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Abstract—The edge computing paradigm aims at provision-
ing compute and storage resources from Internet-of-Things
(IoT)-enabled devices at the network edge, while disseminating
the end-to-end latency and increasing mobile computational
capacity. For scalable provisioning of microservices, recently
proposed methods frequently need a priori information on
the microservice type, computational capacity, and other pa-
rameters. In the presence of such restrictions, the present
methods need to face lower quality of experience for mission-
critical and resource-hungry applications. In this paper, we
study the problem of microservice provisioning for mobile edge
computing, and we propose an adaptive and scalable solution.
The core of our optimal microservice differentiation scheme
is ASAP, a microservice-level abstraction for the orchestration
of network resources. ASAP provides adaptive and scalable
microservice provisioning by minimizing microservice delay,
while maximizing the network throughput. With a prototype
tested over a local testbed and trace-driven simulations, we
show how ASAP increases throughput compared to other
solutions based on the executions of microservices at the edge.

I. INTRODUCTION

In recent years, Mobile Edge Computing (MEC) has

become an important paradigm in the era of Internet-of-

Things (IoT) [1]. IoT technologies, among others, have

introduced the need for latency-sensitive management strate-

gies to ensure reliable performance in resource-constrained

environments. An example of such a situation is a man-

made or natural disaster incident, where first responders

operate in areas with limited computational and network

resources. One of the core edge computing mechanisms is

provisioning, i.e., outsourcing computational loads of mul-

tiple network functions to a server located at the network’s

edge. Aside from latency-sensitive applications, the mobile

edge computing paradigm has shown profit improvements

for mobile network operators and edge devices by increasing

resource utilization while incorporating microservices. By

integrating mobile devices with nearby computational capa-

bilities, microservice providers have been able to support a

plethora of new applications [2], [3]. A shared goal of such

MEC applications is efficiency: while provisioning real-time

microservices to minimize overall delay and maximize the

network throughput at the network edge.

Motivation. However, the design of an adaptive microser-

vice provisioning scheme in MEC [4] is challenging. Mobile

applications are generally resource-sensitive and demand-

agnostic, which require intensive computational power. On

the other way, mobile devices, however, typically have tight

computational resources and limited battery life. Moreover,

such challenges are exacerbated by the wireless radio net-

work inefficiencies that inevitably hinder the performance of

the microservice provisioning phase. One inefficiency comes

from the lack of proper interference management. As the

density of mobile devices increases at the proximity of same

wireless medium when attempting to provision, mutual- and

cross-technology interference become harder to manage; this

causes the microservice provisioning rate to decrease, and

in turn, an increase in energy consumption and microservice

delay. This paper proposes a microservice provisioning

scheme aiming to mitigate the following challenges:

• Due to the unavailability of an adaptive and flexible

microservice provisioning scheme, how do we cope

with the increase of microservice delay for different

applications, and with inefficiencies introduced by load

modifications and edge function dependencies?

• Given suboptimal microservice differentiation, cope

with the mix of heterogeneous microservices at the

edge. By heterogeneous, we mean delay-critical, delay-

tolerant or normal, and running in background.

• Cope with microservice delay and bandwidth require-

ments dynamicity due to a non-stationary environment.

Our Contributions. Various schemes to provision mi-

croservices at the network edge exist to solve the above-

described challenges. Existing provisioning solutions as-

sume that all provisioning requests coming from mobile de-

vices have an equal level of latency sensitivity; in this work,

we remove such assumptions introducing the possibility of

providing a mixture of hybrid services, i.e., a cloud capable

of hosting both cloud- and micro-services. We show how this

microservice differentiation scheme improves the efficiency

of the provisioning mechanism. We design, prototype, and

evaluate an adaptive and scalable microservice provisioner

that allocates resources fairly to microservices according to

their demands and latency sensitiveness. In particular:

• We propose an optimal microservice differentiation

scheme for different traffic flows to get an optimal

success rate for edge devices. Our scheme is adaptive to

different types of traffic flows and their priority levels

and maximizes the throughput in the network while

minimizing the microservice delay.
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• To establish the practicality of our approach, we imple-

ment our architecture ASAP (Adaptive and ScAlable

Microservice Provisioning), and test its scalability

and microservice utilization performance over a local

testbed and also through simulation results.

