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Abstract—The high programmability provided by Software
Defined Networking (SDN) paradigm facilitated the integration
of Machine Learning (ML) methods to design a new family of
network management schemes. Among them, we can cite self-
driving networks, where ML is used to analyze data and define
strategies that are then translated into network configurations
by the SDN controllers, making the networks autonomous and
capable of auto-scaling decisions based on the network’s needs.
Despite their attractiveness, the centralized design of the majority
of proposed solutions cannot keep up with the increasing size of
the network. To this end, this paper investigates the use of a multi-
agent reinforcement learning (MARL) model for auto-scaling
decisions in an SDN environment. In particular, we study two
possible alternatives for distributing operations: a collaborative
one, where controllers share the same observations, and an
individual one, where controllers make decisions according to
their own logic and share only some basic information, such as
the network topology. After an experimental campaign performed
both on Mininet and GENI, results showed that both approaches
can guarantee high throughput while minimizing the set of active
resources.

Index Terms—software-defined networking, distributed learn-
ing, reinforcement learning

I. INTRODUCTION

The presence of new requirements, e.g., high reliability, zero
packet loss, and real-time interaction, posed by data-intensive
applications, e.g., augmented/virtual reality, industrial 4.0, or
healthcare, exacerbates the need for more performant, scalable,
resilient, and self-adapting networks [1], [2]. To support such
applications, there is a need to rethink the design of both
networks and applications, creating more intelligent and au-
tonomous networks. Next-generation networks are envisioned
as the answer to network operators and service providers
to replace existing infrastructures and to introduce a new
platform able to support new telecommunication businesses
and services. They are considered key enablers for delivering
new services that are available to any place, at any time, on
any device.

To provide such (artificial) intelligence, there is an increas-
ing interest in equipping networks with autonomous run-time
decision-making capabilities incorporating distributed machine
learning (ML) algorithms, to foster automation in network
configurations, network management, and network resiliency.
While AI/ML technologies continue to evolve at a rapid pace,
moving from a paradigm of supervised learning towards dis-
tributed self-learning requires solving several challenges in the
design and deployment of wide-scale networks. Among those

challenges, the scalability of AI/ML models for managing the
Next Generation Internet is particularly critical.

Recent studies have partially addressed some of these chal-
lenges by employing model-free approaches to efficiently man-
age network resources. In particular, Reinforcement Learning
(RL) finds profitable applicability given its ability to fit the
network dynamics well without any prior knowledge [3]-
[6]. With such auto-scaling solutions, networks can deactivate
idle resources that may increase unnecessary (energy) costs
and provide redundant facilities to face workload peaks or
unexpected failures. However, current solutions fail to man-
age large-scale networks as they are limited by the single-
controller architecture. In this paper, we argue that a multi-
agent approach is needed to overcome limitations. At the
same time, distributed controllers raise new challenges to be
addressed, for example, controllers must cooperate by sharing
their information in order to make the best decision.

In this paper, we propose and evaluate two different ways
of distributing information among controllers. A first col-
laborative distributed approach, in which controllers share
their local network information to achieve a common global
view of the network state to make the finest decisions; and a
second individually distributed approach, in which controllers
autonomously manage their own network area and only share
topology information or its changes.

In addition to evaluating different control plane architec-
tures, we also study the impact that different data plane
technologies can have. In particular, we implemented a net-
work based on P4-enabled switches and OpenFlow-enabled
switches, where the network is emulated over Mininet and
then replicated over a real-world testbed as GENI. Regarding
the data-plane level, we experienced how P4 implementation
is more efficient, while performance with OpenFlow are fluc-
tuating. Regarding the control-plane level, we have observed
that the individually distributed approach, despite its simplicity
and less overhead, leads to similar results, thus being a valid
solution in a real deployment.

