CPA) can also work

with other loss functions or methods teaching NNs to focus on

important features. In Section V-C, we evaluated the trade-off

among training time, accuracy and attack resilience, comparing

DC loss and Differential Privacy (DP-SGD).

D. How to Partition a Neural Network?

In this section, we discuss the problem of selecting how many

layers need to be assigned for each NN partition, i.e., client

NN depth. This tradeoff will tune training time (processing

and transmission delay), privacy, and accuracy. Capturing the

tradeoff between all these metrics is challenging. To illustrate,

consider the tradeoff between processing and transmission de-

lays. The output size of different layers can be quite different, so

a few partitioning policies may lead to significant transmission

overhead, increasing training time and hence diminishing the

gain of the hybrid FSL compared to the original Federated

Learning architecture. For example, in VGG-16 [7], the output

size of the first convolutional layer is two times the size of the

second convolutional layer. Thus, a system with a model cut after

the second convolutional layer can trade off the extra processing

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

1384 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

delay at low-capacity clients while yielding a lower transmission

delay. We evaluate this effect in Section V-B2.

Analytically, this effect is captured by solving Problem 5,

where α and β are developer-specified parameters that represent

positive weights for the transmission delay of intermediate data

(I) and computation delay (C), the parameter d represents the

depth of the client neural network, and b represents the band-

width, measured periodically. To efficiently solve this problem,

similar to Neurosurgeon [38], we consider using two regres-

sion models to predict the delays I and C given the available

bandwidth, by profiling the model layers for output sizes and

processing times offline using the resources for training.

min
d

(αI(d | b) + βC(d)) (5)

The solution of Problem 5 is optimal with respect to delays,

however, it can be sub-optimal with respect to privacy and

accuracy. As Section V-B2 shows, the client processing and

transmission delay of FSL reaches the minimum when the client

NN depth is between 7 and 16. In Fig. 7(a), instead, the client

NN needs more than 16 layers to be above 90% attack resilience.

Thus, we conclude that an optimal NN partitioning decision

should balance different objectives and constraints, including

transmission delay, processing time, privacy, and accuracy, as

shown in our Problem formulation 6. In such a problem, W
represents the model weight vector, (I ′, C ′, A,R) is the tuple

representing the observations for transmission delay, computa-

tion delay, accuracy, and resilience, (γ, κ) are new user-specified

positive weights, and d is the client NN depth.

max
W,d

(−αI ′(W,d | b)− βC ′(W,d)

+ γA(W,d) + κR(W,d)) (6)

To solve Problem 6, we have to train W for each d until

convergence and then find the best d. This brute force method is

inefficient. A more efficient approach would rely on predicting

the delays, accuracy, and privacy without the full training of the

model. Extending the approach in [38] to go beyond profiling

delays, is challenging. This is because the accuracy and attack

resilience for each client and edge server pair are harder to

profile and predict. Specifically, their profiling depends on the

weights trained on other pairs, the distribution of source data

among clients, number of clients, number of layers to average

in SerAVG, and training epochs (Sec. Sections V-B4 and V-C).

Another work can predict the model accuracy [39], but it is

based on the already trained model. Therefore, for our FSL

architecture with SerAVG, a prediction method for partitioning

remains an open question for future work. In this article, we

experimentally demonstrate the best model partitioning that

balances requirements on training time, accuracy, and privacy.

V. EVALUATION RESULTS

In this section, we describe the evaluation results for our

Privacy-Oblivious FSL and Privacy-Aware FSL architectures

with our privacy-aware approaches (CPA in Section IV-C and

Neural Network Partitioning in Section IV-D).1 Our evaluation

demonstrates the advantages of FSL over PSL and FRC in

1https://github.com/HEECMA-BU/FSL

terms of training time, memory usage, and convergence rate.

Moreover, we also show that our privacy-aware approaches can

prevent the reconstruction of source images from intermedi-

ate data in the Split Learning-based systems. We first discuss

our experimental setup, then present our evaluation results of

Privacy-Oblivious FSL and Privacy-Aware FSL in Sections V-B

and V-C.

A. Experimental Setup

This experiment set studies the convergence for Privacy-

Oblivious FSL and the privacy guarantee of Privacy-Aware FSL

across different hardware and applications with different NNs

and datasets.

For the hardware, we used two types of nodes on Chameleon

Cloud [40]. One has an RTX6000 GPU, two Intel Xeon Gold

6126 CPUs and 187 GB memory. The other one has four

NVIDIA V100 GPUs, two Intel Xeon Gold 6230 CPUs and

128 GB of memory. We emulated the computer network among

our distributed learning entities on the localhost interface on a

physical machine, and each experiment was set to use a single

GPU, so that we can ignore the network bandwidth bottlenecks.

For the applications, we considered three classification tasks

and implemented them with PyTorch [41]. Then the distributed

communication among entities of the systems was handled by

PySyft [42] and PyGrid [43] and no encryption was applied

to the transmission. The first application runs a general image

classification task with a VGG-16 [7] Convolutional Neural

Network (CNN). The model was pre-trained using Imagenet [8]

and then fine-tuned with the CIFAR-10 dataset [9]. We run this

task on 5 clients running an NVIDIA V100 GPU. The second

task uses a LENET [44] CNN to recognize handwritten numbers

in the MNIST dataset [44] on 20 clients running an NVIDIA

RTX6000 GPU. The third task classifies traffic, not images.

