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Abstract—The edge computing paradigm aims at provision-
ing compute and storage resources from Internet-of-Things
(IoT)-enabled devices at the network edge, while disseminating
the end-to-end latency and increasing mobile computational
capacity. For scalable provisioning of microservices, recently
proposed methods frequently need a priori information on
the microservice type, computational capacity, and other pa-
rameters. In the presence of such restrictions, the present
methods need to face lower quality of experience for mission-
critical and resource-hungry applications. In this paper, we
study the problem of microservice provisioning for mobile edge
computing, and we propose an adaptive and scalable solution.
The core of our optimal microservice differentiation scheme
is ASAP, a microservice-level abstraction for the orchestration
of network resources. ASAP provides adaptive and scalable
microservice provisioning by minimizing microservice delay,
while maximizing the network throughput. With a prototype
tested over a local testbed and trace-driven simulations, we
show how ASAP increases throughput compared to other
solutions based on the executions of microservices at the edge.

I. INTRODUCTION

In recent years, Mobile Edge Computing (MEC) has
become an important paradigm in the era of Internet-of-
Things (IoT) [1]. IoT technologies, among others, have
introduced the need for latency-sensitive management strate-
gies to ensure reliable performance in resource-constrained
environments. An example of such a situation is a man-
made or natural disaster incident, where first responders
operate in areas with limited computational and network
resources. One of the core edge computing mechanisms is
provisioning, i.e., outsourcing computational loads of mul-
tiple network functions to a server located at the network’s
edge. Aside from latency-sensitive applications, the mobile
edge computing paradigm has shown profit improvements
for mobile network operators and edge devices by increasing
resource utilization while incorporating microservices. By
integrating mobile devices with nearby computational capa-
bilities, microservice providers have been able to support a
plethora of new applications [2], [3]. A shared goal of such
MEC applications is efficiency: while provisioning real-time
microservices to minimize overall delay and maximize the
network throughput at the network edge.

Motivation. However, the design of an adaptive microser-
vice provisioning scheme in MEC [4] is challenging. Mobile
applications are generally resource-sensitive and demand-
agnostic, which require intensive computational power. On
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the other way, mobile devices, however, typically have tight
computational resources and limited battery life. Moreover,
such challenges are exacerbated by the wireless radio net-
work inefficiencies that inevitably hinder the performance of
the microservice provisioning phase. One inefficiency comes
from the lack of proper interference management. As the
density of mobile devices increases at the proximity of same
wireless medium when attempting to provision, mutual- and
cross-technology interference become harder to manage; this
causes the microservice provisioning rate to decrease, and
in turn, an increase in energy consumption and microservice
delay. This paper proposes a microservice provisioning
scheme aiming to mitigate the following challenges:

e Due to the unavailability of an adaptive and flexible
microservice provisioning scheme, how do we cope
with the increase of microservice delay for different
applications, and with inefficiencies introduced by load
modifications and edge function dependencies?

Given suboptimal microservice differentiation, cope
with the mix of heterogeneous microservices at the
edge. By heterogeneous, we mean delay-critical, delay-
tolerant or normal, and running in background.

Cope with microservice delay and bandwidth require-
ments dynamicity due to a non-stationary environment.

Our Contributions. Various schemes to provision mi-
croservices at the network edge exist to solve the above-
described challenges. Existing provisioning solutions as-
sume that all provisioning requests coming from mobile de-
vices have an equal level of latency sensitivity; in this work,
we remove such assumptions introducing the possibility of
providing a mixture of hybrid services, 7.e., a cloud capable
of hosting both cloud- and micro-services. We show how this
microservice differentiation scheme improves the efficiency
of the provisioning mechanism. We design, prototype, and
evaluate an adaptive and scalable microservice provisioner
that allocates resources fairly to microservices according to
their demands and latency sensitiveness. In particular:

o« We propose an optimal microservice differentiation
scheme for different traffic flows to get an optimal
success rate for edge devices. Our scheme is adaptive to
different types of traffic flows and their priority levels
and maximizes the throughput in the network while
minimizing the microservice delay.
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« To establish the practicality of our approach, we imple-
ment our architecture ASAP (Adaptive and ScAlable
Microservice Provisioning), and test its scalability
and microservice utilization performance over a local
testbed and also through simulation results.