• Our results show that ASAP significantly improves fair-

ness and network throughput over the existing schemes.

II. RELATED WORK

Solutions tackling microservice provisioning at the net-

work edge have increased, given the need to minimize the

provisioning delay and maximize the utilization.

Service Provisioning at Edge In [5], Deng et al. investi-

gates the cache mechanism with composite services in MEC.

The authors present a service cache policy by proposing

a consumption-driven searching algorithm to improve the

service provision systems’ performance. In [6], Ma et al.

investigates the resource provisioning problem to provide

guaranteed QoS with minimal cost. Zhou et al. [7] studied

the workload offloading problem for user requirements in

vehicular networks with limited battery capacity. Cao et

al. [8] designed a service provisioning model considering

the federal architecture of edge platforms. Zhang et al. [9]

considered a latency-aware service provisioning scheme for

IoT-enabled edge platforms. Gu et al. [10] proposed a ser-

vice provisioning and scheduling scheme for a blockchain-

enabled edge platforms. Li et al. [11] designed a cooperative

service provisioning scheme using a data-driven approach

while considering the demand uncertainty of edge services.

Advances in Microservice Applications Unlike the edge

service provisioning scheme, here we also discuss exist-

ing works on microservice-enabled platforms. Filip et al.

[12] proposed a microservice scheduling algorithm for IoT-

enabled heterogeneous edge computing applications. Zhao

et al. [13] designed a distributed redundancy scheduling

mechanism for microservice-based applications at the edge.

On the other hand, Chen et al. [14] proposed a microservice

deployment scheme for an IoT-enabled hybrid platform fol-

lowing the reinforcement learning approach. Wang et al. [15]

designed a microservice placement approach for a collabo-

rative edge platform. On the other hand, Samanta et al. [16]

proposed a dynamic microservice scheduling mechanism for

an IoT-enabled edge computing platform. Similarly, Samanta

et al. [17] proposed a latency-optimal heuristic scheduling

for microservice-enabled edge computing platform.

Drawbacks of Prior Solutions. Some existing solutions

provide schemes for the microservices at the network edge.

However, they mostly assumed that the microservices com-

ing from mobile devices are only microservices, but in real

life, they could be a mix of both cloud and microservices.

They sidelined this aspect. Therefore, it is necessary to

differentiate the edge and cloud microservices to provision

them first while minimizing the microservice delay effi-

ciently. We also need to design an adaptive and scalable

Figure 1: Architectural view of ASAP

microservice provisioner to provide fair resources to mi-

croservices and increase the network throughput.

III. ASAP OVERVIEW

To clarify our proposed approach, consider the scenario,

where a pool of microservices is collected from different mo-

bile edge device applications. Such applications are typically

composed of different heterogeneous microservices. The

microservice pool is composed of different microservices

– delay-critical, delay non-critical or normal and delay-

tolerant or background*. Note that the edge infrastructure

does not have any prior knowledge about the microservice or

application type. Note that delay-critical microservices are to

be provisioned and require their computational resources to

be executed at mobile edge servers as soon as possible. The

only parameter known to the edge infrastructure is the delay

requirement of each microservice. To this end, we design an

optimal differentiator process, whose job differentiates the

microservices into three microservice classes – microservice

class 1 for latency-critical microservices, microservice class

2 for non-latency critical or normal microservices, microser-

vice class 3 for background or delay-tolerant microservices.

