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AbstractÐThe high programmability provided by Software
Defined Networking (SDN) paradigm facilitated the integration
of Machine Learning (ML) methods to design a new family of
network management schemes. Among them, we can cite self-
driving networks, where ML is used to analyze data and define
strategies that are then translated into network configurations
by the SDN controllers, making the networks autonomous and
capable of auto-scaling decisions based on the network’s needs.
Despite their attractiveness, the centralized design of the majority
of proposed solutions cannot keep up with the increasing size of
the network. To this end, this paper investigates the use of a multi-
agent reinforcement learning (MARL) model for auto-scaling
decisions in an SDN environment. In particular, we study two
possible alternatives for distributing operations: a collaborative
one, where controllers share the same observations, and an
individual one, where controllers make decisions according to
their own logic and share only some basic information, such as
the network topology. After an experimental campaign performed
both on Mininet and GENI, results showed that both approaches
can guarantee high throughput while minimizing the set of active
resources.

Index TermsÐsoftware-defined networking, distributed learn-
ing, reinforcement learning

I. INTRODUCTION

The presence of new requirements, e.g., high reliability, zero

packet loss, and real-time interaction, posed by data-intensive

applications, e.g., augmented/virtual reality, industrial 4.0, or

healthcare, exacerbates the need for more performant, scalable,

resilient, and self-adapting networks [1], [2]. To support such

applications, there is a need to rethink the design of both

networks and applications, creating more intelligent and au-

tonomous networks. Next-generation networks are envisioned

as the answer to network operators and service providers

to replace existing infrastructures and to introduce a new

platform able to support new telecommunication businesses

and services. They are considered key enablers for delivering

new services that are available to any place, at any time, on

any device.

To provide such (artificial) intelligence, there is an increas-

ing interest in equipping networks with autonomous run-time

decision-making capabilities incorporating distributed machine

learning (ML) algorithms, to foster automation in network

configurations, network management, and network resiliency.

While AI/ML technologies continue to evolve at a rapid pace,

moving from a paradigm of supervised learning towards dis-

tributed self-learning requires solving several challenges in the

design and deployment of wide-scale networks. Among those

challenges, the scalability of AI/ML models for managing the

Next Generation Internet is particularly critical.

Recent studies have partially addressed some of these chal-

lenges by employing model-free approaches to efficiently man-

age network resources. In particular, Reinforcement Learning

(RL) finds profitable applicability given its ability to fit the

network dynamics well without any prior knowledge [3]±

[6]. With such auto-scaling solutions, networks can deactivate

idle resources that may increase unnecessary (energy) costs

and provide redundant facilities to face workload peaks or

unexpected failures. However, current solutions fail to man-

age large-scale networks as they are limited by the single-

controller architecture. In this paper, we argue that a multi-

agent approach is needed to overcome limitations. At the

same time, distributed controllers raise new challenges to be

addressed, for example, controllers must cooperate by sharing

their information in order to make the best decision.

In this paper, we propose and evaluate two different ways

of distributing information among controllers. A first col-

laborative distributed approach, in which controllers share

their local network information to achieve a common global

view of the network state to make the finest decisions; and a

second individually distributed approach, in which controllers

autonomously manage their own network area and only share

topology information or its changes.

In addition to evaluating different control plane architec-

tures, we also study the impact that different data plane

technologies can have. In particular, we implemented a net-

work based on P4-enabled switches and OpenFlow-enabled

switches, where the network is emulated over Mininet and

then replicated over a real-world testbed as GENI. Regarding

the data-plane level, we experienced how P4 implementation

is more efficient, while performance with OpenFlow are fluc-

tuating. Regarding the control-plane level, we have observed

that the individually distributed approach, despite its simplicity

and less overhead, leads to similar results, thus being a valid

solution in a real deployment.

II. RELATED WORK

Since SDN centralized controller architectures are limited

in terms of scalability, reliability, and availability, interest has

grown in physically-distributed control plane architectures,

which can face big dynamic networks such as data centers

and WANs. Onix [7], ONOS [8], and HyperFlow [9] are

examples of multi-controller architectures that operate on a
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global view of the network through the distribution of their

state, but differ for the data structures they employ and their

replication mechanisms. While in Onix and ONOS, controllers

are aware only of a portion of the managed network and

later share with others information to construct a global view,

in Hyperflow the controllers have the same global view of

the network and run with the illusion to have control over

all of it. Opposed to them, there are logically distributed

architectures, such as the one proposed by DISCO [10],

where each controller takes decisions based on its local view,

distributing only topology information that is necessary for

basic services, e.g. routing. Having a per domain structure,

DISCO provides a distributed control plane that can manage

large and heterogeneous networks such as WANs.