Our results show that ASAP significantly improves fair-
ness and network throughput over the existing schemes.

II. RELATED WORK

Solutions tackling microservice provisioning at the net-
work edge have increased, given the need to minimize the
provisioning delay and maximize the utilization.

Service Provisioning at Edge In [5], Deng et al. investi-
gates the cache mechanism with composite services in MEC.
The authors present a service cache policy by proposing
a consumption-driven searching algorithm to improve the
service provision systems’ performance. In [6], Ma et al.
investigates the resource provisioning problem to provide
guaranteed QoS with minimal cost. Zhou et al. [7] studied
the workload offloading problem for user requirements in
vehicular networks with limited battery capacity. Cao et
al. [8] designed a service provisioning model considering
the federal architecture of edge platforms. Zhang et al. [9]
considered a latency-aware service provisioning scheme for
IoT-enabled edge platforms. Gu et al. [10] proposed a ser-
vice provisioning and scheduling scheme for a blockchain-
enabled edge platforms. Li et al. [11] designed a cooperative
service provisioning scheme using a data-driven approach
while considering the demand uncertainty of edge services.

Advances in Microservice Applications Unlike the edge
service provisioning scheme, here we also discuss exist-
ing works on microservice-enabled platforms. Filip et al.
[12] proposed a microservice scheduling algorithm for IoT-
enabled heterogeneous edge computing applications. Zhao
et al. [13] designed a distributed redundancy scheduling
mechanism for microservice-based applications at the edge.
On the other hand, Chen et al. [14] proposed a microservice
deployment scheme for an IoT-enabled hybrid platform fol-
lowing the reinforcement learning approach. Wang et al. [15]
designed a microservice placement approach for a collabo-
rative edge platform. On the other hand, Samanta et al. [16]
proposed a dynamic microservice scheduling mechanism for
an IoT-enabled edge computing platform. Similarly, Samanta
et al. [17] proposed a latency-optimal heuristic scheduling
for microservice-enabled edge computing platform.

Drawbacks of Prior Solutions. Some existing solutions
provide schemes for the microservices at the network edge.
However, they mostly assumed that the microservices com-
ing from mobile devices are only microservices, but in real
life, they could be a mix of both cloud and microservices.
They sidelined this aspect. Therefore, it is necessary to
differentiate the edge and cloud microservices to provision
them first while minimizing the microservice delay effi-
ciently. We also need to design an adaptive and scalable
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Figure 1: Architectural view of ASAP
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microservice provisioner to provide fair resources to mi-
croservices and increase the network throughput.

III. ASAP OVERVIEW

To clarify our proposed approach, consider the scenario,
where a pool of microservices is collected from different mo-
bile edge device applications. Such applications are typically
composed of different heterogeneous microservices. The
microservice pool is composed of different microservices
— delay-critical, delay non-critical or normal and delay-
tolerant or background®. Note that the edge infrastructure
does not have any prior knowledge about the microservice or
application type. Note that delay-critical microservices are to
be provisioned and require their computational resources to
be executed at mobile edge servers as soon as possible. The
only parameter known to the edge infrastructure is the delay
requirement of each microservice. To this end, we design an
optimal differentiator process, whose job differentiates the
microservices into three microservice classes — microservice
class 1 for latency-critical microservices, microservice class
2 for non-latency critical or normal microservices, microser-
vice class 3 for background or delay-tolerant microservices.
Figure 2 shows the basic responsibility of the microser-
vice differentiator. This section overviews our proposed
schema. When designing ASAP', we aimed to decouple
the rigidity between different types of microservices accord-
ing to their application requirements. Most Mobile Edge
Computing (MEC) systems aim to deliver latency-sensitive
microservices while maximizing their throughput. Many
edge computing systems optimally differentiate their offered

*Microservices may have different levels of sensitiveness to delay, for
example, delay-critical applications may be augmented, virtual reality or
haptic devices, non-critical delay application may be (meta-data or sensorial
data generator, while delay-tolerant microservices may be background
processes such as system updates or logging.