Figure 2 shows the basic responsibility of the microser-

vice differentiator. This section overviews our proposed

schema. When designing ASAP†, we aimed to decouple

the rigidity between different types of microservices accord-

ing to their application requirements. Most Mobile Edge

Computing (MEC) systems aim to deliver latency-sensitive

microservices while maximizing their throughput. Many

edge computing systems optimally differentiate their offered

*Microservices may have different levels of sensitiveness to delay, for
example, delay-critical applications may be augmented, virtual reality or
haptic devices, non-critical delay application may be (meta-data or sensorial
data generator, while delay-tolerant microservices may be background
processes such as system updates or logging.

†ASAP is designed to place as middleware at the network edge. Here,
the microservices originate from applications on smartphones/devices.
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microservices based on application types (i.e., critical or

normal). The microservices are provisioned at the edge

or cloud based on their application types. The key idea

behind ASAP is to use the maximal bandwidth required

for these critical microservices to complete just before their

deadlines, thus leaving minimal bandwidth to type-normal

microservices to optimize their delay.

Figure 2: Overview of microservice differentiation

We now discuss the overall architectural view of ASAP

(Figure 1). The first step is a discovery: microservices are

collected from different applications running on different

mobile devices. The collected set of microservices is sent

to our designed microservice differentiator for an optimal

microservice classification. We modeled three types of mi-

croservice classes — microservice class 1, designed for

critical microservices, microservice class 2, designed for

normal microservices, and microservice class 3, designed

for background microservices. These are represented as s1,

s2, and s3 in Figure 1. After completing our microservice

differentiation step, the microservice classes are sent to a

multilevel prioritization scheme, and priorities are set for

each available microservice class. Finally, the prioritized mi-

croservices are sent to the adaptive microservice provisioner.

The microservices are then provisioned to the edge of the

cloud platform using the provisioning logic.

IV. MICROSERVICE DIFFERENTIATION

In this section, we present the design of our optimal

microservice differentiation scheme. As shown in Figure

2, this is used by our ASAP architecture to differentiate

the microservices from a microservice pool with several

heterogeneous microservices. By heterogeneous, we mean

that each microservices has different resources and computa-

tional requirements. The types of microservices are unknown

to ASAP, i.e., ASAP does not have any prior knowledge

about each microservice type.

A. System Design

Let us consider an edge computing environment and a list

of real-time applications with heterogeneous characteristics.

We assume that each application has a different and unique

priority. Our main goal is to identify the real-time edge

applications from a set of heterogeneous applications and

assign them the highest provisioning priority. Let us suppose

that the edge computing infrastructure may host a set of N

microservices [18]. Each of these microservices may adopt a

different priority Θi for all microservices. We associate with

each microservice i ∈ N , a microservice delay requirement

di. Each microservice’s delay requirements may differ for

each application; microservices with stringent delay require-

ments need to be processed at the network edge. We denote

Θ
∆
= { Θi : i ∈ N} and D

∆
= { di : i ∈ N} as priority and

delay-requirement vectors, respectively.

As the property of each microservice is assigned, ASAP will

choose from the microservice pool { (Θi, di) : i ∈ N}
according to each microservice property and application.

We model the microservices of mobile devices by their

application types A, where the application types are de-

pendent on the microservice class A ∈ C. We assume

the microservice class C to be made either edge or cloud:

C = [+1,−1]. Moreover, we denote with f(A) and F (A)
the probability density and cumulative distribution functions

of the application type. We assume that f(A) is continuously

differentiable and strictly positive over C. When an applica-

tion type chooses its microservice class (Θ; d), the utility

is:

W(Θ, d;A) = V −AS(Θ)− d (1)

Each of the mathematical interpretations is defined as:

• The reward function V , independent from the applica-

tion type, represents the benefit of each edge device for

accessing the microservices.

• S(·) represents a utility discount function, which de-

pends on the congestion level of the microservices. This

discount function is designed to capture the congestion

factor’s negative effect on edge devices’ performance.

• S(Θ) is the congestion factor faced by different ap-

plications and their microservice type. To minimize

its effect, the achieved value S(Θ) is deducted from

the reward function. Without loss of generality, we

normalize the range of congestion factor to the interval

S(·) ∈ [0; 1]. This scheme stated that the microservice

utility is maximized without congestion, i.e., S(·) = 0,

and minimized when heavily congested S(·) = 1.

