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Abstract— In general, the generator matrix sparsity is a critical
factor in determining the encoding complexity of a linear code.
Further, certain applications, e.g., distributed crowdsourcing
schemes utilizing linear codes, require most or even all the
columns of the generator matrix to have some degree of sparsity.
In this paper, we leverage polar codes and the well-established
channel polarization to design capacity-achieving codes with a
certain constraint on the weights of all the columns in the
generator matrix (GM) while having a low-complexity decoding
algorithm. We first show that given a binary-input memoryless
symmetric (BMS) channel W and a constant s € (0,1],
there exists a polarization kernel such that the corresponding
polar code is capacity-achieving with the rate of polarization
s/2, and the GM column weights being bounded from above
by N®. To improve the sparsity versus error rate trade-off,
we devise a column-splitting algorithm and two coding schemes
for BEC and then for general BMS channels. The polar-based
codes generated by the two schemes inherit several fundamental
properties of polar codes with the original 2 X 2 kernel including
the decay in error probability, decoding complexity, and the
capacity-achieving property. Furthermore, they demonstrate the
additional property that their GM column weights are bounded
from above sublinearly in IV, while the original polar codes have
some column weights that are linear in V. In particular, for any
BEC and 8 < 0.5, the existence of a sequence of capacity-
achieving polar-based codes where all the GM column weights
are bounded from above by N* with A =~ 0.585, and with

the error probability bounded by (’)(2_N ﬁ) under a decoder
with complexity O (N log IN), is shown. The existence of similar
capacity-achieving polar-based codes with the same decoding
complexity is shown for any BMS channel and 8 < 0.5 with
A = 0.631.

Index Terms— Linear codes, polar codes, channel coding,
Hamming weight, sparse matrices, error probability.

I. INTRODUCTION

CAPACITY—APPROACHING error-correcting codes such
as low-density parity-check (LDPC) codes [1] and polar
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codes [2] have been extensively studied for applications in
wireless and storage systems. Besides conventional applica-
tions of codes for error correction, a surge of new applications
has also emerged in the past decade including crowdsourc-
ing [3], [4], distributed storage [5], and speeding up distributed
machine learning [6], [7]. To this end, new motivations have
arisen to study codes with sparsity constraints on their gen-
erator and/or parity-check matrices. For instance, the stored
data in a failed server needs to be recovered by downloading
data from a few servers only, due to bandwidth constraints,
imposing sparsity constraints in the decoding process in a
distributed storage system. In crowdsourcing applications, e.g.,
when workers are asked to label items in a dataset, each worker
can be assigned only a few items due to capability limita-
tions, imposing sparsity constraints in the encoding process.
More specifically, codes defined by sparse generator matrices
become relevant for such applications [8], [9].

In this paper, we focus on polar codes in order to construct
a sequence of codes defined by sparse GMs with practical
utility, such as low decoding complexity, explicit construction,
sufficiently fast decay in the error probability, and the potential
to approach capacity at large block-length.

A. Polar Codes

Channel polarization, introduced by Arikan [2], [10], is one
of the most recent breakthroughs in coding theory. Polar codes
are a class of provably capacity-achieving channel codes with
explicit construction for general BMS channels, and have
attracted significant attention due to their error correction
performance, as well as their low-complexity decoding algo-
rithms. Within the ongoing fifth generation wireless systems
(5G) standardization process, polar codes have been adopted
for uplink and downlink control information for the enhanced
mobile broadband (eMBB) communication service. Further-
more, polar codes and polarization phenomenon have been
successfully applied to a wide range of problems including
data compression [11], [12], broadcast channels [13], [14],
multiple access channels [15], [16], physical layer secu-
rity [17], [18], and coded modulations [19].

B. LDGM and Related Works

A related line of work on studying linear codes with sparsity
constraints on their generator matrices is by associating them
with sparse graph representations [20]. In this context, they are
referred to as low-density generator matrix (LDGM) codes,
also regarded as the counterpart of LDPC codes. The sparsity
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of the generator matrices of LDGM codes leads to a low
encoding complexity, and has been adopted in applications
such as lossy source compression [21] and multiple description
coding [22]. In [23] and [24] it was pointed out that certain
constructions of LDGM codes are not asymptotically good,
a behavior which is also studied using an error floor analysis
in [25] and [26].

In terms of the sparsity of the GM, the authors of [27]
showed the existence of capacity-achieving codes over binary
symmetric channels (BSC) using random linear coding argu-
ments when the column weights of the GM are upper bounded
by eV, for any € > 0, where N is the code block length. Also,
it is conjectured in [27] that column weight upper bounds
that scale sublinearly in N suffice to achieve the capacity. For
binary erasure channels (BEC), bounds that scale as O(log V)
suffice for achieving the capacity, again using random linear
coding arguments [27]. Furthermore, the scaling exponent of
such random linear codes are studied in [28]. Later, in [29], the
existence of capacity-achieving systematic LDGM ensembles
over any BMS channel with the expected value of the weight
of the entire GM bounded by e N 2. for any € > 0, is shown.
While the (ensemble-averaged) block-error probability for
the codes goes to zero as the block-length grows large,
the speed of decay in the error probability is not provided
in [27] and [29].

In [8], the problem of label learning through queries from a
crowd of workers was formulated as a coding theory problem.
Due to practical constraints in such crowdsourcing scenarios,
each query can only contain a small number of items. In [9],
we considered the same setting as in [8] with the additional
consideration that some workers may not respond to queries,
a scenario that resembles a binary erasure channel. Then we
showed that a combination of LDPC codes and LDGM codes
gives a query scheme where the number of queries approaches
the information-theoretic lower bound [9].

In the realm of quantum error correction, quantum
low-density-generator-matrix (QLDGM) codes, quantum low-
density-parity-check (QLDPC) codes, and other sparse-graph-
based schemes have been extensively studied due to the small
numbers of quantum interactions per qubit during the encoding
and/or error correction procedure, avoiding additional quantum
gate errors and facilitating fault-tolerant decoding. Amongst
these schemes, the error correction performance of the LDGM-
based codes proposed in [30] was shown to outperform all
other Calderbank-Steane-Shor (CSS) and non-CSS codes of
similar complexity.