In particular, we decomposed a one-dimensional-CNN, trained

with the ISCX VPN-nonVPN (ISCX) traffic dataset [45], using 5

clients running on an RTX6000 GPU. We partitioned the dataset

and assign ed among different clients with Independent and

Identically Distributed (IID) probabilities and all our plots show

95% confidence intervals unless otherwise specified. Our goal

is to verify that FSL can always converge, with different tasks,

different NNs, different devices, and different data distributions.

We verified the advantages in delay or privacy of FSL over

existing solutions.

B. Evaluation Results for Privacy-Oblivious FSL

This section illustrates the methodology and draws observa-

tions of our experiments. Overall, our evaluations show that

Privacy-Oblibious FSL has less overhead and similar accuracy

compared to existing solutions. In particular, we evaluate train-

ing time (Sec. Section V-B2), memory consumption (Sec. Sec-

tion V-B3), and learner accuracy (Sec. Section V-B4).

1) Experiment Design: With different datasets and numbers

of clients, to reach at least 90% accuracy, the neural networks

used for image classification needed 20 epochs. And the traffic

classification model needed 80 epochs.

2) Training Time Evaluation: To evaluate training time,

let us consider the experiment whose results are reported in

Figs. 3 and 4. The x-axis indicates the Cut Index, i.e., the index

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY AND EFFICIENCY OF COMMUNICATIONS IN FEDERATED SL 1385

Fig. 3. LeNet+MNIST: (a) Client Time, (b) Server Time, (c) Intermediate data size. Observations: 1) Intermediate data size is correlated with the times taken by
the PSL architecture while having little correlation under FSL. Notice that since FSL and PSL do not modify the NN structure other than splitting the NN, the sizes
of intermediate data generated by an FSL client and a PSL client at one cut index with the same input image are the same; 2) FRC has almost twice the overall
training time as FL; 3) Plots are obtained by averaging 20 clients’ results. The intermediate data size is under the batch size of 16 and each image was resized to
(1,32,32). VPN Workload: (d) Client Time (e) Server Time. Similar considerations are valid for the VPN dataset. Tested with 5 clients with a one dimensional NN
with an input size of (1,784). Still, FSL has the shortest Client F&B time compared to the other settings.

Fig. 4. VGG + CiFar10: Plots show the effect of Cut Index over (a) averaged
overall training time, (b) time spent in clients (5 clients average), (c) time spent in
server, (d) intermediate data size. The transmission delay caused by intermediate
data size can dominate the training time (occurring during F&B propagation).

of the last layer in the client/local part of the NN. With LENET

and MNIST, we can observe from Fig. 3(a) and (b) that FSL

has the shortest “Client Forward and Backward Propagation”

(Client F&B) time among all other distributed architectures.

The Client F&B time includes transmission time for gradients

and computing both activations and gradients in Client NN. And

Server F&B time includes transmission time for hidden variables

from client to server and computation in Server NN. Notice that

the weight update time is separately counted by “Client Update

Time” and “Server Update Time”. Moreover, we note that PSL

is more vulnerable than FSL to limited bandwidth across splits.

PSL is consistently the slowest, due to its inefficient server

design; the server has to synchronize and process all batches of

intermediate data in each training epoch stacked as a big batch or

sequentially.

Observing FRC and FL, we see the F&B times do not change

along with the Cut Index (Fig. 3(a) and (b)). Note also that FRC

is not training time efficient. It updates its complete model with

two almost full forward and backward steps [26], which is shown

in the same figures: the FRC total F&B time for local and shared

weights is almost double compared to the FL training time.

We were able to obtain similar results comparing the F&B

times in another predicting scenario: the 1D CNN implemented

by [45] (Fig. 3(d) and (e)). Due to the limited size of this neural

network (with only two convolutional layers), we evaluated

the architectures with merely two Cut Indexes: at layer 3 and

layer 6 of the NN. Even in this experiment, we observe how

our FSL still has the shortest Client F&B time. PSL is the

worst performant at each cut, and FL keeps performing better

than FRC.

FSL consistently Uses Less Time in Each Training Epoch Than

the Other Analyzed Architectures: We found that PSL perform

worse than FSL because of the single-server architecture. PSL

has similar results when comparing its client F&B time with FL

and FRC. FRC is not training time efficient. Its total F&B time

almost doubles compared to FL.

When evaluating the training time on the CIFAR-10 scenario,

we found a different trend (Fig. 4(a)): PSL had the longest

training time, except for a cut index of 30. Moreover, FSL did

not always perform the best. When most of the layers run within

the client, FL has a shorter training time. This is because the

size of intermediate data changes as the cut moves, and with

smaller data to send, the overall training time can be shorter.

Fig. 4(b) and (c) show the extra F&B time during training. And

existing works for SL have discussed the similar behavior [21],

[22], [23], [24].

In particular, we show that FSL outperforms PSL as PSL

F&B time is more vulnerable to intermediate data transmission.

In Fig. 3, Client F&B time of FSL keeps decreasing with a

smaller Cut Index, while that of PSL still increases at Cut Index

6, 5, and 3, 2, although the intermediate data in this experiment

is much smaller than using VGG-16. This behavior is caused

by the single server bottleneck. Thus, FSL is more scalable in

terms of training time. Such observation also explains why both

client and server F&B times of PSL are consistently larger than

FSL.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

1386 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

Fig. 5. VGG + CiFar10: Plots show (a) Client and (b) Server memory demands
(size of model weights and hidden variables), with batch size 32 and image size
(3,32,32). The FSL edge server uses slightly less memory, as less batches of
hidden variables are present simultaneously compared to PSL. Also, the FSL
client uses less memory compared to FRC/FL as only the Client NN partition is
deployed versus the whole model. Notice that the clients of FSL and PSL have
the same memory demand as the client models and output sizes are the same
given the same cut index and image size.