In this paper, two different controller designs are compared:

collaborative and individually distributed architecture. The for-

mer, similarly to Onix and ONOS, deploys multiple controllers

that share their network state through Raft [11] to achieve a

consistent view of the entire network, later used for the RL

decision-making process. In the latter, similarly to DISCO,

controllers feed the model with their local network state and

are equipped with a TCP channel for inter-controller commu-

nications in order to trade topological information for routing.

At the same time, literature about automating network op-

erations is rich [12]. An RL approach to automate networking

tasks has been proposed with DeepConf [13]. In their auto-

scaling use case, the model learns the best links to activate at

each step based on a double state input composed of a traffic

matrix and a network topology matrix. Some studies applied

RL to optimize power-consumption by consolidating traffic in

the minimum amount of links, rewarding power saving and

flow completion time [14] or using a deep learning model

to predict the traffic and activate the sleep/wake up model

for some switches and links based on current and predicted

traffic [15]. The main difference between our work and other

solutions relies on the controller design, since we employ

multiple controllers and manage every network area with a

different model instance. Although Multi-Agent Reinforce-

ment Learning (MARL) has been used in other domains,

e.g., routing [16] or VM consolidation [17], the usage of

possible distributed architecture in auto-scaling networks is

mostly unexplored.

III. MULTI-AGENT CONTROLLERS DESIGN

With this paper, we attempt to move towards a fully auto-

mated network, often referred to as self-driving network. Self-

driving networks can measure, analyze, and control themselves

in an automated manner, reacting to environmental changes,

e.g., traffic volume, while adjusting and optimizing themselves

as needed [18]. In particular, in this paper, we propose an

autonomous network planning framework that can dynami-

cally scale up and down network resources as traffic volume

changes to optimize resource utilization while guaranteeing

high applicative throughput. The basic idea of our solution is

to activate supporting switches that are typically unused, but

that can be leveraged to deal successfully with congestion. On

Fig. 1: System architecture. The SDN controllers receive in

input the network statistics and, using the DRL model, select

the best set of network resources to deploy. According to this

decision, routing tables should be appropriately updated.

the contrary, to consolidate resources, they can be deactivated

in order to save computing power.

We sketch the main operations of our solution in Figure 1.

First, the multiple SDN controllers deployed collect and

maintain traffic statistics from local switches and calculate

the throughput of flows. Based on the chosen design, specific

information are exchanged with other controllers and the

network state is built up. The RL model generates the best

action to take based on the input received and gets rewarded.

The action list may change the status of supporting switches.

In these circumstances, the virtual topology view is modified

and re-routing is performed, preferring less congested paths.

Our solution employs a Deep Reinforcement Learning

(DRL) approach where the agent observes the state of the

environment, our network, and generates an action that will

alter the environment. Every action is rewarded with a scalar

value to learn the best policy to actuate. The DRL agent

receives the inputs, selects the best action, uses the reward

value to evaluate the goodness of the chosen action, and

proceeds with this process continuously. We deploy the Deep

Q-Learning algorithm that, making use of two neural networks

(main and target network) with different weights, increases

stability during training. Differently from vanilla Q-Learning,

the neural network in this implementation maps input states to

pairs of (action, Q-value), where the Q-value is the maximum

estimated return for taking action into a given state, but

equivalently updates the neural network weights conforming

to Bellman Equation. During the training phase, we adopt

the Epsilon-Greedy policy in order to balance exploration

and exploitation. The model initially explores the environment

by taking randomized actions with a certain probability that

decreases as the training goes on, in order to later exploit and

evaluate the temporarily learned policy. To optimize the learn-

ing process, the RL agent periodically performs experience

replay. The learning phase is separated from acting and relies

upon randomly sampled batches of recorded data. The neural

network output is mapped into a distribution of probabilities

by a Softmax layer, and the action with the highest probability

is then chosen. As in any other RL-based algorithm, we need
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to define the main variables of the framework: state, action,

and reward. In our solution, we have the following mappings:

State space: The agent state space is based on the load of

links. The number of links considered as input depends on the

specific distribution framework selected (see Section III-A).