In both applications highlighted above, the benefit of the
LDGM codes follows from a certain upper bound on the
column weights of the GM, ensuring the columns are relatively
low weight. Motivated by these applications, the main goal
of this work is to construct sequences of codes where all of
the columns of the GM are low weight, where certain upper
bounds on the weight will be specified later.

C. Our Contributions

In this paper, we study capacity-achieving polar and polar-
based codes over BMS channels with sparsity constraints
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on generator matrix column weights. Leveraging polar codes
based on general kernels, with rates of polarization studied
in [31], we show that capacity-achieving polar codes with
column weights bounded from above by N°® exist for any
given s > 0, where NV is the code block length. This verifies
the conjecture given in [27]. There is, however, a trade-off
between the sparsity parameter s and the rate of polarization,
given by 3.

For the case when the speed of decay for block-error prob-
ability and the GM sparsity are both constrained, we propose
two new code constructions with sparse GM columns, which
provide a better trade-off for s > 0.585. We first consider
BEC, and propose a splitting algorithm termed decoder-
respecting splitting (DRS) algorithm, which, roughly speaking,
splits heavy columns in the GM into several light columns.
Note that if one splits the heavy columns in an arbitrary
manner to form a new GM, the code defined by the new
GM may be substantially different from the original one in
terms of the error probability and/or having a low-complexity
decoder. Leveraging the fact that the polarization transform
of a BEC leads to BECs, the DRS algorithm converts the
encoder of a standard polar code into an encoder defined by a
sparse GM without hurting the reliability of the bit-channels
observed by the source bits. Furthermore, the specific structure
of DRS enables a low-complexity successive cancellation
decoder in a recursive fashion inheriting that of original polar
codes. In particular, we show a sequence of codes defined
by GMs with column weights upper bounded by N?, for
any A > A* =~ 0.585 and the existence of a decoder with
computation complexity O(N log N) under which the block-
error probability is bounded by 2~ ? for any 3 < 0.5.

Next, for general BMS channels, we propose an enhance-
ment of the DRS-based encoding scheme, referred to as
augmented-DRS (ADRS) scheme, which requires additional
channel uses and decoding complexity. In spite of these
limitations, we show that there exists a sequence of capacity-
achieving codes, referred to as the polar-ADRS codes. The
sequence of codes is defined by GMs with column weights
upper bounded by N?*, for any A > Af ~ 0.631, and can be
decoded with complexity O(N log V).

The rest of the paper is organized as follows. In Section
II, we introduce basic notations and definitions for channel
polarization and polar codes. Section III provides a sparsity
result for polar codes with general kernels. In Section IV,
we introduce the DRS algorithm and the ADRS scheme, and
the corresponding code constructions over the BEC and BMS
channels, respectively. The successive cancellation decoders
are also described and shown to be of low computation
complexity. Finally, Section V concludes the paper. The proofs
for the results in Sections III and IV are included in the
Appendix.

II. PRELIMINARIES

Let hy(-) denote the binary entropy function, exp, ()
denotes the function 2%, In(-) be the logarithmic function with
base e, and log(-) be the logarithmic function with base 2.
Z(W) denote the Bhattacharyya parameter of a channel W.
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We give formal definitions for the BMS channel and capacity-
achieving codes for readers’ reference.

Definition 1: A binary memoryless symmetric channel
(BMS) W : X — Y is a noisy memoryless channel with
binary input alphabet X, and channel output alphabet ), (we
use X = {0,1}, and assume ) is finite, in this paper.) such
that Pr[Y = y|X = 0] =Pr[Y = ¢(y)|X = 1] forall y €
for some involution ¢ on ).

Definition 2: A type of code is said to be capacity achieving
over a BMS channel W with capacity C' = I(W) > 0 if,
for any given constant R < C, there exists a sequence of
codes with rate R and the block-error probability vanishes as
the block length N grows large. The block-error probability is
evaluated under the maximum likelihood (ML) decoder, unless
a different decoding scheme is specified.

A. Channel Polarization and Polar Codes

The channel polarization phenomenon was discovered by
Arikan [2] and is based on the polarization transform as the
building block. Let W denote the class of all BMS channels.
The channel transform W +— (W=, W) that maps W to W2,
where W~ : X — Y2 and Wt : X — )2 x X, is defined
in [2] and is often referred to as a polarization recursion. Then
a channel W*t:52%n with s; € {—,+},i = 1,2,...,n,
can be defined by applying the channel transform n times
recursively, as in [2].

For N = 2", the polarization transform is obtained from

the N x N matrix G5", where Gy = [2], and A®"

10

Ll 1
denote the n-fold Kronecker product of A. A polar code
of length N is constructed by selecting certain rows of
G$™ as its generator matrix. More specifically, let K denote
the code dimension. Then all the N bit-channels in the set
{Wers2edn g € {—, 4} fori = 1,2,...,n}, resulting
from the polarization transform, are sorted with respect to
an associated parameter, e.g., their probability of error (or
Bhattacharyya parameter), the best K of them with the lowest
probability of error are selected, and then the corresponding
rows from G5 are selected to form the GM. Hence, the GM
of an (N, K) polar code is a K x N sub-matrix of G".
Then the probability of error of this code, under successive
cancellation (SC) decoding, is upper bounded by the sum of
probabilities of error of the selected K best bit-channels [2].

B. General Kernels and Error Exponent

It is shown in [31] that if G2 is replaced by an [ x [
matrix (G, then polarization still occurs if and only if G;
is an invertible matrix in Fo and it is not upper triangular
under any column permutation, in which case the matrix Gy is
called a polarization kernel. Furthermore, the authors of [31]
provided a general formula for the speed of the error rate
decay of polar codes constructed based on an arbitrary [ x [
polarization kernel G;. More specifically, let N = [" denote
the block length and C denote the capacity of the channel.
For any fixed § < F(G;) and fixed code rate R < C, where
E(G) denotes the rate of polarization (see [31, Definition 7]),
there is a sequence of polar codes based on G; with probability
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of error P, under SC decoding bounded by P.(n) < 2~V ’,
for all sufficiently large n. The rate of polarization E(G;)
is given by E(G;) = 1. log, D, where {D;}\_, are
the partial distances of G;. More specifically, for G; =
[gF, 9%, ..., ], the partial distances D; are given by D; =
dp(g:,span(git1,...,91)) for i =1,2,...,1, where dg(a,b)
is the Hamming distance between two vectors a and b, and
dpr(a,U) is the minimum distance between a vector a and a
subspace U, i.e., dg(a,U) = min,cy dg(a,u).