The Intermediate Data and Gradients Can Cause Significant

Network Overhead: Such overhead, however, is better mitigated

by our FSL than PSL. Existing work [21] [23] for Split Learning,

as well as our partitioning strategies (Section IV-D) can further

mitigate the communication overhead. Thus, the additional de-

lay in FSL is not considered a severe bottleneck compared to

those systems training at the edge, like FL.

3) Memory Consumption Evaluation: Memory usage of

each entity in the edge training and inference systems limits

the scope of devices that can join the system. To compare which

system is more flexible to deploy in terms of memory capacity

on devices, we show the memory demands in FSL, PSL, FL, and

FRC systems.

Real-world memory utilization can be highly variable as it

depends on several implementation factors, such as libraries

used and the Remote Procedure Calls (RPCs) implemented.

However, the size of a model and its hidden variables are

known. The following results show that FSL clients consume

less memory compared to FL and FRC, and the FSL edge server

occupies less memory than PSL.

The two plots in Fig. 5 show the memory demands computed

at the client and the server for each architecture. The x-axis

shows the Cut Index and the y-axis represents the corresponding

expected memory usage in MB. Note that FL and FRC do not

split the NN, so their memory demands during training are only

shown in the left plot.

As shown in Fig. 5(a), the sizes of each client NN’s weight and

hidden variables at each layer are the same in FSL and PSL. Since

FRC and FL compute the full NN in the client during training,

they require more than five times the memory, for Cut Index 4

to 30. Fig. 5(b) instead shows that the server memory demand

decreases with the cut index, as expected. However, notice that

the PSL server need s extra memory to hold intermediate data

from different clients, which leads to slightly higher memory

demand than FSL.

Memory Usage of FSL Compared to Other Systems: To con-

clude, we found that FSL’s servers are lightweight compared

to PSL. Thus, state management would be easier in FSL. Also,

FSL’s clients are lightweight compared to FRC and FL, during

training, so they are more suitable at client devices.

4) Learner Accuracy Evaluation: The distributed training

method in FSL, SerAVG, is similar to FedAVG (FL) but only

averages the model weights of the NN in the (edge) servers

(Section III). In this subsection, we evaluate the convergence

speed of SerAVG based on source data distribution, cut indices

and data size at each client. Notice that we expect a higher ac-

curacy with further hyper-parameters tuning, given prior results

in similar contexts [46], [47]. While our accuracy results show

95% confidence intervals, parameter tuning is out of the scope

of this article.

Tradeoff among Non-IID Data, Cut Index and Accuracy:

In this experiment set, we evaluate the model accuracy given

Non-IID source data and different numbers of feature layers to

average. We split the data into two parts, namely part 0 and part

1. Each part includes data corresponding to half of the labels in

the MNIST dataset and is divided into a trainset and a testset.

Note that the aforementioned way of splitting the dataset is an

extreme Non-IID case. For example, a model trained on part

0 of the training set has no knowledge of the labels in part

1 of the training set. To assess the systems on more realistic

data distributions, we further add 10% samples, uniformly and

randomly selected from the complete MNIST dataset to both

parts of datasets.

Consider Fig. 6(a), (b) and (c), the x-axis represents the data

partitions that trainset or testset belongs to, i.e., 0 & 1 means

trainset of part 0 and testset of part 1 were used. The y-axis

shows the validation accuracy. We show the results with cut

indices 3, 5, and 7 in a modified LeNet, which correspond to

the three convolutional (feature extraction) layers. From left to

right, the accuracy decreases from the level of FedAVG (full

weights sharing) to NonAVG (no weights are shared) when the

server/shared NN for FSL, PSL, and FRC is shallower. When the

Cut Index is 3, SerAVG, FedAVG, and PSL perform equally well.

When the Cut Index is 5, SerAVG is worse than FedAVG but

still higher than NonAVG. FRC has similar accuracy to SerAVG.

PSL maintains similar high accuracy as FedAVG. Further, when

the Cut Index is 7, all hybrid methods have similar accuracy as

NonAVG. We conclude that SerAVG can enhance the accuracy

in the Non-IID source data set, while worse than FL and PSL

depending on the number of layers to average.

Comparing FedAVG and SerAVG, FedAVG averages all

weights, while each FSL client NN is trained with a smaller

batch of gradients ignoring other clients, which explains why a

shallower (edge) server NN leads to lower accuracy. On the other

hand, comparing PSL and FSL, the PSL server optimizes for

minimal loss using all clients’ batch output. Thus, the gradients

applied with SerAVG will be less accurate compared to PSL,

as the FSL clients are not updated considering the direction of

other clients’ gradients.

Note also a similar but smoother drop in accuracy based on Cut

Indexes with IID CIFAR10 sources and VGG16 in Fig. 7(a). The

two experiments with MNIST and CIFAR10 datasets suggest

that SerAVG can achieve high accuracy by utilizing data of all

clients when applied to suitable NN models and Cut Indexes.

Specifically, when the Cut Index is small, SerAVG achieves high

accuracy while allowing deployments over resource-constrained

client devices.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY AND EFFICIENCY OF COMMUNICATIONS IN FEDERATED SL 1387

Fig. 6. From plots (a), (b) and to (c), the accuracy of SerAVG, PSL and FRC decreases from the FedAVG level of accuracy to NonAVG, as less convolutional
layers are averaged. PSL minimizes loss based on the hidden variables from all clients, so it achieves a little higher accuracy compared to SerAVG and FRC.
However, FSL can achieve better privacy as shown in Section V-C. SerAVG: Average (edge) server NN’s weights; NonAVG: Each pair trains on its own; FedAVG:
Average the complete NN’s weights. In plot (d), we use cut index of 3 and the FSL and PSL accuracies converge to similar values.