TASAP is designed to place as middleware at the network edge. Here,
the microservices originate from applications on smartphones/devices.
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microservices based on application types (i.e., critical or
normal). The microservices are provisioned at the edge
or cloud based on their application types. The key idea
behind ASAP is to use the maximal bandwidth required
for these critical microservices to complete just before their
deadlines, thus leaving minimal bandwidth to type-normal
microservices to optimize their delay.

Critical Micoservices
Normal Micoservices
Background Micoservices]-»

Optimal
Micsoservice
Differentiator

| Micro-
services

Figure 2: Overview of microservice differentiation

We now discuss the overall architectural view of ASAP
(Figure 1). The first step is a discovery: microservices are
collected from different applications running on different
mobile devices. The collected set of microservices is sent
to our designed microservice differentiator for an optimal
microservice classification. We modeled three types of mi-
croservice classes — microservice class 1, designed for
critical microservices, microservice class 2, designed for
normal microservices, and microservice class 3, designed
for background microservices. These are represented as sl,
s2, and s3 in Figure 1. After completing our microservice
differentiation step, the microservice classes are sent to a
multilevel prioritization scheme, and priorities are set for
each available microservice class. Finally, the prioritized mi-
croservices are sent to the adaptive microservice provisioner.
The microservices are then provisioned to the edge of the
cloud platform using the provisioning logic.

IV. MICROSERVICE DIFFERENTIATION

In this section, we present the design of our optimal
microservice differentiation scheme. As shown in Figure
2, this is used by our ASAP architecture to differentiate
the microservices from a microservice pool with several
heterogeneous microservices. By heterogeneous, we mean
that each microservices has different resources and computa-
tional requirements. The types of microservices are unknown
to ASAP, i.e., ASAP does not have any prior knowledge
about each microservice type.

A. System Design

Let us consider an edge computing environment and a list
of real-time applications with heterogeneous characteristics.
We assume that each application has a different and unique
priority. Our main goal is to identify the real-time edge
applications from a set of heterogeneous applications and
assign them the highest provisioning priority. Let us suppose
that the edge computing infrastructure may host a set of N
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microservices [18]. Each of these microservices may adopt a
different priority ©; for all microservices. We associate with
each microservice ¢ € [N, a microservice delay requirement
d;. Each microservice’s delay requirements may differ for
each application; microservices with stringent delay require-
ments need to be processed at the network edge. We denote
@é{Gi:ieN} andDé{di:ieN} as priority and
delay-requirement vectors, respectively.

As the property of each microservice is assigned, ASAP will
choose from the microservice pool { (©;,d;) : i € N}
according to each microservice property and application.
We model the microservices of mobile devices by their
application types A, where the application types are de-
pendent on the microservice class A4 € C. We assume
the microservice class C to be made either edge or cloud:
C = [+1, —1]. Moreover, we denote with f(A) and F(A)
the probability density and cumulative distribution functions
of the application type. We assume that f(.A) is continuously
differentiable and strictly positive over C. When an applica-
tion type chooses its microservice class (©;d), the utility
is:

W(O,d; A) =V — AS(0) — d (1

Each of the mathematical interpretations is defined as:

e The reward function V), independent from the applica-
tion type, represents the benefit of each edge device for
accessing the microservices.