• d is the delay requirement of different microservices

available at the ASAP microservice pool.

We assume that microservices are individually rational, i.e.,

any microservice is attached to a specific application type,

and it is characterized by a parameter A. The microservice

can choose between one of the two following conditions:

i) The available microservices is a critical microservice

class; in this case, the designed utility function has to

be the highest non-negative value, K. Analytically:

K = arg maxi∈N W(Θ, d;A) (2)

ii) To opt-out of the available microservices as background

microservice, the microservice utility function is a

negative value. Analytically:

W(Θ, d;A) < 0, ∀i ∈ N (3)
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To combine the above two conditions, we consider another

unique microservice class Υ for normal cloud microservices,

which satisfies the condition p0 = 0 and d0 = 1. Therefore,

any normal microservice can always choose microservice

class Υ to gain zero utility. We denote the set of microservice

types that choose the microservice class i as Ai(p; q). Notice

that if the ASAP offers three microservice classes i, j, and

k such that pi > pj > pk and qi > qj > qk, then none of the

microservices with class i will get priority in microservice

provisioning, being inferior to class j and k in terms of both

cost and delay. Here, p and q are defined as the priority

classes based on the provisioning cost and delay. Without

loss of generality, we hence can sort the indexes of non-

dummy microservice classes in ascending order of priority

level as follows:

p1 > p2 > · · · > pN (4)

q1 > q2 > · · · > qN (5)

Next, we discuss the resource provisioning scheme for

microservices at the edge following the model.

B. Tradeoffs in Microservice Differentiation

In this section, we analyze the resource capacity con-

straints for different microservices. In particular, we focus

on two typical scenarios, and they are discussed below:

Fixed Resource Provision. The normal microservices are

supported by fixed resources, and hence the microservices

with higher demand face a minimum resource capacity.

Therefore, the normal microservices face difficulties while

provisioning their computations at the edge. Analytically,

Rn
i = σpi

T
∑

t=1

F t
iR

t
i (6)

where σ denotes the scaling factor, pi denotes the priority

of microservice i, Rt
i denotes the fixed number of resource

blocks allocated to microservice i at time t, t ∈ T , and F t
i

denotes the average microservice rate at time t.

Variable Resource Provision. The critical microservices

are supported by variable resources, which are closer to the

minimum requirements of the microservices. The variable

microservices need to expand their network infrastructure to

constantly support them. In this scenario, the microservices

face the maximum resource capacity and also get the optimal

amount of resource capacity invariably. We also provide

extra resource blocks R
t
extra to the critical microservices

if they require it in a specific period of time. We capture the

resource capacity as Ri
c, which is mathematically expressed:

Rc
i = σpi

(

R
t
extra + θF t

i

Rreq

Rtot

R
t
i

)

(7)

where
Rreq

Rtot
denotes the microservice rate (i.e., Rreq and

Rtot denote the required resources and total resource avail-

able for microservices.), θ denotes the scaling factor.

Figure 3: Architectural View of Microservice Provisioner

The microservice differentiator aims at finding the optimal

microservice satisfying all resource capacity constraints to

maximize the microservice utilization. The allocated re-

source provision mechanism needs to be maximized to

find the optimal resource capacity in a fixed scenario. The

microservice resource maximization problem is formulated.

MaxHi =

{

Rc
i

Rc
th

(Vi −ASi(Θ)− di), critical microservice
Rn

i

Rn
th

(Vi −ASi(Θ)− di), Otherwise

(8)

subject to Rc
i ≥ Rc

th, i ∈ N (9)

Rn
i ≥ Rn

th, i ∈ N (10)

di ≥ dth, i ∈ N (11)

Si(Θ) ≥ Sth(Θ) (12)

where (8) describes the main function. (9) represents the

critical resource constraint, Rc
i , has to be greater than the

threshold resource constraint, Rc
th. The normal resource

constraint, Rn
i , has to be greater than the threshold normal

resource constraint, Rn
th, as shown in (10). (11) captures

the microservice delay, di, that needs to be greater than the

threshold microservice delay, dth. Finally, the microservice

utility discount function, Si(Θ), has to be greater than the

threshold utility discount, Sth(Θ), as shown in (12).