III. SPARSE POLAR CODE CONSTRUCTIONS
BASED ON LARGE KERNELS

In this section we first show the existence of capacity-
achieving polar codes with generator matrices for which all
column weights scale at most polynomially with arbitrarily
small degree in the block length N, hence validating the
conjecture in [27]. Second, we show that, for any polar code
of rate 1, almost all of the column weights of the GM are
polynomial in N.

Theorem 1: For any fixed s € (0, 1) and any BMS channel,
there are capacity-achieving polar codes under SC decoding,
with generator matrices having column weights bounded by
N?, where N denotes the block length of the code.

1 0 ]
2
I: 1.’
2

I
where [ is an even integer such that [ > 2:. The partial
distances are D; = 1 for 1 < 7 < é and D, = 2 for
L 41 < i < 1. Hence, the rate of polarization E(G) =
5log;2 > 0, and there is a sequence of capacity-achieving
polar codes constructed using G; as the polarizing kernel. Note
that in G, each column has weight at most 2 and, hence, the
column weights of G[@" are upper bounded by 2". By the
specific choice of I, we have 2" < (I5)" = (I")° = N¥,
where NV = [ is the block length of the code. This completes
the proof. [ ]

Remark 1: While Theorem 1 provides a theoretical guar-
antee on the existence of capacity-achieving polar codes
with sparse generator matrices, the sparsity comes at a cost.
Specifically, the rate of polarization E(G;) = %logl 2 <3
is smaller than that associated with the kernel G, given by
E(G2) = 0.5. On the other hand, while the SC decoding
complexity for polar codes defined by general [ x [ kernels
behaves as O(QTN log; N) [31], in this case, the complexity
scales as O(N log; N) by considering the following viewpoint.
Interleave (I/2)™ copies of the polar code with block length
2™ based the standard G5 kernel, to form a code with block
length N = [ with an n-stage recursive encoder structure.
By decoding each copy with complexity O(2"log2") =
O(n2™) under the SC decoder, the entire code can be decoded
with complexity O((1/2)™ - n2") = O(N log; N).

Since we can construct capacity-achieving codes with col-
umn weights upper bounded by N?® with any fixed s > 0,
by using polar codes, the question now is whether it is
possible to further improve the sparsity of polar code GMs.
For instance, we know it is possible to have an upper bound
of O(log N) on all the GM column weights of capacity-
achieving codes, over the BEC, by utilizing random linear

Proof: Consider an [ x[ polarizing matrix G; =

N~ |~
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ensembles [27]. For rate-1 polar codes, the proposition below
answers the inquiry in the negative, by showing that almost all
the GM columns have weights lower bounded by a polynomial
in N.

Proposition 1: Given any | > 2, | x [ polarizing kernel
Gy, and % > r > 0, the fraction of columns in Gi@" with
O(N71°8:2) Hamming weight vanishes as n grows large,
where N = [".

Proof: The proof is given in Appendix Section A. ]

The trade-off highlighted in Remark 1 suggests that off-
the-shelf polar code constructions with large kernels may not
be the ideal option when the speed of decay of the error
probability is a concern. However, the heaviest column in the
polar code with kernel Gy scales as O(V) for any code rate.
To construct codes with sparse GM and suitable decay of the
error probability, in the next section, we propose a splitting
algorithm for the generator matrix and investigate the resulting
codes in terms of the error probability, GM column sparsity,
and the decoding complexity.

IV. SPARSE POLAR-BASED CODES WITH
Low-COMPLEXITY DECODING

When all columns of a matrix GG are required to be sparse,
that is, have low Hamming weights, a splitting algorithm is
applied. Given a column weight threshold w, ;. , a splitting
algorithm splits any column in G with weight exceeding w,, p.
into columns that sum to the original column both in [, and
in R, and that have weights no larger than w,, ..

Note that a column of G is left intact by the splitting
algorithm as long as its Hamming weight does not only
exceed w, .. Thus a splitting algorithm would be described
as an algorithm which takes as input a column vector v
and a weight threshold w, ;. , and returns a set of column
vectors whose lengths are equal to the length of v. Given
a matrix A with m columns and a threshold w, , , with a
slight abuse of notation, the matrix generated by a splitting
algorithm is defined as the matrix whose column vectors are
those from the m sets, which are respectively the outputs of
the algorithm for each column of A. For example, consider

T
a 4 x 2 matrix A = }(1) 1(1) = [a1,az], a threshold
wyp, = 2, and a splitting algorithm S. Let S(aj, wy.p.),

i = 1,2, be the sets of vectors returned by S, given by
S(ay,wup) = {[1,0,1,0]7,[0,0,0,1]7} ,S(az, wus) =
{[1, 0,1,0]7,[0, 1,0, O]T} . The matrix generated by S for A
is then a 4 x 4 matrix of the form [[1,0,1,0]7,[0,0,0,1]7,
[1,0,1,0]7,[0,1,0,0]7], or a column permutation of it.

Let an (N, K) polar code C have a K x N submatrix of G =
G$™ as the generator matrix, and G’ denote the N x N (1+7)
matrix generated by the splitting algorithm, where N = 2".
A new code based on G’ selects the same K rows of G’ as
the polar code C to form the generator matrix, where all the
column weights are bounded by w,, ;.. Such a code is referred
to as a polar-based code corresponding to G', or a PB(G’)
code, in this paper.