S(-) represents a utility discount function, which de-
pends on the congestion level of the microservices. This
discount function is designed to capture the congestion
factor’s negative effect on edge devices’ performance.
S(O) is the congestion factor faced by different ap-
plications and their microservice type. To minimize
its effect, the achieved value S(O) is deducted from
the reward function. Without loss of generality, we
normalize the range of congestion factor to the interval
S(+) € [0;1]. This scheme stated that the microservice
utility is maximized without congestion, i.e., S(-) = 0,
and minimized when heavily congested S(-) = 1.

d is the delay requirement of different microservices
available at the ASAP microservice pool.

We assume that microservices are individually rational, i.e.,
any microservice is attached to a specific application type,
and it is characterized by a parameter .A. The microservice
can choose between one of the two following conditions:

i) The available microservices is a critical microservice

class; in this case, the designed utility function has to
be the highest non-negative value, K. Analytically:

K = arg max;e vy W(0O,d; A) 2)

ii) To opt-out of the available microservices as background
microservice, the microservice utility function is a
negative value. Analytically:

W(O,d; A) < 0,Vi € N 3)
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To combine the above two conditions, we consider another
unique microservice class T for normal cloud microservices,
which satisfies the condition pg = 0 and dy = 1. Therefore,
any normal microservice can always choose microservice
class T to gain zero utility. We denote the set of microservice
types that choose the microservice class i as .A; (p; ¢). Notice
that if the ASAP offers three microservice classes ¢, j, and
k such that p; > p; > py and ¢; > g; > qx, then none of the
microservices with class ¢ will get priority in microservice
provisioning, being inferior to class j and & in terms of both
cost and delay. Here, p and q are defined as the priority
classes based on the provisioning cost and delay. Without
loss of generality, we hence can sort the indexes of non-
dummy microservice classes in ascending order of priority
level as follows:

“4)
®)

Next, we discuss the resource provisioning scheme for
microservices at the edge following the model.

p1L>p2 >
q>q2 > -+

> PN
> gN

B. Tradeoffs in Microservice Differentiation

In this section, we analyze the resource capacity con-
straints for different microservices. In particular, we focus
on two typical scenarios, and they are discussed below:

Fixed Resource Provision. The normal microservices are
supported by fixed resources, and hence the microservices
with higher demand face a minimum resource capacity.
Therefore, the normal microservices face difficulties while
provisioning their computations at the edge. Analytically,

T
R} =op; Y FiR

t=1

(6)

where o denotes the scaling factor, p; denotes the priority
of microservice i, R! denotes the fixed number of resource
blocks allocated to microservice ¢ at time ¢, ¢ € T, and ]-'f
denotes the average microservice rate at time .

Variable Resource Provision. The critical microservices
are supported by variable resources, which are closer to the
minimum requirements of the microservices. The variable
microservices need to expand their network infrastructure to
constantly support them. In this scenario, the microservices
face the maximum resource capacity and also get the optimal
amount of resource capacity invariably. We also provide
extra resource blocks RY_, . to the critical microservices

if they require it in a specific period of time. We capture the
resource capacity as R, which is mathematically expressed:

RS = opi [ RE,,,.0 + OF! ”th @)
Rfof
where %Tf denotes the microservice rate (i.e., Ryeq and

R0t denote the required resources and total resource avail-
able for microservices.), 6 denotes the scaling factor.
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Figure 3: Architectural View of Microservice Provisioner

The microservice differentiator aims at finding the optimal
microservice satisfying all resource capacity constraints to
maximize the microservice utilization. The allocated re-
source provision mechanism needs to be maximized to
find the optimal resource capacity in a fixed scenario. The
microservice resource maximization problem is formulated.