V. ADAPTIVE MICROSERVICE PROVISIONING

Once the microservice differentiator has characterized

the microservices, the microservice profile is sent to the

microservice provisioner for resource provisioning; the aim

is here to maintain better quality among all microservices.

To provide such QoS, we design an adaptive and scalable

microservice provisioner. We discuss the architecture and its

mathematical model in the next subsections.

Near-Optimal Microservice Provisioner. The architecture

of the Optimal Microservice Provisioner (OMP) is shown in

Figure 3. In the microservice provisioner, all the microser-

vices get buffered in a local microservice discovery mod-

ule, and then they are transferred to the local information
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collector module. Once collected by the decision-making

module, the microservice provisioner starts the procedure

described in Section V. Here, for the simplicity of the

model, we have considered that the microservice belongs

to a single application, whereas in a realistic scenario,

one application may generate multiple microservices. With

OMP, the microservices are guided into the provision en-

gine module based on the provisioning decision metric

in Equation (14) designed specifically for microservices.

By considering the local microservice information by the

microservice discovery module and provisioning decision

metric, the provision engine module determines whether or

not it needs to provision the microservices and to which

server to provision. The data provisioner module maintains a

critical priority queue and a normal queue, which efficiently

provisions them to minimize delay and maintain fair QoS.

The microservice provisioner is scalable, as it can process

and provision different types of microservices efficiently.

Scalable Microservice Provisioning Scheme. Let us con-

sider a system consisting of J edge servers. The prioritized

microservices from the microservice differentiator need to be

provisioned to these J edge servers during a large period

{1, 2, · · · , T}. The mobile devices must pay a cost to provi-

sion and execute the microservices within a specified time.

The microservices arrive at the microservice provisioner

according to their priority. Afterward, each microservice

requests its resources to be mapped fairly within a virtual

machine to provision and execute its processes. Before

acquiring the resources to provision their computations, each

microservice wields the following information Yt
i at time t

to the microservice provisioner:

i) Rh
i is the number of resources needed to provision the

microservice i at time t, where h represents the total

number of resource blocks required.

ii) E is the number of time slots required to provision

the microservice i. However, the time slots allocated to

microservices may not be consecutive. Instead of the

time slots could be any time period to complete the

microservice.

iii) Bi is the desired deadline to provision the microservice

i in the edge server.

iv) Qi is the penalty function designed to charge extra cost,

if the specified deadline gets over for the particular

microservice i.
v) T arri

i and T com
i denote the arrival and completion time

of microservice i, respectively.

Our design also includes a penalty cost function. Such a

penalty is imposed on all microservices that exceed their

deadlines. The mathematical expression of the penalty func-

tion is given:

Qi =

{

Cpen
i , if (T com

i − T arri
i ) < Bi

Cpen
i + X , Otherwise

(13)

where Cpen
i denotes the penalty cost if the microservice

i exceeds its desired deadline and X denotes the penalty

cost specific to a network operator. The penalty cost will be

added to the total provisioning cost if microservice i exceeds

a previously imposed deadline. If microservice i does not

exceed its own desired deadline, the penalty cost will be

deducted from the total provisioning cost. Mathematically,

we have that,

Ctot
i =

{

Coff
i + Cpen

i , if (T com
i − T arri

i ) < Bi

Coff
i − (Cpen

i + X ), Otherwise

(14)

where Coff
i denotes the provisioning cost of microservice i.