Action space: For each supporting switch, the model defines

if such a switch has to be powered on or off.

Reward: The purpose of the model is to find the best re-

source allocation that maximizes the network-aware reward,

where our objective is to detect the minimal set of active

resources that can satisfy traffic demands. With this in mind,

we construct the reward function considering the network

performance and a penalization for resource overprovisioning

to discourage a scenario where supporting switches are active

but unhelpful to traffic. The reward equation results as the

average network throughput deducted by the power associated

with each activated supporting switch.

A. Two Multi-Agent Network Management Approaches

We now define the two possible alternatives that we de-

signed to manage multiple sub-networks.

Collaborative distributed. The first design choice we propose

deploys multiple controllers training DRL agents that learn

how to produce collaborative behaviors.In particular, the state

space we use is the global information on links utilization plus

the state of supporting switches, i.e., whether they are active

or not. In such a manner, agents can see the effect of their joint

action in the network. Actions about the planning of network

resources of the SDN controller, instead, regard the single sub-

network. In other words, the model is logically centralized, but

it runs in a multi-agent setting for reliability and scalability

reasons. To gain a consistent network-wide view, metrics of

local networks are aggregated and then distributed through

Raft to all the controllers. At this point, the model input is built

and sent to RL agents that will act as discussed previously.

Individually distributed. Opposed to the aforementioned

design, we also present a fully distributed solution. The

leading idea is to train agents independently of each other

to make a comparison between the learned behaviors and

reached performance of the two study cases. When controllers

are instantiated, they have knowledge of their local network

only, which they will autonomously manage all along. To

guarantee essential services, e.g., routing, they are equipped

with a TCP channel to share local information about hosts and

topology that they will consolidate in a virtual global network

view. In this scenario, agents are independent of each other,

considering that they do not share network state information

nor model parameters. The main difference compared to the

collaborative version resides in the state space: The input of

each model is determined by local link utilization rather than

global network utilization.

IV. EVALUATION

In this section, we analyze and compare the two designs

proposed. We first deployed the network over Mininet [19], a

network emulator that allows reproducing arbitrary virtual net-

works. We test performance when switches are programmed

with the two most used languages: first P4-enabled and then

OpenFlow (OF)-enabled switches. The network topology used

contains 13 nodes, where 3 of them are supporting switches

that can be activated/deactivated. We also employ 3 SDN con-

trollers to manage different sub-networks. Half of the clients

send iPerf3 traffic with custom scripts that, for each training

episode, alternate highly rated traffic and weakly rated traffic.

Fig. 2 presents the average throughput for two concurrent

flows during the training phase of the agents in the two

management designs, and for both P4 and OpenFlow

protocols. For each setting, we stop the monitoring when

the reward converges. As training proceeds, the exploration

probability decreases in favor of exploitation, and as our

model learns the best policy, throughput is encouraged. This

increasing trend highlights the fact that our program learns to

maximize the designed reward function, and it reaches better

network performance than a random policy. We can observe

how, in the case of collaboration (Fig. 2a), the throughput is

more stable. Moreover, in the case of P4 the throughput is

notably higher than OpenFlow.

We further investigate these differences and analyze the im-

pact that the data plane technologies can have. Fig. 3 provides

a closer look at the throughput achieved with P4 and Open-

Flow protocols during the test phase of the RL model. When

using P4, the maximum throughput (as our network setup

permits) is reached. All OpenFlow-based implementations face

a lower and unstable throughput. This poor performance may

be due to the higher number of rules configured in OpenFlow

switches, which affect configuration and look-up time. If P4-

based switches let us program one rule per destination address,

this could not be possible with OpenFlow.

Since our model should also detect when resources are need-

less, we simulated congestion in the sub-network 2, followed

by less intensive traffic. We show in Fig. 4 the throughput after

the model has been trained. It can be observed that the cor-

responding controller powers it off when the traffic decreases

(around 30 seconds), and it also autonomously decide to power

on the supporting switch to sustain the increment in traffic

(around 60 seconds). As far as concerns the collaborative

solution, even though simulated flows traverse the whole

network and all controllers are aware of the congestion, our

model can identify the best spot where additional resources

overcome congestion. It is clear from the figure that other

agents keep supporting switches powered off. Whereas, in

the individually distributed design, controllers don’t know

about congestion in other sub-networks and learned to act

independently for the sake of their local network.