7722: Vi — AS;(0) —

d;), critical microservice

Maxt: = %(Vl — AS;(©) — d;), Otherwise
: ®)
subject to  R{ > Ry, i € N 9
R >R ieN (10)
d; > dyn,i € N (11)
Si(©) > S (0) (12)

where (8) describes the main function. (9) represents the
critical resource constraint, R{, has to be greater than the
threshold resource constraint, Rf,. The normal resource
constraint, R}, has to be greater than the threshold normal
resource constraint, Ry}, as shown in (10). (11) captures
the microservice delay, d;, that needs to be greater than the
threshold microservice delay, dy;. Finally, the microservice
utility discount function, S;(©), has to be greater than the
threshold utility discount, Sy, (©), as shown in (12).

V. ADAPTIVE MICROSERVICE PROVISIONING

Once the microservice differentiator has characterized
the microservices, the microservice profile is sent to the
microservice provisioner for resource provisioning; the aim
is here to maintain better quality among all microservices.
To provide such QoS, we design an adaptive and scalable
microservice provisioner. We discuss the architecture and its
mathematical model in the next subsections.

Near-Optimal Microservice Provisioner. The architecture
of the Optimal Microservice Provisioner (OMP) is shown in
Figure 3. In the microservice provisioner, all the microser-
vices get buffered in a local microservice discovery mod-
ule, and then they are transferred to the local information
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collector module. Once collected by the decision-making
module, the microservice provisioner starts the procedure
described in Section V. Here, for the simplicity of the
model, we have considered that the microservice belongs
to a single application, whereas in a realistic scenario,
one application may generate multiple microservices. With
OMP, the microservices are guided into the provision en-
gine module based on the provisioning decision metric
in Equation (14) designed specifically for microservices.
By considering the local microservice information by the
microservice discovery module and provisioning decision
metric, the provision engine module determines whether or
not it needs to provision the microservices and to which
server to provision. The data provisioner module maintains a
critical priority queue and a normal queue, which efficiently
provisions them to minimize delay and maintain fair QoS.
The microservice provisioner is scalable, as it can process
and provision different types of microservices efficiently.

Scalable Microservice Provisioning Scheme. Let us con-
sider a system consisting of J edge servers. The prioritized
microservices from the microservice differentiator need to be
provisioned to these J edge servers during a large period
{1,2,---,T}. The mobile devices must pay a cost to provi-
sion and execute the microservices within a specified time.
The microservices arrive at the microservice provisioner
according to their priority. Afterward, each microservice
requests its resources to be mapped fairly within a virtual
machine to provision and execute its processes. Before
acquiring the resources to provision their computations, each
microservice wields the following information y} at time ¢
to the microservice provisioner:

i) R is the number of resources needed to provision the
microservice 7 at time ¢, where h represents the total
number of resource blocks required.

£ is the number of time slots required to provision
the microservice 7. However, the time slots allocated to
microservices may not be consecutive. Instead of the
time slots could be any time period to complete the
microservice.

B, is the desired deadline to provision the microservice
7 in the edge server.

Q; is the penalty function designed to charge extra cost,
if the specified deadline gets over for the particular
microservice 4.

T27"" and T,°°™ denote the arrival and completion time
of microservice i, respectively.

ii)

iif)

iv)

V)

Our design also includes a penalty cost function. Such a
penalty is imposed on all microservices that exceed their
deadlines. The mathematical expression of the penalty func-
tion is given:
Clpen7 if (ﬁcom _
CPr" + X, Otherwise

ﬁarri) < B

Q; = (13)
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where CP“" denotes the penalty cost if the microservice
i exceeds its desired deadline and X denotes the penalty
cost specific to a network operator. The penalty cost will be
added to the total provisioning cost if microservice ¢ exceeds
a previously imposed deadline. If microservice ¢ does not
exceed its own desired deadline, the penalty cost will be
deducted from the total provisioning cost. Mathematically,
we have that,

colt oy cren
-+ ),

if (ﬁcom _ 7;a'r’ri) < B

Ctot _
i = .
Otherwise

(14
where C(’f I denotes the provisioning cost of microservice 1.