Fig. 7. Accuracy and Attack Resilience for Privacy Oblivious and Privacy-Aware Architectures based on Cut Index. Note: DC 1 in captions refer to
DC_Frequency = 1. These figures show that to reach high accuracy and attack resilience, the Cut Index cannot be too big or too small, and loss multiplier is
another way to enhance attack resilience. Furthermore, the loss multiplier can be more practical than DC_Frequency, since it doesn’t introduce overhead to the
training steps.

Tradeoff Between Resource Demand and Accuracy: In this

experiment, we evaluated the accuracy of FSL with small re-

source demand, i.e., small input data size. The dataset is IID

across 20, 100, and 500 clients yielding different input data size

at each client, and we use cut index of 3 to isolate the accuracy

drop caused by SerAVG. Our results are shown in Fig. 6(d).

The x-axis indicates the index of epochs, and the y-axis shows

the corresponding test set accuracy after a certain number of

epochs. We found that with LENET and MNIST, the validation

dataset can reach an accuracy range of 87% to 93%, as long

as each client has enough data to train the machine learning

model.

5) Advantages and Limitations: Our evaluation of Privacy-

Oblivious FSL shows shorter training times and less memory

footprint, although its accuracy is consistently lower (but only

slightly) to that of other methods. However, when server node

resources are not limited, e.g., in the cloud, FSL may have

a marginal gain over PSL. Thus, it is important to consider

resource availability when choosing a system design.

C. Evaluation Results for Privacy-Aware FSL

In this section, we present the evaluation results of our privacy-

aware FSL architecture and show that it can provide certain

privacy guarantees. FSL clients do not share the source data and

model weights, so adversaries cannot directly access the source

data or reconstruct them with the model weights using model

inversion attacks [29], [30]. However, when compared with

Federated Reconstruction (FRC) [26] which trains a complete

model at the client, FSL still sends the intermediate data through

a network to complete the forward and backward propagation

between clients and (edge) servers. An adversary could use

such data to reproduce the source data, e.g., through an Autoen-

coder [48] NN, trained with a specific dataset, in Section IV-A.

To assess how our approach mitigates such vulnerabilities,

we first introduce the evaluation setup, the design and usage of

the attacker Autoencoder NN, and our experiment methodology.

Then, we discuss the results of different privacy approaches, i.e.,

NoPeek [31] and the Client Based Privacy Approach (CPA),

and the privacy level of different ways of partitioning the NN.

NoPeek solves a multi-objective optimization problem of two

loss functions, i.e., one maximizes accuracy, and the other max-

imizes the differences between source images and intermediate

data. For CPA, we evaluate CPA-DC and CPA-DP. CPA-DC

(Section IV-C) optimize the two loss function in NoPeek alterna-

tively. CPA-DP applies a DP-SGD [32] algorithm in the clients.

Finally we evaluate the privacy guarantee of different partition-

ing of client NN and server NN motivated by Section IV-D. We

conclude this section by presenting results that demonstrate the

high resilience to privacy attacks of our proposed FSL and the

advantages in training efficiency.

1) Evaluation Settings: Our Privacy-Aware FSL and PSL

extend our Privacy-Oblivious version by adding the CPA. Par-

titioning the NN was made easy by considering only sequential

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

1388 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

NNs (e.g., LeNET and VGG16). We tested both systems with

the same image classification workloads (e.g., MNIST and CI-

FAR10) on the same hardware (i.e., NVIDIA RTX6000 and

NVIDIA V100, respectively) as the Privacy-Oblivious setting.

2) Setup the Attacker’s Auto-Encoder Neural Network: Fol-

lowing Section IV-A, the attacker trains an autoencoder NN,

consisting of an Encoder and a Decoder, with an auxiliary

dataset using the MSE loss function to minimize the difference

between inputs and outputs, i.e. the input data can be faithfully

reconstructed (decoded) from the output. The encoder part uses

convolutional layers to extract latent variables from its input

dataset, and the decoder uses the encoder’s last activation func-

tion outputs and transposed convolutional layers to reproduce

the input dataset of the encoder. Consequently, we implement

the encoder NN with the client NN structure, and let the decoder

strictly mirror the client NN structure, i.e., the ith layer of an

encoder (client NN) would be the ith last layer of the decoder,

with transposed convolutional layer.

3) Privacy Evaluation: Methodology: In this subset of our

evaluation, we want to show both CPA and carefully designed

ways of partitioning NN provide high attack resilience while

preserving high accuracy, based on different datasets, NNs, for

split learning-based systems.

Each experiment includes trials initializing the Autoencoder’s

weights and data loaders with different random seeds. In each

trial, the attacker used a dataset containing similar features to

the learner’s source dataset. To reconstruct MNIST, we selected

EMNIST [49], and for CIFAR10 we selected the CIFAR100 [9].

The EMNIST dataset contains hand-written characters instead of

numbers in MNIST, so features like lines and curves are the same

and the attacker can decode those activation function outputs.

Similarly, the CIFAR100 dataset contains 100 classes of RGB

images instead of the 10 classes in CIFAR10, so the common

features, e.g. classifying cat or dog, can be used to reconstruct

with the activation function outputs from the CIFAR10 dataset.

For each trial of the experiment, we first let the attacker learn

to reproduce her datasets. Based on the MSE loss, i.e. a loss

function that measures how different the original and reproduced

images are, the attacker updates her weights in each epoch. After

20 epochs, we used the decoder to reproduce the learner’s dataset

from the intermediate data.