Note that more detailed description is needed to uniquely
specify a splitting algorithm, which then determines the term
~ and the performance of the PB(G’) code. Specifically, the
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channel polarization phenomenon and the recursive encoding
and decoding structure may be invalid when the GM is modi-
fied by the splitting algorithm. These changes also imply that
the codes with the split GM may suffer from drawbacks such
as weaker bounds on error probability and larger decoding
complexity, as well as the rate loss with a multiplicative
factor of 1 + v, when compared to the polar codes. In this
section, we introduce a splitting algorithms, referred to as
the decoder-respecting splitting (DRS) algorithm, and two
encoding schemes that are effective in avoiding the drawbacks.
These schemes enable low-complexity SC decoders based
on likelihood ratios that can be calculated with a recursive
algorithm. Specifically, when the threshold w, ;. is chosen
appropriately, we show in Section IV-A that the term ~ goes
to 0 exponentially fast in n, when the DRS algorithm is
applied to columns of the matrix G = G". The encoding
of the resulting PB(G’) codes can be realized by a encoding
scheme which inherits the recursive structure of the original
polar codes, except only at locations that corresponds to a
split of a column of G, as dictated by the DRS algorithm.
At these locations, the exclusive-OR operations are removed
and additional copies of the underlying channel are used. The
PB(G’) codes suffer only a negligible 1 + v multiplicative
factor of rate loss compared to the original polar codes for
large n. For BEC, this sequence of codes is capacity-achieving
with an error exponent of %, under a new SC decoding
scheme (see Theorem?2 in Section IV-B). For general BMS
channels, another encoding scheme, referred to as the ADRS
scheme, is proposed in Section IV-C. This scheme introduces
additional ‘noise’ nodes and requires even more copies of the
underlying channel when the DRS algorithm requires a split.
For codes generated by this scheme, results similar to that in
Theorem 2 are available with a slightly stricter condition on the
choice of wy, ..

A. Decoder-Respecting Splitting Algorithm

The main idea of the DRS algorithm is to construct a
generator matrix that can be realized with an encoding pattern
similar to conventional polar codes such that the column
weights of the matrix associated with the diagram are at
most w,.p.. The pseudo code for the algorithm is provided
in Algorithm 1.

The core of the algorithm is the DRS-SPLIT function.
When the weight of the input the vector x is larger than
the threshold, it splits the vector in half into vectors x; and
x¢, and recursively finds two sets, Y7, and Y;, composed of
vectors with the length halved compared to the length of x.
The vectors are then appended to the length of x, which
collectively form the output of the function. For a vector
u € {0,1}"™, let |u] = m denote its length, and wg (u)
its Hamming weight. We note that the weights of vectors in
Y}, and Y; are respectively upper bounded by the weights of
x;, and x¢, both of which are bounded by k& = |xp| = |x¢|,
and that the value of k is halved each iteration. Hence, the
function is guaranteed to terminate as long as the threshold is
a positive integer.

We use a simple example to illustrate the algorithm. Let
n =3, v = [0,0,00,1,1,1,1]7 and w,, = 2. Since
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Algorithm 1 DRS Algorithm

Input: weight threshold w, ; € N, a column vector v €
{07 1}2” x1

Output: the set of vectors with length 2™ returned by DRS-
SPLIT(Wy,p., V)

function DRS-SPLIT(w,, p., X)

1:

2 if wy(x) > wyp. then

3 k < length(x)/2

4: xXp (w1, 2p) T, xp e (g1, .o 20) T

5: Y, < DRS-SPLIT(w, ., Xp)

6 Y; «— DRS-SPLIT(wy ., X¢)

7 if x;, = 0x«1 then

8 return |J {(01xx,y")T}
yeY:

9: else if x; = 0,1 then

10: return J {(y7,01x%)7}
YEY},

11: else

12: return {J {(01xx, yT)TIU U {(wT,01xx)T}
yeYy yeYh

13: end if

14: else if wy(x) = 0 then

15: return {}

16: else

17: return {x}

18: end if

19: end function

the weight of v exceeds the threshold, it is first split into
x, = [0,0,0,0]7 and x;, = [1,1,1,1]7. Since x;, is an
all-zero vector, Y} is an empty set according to line 14 to
15. To compute Y; =DRS-SPLIT(2, [1,1,1,1]7), the function
splits the input into half again, thereby obtaining xj, = [1,1]7
and x; = [1,1]7. The corresponding Y, and Y are then
both {[1,1]7} and, hence, we have Y; = {[0,0,1,1]"} U
{[1,1,0,0"} = {[0,0,1,1]7,[1,1,0,0]"}. Since x; =
041, the function proceeds to lines 7 and 8, and returns
{[0,0,0,0,07071,1]T7 [07070,0,1,170,0}T}.

In order to analyze the effect of the DRS algorithm on the
matrix G5, we show that the size of the algorithm output
does not depend on the order of a sequence of Kronecker
product operations, where the size of a set of vectors stands for
the number of vectors in the set. Suppose that the Kronecker
product operations with the vector [1, 1]7 for n; times and
with the vector [0, 1] for ny times are applied on a vector
v, where n = nj + ne and the order of the operations
is specified by a sequence (s1,52,...,5,) € {—,+}" with
{i:s; ==} = ny and |{i:s; = +}| = na. Also, let v
denote the output of applying the first ¢ Kronecker product
operations on v. It is defined by the following recursive
relation:

o u@‘” @[, 17, if s; = —, @
0 @ 0,17, if 5 = +,
for 4 > 1 and the initial condition v® = v. We use

v(1:52:55:) instead of v(¥) when the sequence is needed for
clarity. The following lemma shows that any two vectors of
the form v(¥1:52:57) will be split into the same number of
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columns under the DRS algorithm as long as the sequences
associated with them contain the same number of — and +
signs.

Lemma I: Let n = ny + ny and (s1,...,8,) € {—,+}"
be a sequence with n; minus signs and no plus signs. Let
v(™ be the vector defined by a vector v and the sequence
(s1,...,8n) through equation (1). Then the size of the
DRS algorithm output for v(™) depends only on the values
ny and no.

Proof: The proof is given in Appendix Section B.1. H

Let a K X N matrix M = [uj,us,...,uy] and a threshold
w,.p. be given. Suppose that the DRS algorithm is applied to
each column in M and the sum of the sizes of the output sets
is N(1+ ). Then DRS(M) is defined as the K x N(1+ )
matrix consisting of all the vectors in the output sets (with
repetition).