The provisioning cost Cof T of microservice i is expressed
as:
coff 7 6
= ZZn <f (1) + m(t)QQ) (15)

j=1t=1

where v;(t) denotes the unit resource allocation cost of
microservice 4 at time ¢ and r;(¢) denotes the unit cost of
microservice 4 provisioning at time ¢. 5 and G¢ denote the
total resource blocks allocated to microservice % and total
resource capacity, respectively. ]-'ZJJ (t) denotes the cost of
microservice ¢ mapping to server j at time ¢. We describe
the optimization problem for microservice provisioning cost
Cf rf , which is stated below. Here, we are trying to mini-
mize the provisioning cost for edge devices to increase the

network throughput. Mathematically,

N N of f pen com arri
C; C if . B;
Min 320 =33 Gorr e ) omenae
] ] + &), Otherwise
(16)
N
Subject to Y ¢ ¢l ieN (17)
i=1
N
docrr>chtie N (18)
(ﬁcom _ 7;(17’7“1’) < Bi,t c 7— (19)

where Equation (16) describes the main objective function.
Equation (17) re fpresents that the total microservice provi-
sioning cost, CO , 1s to be greater than the threshold mi-
croservice provisioning cost, Ct 5 - The microservice penalty
cost, C’“", has to be greater than the threshold microservice
penalty cost, CIr"™, as shown in Equation (18). Equation (19)
captures the prescribed microservice deadline B; required
to be greater than the threshold (7;°°™ — T,%""%). After
solving this optimization problem, all critical microservices
will be provisioned immediately to edge servers. All other
microservices (i.e., microservice class 2 and 3) will be
subsequently provisioned to cloud servers. According to
Formulas (16), (17), (18), and (19), the provisioning mech-
anism is a nonlinear integer programming problem, and it
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essentially turns out to be a combinational optimization of
microservice provisioning with provisioning cost constraints
and resource maximization with delay constraints. We solve
the problem using Lagrangian Relaxation Theory [19].

VI. PERFORMANCE ANALYSIS

We present the evaluation results of ASAP with different
experimental scenarios. We provide a detailed large-scale
performance results using CloudSim [20] simulations and
also provide test-bed experiments for microservices.

Table I: Experimental Settings

Parameter [ Value
CPU bandwidth capacity 20 MHz
Total available microservice tasks 200
Microservice execution time [5, 15] ms
CPU resources [10, 20] MHz
Power consumption of mobile device (Tx) 100 mW
Processing capacity of mobile device 0.7 GHz
Processing capacity of MEC server 100 GHz
Microservice traffic arrival rate [0, 10] unit/sec
Average microservice traffic rate 100 Mbits
SLAs for microservices (deadline) [0, 10]

A. Evaluation Settings

We define the evaluation settings to depict the perfor-
mance evaluation of ASAP and present all the parameters in
Table I. We define several parameters as described in Table
II and in line with existing literature [16], [17] to obtain
realistic values regarding microservice configurations. For
the edge computing platform, we have around 250 mobile
devices dispersed over a populated area of 5 km X 5 km,
and 3 powerful 5G-enabled base stations are located near
MEC servers. The computational processing capability of
MEC servers can be set to 100 GHz, and the computation
processing capability of a mobile device is 0.95 GHz. The
delay factor for the backhaul network is set to 0.0008
sec/KB [21]. To provision the microservices, we define
the maximum time period distributed over 8-12 ms. The
microservice size can be set from a range of 750-1250 KB.