II. RELATED WORK

Since SDN centralized controller architectures are limited
in terms of scalability, reliability, and availability, interest has
grown in physically-distributed control plane architectures,
which can face big dynamic networks such as data centers
and WANSs. Onix [7], ONOS [8], and HyperFlow [9] are
examples of multi-controller architectures that operate on a
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global view of the network through the distribution of their
state, but differ for the data structures they employ and their
replication mechanisms. While in Onix and ONQOS, controllers
are aware only of a portion of the managed network and
later share with others information to construct a global view,
in Hyperflow the controllers have the same global view of
the network and run with the illusion to have control over
all of it. Opposed to them, there are logically distributed
architectures, such as the one proposed by DISCO [10],
where each controller takes decisions based on its local view,
distributing only topology information that is necessary for
basic services, e.g. routing. Having a per domain structure,
DISCO provides a distributed control plane that can manage
large and heterogeneous networks such as WAN:Ss.

In this paper, two different controller designs are compared:
collaborative and individually distributed architecture. The for-
mer, similarly to Onix and ONOS, deploys multiple controllers
that share their network state through Raft [11] to achieve a
consistent view of the entire network, later used for the RL
decision-making process. In the latter, similarly to DISCO,
controllers feed the model with their local network state and
are equipped with a TCP channel for inter-controller commu-
nications in order to trade topological information for routing.

At the same time, literature about automating network op-
erations is rich [12]. An RL approach to automate networking
tasks has been proposed with DeepConf [13]. In their auto-
scaling use case, the model learns the best links to activate at
each step based on a double state input composed of a traffic
matrix and a network topology matrix. Some studies applied
RL to optimize power-consumption by consolidating traffic in
the minimum amount of links, rewarding power saving and
flow completion time [14] or using a deep learning model
to predict the traffic and activate the sleep/wake up model
for some switches and links based on current and predicted
traffic [15]. The main difference between our work and other
solutions relies on the controller design, since we employ
multiple controllers and manage every network area with a
different model instance. Although Multi-Agent Reinforce-
ment Learning (MARL) has been used in other domains,
e.g., routing [16] or VM consolidation [17], the usage of
possible distributed architecture in auto-scaling networks is
mostly unexplored.

III. MULTI-AGENT CONTROLLERS DESIGN

With this paper, we attempt to move towards a fully auto-
mated network, often referred to as self-driving network. Self-
driving networks can measure, analyze, and control themselves
in an automated manner, reacting to environmental changes,
e.g., traffic volume, while adjusting and optimizing themselves
as needed [18]. In particular, in this paper, we propose an
autonomous network planning framework that can dynami-
cally scale up and down network resources as traffic volume
changes to optimize resource utilization while guaranteeing
high applicative throughput. The basic idea of our solution is
to activate supporting switches that are typically unused, but
that can be leveraged to deal successfully with congestion. On
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Fig. 1: System architecture. The SDN controllers receive in
input the network statistics and, using the DRL model, select
the best set of network resources to deploy. According to this
decision, routing tables should be appropriately updated.

SDN
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the contrary, to consolidate resources, they can be deactivated
in order to save computing power.

We sketch the main operations of our solution in Figure 1.
First, the multiple SDN controllers deployed collect and
maintain traffic statistics from local switches and calculate
the throughput of flows. Based on the chosen design, specific
information are exchanged with other controllers and the
network state is built up. The RL model generates the best
action to take based on the input received and gets rewarded.
The action list may change the status of supporting switches.
In these circumstances, the virtual topology view is modified
and re-routing is performed, preferring less congested paths.

Our solution employs a Deep Reinforcement Learning
(DRL) approach where the agent observes the state of the
environment, our network, and generates an action that will
alter the environment. Every action is rewarded with a scalar
value to learn the best policy to actuate. The DRL agent
receives the inputs, selects the best action, uses the reward
value to evaluate the goodness of the chosen action, and
proceeds with this process continuously. We deploy the Deep
Q-Learning algorithm that, making use of two neural networks
(main and target network) with different weights, increases
stability during training. Differently from vanilla Q-Learning,
the neural network in this implementation maps input states to
pairs of (action, Q-value), where the Q-value is the maximum
estimated return for taking action into a given state, but
equivalently updates the neural network weights conforming
to Bellman Equation. During the training phase, we adopt
the Epsilon-Greedy policy in order to balance exploration
and exploitation. The model initially explores the environment
by taking randomized actions with a certain probability that
decreases as the training goes on, in order to later exploit and
evaluate the temporarily learned policy. To optimize the learn-
ing process, the RL agent periodically performs experience
replay. The learning phase is separated from acting and relies
upon randomly sampled batches of recorded data. The neural
network output is mapped into a distribution of probabilities
by a Softmax layer, and the action with the highest probability
is then chosen. As in any other RL-based algorithm, we need
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to define the main variables of the framework: state, action,
and reward. In our solution, we have the following mappings:
State space: The agent state space is based on the load of
links. The number of links considered as input depends on the
specific distribution framework selected (see Section III-A).
Action space: For each supporting switch, the model defines
if such a switch has to be powered on or off.