We study the effect of the DRS algorithm in terms of the
multiplicative rate loss, i.e., 1 + 7. Since all the columns of
GS™ are in the form of v(s1:525n) with v = [0,1]7 or v =
[1,1]7, Lemma 1 substantially simplifies the analysis for -.
In particular, the following proposition shows an appropriate
choice of w, ;. guarantees the existence of a sparse polar-
based GM with vanishing ~.

Proposition 2: Let the columns of G5" be the inputs for
the DRS algorithm and DRS(GS") be the N x N(1 + 7)
matrix generated by the DRS algorithm for G$™. The term
v vanishes exponentially fast as n goes to infinity for any
Wy, = 2" with A > X* £ Ry (2) — £ ~ 0.585.

Proof: The proof is given in Appendix Section B.2. W

For the effect of the DRS algorithm on GS@” with finite n,
we compute values of v for various combinations of n and A,
as shown in Figure 1. The numerical results with 6 < n <
26 indicate that, for 0.5 < A\ < 0.6, the multiplicative rate
loss 7 is larger with larger n, and for A > 0.65, vy is smaller
with larger n. The fact that the n = 26 does not provide
the smallest v for A close to A* should not be considered
a contradiction to Proposition 2. Instead, the closer A > A\*
is, the larger n it takes for the exponential decay of ~ to
dominate.

B. Low-Complexity Decoder for Polar-Based Codes: BEC

In this section, we show two results for the polar-based
code corresponding to DRS(GS™) over the BEC. Such codes
are referred to as the polar-DRS codes in this paper. First,
we propose a low-complexity suboptimal decoder for the
polar-DRS codes. Second, with the low-complexity subopti-
mal decoder, the polar-DRS codes are capacity-achieving for
suitable column weight threshold.

It is known that when the channel transformation with kernel
G» is applied to two BECs, the two new bit-channels are
also BECs. Specifically, for two binary erasure channels W;
and W, with erasure probabilities €; and eg, respectively, the
polarized bit-channels W= (W1, W3) and W+ (W, W) are
binary erasure channels with erasure probabilities €1 +€e3—€1 €2
and €7 €2, respectively.

The mutual information /(-) and Bhattacharyya parameter
Z(-) of a BEC W with erasure probability ¢ are given by:
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Fig. 1. Multiplicative rate loss factor « versus A, where w,, . = N>,

I(W)=1—¢,Z(W) = e. For a sequence (S1,S2,...,5,) €
{—,+}", the function Bi2De(s1, 52, ..., s,) returns the dec-
imal value of the binary string in which a minus sign
for s; is regarded as a 0 and a plus sign as a 1, e.g.,
Bi2De(—, +,+) = (011); = 3. Let G denote G¥" and
G’ denote DRS(GS™), and let 28152”'8") denote the Bhat-
tacharyya parameter of the bit-channel W#1%2--%» ~which is
equal to WJ(VBQDe(Sl’52""’5"')+1) in [2, page 3]. The term
Zg}”'”s") denotes the Bhattacharyya parameter of the bit-
channel observed by the source bit of the same index corre-
sponding to G'.

The following lemma shows that the bit-channel observed
by each source bit is better in terms of the Bhattacharyya
parameter when G’ is the generator matrix instead of G.

Lemma 2: Let w,p and n be given, and let G denote
GS" and G’ denote DRS(GS™). The following is true for

any (s1,82,...,8,) € {—, +}"
(s182...8n) (s182...5n)
Ze? <Zgt? .
Proof: The proof is given in Appendix C. [ ]

Remark 2: A key to the proof of Lemma 2 is a recursive
encoding scheme for the relationship x = uG’, where u and x
are row vectors of lengths N = 2™ and N (1++), respectively.
The encoding scheme is most easily understood by consider-
ing the low-complexity encoding structure for the standard
polar code, as seen in [32], and replacing the exclusive-OR
(XOR) operations at locations that correspond to the splitting
operations dictated by the DRS algorithm. Specifically, when
a split is required on a column of G, the corresponding XOR
node is removed, the input bit for the ‘worse’ channel remains
untouched, and two copies of the input bit for the ‘good’
channel are transmited through the underlying channel. For
example, consider G = G?‘g. The encoding diagram for codes
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U, U; Uy uy" @ v,
U, & v Y,
Us Us v o w 1
A & v Y e
Us v % W
e U g Us' Jwlr,
U, v i Yw e
Us U % B,
(a) Encoding block for generator matrix G' = G$*
U, Uy ot —® U’ w b—» Y
R T,
Us Us o v W i—1
. i A U P}y,

U’l’

51 w 4’Y5’1

UIII

Us 5'27 WY,
U’ UH UHI

Ug 6 6 W sy,
’ UH UIH
Uz 7 M w '—+Y7
U, UH UIH

(b) Encoding block for generator matrix G’

U s

Uy

Fig. 2. Encoding structure change due to the DRS algorithm with
N =8 wyp =4

defined by G is shown in Figure 2a. We have

1 0000000
1 10000 0 0
1 010000 0
g_|t 11 10000
1 000 1 0 0 O
1100 110 0
10101010
11 1 1 1 1 1 1]
1 0 0 0 0 0 0 0 0]
1 01 00 00 00
1 001 000 00
o[t 01 1 100 0 0
01 0 0 0 1 0 0 0
001 1 0 0 1 1 0 0
01 0 1 0 1 0 1 0
0o 1 1 1 1 1 1 1 1]

where G’ is the matrix DRS(G?B) when w,, = 4. The
encoding structure for G’ is shown in Figure 2b. Since the first
column is the only column of G split by the DRS algorithm
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1

! Uy U
U, e U1 e L Y,

U, Ué, UZIH
U, g ° W
UH UIH
J 3,1 Y 3,1 - Yas
r U” UH/
U —@ Voo " >0 e E_' Y3,

Fig. 3. Encoding block for generator matrix DRS(G?S) when w,, . = 2.

when w, . = 4, we remove the XOR node that performs
Uy = Uy + UY, and assigns Uy’ = Uy, U}, = Ul and
Ug'y = Ug'. Two solid circles, representing transparent nodes
where the output variable(s) are identical to the input variable,
are used to indicate the location of the removed XOR node.
For the case when w,; = 2, the DRS algorithm would
split the first column of G into three vectors, and the second,
third, and fifth column once each. The corresponding encoding
diagram is shown in Figure 3, where we color the solid circles
associated with splits on the first, second, third, and fifth
columns by black, green, orange, and blue, respectively.