The provisioning cost Coff
i of microservice i is expressed

as:

Coff
i =

J
∑

j=1

T
∑

t=1

ri(t)

(

F
Jj

i (t) + γi(t)
θEi
GE

)

(15)

where γi(t) denotes the unit resource allocation cost of

microservice i at time t and ri(t) denotes the unit cost of

microservice i provisioning at time t. θEi and GE denote the

total resource blocks allocated to microservice i and total

resource capacity, respectively. F
Jj

i (t) denotes the cost of

microservice i mapping to server j at time t. We describe

the optimization problem for microservice provisioning cost

Coff
i , which is stated below. Here, we are trying to mini-

mize the provisioning cost for edge devices to increase the

network throughput. Mathematically,

Min

N
∑

i=1

Ctot
i =

N
∑

i=1

{

Coff
i + Cpen

i , if (T com
i − T arri

i ) < Bi

Coff
i − (Cpen

i + X ), Otherwise

(16)

Subject to

N
∑

i=1

Coff
i ≥ Coff

th , i ∈ N (17)

N
∑

i=1

Cpen
i ≥ Cpen

th , i ∈ N (18)

(T com
i − T arri

i ) < Bi, t ∈ T (19)

where Equation (16) describes the main objective function.

Equation (17) represents that the total microservice provi-

sioning cost, Coff
i , is to be greater than the threshold mi-

croservice provisioning cost, Coff
th . The microservice penalty

cost, Cpen
i , has to be greater than the threshold microservice

penalty cost, Cpen
th , as shown in Equation (18). Equation (19)

captures the prescribed microservice deadline Bi required

to be greater than the threshold (T com
i − T arri

i ). After

solving this optimization problem, all critical microservices

will be provisioned immediately to edge servers. All other

microservices (i.e., microservice class 2 and 3) will be

subsequently provisioned to cloud servers. According to

Formulas (16), (17), (18), and (19), the provisioning mech-

anism is a nonlinear integer programming problem, and it
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essentially turns out to be a combinational optimization of

microservice provisioning with provisioning cost constraints

and resource maximization with delay constraints. We solve

the problem using Lagrangian Relaxation Theory [19].

VI. PERFORMANCE ANALYSIS

We present the evaluation results of ASAP with different

experimental scenarios. We provide a detailed large-scale

performance results using CloudSim [20] simulations and

also provide test-bed experiments for microservices.

Table I: Experimental Settings

Parameter Value

CPU bandwidth capacity 20 MHz

Total available microservice tasks 200

Microservice execution time [5, 15] ms

CPU resources [10, 20] MHz

Power consumption of mobile device (Tx) 100 mW

Processing capacity of mobile device 0.7 GHz

Processing capacity of MEC server 100 GHz

Microservice traffic arrival rate [0, 10] unit/sec

Average microservice traffic rate 100 Mbits

SLAs for microservices (deadline) [0, 10]

A. Evaluation Settings

We define the evaluation settings to depict the perfor-

mance evaluation of ASAP and present all the parameters in

Table I. We define several parameters as described in Table

II and in line with existing literature [16], [17] to obtain

realistic values regarding microservice configurations. For

the edge computing platform, we have around 250 mobile

devices dispersed over a populated area of 5 km X 5 km,

and 3 powerful 5G-enabled base stations are located near

MEC servers. The computational processing capability of

MEC servers can be set to 100 GHz, and the computation

processing capability of a mobile device is 0.95 GHz. The

delay factor for the backhaul network is set to 0.0008
sec/KB [21]. To provision the microservices, we define

the maximum time period distributed over 8-12 ms. The

microservice size can be set from a range of 750-1250 KB.