Reward: The purpose of the model is to find the best re-
source allocation that maximizes the network-aware reward,
where our objective is to detect the minimal set of active
resources that can satisfy traffic demands. With this in mind,
we construct the reward function considering the network
performance and a penalization for resource overprovisioning
to discourage a scenario where supporting switches are active
but unhelpful to traffic. The reward equation results as the
average network throughput deducted by the power associated
with each activated supporting switch.

A. Two Multi-Agent Network Management Approaches

We now define the two possible alternatives that we de-
signed to manage multiple sub-networks.
Collaborative distributed. The first design choice we propose
deploys multiple controllers training DRL agents that learn
how to produce collaborative behaviors.In particular, the state
space we use is the global information on links utilization plus
the state of supporting switches, i.e., whether they are active
or not. In such a manner, agents can see the effect of their joint
action in the network. Actions about the planning of network
resources of the SDN controller, instead, regard the single sub-
network. In other words, the model is logically centralized, but
it runs in a multi-agent setting for reliability and scalability
reasons. To gain a consistent network-wide view, metrics of
local networks are aggregated and then distributed through
Raft to all the controllers. At this point, the model input is built
and sent to RL agents that will act as discussed previously.
Individually distributed. Opposed to the aforementioned
design, we also present a fully distributed solution. The
leading idea is to train agents independently of each other
to make a comparison between the learned behaviors and
reached performance of the two study cases. When controllers
are instantiated, they have knowledge of their local network
only, which they will autonomously manage all along. To
guarantee essential services, e.g., routing, they are equipped
with a TCP channel to share local information about hosts and
topology that they will consolidate in a virtual global network
view. In this scenario, agents are independent of each other,
considering that they do not share network state information
nor model parameters. The main difference compared to the
collaborative version resides in the state space: The input of
each model is determined by local link utilization rather than
global network utilization.

IV. EVALUATION

In this section, we analyze and compare the two designs
proposed. We first deployed the network over Mininet [19], a

network emulator that allows reproducing arbitrary virtual net-
works. We test performance when switches are programmed
with the two most used languages: first P4-enabled and then
OpenFlow (OF)-enabled switches. The network topology used
contains 13 nodes, where 3 of them are supporting switches
that can be activated/deactivated. We also employ 3 SDN con-
trollers to manage different sub-networks. Half of the clients
send iPerf3 traffic with custom scripts that, for each training
episode, alternate highly rated traffic and weakly rated traffic.

Fig. 2 presents the average throughput for two concurrent
flows during the training phase of the agents in the two
management designs, and for both P4 and OpenFlow
protocols. For each setting, we stop the monitoring when
the reward converges. As training proceeds, the exploration
probability decreases in favor of exploitation, and as our
model learns the best policy, throughput is encouraged. This
increasing trend highlights the fact that our program learns to
maximize the designed reward function, and it reaches better
network performance than a random policy. We can observe
how, in the case of collaboration (Fig. 2a), the throughput is
more stable. Moreover, in the case of P4 the throughput is
notably higher than OpenFlow.

We further investigate these differences and analyze the im-
pact that the data plane technologies can have. Fig. 3 provides
a closer look at the throughput achieved with P4 and Open-
Flow protocols during the test phase of the RL model. When
using P4, the maximum throughput (as our network setup
permits) is reached. All OpenFlow-based implementations face
a lower and unstable throughput. This poor performance may
be due to the higher number of rules configured in OpenFlow
switches, which affect configuration and look-up time. If P4-
based switches let us program one rule per destination address,
this could not be possible with OpenFlow.