We are ready to show the existence of a sequence of
capacity-achieving codes over the BEC with GMs where
the column weights are bounded by a polynomial in the
blocklength, and that the block error probability under a low
complexity decoder vanishes as n grows large.

Theorem 2: Let 3 < E(G3) = 0.5, A > X\ = hy(3)— 3 ~
0.585, and a BEC W with capacity C be given. There exists
a sequence of polar-based codes corresponding to DRS(G?”)
with the following properties for all sufficiently large n: (1)
The error probability under a SC decoder is upper bounded
by 27V ’ where N = 2m, (2) The Hamming weight of
each column of the GM is upper bounded by N*, (3) The
rate approaches C' as n grows large, and (4) The codes
can be decoded by a SC decoding scheme with complexity
O(Nlog N).

Proof: Let the threshold for DRS algorithm be w, ; =
2"\ G denote G?", and G’ denote DRS(G?”). We prove the
four claims in order. First, Lemma 2 shows that for a given n
and any ¢ > 0, the following is true:

{se{-+}":Zg<t}C{se{-+}": 2 <t}. @

Using [2, Theorem 2], for any 3 < %, we have

lilmgf% Hs e {—, )" 28 < Q*N”H — (W) =C@3)

Let Sg and Sg/ denote the sets of the sequences s €
{—,+}" that satisfy Z§ < 2-N" and 75, < 2-N” respec-
tively. Equation (2) guarantees that Sg is a subset of Sg.
Assume the code corresponding to G freezes the input bits
observing bit-channels W#1°2:-%» for all (s1,s2,...,5,) ¢
Sc. For the code corresponding to G’, we use the bit-channels
with the same index as the code corresponding to G, for
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transmission of information bits, and leave the rest as frozen.
The probability of block error under SC decoding, which
is described in the last part of this proof, for the code
corresponding to G, P, ¢, can be bounded above, as in [2],
by the sum of the Bhattacharyya parameters of the bit-channels
for the source bits (that are not frozen), that is,

_NF _N®
Por <> Z8 <Y 27V =[Sg[27V",
s€Sg s€ESg

where the second inequality follows because, for s € Sg,

we must have s € S/ and thus Z, < 2-N? From (3), for all
3

sufficiently large n, we have P. o < NC27V ? . With some

calculus, one may show that, for any 3’ < % P.a < 2’Nﬁ/
for all sufficiently large n.

The second claim follows from the fact that the GM for
the code corresponding to G’ is a submatrix of G’, and the
Hamming weight of each column of G’ is upper bounded by
Wb, = Qn)‘ = NA.

The third claim is a consequence of Proposition 2 and
Lemma 2. The number of information bits of the code corre-
sponding to G’ is given by |Sg|, and the length of the code is

N(1+ 7). Hence the code rate is Ng‘_ﬂ,y). Since the term ~
vanishes as n grows large, we have

o |Sq| .. . |Sql

liminf ———— =liminf — =I(W) = C. 4

Finally, we prove the claim for the existence of a low-
complexity decoder. Just like that of the SC decoder for
conventional polar codes with kernel G2, the decoding algo-
rithm proceeds in a recursive manner. Let U,...,Uyn be
the inputs, and Y1,...,Yn,, YN, 41, ., YN, +N, the outputs,
where N1+ Ny = N (14 1), as shown in Figure 4b. However,
while the polar code based on G?", as shown in Figure4a,
is recursive in the encoder structure, i.e., the two encoding
sub-blocks corresponding to G?"‘l are identical, the code
based on (G$™) is not, as the blocks W* and W) are not
necessarily equal. In fact, when there is a split in the GM due
to the DRS algorithm, i.e., when one or more of the XOR
operations shown in Figure 4b is replaced by two solid black
circle, the number of inputs of the block W) will be larger
than that of W}.

Let F C {1,..., N} be the set of the indices of the frozen
bits. The decoder declares estimates Ui of the inputs, for
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U3 N > YZ
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2 Yﬂ+1
2
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Uy ——
(a) Encoding block for generator matrix G?”
Xy
Ul > 3 Y1
X3
Us ] — Y
4 W
2j-1
Uzj-1
’ Xy-1
Un-1 T W,
X
UZ 2 — YN1+1
X4
Uy " Yn42
X2i1 W,k
| 2
j,2
Uzj
XN
Uy > Yn, +n,
(b) Encoding block for generator matrix (G5™)’
Fig. 4. Encoding/decoding diagrams for standard and DRS-modified polar

codes.

1 <7 < N, sequentially by:
if i € F,

ifi ¢ F, ©)

= Us,

Ui = {¢i(}qN1+N2’U{'17Wn)
where ; (YN N2 7771 W,,) can be found in following
four cases, and W,, denotes the encoding block shown in
Figure 4b. Let the symbol e denotes an erasure, and assume
e®b = e for b € {0,1,e}. We write ¢; in place of
(YN 71 W) for the sake of space in the following.

e If ¢ is odd and X; = U; @ U, 1, which corresponds to
an unsplit XOR operation observed by Uj,

v A XioXi ifXi#eXim#e,
! e, otherwise.

« If 7 is odd and X; = U;, which corresponds to a split
XOR operation, v; £ X.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 9, SEPTEMBER 2023

e If 7 is even and X,;_; = U; & U;_1, which corresponds
to an unsplit XOR operation,

Xi, if X; #e,X;1#e,
Xi =X,1® Uifl
¢'é or Xﬁée,Xi—l:&
! X,'_l (&) Ui—l, if Xz = E,X,’_l 7£ €,
01;1 7£ e
e, otherwise.

o Ifiiseven and X;; = X, 2 = U,;, which corresponds to
a split XOR operation,

Xi1, ifX;1#eXi2=c¢,
or Xi1 = X2 #e,
Xi,Qa if Xi,l = G,Xi,Q # e,

e, otherwise.

g &

The estimates Xl, Xg, . ,XN_l and XQ,X4, ceey X2j,17
ng,g,...,XN are found in a similar approach using the
blocks W% and W} along with the outputs Yi,...,Yy, and
YN, 41, .-+, YN, +N,, Tespectively.