Table II: A summary of microservices types and SLAs

Classes | Microservice Types SLA
Class 1 Media Service High
Class 2 Social Network Moderate
Class 3 Hotel Reservation Normal

Prototype. We design a small setup comprised of 15 edge
servers, the configuration of each server is as follows; Intel
core-i9, 8 cores, 16 threads, operates at 3.6 GHz, 5 GHz
maximum frequency, and 128 GB of memory with DDR4-
2666 memory. These servers are operated on Ubuntu 14.04,
64-bit with Linux machine with kernel version 3.13.X, and
out of these 15 edge servers, 10 are arranged for microser-
vices and the other 5 for monolithic services. Basically, 10
of them are specifically designed for microservices with
limited computational and resource capacity, whereas the
other 5 of them are designed for monolithic services with
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higher computational and resource capacity. We design a
client and server module for ASAP. The client generates
the microservice traffic from edge applications and collects
the information of SLAs for microservices at the application
layer. The server module is responsible for the execution of
tasks generated from different microservices on edge servers
and the provision of the resources to them. The servers are
enabled with Broadcom 43224AGN Gigabit Ethernet NICs,
and they can be connected to each other with an ethernet
switch with 144M pps and a bandwidth of 9Gbps. Such
switches can hold up to 8 priority classes for queues.
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Figure 4: Analysis of provisioning demand and size.

Metrics. For microservice identification, we consider sev-
eral performance metrics to quantify the microservice uti-
lization and ASAP’s accuracy (i.e., success rate). The suc-
cess rate can be formulated as the ratio of the maximum
number of microservice efficiently differentiated and the
maximum number of microservices that participated in the
process. As per the provision of microservices is concerned,
we measure the resource utilization for microservices.

Success Rate
Arrival Time (s)

B

0 . . .
10 15 20 25 30 0 5 10 15 20

Time (units) Active Microservices

(a) Success Rate (b) Arrival Time

Figure 5: Analysis of success rate and arrival time.

Baselines. We consider two relevant solutions as base-
lines for the comparison with ASAP. MODEM is pro-
posed by Fadda et al. [22]; this paper designed a quality-
of-monitoring aware microservice deployment scheme. It
designed a multi-objective linear optimization problem to
find an optimal deployment configuration to maximize the
quality of monitored data and minimize the overall cost.
DEMIC is proposed by Wang [23]; this paper designed
a delay-aware microservice coordination scheme for edge
computing platforms. It uses online reinforcement learning
to achieve minimal delay and migration cost.
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B. Small-Scale Experiments

Impact on Provisioning Demand. Figure 4(a) represents
the provisioning demand of different microservices for the
edge platform. From Figure, we observe that microser-
vice class 1 provides higher provisioning demand than
microservice classes 2 and 3. Moreover, we observe how
the provisioning demand for microservice class 1 increases
as microservice class 1 provides real-time critical microser-
vices. This is in line with recent applications of edge com-
puting, e.g., IoT, in which critical microservice have higher
demand. Hence, Figure 4(a) shows that the microservice
class provides 7% higher provisioning demand compared
to microservice classes 2 and 3. Also, microservice class
1 has 24% higher provisioning demand over microservice
classes 2 and 3. Figure 4(b) shows the total data size
provisioned to the edge platform for a fixed duration of time.
We observe from our simulations that the provisioned data
size decreases with the increase in the provision duration.
As the data provisioning duration increases, the arrival rate
of microservices at ASAP also increases . We explain this
phenomenon with the increase of congestion in the network,
which inherently increases the packet loss rate. From Figure
4(b), we can see how the provisioned data size increases for
microservice class 1 than for microservice classes 2 and 3.
As the proposed ASAP scheme efficiently provisioned the
critical microservices to the edge platform while giving the
highest priority. Due to the given priority, microservice class
1 faces a lower level of congestion in the network than other
classes. Therefore, the provisioned data size also increases
for microservice class 1. From Figure 4(b), we observe that
microservice class 1 provides 14 and 22 % improvement
compared to microservice classes 2 and 3, respectively.