When an autoencoder NN is trained, we train a new classifier

with the same NN structure and source data as the learner

to classify the reproduced images for 20 epochs. The mean

and standard deviation of this classifier’s attack resilience τ
(Section IV-B) are recorded.

We show the results comparing Privacy-Oblivious and

Privacy-Aware FSL and PSL systems with different CPAs and

Cut Indexes. Then, we evaluate the trade-off between accuracy

and attack resilience for FSL and PSL.

4) Privacy Evaluation Using NoPeek: As we illustrated in

Section II-B, NoPeek solves a multi-objective optimization

problem that takes in the source data and intermediate data to

maximize the difference with a Distance Correlation (DC) loss

function, as well as the prediction and labels to maximize the

accuracy. To solve such an optimization problem, NoPeek has

to share the value of the loss over a network which may cause

vulnerability or added complexity in maintaining the gradient

graph. As shown in Table I, this approach has both high attack

TABLE I
NOPEEK STATS WITH 20 CLIENTS TRAINING 20 EPOCHS

resilience (i.e., 97% for PSL and 98% for FSL) and high learner’s

accuracy (i.e., 97% for PSL and 96% for FSL) when trained for

the same number of epochs and clients as the Privacy Oblivious

experiment with the MNIST dataset and LENET NN.

5) Evaluation Result Using Client-Based Privacy Approach

Via Distance Correlation (CPA-DC): To mitigate the draw-

backs of the loss value sharing, we consider a new approach

that prevents transmitting data outside clients, improving upon

NoPeek. We optimize for the similar two objectives in NoPeek

alternatively in the Client-Based Privacy Approach via DC. As

shown in (4), there are DC Frequency (F) and Loss Multiplier (m)

to evaluate. F defines how many times the DC loss function is

optimized given the Cross Entropy has been optimized once.

m is applied to the loss function result. These two parameters

control how different the intermediate data and source data will

be, by changing the frequency of optimizing the DC loss and

by changing the learning rate of gradients applied during that

optimization, respectively.

We note multiple tradeoffs in CPA-DC. First, CPA-DC is

not as training time-efficient as NoPeek. NoPeek can optimize

its two objectives with one forward and backward steps while

CPA-DC has to solve them sequentially. However, we consider

that NoPeek transfers more information than necessary over

a network. Second, there are tradeoffs for DC Frequency (F)

and Loss Multiplier (m). Increasing F adds more epochs to

optimize for DC loss, so the attack resilience would be higher

at the expense of a longer training time. Instead, by increasing

m, we can keep a small F, which reduces training time while

maintaining attack resilience. Intuitively, multiplying the DC

loss by a larger m is similar to increasing the gradient descent

step size. Thus, we need fewer DC epochs to maintain the attack

resilience, while the gradients can be sub-optimal. Based on the

discussion, we expect that a large m combined with F of 1 can

balance between training time efficiency and DC loss gradients’

accuracy. These two parameters should be carefully designed in

a production environment.

We first experimented with MNIST classification with dif-

ferent DC Frequencies and a constant loss multiplier of 0.1

(equivalent to reducing the learning rate by 10%), and studied

the tradeoff between accuracy and attack resilience, as shown

in Fig. 8(a). The x-axis represents the DC Frequency, the left

y-axis shows the learner accuracy and the right y-axis shows the

corresponding attack resilience.

From the top plot of Fig. 8,2 as DC Frequency is increasing,

for both Privacy-Aware FSL (PAFSL) and Privacy-Aware PSL

(PAPSL) systems, the attack resiliency increases and the learner

accuracy decreases, as expected. Notice that PAFSL achieves

better accuracy and good resilience for most DC Frequency

values. For DC Frequency from 10 to 20, given that the attack

2A DC Frequency of zero corresponds to Privacy-Oblivious FSL and Privacy-
Oblivious PSL, i.e. without privacy awareness.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY AND EFFICIENCY OF COMMUNICATIONS IN FEDERATED SL 1389

Fig. 8. LeNet+MNIST: Accuracy and attack resilience (τ) with 20 clients and
a Cut Index of 3 for Client-Based Privacy Approaches (via DC (a) and via DP (b))
and DP-SGD on the global learner model (c). Our FSL with both client-based
policies guarantees a high level of privacy and accuracy.

resilience of PAFSL and PAPSL are close within 10% difference,

PAFSL achieves more than 90% accuracy. From 25 to 35,

PAPSL does not learn any features while PAFSL still has about

80% accuracy. When DC Frequency is five, the PAPSL has an

advantage over PAFSL, with close accuracy, and PAPSL has

around 20% more attack resilience.

The Result Shows That Privacy-Aware FSL With CPA-DC is

Easier to Tune for High Accuracy and Attack Resilience: Within

the wider domain of DC Frequency, PAFSL has higher accuracy

and good attack resilience compared to PAPSL. This is because

of the learning rate in SerAVG and PSL. The server weight

update rule of PSL is shown in (7).

W t+1
g = W t

g − η

NC
∑

i=1

∂g(f(xi))

∂Wg

(7)

Similarly for FSL, we have (8).

W t+1
g =

∑NC

i=1

(

W t
g − η

∂g(f(xi))

∂Wg

)

NC

= W t
g −

η

NC

NC
∑

i=1

∂g(f(xi))

∂Wg

, (8)

where W t
g indicates the weights in the server at iteration t,

g is the server NN, f is the client NN, xi represent the i-th

batch of data, NC is the number of clients, and η is the step

size. Intuitively, since PSL has a larger step size, its server NN

can be confused quicker than FSL servers by the intermediate

data. Moreover, the confused server NN can further confuse the

client NN. It justifies our observation that PSL’s accuracy and

attack resilience become unstable quickly when increasing the

DC Frequency (F). Therefore, we conclude that FSL is easier to

tune compared to PSL.