For the right-most variables, the blocks they observe are
identical copies of the BEC W. Hence the estimates of the

1

variables, denoted as X" X", ... 7X](\Z)+ n, are naturally
defined by the outputs of the channels, i.e., XZ(") =Y, for
i=1,2,...,Ni + No.

At each stage there are at most Ny + No = N(1 +
v) = O(N) estimates to make, and the recursion ends in
log(N) steps. Since each estimate is obtained with constant
complexity, the total decoding complexity for the code based
on DRS(GS™) is bounded by O(N log N). |

We evaluate the performance of the polar-DRS codes with
n =10 and A = 0.6, 0.8, 1.0, under the SC decoding scheme
described in the proof of Theorem 2, over the BEC with
erasure probability € = 0.5. In Figure 5a, the block error
probabilities for the curves with smaller A are smaller, due
to the improvement of some of the Bhattacharyya param-
eters observed by the information bits. That is, there are
sequences (81, 82, ..., 8,) € {—,+}" for which the inequality
in Lemma 2 is strict. However, after factoring in multiplicative
rate loss 7, we may observe in Figure 5b that the performance
of the codes with A = 0.6 are substantially worse than the
original polar code (A = 1 curve), and those with A =
0.8 deliver trade-off between code rate and error probability
comparable to the original polar code, while guaranteeing the
threshold w,, ;. is one-fourth of the latter.

Remark 3: We note that for general BMS channels,
Lemma 2 may fail. One key part in the proof (see Appendix C)
is the fact that the Bhattacharyya parameter for the bit-
channel observed by U; is a non-decreasing function of
those of W(X1),...,W (X)) for i < 2™, and of
W(X¢m)+1)s- -+ » W(Xap(m)) fori > 2™, when all the chan-
nels are BECs. We now provide an example where we see the
argument for Lemma 2 fail for BMS channels. Let a,a’, b, V'
be four distinct elements and ) = {a,a’,b,b’}. Let two BMS
channels Wy, W5 : {0,1} — ) be given, and that W7 (y|0) =
W1 (é(y)|1) and Wa(y|0) = Wa(p(y)|1) for all y € Y where
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n =10, BEC(0.5) channel, DRS scheme
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A=06(w  =64)
1073 I I I I I
0.32 0.34 0.36 0.38 0.4 0.42 0.44
Unadjusted Code rate K/N
(a) Unadjusted code rate
n =10, BEC(0.5) channel, DRS scheme
10° : T : + | —
2
©
o
S0 F .
i
<
8
53]
—w— A=l (w = 1024)
—o—A=08(w ,, =256)
A=06(w ,, =64)
102k s s s s s \ \ B
0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
Adjusted Code rate K/IN(1+ )
(b) Adjusted code rate
Fig. 5. Error probability for polar-DRS codes with n = 10 with

Wb, € {64,256,1024}.

the involution ¢ maps a — a’,b — U'. Assume the channel
transition probabilities are W1 (a|0) = 6/9, W1(b|0) = 1/9,
Wi (b'|0) = 1/9,W;(d’|0) = 1/9 and W2(al0) = 5/11,
Wy (b|0) = 4/11, Wh(¥'|0) = 1/11, Wi(a'|0) = 1/11.
The Bhattacharyya parameters for W, W, are respectively
0.7666 and 0.7702. If m = 1 and B,, is simply the kernel
G, the symbols X7, X5 are functions of Uy,Us given by
X1 = U1 + UQ and XQ = U2.

We now consider two possible cases
(W(X1), W(Xa). I (W(X1),W(Xa) = (Wi, Wa),
the Bhattacharyya parameters for the bit-channels
observed by U;,Us are respectively 0.9147 and 0.5904.
If W(X,),W(Xs)) = (W5, Ws), the Bhattacharyya
parameters for the bit-channels observed by Uj;,Us are
respectively 0.9137 and 0.5932. We note that while the
Bhattacharyya parameters for W (X;), W(X5) in the second
case are no less than in the first case, the Bhattacharyya

for the pair
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(b) ADRS modification

Fig. 6. ADRS scheme for a split XOR of first iteration of polarization.

parameter Z(U;) in the second case is smaller than in the
first case. With the above observation, one can not claim
the validity of Theorem 2 for general BMS channels. This
motivates a new code construction for general BMS channels.

C. Low-Complexity Decoder for Polar-Based Codes: BMS

This section introduces a capacity-achieving polar-based
coding scheme with low-complexity decoder for general
BMS channels. For general BMS channels, the Bhattacharyya
parameter of the bit-channel W~ cannot be expressed only
in terms of parameters of the channel W. This implies that
Lemma 2 and Theorem 2 are not applicable for channels
other than BEC, as pointed out in Remark 3. A procedure
that augments the generator matrix corresponding to G’, the
output of the DRS algorithm for the matrix G¥", may be used
to construct a capacity-achieving linear code over any BMS
channel W.

1) ADRS Scheme: The encoding scheme, termed
augmented-DRS (ADRS) scheme, avoids heavy columns
in the GM and, at the same time, guarantees that the
bit-channels observed by the source bits U; have the same
statistical characteristics as when they are encoded with
the generator matrix G3". Specifically, the ADRS scheme
modifies the encoder for G$™ starting from the split XOR
operations associated with the first polarization recursion,
then the second recursion, and proceed all the way to the
n-th recursion, where a XOR operation is split if and only if
it is split in an encoder with generator matrix DRS(G3™).