Since our model should also detect when resources are need-
less, we simulated congestion in the sub-network 2, followed
by less intensive traffic. We show in Fig. 4 the throughput after
the model has been trained. It can be observed that the cor-
responding controller powers it off when the traffic decreases
(around 30 seconds), and it also autonomously decide to power
on the supporting switch to sustain the increment in traffic
(around 60 seconds). As far as concerns the collaborative
solution, even though simulated flows traverse the whole
network and all controllers are aware of the congestion, our
model can identify the best spot where additional resources
overcome congestion. It is clear from the figure that other
agents keep supporting switches powered off. Whereas, in
the individually distributed design, controllers don’t know
about congestion in other sub-networks and learned to act
independently for the sake of their local network.

From the graphs it appears how, despite the conceptual
difference between the two implementations, the experienced
behavior produces similar results, with a slightly higher
throughput for the collaborative framework. This result is
particularly important since it can suggest that an individual
distributed setting, which requires less exchange of packets
among controllers, can still obtain acceptable performance.
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Fig. 2: Throughput of flows during training. While differences
between collaborative or individual is negligible, the through-
put differs for P4 or OpenFlow (OF).
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Fig. 3: Throughput of flows during testing. OpenFlow metrics
are more jumpy.

Regarding the switch languages then, with the P4 imple-
mentation, the achieved throughput is the maximum allowed
by our network setup. As OpenFlow networks reach lower
throughput in respect of P4, we can also observe a more stable
and higher throughput in our collaborative distributed solution.

Lastly, to understand the convenience of an auto-scaling
system, we compare our model performance against a min-
imal setting and a network with always active resources
that implement ECMP routing. Fig. 5 demonstrates that our
independent version of logic distribution can achieve pretty
similar performance to an always on case where switches are
always active. However, in addition to this, our reactive logic
can also reduce energy consumption powering off resources
when they are not needed.
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A. GENI evaluation

To establish the practicality of our approach and under-
stand how our solution performs over geographically dis-
tributed physical nodes with real cross-traffic and real packet
schedulers, we deploy our solution on the GENI testbed'.
Experiments are performed on a topology consisting of 9
nodes (referred to as small), and a larger composed of 18
nodes (referred to as large). Switches run OpenFlow rules.
We compare the auto-scaling solution driven by the RL model
against a minimal scenario where RL is not employed. In this
case, the hosts used the shortest path configured by the Ryu
controller. The second version requires the RL model, which
can activate the path with the supportive switches.

Uhttps://www.geni.net/
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Fig. 6: (a) - (b) RTT evolution when increasing bottleneck traffic.
The auto-scaling schema can jointly reduce RTT while maximizing throughput.

Figure 6a-b shows the average RTT of 2 concurrent commu-
nications when increasing the bottleneck link utilization in the
(a) small and (b) larger topology. It can be seen that when the
bottleneck utilization starts increasing (more than 30% in small
topology), the reactive planning schema is able to maintain the
RTT stable and limited to around 2.5 ms. The most significant
difference happens with high utilization, as our algorithm can
find adequate paths to accommodate the incoming traffic. In
the absence of such a mechanism, the RTT would reach 12 ms,
which value can undermine the overall application transmis-
sions. Similarly, for large topology, the RTT is kept limited. In
Figure 6¢-d we report the throughput of transmissions in the
same conditions as before. We can clearly observe that, despite
an increment in network utilization, our RL-based model can
preserve the throughput in both circumstances. In the small
topology (Figure 6¢), the throughput can reach 70 Mbps, while
in the large network, the throughput is up to 37 Mpbs due to
the more clients transmitting at the same time.

V. CONCLUSION

In this paper, we addressed the need of managing virtual
networks with multiple controllers in an automated manner,
presenting two possible designs. In a collaborative framework,
the models running on the controllers operate on a global net-
work view, while in an individual framework, the controllers
autonomously orchestrate their network area. In addition to
diverse control-plane settings, we evaluated diverse data-plane
languages, experiencing how tests with P4-enabled switches
are more stable. Both logic distribution approaches are capable
of deploying appropriate reaction changes based on the traffic
load and seem to achieve similar performance. This outcome
will be further investigated in the future with more realistic
traffic conditions and larger topologies.
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