From the graphs it appears how, despite the conceptual

difference between the two implementations, the experienced

behavior produces similar results, with a slightly higher

throughput for the collaborative framework. This result is

particularly important since it can suggest that an individual

distributed setting, which requires less exchange of packets

among controllers, can still obtain acceptable performance.
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(a) Collaborative distributed (P4) (b) Collaborative distributed (OF)

(c) Individually distributed (P4) (d) Individually distributed (OF)

Fig. 2: Throughput of flows during training. While differences

between collaborative or individual is negligible, the through-

put differs for P4 or OpenFlow (OF).

(a) Collaborative distributed (P4) (b) Collaborative distributed (OF)

(c) Individually distributed (P4) (d) Individually distributed (OF)

Fig. 3: Throughput of flows during testing. OpenFlow metrics

are more jumpy.

Regarding the switch languages then, with the P4 imple-

mentation, the achieved throughput is the maximum allowed

by our network setup. As OpenFlow networks reach lower

throughput in respect of P4, we can also observe a more stable

and higher throughput in our collaborative distributed solution.

Lastly, to understand the convenience of an auto-scaling

system, we compare our model performance against a min-

imal setting and a network with always active resources

that implement ECMP routing. Fig. 5 demonstrates that our

independent version of logic distribution can achieve pretty

similar performance to an always on case where switches are

always active. However, in addition to this, our reactive logic

can also reduce energy consumption powering off resources

when they are not needed.

(a) Collaborative distributed (P4) (b) Collaborative distributed (OF)

(c) Individually distributed (P4) (d) Individually distributed (OF)

Fig. 4: Evolution of throughput (left side) and actions (right

side) in the three network regions.

(a) Collaborative distributed (P4) (b) Collaborative distributed (OF)

(c) Individually distributed (P4) (d) Individually distributed (OF)

Fig. 5: Throughput evolution for a minimal setting, always-on

configuration, and our model.

A. GENI evaluation

To establish the practicality of our approach and under-

stand how our solution performs over geographically dis-

tributed physical nodes with real cross-traffic and real packet

schedulers, we deploy our solution on the GENI testbed1.

Experiments are performed on a topology consisting of 9

nodes (referred to as small), and a larger composed of 18

nodes (referred to as large). Switches run OpenFlow rules.

We compare the auto-scaling solution driven by the RL model

against a minimal scenario where RL is not employed. In this

case, the hosts used the shortest path configured by the Ryu

controller. The second version requires the RL model, which

can activate the path with the supportive switches.

1https://www.geni.net/
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Fig. 6: (a) - (b) RTT evolution when increasing bottleneck traffic. (c) - (d) throughput evolution over the GENI testbed.

The auto-scaling schema can jointly reduce RTT while maximizing throughput.

Figure 6a-b shows the average RTT of 2 concurrent commu-

nications when increasing the bottleneck link utilization in the

(a) small and (b) larger topology. It can be seen that when the

bottleneck utilization starts increasing (more than 30% in small

topology), the reactive planning schema is able to maintain the

RTT stable and limited to around 2.5 ms. The most significant

difference happens with high utilization, as our algorithm can

find adequate paths to accommodate the incoming traffic. In

the absence of such a mechanism, the RTT would reach 12 ms,

which value can undermine the overall application transmis-

sions. Similarly, for large topology, the RTT is kept limited. In

Figure 6c-d we report the throughput of transmissions in the

same conditions as before. We can clearly observe that, despite

an increment in network utilization, our RL-based model can

preserve the throughput in both circumstances. In the small

topology (Figure 6c), the throughput can reach 70 Mbps, while

in the large network, the throughput is up to 37 Mpbs due to

the more clients transmitting at the same time.

V. CONCLUSION

In this paper, we addressed the need of managing virtual

networks with multiple controllers in an automated manner,

presenting two possible designs. In a collaborative framework,

the models running on the controllers operate on a global net-

work view, while in an individual framework, the controllers

autonomously orchestrate their network area. In addition to

diverse control-plane settings, we evaluated diverse data-plane

languages, experiencing how tests with P4-enabled switches

are more stable. Both logic distribution approaches are capable

of deploying appropriate reaction changes based on the traffic

load and seem to achieve similar performance. This outcome

will be further investigated in the future with more realistic

traffic conditions and larger topologies.
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