In Fig. 7(b) and (d), with a fixed DC Frequency (F), we show

the accuracy (left y-axis) and attack resilience (right y-axis)

based on different Loss Multiplier (m) for different models and

datasets. Furthermore, we compared the privacy oblivious cases

(Fig. 7(a) and (c)), and the privacy-aware cases at different Cut

Indexes (x-axis). As expected, increasing the Loss Multiplier (m)

enhances attack resilience but reduces accuracy for different

datasets prevalently, especially when the client NN is deep.

Overall our evaluation of CPA-DC shows good attack re-

silience and accuracy with a combination of small DC Fre-

quency (F) and big Loss Multiplier (m). And our FSL has better

accuracy and similar attack resilience to PSL. We hence con-

clude that our CPA-DC can defend against our attacker model.

6) Privacy Evaluation With Differential Privacy Approach:

The previous section has discussed the CPA-DC, but instead

of DC there are other lightweight methods that can enhance

the privacy guarantee which adds noise to the client’s NN

while preventing depletion of the client’s battery quickly. In this

section, we compare CPA via Differential Privacy (CPA-DP

uses the popular DP-SGD [32] algorithm inside clients) and

CPA-DC. Also, we show that naïvely using DP-SGD in an FSL

system would lead to low accuracy. The implementation extends

the Privacy-Oblivious FSL with a DP-SGD optimizer, provided

by the Opacus [50] library. This method would add normally

distributed random noise to the gradients during backward prop-

agation based on noise_multiplier ǫ. This parameter controls

the magnitude of the noise added. Notice that DC generates the

gradients in a specific direction to reduce the correlation between

intermediate data and source data in each Distance Correlation

round. So we expect CPA-DP to have a worse level of privacy,

given the same level of learner accuracy, compared to CPA-DC.

Thus, the focus of this section is to show that CPA can be applied

with other privacy methods like DP, despite DP’s worse privacy

compared to DC.

We summarize the results of CPA-DP in Fig. 8(b). This plot

shows the result when Cut Index equals 3. The x-axis is the

noise_multiplier. The attack resiliency of FSL and PSL with

noise_multiplier > 0 is consistently better by nearly 5% than

FSL and PSL with noise_multiplier = 0. At the same time,

the accuracy decreases by less than 1% in either FSL or PSL

from noise_multiplier = 0 to noise_multiplier = 4.

CPA is a General Approach and Can Be Customized With

Different Methods to Enhance Attack Resilience: The evaluation

shows that CPA-DP can also improve attack resilience, while

learner accuracy does not change much. Compared with CPA-

DC, both methods provide similar learner accuracy, but CPA-

DC’s attack resilience is higher.

We now compare CPA-DP against applying DP-SGD in

both client NN and server NN. Fig. 8(c) shows high attack

resilience, but the learner accuracy of FSL drops below 60%

when noise_multiplier ≥ 0.3. Meanwhile, PSL shows a simi-

lar behavior as using CPA-DP. So, CPA-DP is considered a better

method for FSL to enhance its attack resilience than DP-SGD

applied in both clients and servers. The reason for FSL’s lower

accuracy under DP-SGD and high noise can be attributed to its

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

1390 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

SerAVG. After applying SerAVG, the distribution of the random

noise in the server NN can be arbitrary, as shown in (9), while the

noise in the client NN stays intact. Thus, the resulting complete

NN in FSL may not converge.

W t+1
g = W t

g −
η

NC

NC
∑

i=1

(

∂g(f(xi))

∂Wg

+ etgi

)

(9)

The variable etgi indicates the gaussian noise added

for the i-th server NN at iteration t according to etgi ∼

N (0, (noise_multiplier ×max_gradient_norm)2) [50].

7) Evaluation Using Different Ways of Partitioning NN: In

Fig. 7(a) and (c), the right y-axis shows the attack resilience, and

the x-axis indicates the Cut Indexes. Overall, if we have a deeper

client NN (i.e., moving from smaller to bigger Cut Indexes), the

attack resilience increases and accuracy decreases (consistent

with the SerAVG Evaluation in Section V-B4). After adding

more layers, the intermediate data would have fewer features

from the source data, but only keeps those that can improve

the classification accuracy. Thus, fewer features are preserved

and the attacker’s ability to reconstruct the source’s data is

hindered.

We also want to emphasize that with the CIFAR10 workload,

when there are 7 layers in the clients, the attack resilience reaches

about 80%. We reach the same result with MNIST workload at

the Cut Index of 4. No extra privacy-aware method was used,

and as we discussed earlier, the transmission delay can also be

reduced with a deeper NN in the client due to potentially smaller

intermediate data.

Cut Index is an Important Hyper-Parameter for Training

Delay, Accuracy, and Privacy: Different Cut Indexes bring the

following tradeoff: the deeper client NN adds more resource

demand at the edge, but reduces the transmission time and

enhances attack resilience. On the other hand, a shallower server

NN may lead to lower accuracy with SerAVG.

Furthermore, system architects can combine the approaches

mentioned above, e.g., having a moderately deep NN in

clients and using the CPA-DC, to find a balance between

resource demand and performance. As in Fig. 7(d), with

cut_index = 4, DC_Frequency = 1 and loss_multiplier =
0.3, we still get about 80% attack resilience and more than 90%

accuracy.