Impact on Success Rate. In Figure 5(a), we show the suc-
cess rate of microservice differentiation for ASAP. From this
simulation, we observe that the success rate of identifying
the proper microservice classes increases with the total time.
We analyzed such a success rate for 30 units of time. The
success rate increases as ASAP efficiency chooses the differ-
ent microservice classes. This is because ASAP estimates the
microservice utility of different heterogeneous microservice
available and takes an optimal decision to provide fair
resources to each microservice. We also analyze the success
rate for different microservice classes; microservice class 1
has a higher priority and provides a higher success rate.
The success rate of microservice class 1 is higher than the
microservice classes 2 and 3 by 15 and 22%, respectively.
Figure 5(b) shows the arrival time of different microservices
classes for ASAP. From the figure, we see that the arrival
time of microservice class 1 is comparatively lesser than
the microservice classes 2 and 3, respectively. The proposed
microservice differentiator efficiently classifies the different
microservice classes, and the highest priority is given. There-

As the arrival rate of microservices is higher than the departure rate.
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fore, the microservice class 1 is sent to the microservice
provisioned while following the FIFO mechanism, which
inherently decreases the arrival time. On the other hand,
microservice classes 2 and 3 are given moderate and lower
priority, respectively. Hence, microservice class 2 has a
lower arrival time than microservice class 3.

C. Large-Scale Experiments

Impact on Microservice Utilization. Figure 6 shows the
microservice utilization of ASAP. This parameter captures
the scalability of ASAP. A schema with higher microservice
utilization is a more scalable schema. From the figure,
we observe that the microservice utilization decreases as
the provision time increases in the network. We perform
the experiments of ASAP with other two existing schemes
DEMIC and MODEM,; while varying the data provisioning
rate 5MB/s and 10M B/s. From figures 6(a) and 6(b),
we found that the microservice utilization decreases with
the increase in provision time. This is because as the
provision time decreases, the packet loss rate increases,
which inherently increases the microservice delay and mi-
croservice provisioning rate. It outperforms DEMIC and
MODEM by 12-16 % for the data provisioning rate 5M B/s
and 10M B/s, respectively. We compared ASAP with the
existing scheme DEMIC and MODEM while varying the
load fraction 0.5 and 0.9. From figures 6(c) and 6(d), we
observe that the ASAP’s microservice utilization increases
than the existing scheme — DEMIC and MODEM, as ASAP
first accurately differentiate the proposer microservice class
and later provisioned the microservices classes with different
priority, which increases the efficiency of the microservice
class 1. Thus, it outperforms DEMIC and MODEM by 8-10
% for varying load fractions 0.5 and 0.9.

Impact on Throughput. Figure 7 shows the throughput
analysis of ASAP. From figures 7(a) and 7(b), we observe
that the throughput decreases as the provision time increases.
We perform the experiments in both the edge and cloud
platforms while varying the data provisioning rate 5M B/s
and 10M B/s. From the figures, we also note that the
network throughput decreases with the increase in provision
time. This is because as the provision time decreases, the
packet loss rate increases, which inherently increases the mi-
croservice delay and microservice provisioning rate. ASAP
outperforms DEMIC and MODEM by 10-12 % for the data
provisioning rate 5M B/s and 10M B/s, respectively. We
also compared ASAP with the existing approaches DEMIC
and MODEM with the variation in load fraction 0.5 and 0.9.
From figures 7(c) and 7(d), we observe that the ASAP’s
throughput increases than the naive approach, as ASAP
first accurately differentiate the proposer microservice class
and later provisions the microservices classes with different
priority, which increases the efficiency of the microservice
class 1. Hence, ASAP outperforms DEMIC and MODEM
by 7-9 % for varying load fraction 0.5 and 0.9.
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VII. CONCLUSION

In this paper, we presented ASAP, a novel architecture

for

edge platforms that adaptively identifies the optimal

edge services to provision from a pool of heterogeneous
applications. First, we model the problem of adapting service
provisioning with optimization theory. Then we show with
a prototype evaluation and extensive simulations that ASAP
achieves over 20 % service type identification accuracy. Its
throughput and delay performance outperform standard edge
and cloud-based provisioning services. We also showed how
ASAP increases the network throughput and fairness.
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