Table II: A summary of microservices types and SLAs

Classes Microservice Types SLA

Class 1 Media Service High

Class 2 Social Network Moderate

Class 3 Hotel Reservation Normal

Prototype. We design a small setup comprised of 15 edge

servers, the configuration of each server is as follows; Intel

core-i9, 8 cores, 16 threads, operates at 3.6 GHz, 5 GHz

maximum frequency, and 128 GB of memory with DDR4-

2666 memory. These servers are operated on Ubuntu 14.04,

64-bit with Linux machine with kernel version 3.13.X , and

out of these 15 edge servers, 10 are arranged for microser-

vices and the other 5 for monolithic services. Basically, 10
of them are specifically designed for microservices with

limited computational and resource capacity, whereas the

other 5 of them are designed for monolithic services with

higher computational and resource capacity. We design a

client and server module for ASAP. The client generates

the microservice traffic from edge applications and collects

the information of SLAs for microservices at the application

layer. The server module is responsible for the execution of

tasks generated from different microservices on edge servers

and the provision of the resources to them. The servers are

enabled with Broadcom 43224AGN Gigabit Ethernet NICs,

and they can be connected to each other with an ethernet

switch with 144M pps and a bandwidth of 9Gbps. Such

switches can hold up to 8 priority classes for queues.
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Figure 4: Analysis of provisioning demand and size.

Metrics. For microservice identification, we consider sev-

eral performance metrics to quantify the microservice uti-

lization and ASAP’s accuracy (i.e., success rate). The suc-

cess rate can be formulated as the ratio of the maximum

number of microservice efficiently differentiated and the

maximum number of microservices that participated in the

process. As per the provision of microservices is concerned,

we measure the resource utilization for microservices.
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Figure 5: Analysis of success rate and arrival time.

Baselines. We consider two relevant solutions as base-

lines for the comparison with ASAP. MODEM is pro-

posed by Fadda et al. [22]; this paper designed a quality-

of-monitoring aware microservice deployment scheme. It

designed a multi-objective linear optimization problem to

find an optimal deployment configuration to maximize the

quality of monitored data and minimize the overall cost.

DEMIC is proposed by Wang [23]; this paper designed

a delay-aware microservice coordination scheme for edge

computing platforms. It uses online reinforcement learning

to achieve minimal delay and migration cost.
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B. Small-Scale Experiments

Impact on Provisioning Demand. Figure 4(a) represents

the provisioning demand of different microservices for the

edge platform. From Figure, we observe that microser-

vice class 1 provides higher provisioning demand than

microservice classes 2 and 3. Moreover, we observe how

the provisioning demand for microservice class 1 increases

as microservice class 1 provides real-time critical microser-

vices. This is in line with recent applications of edge com-

puting, e.g., IoT, in which critical microservice have higher

demand. Hence, Figure 4(a) shows that the microservice

class provides 7% higher provisioning demand compared

to microservice classes 2 and 3. Also, microservice class

1 has 24% higher provisioning demand over microservice

classes 2 and 3. Figure 4(b) shows the total data size

provisioned to the edge platform for a fixed duration of time.

We observe from our simulations that the provisioned data

size decreases with the increase in the provision duration.

As the data provisioning duration increases, the arrival rate

of microservices at ASAP also increases ‡. We explain this

phenomenon with the increase of congestion in the network,

which inherently increases the packet loss rate. From Figure

4(b), we can see how the provisioned data size increases for

microservice class 1 than for microservice classes 2 and 3.

As the proposed ASAP scheme efficiently provisioned the

critical microservices to the edge platform while giving the

highest priority. Due to the given priority, microservice class

1 faces a lower level of congestion in the network than other

classes. Therefore, the provisioned data size also increases

for microservice class 1. From Figure 4(b), we observe that

microservice class 1 provides 14 and 22 % improvement

compared to microservice classes 2 and 3, respectively.

Impact on Success Rate. In Figure 5(a), we show the suc-

cess rate of microservice differentiation for ASAP. From this

simulation, we observe that the success rate of identifying

the proper microservice classes increases with the total time.

We analyzed such a success rate for 30 units of time. The

success rate increases as ASAP efficiency chooses the differ-

ent microservice classes. This is because ASAP estimates the

microservice utility of different heterogeneous microservice

available and takes an optimal decision to provide fair

resources to each microservice. We also analyze the success

rate for different microservice classes; microservice class 1

has a higher priority and provides a higher success rate.