On the other hand, when comparing FSL and PSL, we

note that FSL has more hyper-parameters to tune. But, in

all experiments reported in Fig. 7, when the Cut Index is

large, FSL has better accuracy than PSL. So we conclude that

a carefully specified way of partitioning the NN can bene-

fit the most when applied in hybrid federated-split learning

systems.

8) Advantages and Limitations: The CPA-DC method intro-

duces a separate DC round to minimize DC loss, which adds

extra training overhead. We further introduce a loss multiplier,

to minimize the overhead by changing the step size. Tuning it

requires profiling and experience. We thus conclude that FSL and

CPA cannot solve all the limitations in Federated Learning (FL)

and Split Learning (SL) systems. But, their flexibility allows

users to customize a better distributed learning system that meets

their objectives in terms of latency, privacy, and accuracy.

VI. CONCLUSION

Systems like Federated Learning (FL), Split Learning (SL),

and later works aim to fit specific scenarios such as distributed

model training and inference. However, they are not flexible

enough to fit some use cases with the recent development in

edge and constrained devices.

In this work, we propose and extensively evaluate Federated

Split Learning (FSL), a system for efficient training and infer-

ence with high-level privacy for clients’ source data. We present

a Client-based Privacy Approach (CPA) for split learning-based

systems to provide high attack resilience by adding noise to the

intermediate data. We also study the training time, accuracy,

and privacy level of different ways to partition a NN in FSL.

As further works, we aim to research prediction-based NN

partitioning methods.

Moreover, comparisons between FSL and existing NN train-

ing and inference systems at the edge are carried out, along

with explanations of their pros and cons against FSL. Among

the main analyzed systems, the Parallel Split Learning (PSL)’s

principal limitation is a slow and stateful server, and the Feder-

ated Reconstruction (FRC) system is inefficient in training time

and inference time.

REFERENCES

[1] D. H. Mahlool and M. H. Abed, “A comprehensive survey on federated
learning: Concept and applications,” 2022, arXiv:2201.09384.

[2] P. Moritz et al., “Ray: A distributed framework for emerging AI applica-
tions,” in Proc. USENIX Conf. Operating Syst. Des. Implementation, 2018,
pp. 561–577.

[3] C. Park, D. Hong, and C. Seo, “An attack-based evaluation method
for differentially private learning against model inversion attack,” IEEE

Access, vol. 7, pp. 124988–124999, 2019.
[4] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated learning

for emoji prediction in a mobile keyboard,” 2019, arXiv: 1906.04329.
[5] A. Hard et al., “Federated learning for mobile keyboard prediction,”

2018, arXiv: 1811.03604.
[6] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Federated

learning for keyword spotting,” in Proc. IEEE Int. Conf. Acoust. Speech

Signal Process., 2019, pp. 6341–6345.
[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014, arXiv:1409.1556.
[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2009, pp. 248–255.
[9] A. Krizhevsky, “Learning multiple layers of features from tiny im-

ages,” Dept. Comput., Univ. Toronto, Toronto, Canada, Tech. Rep.,
2009.

[10] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017, pp. 1273–1282.

[11] S. Liu, J. Yu, X. Deng, and S. Wan, “FedCPF: An efficient-communication
federated learning approach for vehicular edge computing in 6G com-
munication networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 1616–1629, Feb. 2022.

[12] R. Pathak and M. J. Wainwright, “FedSplit: An algorithmic framework for
fast federated optimization,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2020, pp. 7057–7066.

[13] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8,
2018.

[14] A. Abedi and S. S. Khan, “FedSL: Federated split learning on distributed
sequential data in recurrent neural networks,” 2020, arXiv:2011.03180.

[15] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” in Proc. AAAI Conf. Artif. Intell.,
2022, pp. 8485–8493.

[16] J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in Proc. Int.

Conf. Inf. Netw., 2020, pp. 7–9.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY AND EFFICIENCY OF COMMUNICATIONS IN FEDERATED SL 1391

[17] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on Non-IID data,” 2019, arXiv:1907.02189.

[18] Y. Fraboni, R. Vidal, and M. Lorenzi, “Free-rider attacks on model ag-
gregation in federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.st.,
2021, pp. 1846–1854.

[19] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” MLSys, pp. 429–
450, 2020.

[20] Y. Gao et al., “End-to-End evaluation of federated learning and split
learning for Internet of Things,” in Proc. Int. Symp. Reliable Distrib. Syst.,
2020, pp. 91–100.

[21] H. Zhou, W. Zhang, C. Wang, X. Ma, and H. Yu, “BBNet: A novel convo-
lutional neural network structure in edge-cloud collaborative inference,”
Sensors, vol. 21, 2021, Art. no. 4494.

[22] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services,” in Proc.

IEEE/ACM Int. Symp. Low Power Electron. Des., 2019, pp. 1–6.
[23] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early

exiting for deep learning applications: Survey and research challenges,”
ACM Comput. Surv., vol. 55, no. 5, pp. 1–30, Dec. 2022.

[24] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh,
“Distilled split deep neural networks for edge-assisted real-time sys-
tems,” in Proc. Workshop Hot Top. Video Analytics Intell. Edges, 2019,
pp. 21–26.

[25] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Federated or split? A
performance and privacy analysis of hybrid split and federated learn-
ing architectures,” in Proc. IEEE 14th Int. Conf. Cloud Comput., 2021,
pp. 250–260.

[26] K. Singhal, H. Sidahmed, Z. Garrett, S. Wu, J. K. Rush, and S. Prakash,
“Federated reconstruction: Partially local federated learning,” in Proc. Int.