The success rate of microservice class 1 is higher than the

microservice classes 2 and 3 by 15 and 22%, respectively.

Figure 5(b) shows the arrival time of different microservices

classes for ASAP. From the figure, we see that the arrival

time of microservice class 1 is comparatively lesser than

the microservice classes 2 and 3, respectively. The proposed

microservice differentiator efficiently classifies the different

microservice classes, and the highest priority is given. There-

‡As the arrival rate of microservices is higher than the departure rate.

fore, the microservice class 1 is sent to the microservice

provisioned while following the FIFO mechanism, which

inherently decreases the arrival time. On the other hand,

microservice classes 2 and 3 are given moderate and lower

priority, respectively. Hence, microservice class 2 has a

lower arrival time than microservice class 3.

C. Large-Scale Experiments

Impact on Microservice Utilization. Figure 6 shows the

microservice utilization of ASAP. This parameter captures

the scalability of ASAP. A schema with higher microservice

utilization is a more scalable schema. From the figure,

we observe that the microservice utilization decreases as

the provision time increases in the network. We perform

the experiments of ASAP with other two existing schemes

DEMIC and MODEM; while varying the data provisioning

rate 5MB/s and 10MB/s. From figures 6(a) and 6(b),

we found that the microservice utilization decreases with

the increase in provision time. This is because as the

provision time decreases, the packet loss rate increases,

which inherently increases the microservice delay and mi-

croservice provisioning rate. It outperforms DEMIC and

MODEM by 12-16 % for the data provisioning rate 5MB/s
and 10MB/s, respectively. We compared ASAP with the

existing scheme DEMIC and MODEM while varying the

load fraction 0.5 and 0.9. From figures 6(c) and 6(d), we

observe that the ASAP’s microservice utilization increases

than the existing scheme – DEMIC and MODEM, as ASAP

first accurately differentiate the proposer microservice class

and later provisioned the microservices classes with different

priority, which increases the efficiency of the microservice

class 1. Thus, it outperforms DEMIC and MODEM by 8-10

% for varying load fractions 0.5 and 0.9.

Impact on Throughput. Figure 7 shows the throughput

analysis of ASAP. From figures 7(a) and 7(b), we observe

that the throughput decreases as the provision time increases.

We perform the experiments in both the edge and cloud

platforms while varying the data provisioning rate 5MB/s
and 10MB/s. From the figures, we also note that the

network throughput decreases with the increase in provision

time. This is because as the provision time decreases, the

packet loss rate increases, which inherently increases the mi-

croservice delay and microservice provisioning rate. ASAP

outperforms DEMIC and MODEM by 10-12 % for the data

provisioning rate 5MB/s and 10MB/s, respectively. We

also compared ASAP with the existing approaches DEMIC

and MODEM with the variation in load fraction 0.5 and 0.9.

From figures 7(c) and 7(d), we observe that the ASAP’s

throughput increases than the naive approach, as ASAP

first accurately differentiate the proposer microservice class

and later provisions the microservices classes with different

priority, which increases the efficiency of the microservice

class 1. Hence, ASAP outperforms DEMIC and MODEM

by 7-9 % for varying load fraction 0.5 and 0.9.
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(c) Load Fraction = 0.5
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Figure 6: Analysis of microservice utilization with varying data rate and load fraction (Simulation)
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Figure 7: Analysis of network throughput with varying data rate and load fraction (Simulation)

VII. CONCLUSION

In this paper, we presented ASAP, a novel architecture

for edge platforms that adaptively identifies the optimal

edge services to provision from a pool of heterogeneous

applications. First, we model the problem of adapting service

provisioning with optimization theory. Then we show with

a prototype evaluation and extensive simulations that ASAP

achieves over 20 % service type identification accuracy. Its

throughput and delay performance outperform standard edge

and cloud-based provisioning services. We also showed how

ASAP increases the network throughput and fairness.
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