Conf. Neural Inf. Process. Syst., 2021, pp. 11 220–11 232.
[27] J. Yan and J. Yuan, “A survey of traffic classification in software defined

networks,” in Proc. 1st IEEE Int. Conf. Hot Inf.-Centric Netw., 2018,
pp. 200–206.

[28] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and L. Xiao, “Privacy-
preserving federated learning for UAV-enabled networks: Learning-based
joint scheduling and resource management,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 10, pp. 3144–3159, Oct. 2021.

[29] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc. ACM

Asia Conf. Comput. Commun. Secur., 2015, pp. 1322–1333.
[30] S. Hidano, T. Murakami, S. Katsumata, S. Kiyomoto, and G. Hanaoka,

“Model inversion attacks for prediction systems: Without knowledge of
non-sensitive attributes,” in Proc. 15th Annu. Conf. Privacy Secur. Trust,
2017, pp. 11501–11509.

[31] P. Vepakomma, A. Singh, O. Gupta, and R. Raskar, “NoPeek: Information
leakage reduction to share activations in distributed deep learning,” in
Proc. Int. Conf. Data Mining Workshops, 2020, pp. 933–942.

[32] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.
[33] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning from

differentially private neural activations with edge computing,” in Proc.

IEEE/ACM Symp. Edge Comput., 2018, pp. 90–102.
[34] J. Huang, C. Samplawski, D. Ganesan, B. Marlin, and H. Kwon, “CLIO:

Enabling automatic compilation of deep learning pipelines across IoT
and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1–12.

[35] S. Qiu, D. Wang, G. Xu, and S. Kumari, “Practical and provably secure
three-factor authentication protocol based on extended chaotic-maps for
mobile lightweight devices,” IEEE Trans. Dependable Secure Comput.,
vol. 19, no. 2, pp. 1338–1351, Mar./Apr. 2022.

[36] Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K.-K. R. Choo, “Unified
biometric privacy preserving three-factor authentication and key agree-
ment for cloud-assisted autonomous vehicles,” IEEE Trans. Veh. Technol.,
vol. 69, no. 9, pp. 9390–9401, Sep. 2020.

[37] J. Li, A. S. Rakin, X. Chen, Z. He, D. Fan, and C. Chakrabarti, “ResSFL: A
resistance transfer framework for defending model inversion attack in split
federated learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 10184–10192.

[38] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. 22nd Int. Conf. Architectural Support

Program. Lang. Operating Syst., 2017, pp. 615–629.
[39] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. Tolstikhin, “Pre-

dicting neural network accuracy from weights,” 2020, arXiv:2002.11448.
[40] K. K. et al., “Lessons learned from the chameleon testbed,” in Proc.

USENIX Conf. Usenix Annu. Tech. Conf., 2020, pp. 219–233.

[41] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[42] T. Ryffel et al., “A generic framework for privacy preserving deep learn-
ing,” 2018, arXiv:1811.04017.

[43] PyGrid, 2020. [Online]. Available: https://github.com/OpenMined/
PyGrid

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[45] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,”
in Proc. IEEE Int. Conf. Intell. Secur. Inform., 2017, pp. 43–48.

[46] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[47] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hy-
perband: A novel bandit-based approach to hyperparameter optimization,”
J. Mach. Learn. Res., vol. 18, pp. 6765–6816, 2018.

[48] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description length
and helmholtz free energy,” in Proc. 6th Int. Conf. Neural Inf. Process.

Syst., San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993,
pp. 3–10.

[49] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: Extending
MNIST to handwritten letters,” in Proc. Int. Joint Conf. Neural Netw.,
2017, pp. 2921–2926.

[50] A. Yousefpour et al., “Opacus: User-friendly differential privacy library in
PyTorch,” 2021, arXiv:2109.12298.

Zongshun Zhang received the BS degree in computer science from the Uni-
versity of Minnesota, Twin City, in 2019. He is currently working toward the
PhD degree in computer science with Boston University, advised by Professor
Abraham Matta. He is interested in researching cloud resource-orchestration
methods, recently focusing on the efficient usage of serverless platforms for
ML(Neural Network) algorithms.

Andrea Pinto received the BS and MS degrees in computer engineering from the
University of Naples, Federico II, Italy, in 2020. He is currently working toward
the PhD degree in computer science since Fall 2021. His research interests
include computer networks, network management, and artificial intelligence
for network softwarization through technologies such as Software-Defined
Networks. Dr. Flavio Esposito is his primary adviser.

Valeria Turina received the MS degree in mathematical engineering from
Politecnico di Torino, in 2020. She is a data scientist with Data Reply IT; she
mainly deals with Machine Learning and Deep Learning projects applied to
Natural Language Processing and Text Analysis. She was a visiting scholar
with Computer Science Department, Saint Louis University. Her research inter-
ests include focused on efficient decentralized deep learning architectures and
privacy-aware algorithms.

Flavio Esposito received the PhD degree in computer science from Boston
University, USA, in 2013, and the MS degree in telecommunication engineering
from the University of Florence, Italy. He is an associate professor with the
Department of Computer Science, Saint Louis University. His research interests
include network management, network virtualization, and distributed systems.

Ibrahim Matta (Senior Member, IEEE) received the PhD degree in computer
science from the University of Maryland at College Park, in 1995. He is a
professor and chair of computer science with Boston University. His research
interests include involves network protocols, architectures, and performance
evaluation. He has published more than 100 peer-reviewed articles. He received
the National Science Foundation CAREER Award in 1997 for his research
on QoS routing. He has served as the chair or co-chair of many technical
committees, including IEEE 2011 CCW and 2005 ICNP. He is a senior member
of ACM.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 20:37:29 UTC from IEEE Xplore. Restrictions apply.