Assume an XOR operation with operands Ui(ln_] ) and
Ui(:_]) and the output Ui(ln_]H), where i; = Bi2De(sy, .. .,
Sj—1,85 = 841y, Sn)+1 and ’ig = Bi2D€($1, sy S5—1,
sj = +,8j41,...,8,) +1 = i1 + 27 is to be split (see
Section IV-B for the function Bi2De(-)). If j = 1, before
modification, the variables Ui(ln) and Uz‘(:) are transmitted
through two copies of W, and the bit-channels observed by
Ui(lnfl) and Ui(gn*l) are W~ and W, respectively, as shown
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(c) ADRS Encoding Diagram for G with w,, ,, = 2

Myaq Yic121
N2 é Vi1
Ny Vi1
U, %B—‘LU{ & U g U{”-’E Y,
, " N21 Y2o21
AR R S
N2, @ Y3_121
—é "E Y312
, N31 Y331
U, g5 e b Ué”—@—» Y,
U, U, U, _%9 U, @ v,
Fig. 7. ADRS example with N = 8 and w,, ;. = 2.

in Figure6a. If the XOR operation is split according to
DRS(G$™), ADRS scheme replaces the structure by that given
in Figure 6b, where n;, 1 is a Bernoulli(0.5) random variable
independent of all the other variables.

If 7 > 2, assume that the ADRS modification for the split
operations for the first (j — 1) recursions are completed. Let
n;, ; be a Bernoulli(0.5) random variable independent of all
the other given variables. The part of encoding diagram to the
right of Ui(ln_] 1 is replicated, where ni, ; takes the place
of Ui(ln_] D in the replica. And then we let Ui(ln_] ) _

Ui(ln_j )@ n,, ;. In addition, the part of encoding diagram to

the right of Ui(:fjﬂ) is replicated, and a copy of Ui(;ﬂ )
is transmitted through the replica. The variable Ui(;ﬂ +1)
remains Ui(:ﬂ T = UZ-(,:L*] ),

We demonstrate the procedure described above through the
following example. Assume n = 3, N = §, and w,p = 2.

The encoding diagram for G%@g is shown in Figure 7a, and the

XOR operations that are split in DRS(G?B) are marked in
green and blue, which indicate the operations are due to the
first and the second polarization recursions (i.e., s; and ss),
respectively. The notations U], U/, U!"” are used to represent

Ui(l),Ui@),Ui(B). Replacing the XOR operations marked in
green as described for the case of j = 1, the encoding diagram
is now shown in Figure 7b. For the XOR operations marked
in blue, we proceed by using the step for j > 2 and obtain
the diagram shown in Figure 7b.

It can be noted that the bit-channels observed by each of
UP fori=1,2,...,Nand j=0,1,2,...,n, in the ADRS
encoder are the same as those in the standard encoder for the
generator matrix G5 (The variable Ui(o) are given by U, for
1 <4 < N). When an XOR operation associated with the j-th

recursion, with operands Ui(lnfj ) and Ui(znfj ) and the output

Ui(ln_j +1), is split and modified under the ADRS scheme, the
complexity of computing the likelihood or log-likelihood for
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Ui(ln_J ) and Ui(:_J ) can be upper bounded by 2(2! + 22 +
oot 29)e = 2(2711 — 2)¢, for some constant ¢ > 0.

2) Polar-ADRS Code Performance: We are now ready to
show the performance of the polar-based code whose encoding
structure is given by the ADRS scheme, referred to as the
polar-ADRS code. First we show the existence of a low-
complexity decoder.

Proposition 3: Let a constant A > A\ £ (log,3)~! =~
0.631 be given. The decoding complexity for a SC decoder
for the polar-ADRS code is bounded by O(N log N) for all
sufficiently large n if the threshold for the DRS algorithm is
Wb, = 2n)\.

Proof: The proof is provided in Appendix D.1. ]

Second, it can be observed that the number of additional
copies of channels due to the modification for an XOR
operation at the j-th polarization recursion is 27. We find the
total number of extra channel uses and the ratio ~y of that to the
number N = 2" of channel uses for the code corresponding
to G$™ in the following. Assume that the column weight
threshold of the DRS algorithm is given by w, . = onA

Proposition 4: Let N(1++) be the number of channel uses
of the encoder for the ADRS scheme based on DRS(G?")

with wyp. = 2™. Then the term v goes to 0 as n grows
large, if we have A > Af.
Proof: The proof is provided in Appendix D.2. |

We are ready to show the existence of a sequence of
capacity-achieving codes over general BMS channels with
GMs where the column weights are bounded by a polynomial
in the blocklength, and that the block error probability under
a low complexity decoder vanishes as n grows large. Note
that while this result is also applicable when the underlying
channel is a BEC, the constraint on A is stricter than that in
Theorem 2, due to the difference in the encoding and decoding
schemes.

Theorem 3: Let 3 < E(G3) = 0.5, A\ > A', and a BMS
channel W with capacity C be given. There exists a sequence
of codes with the following properties for all sufficiently
large n: (1) The error probability under SC decoding is upper
bounded by 2=V ﬁ, where N = 2", (2) The Hamming weight
of each column of the GM is upper bounded by N?*, (3)
The rate approaches C' as n grows large, and (4) The codes
can be decoded by a SC decoding scheme with complexity

O(NlogN).
Proof: We prove the four properties in order as follows.
First, similar to the proof of Theorem?2, for i = 1,2,..., N,

the bit U; is frozen in the polar-ADRS code with rate R < C'
if and only if it is frozen in the polar code with kernel Go,
blocklength N = 2", and the rate R. Hence, the probability of
error of the polar-ADRS code can be bounded in the same way
as its polar-code counterpart, since the bit-channels observed
by the source bits U;, and the corresponding Bhattacharyya
parameters, are identical to those when they are encoded with
the standard polar code.

Second, when the ADRS scheme is based on DRS(G?”)
with w, = 2™, the generator matrix for the polar-ADRS
code is a submatrix of DRS(G?”). The column weights of
the GM for the polar-ADRS code are thus upper bounded
by wyp = 2™ = N?. The third claim holds by using an
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ADRS-Polar code, N= 1024, K= 512
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(a) Random auxiliary noise nodes
o Genie-assisted ADRS-Polar code. N= 1024, K= 512
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T
i
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W= 256, rate = 0.4937
—aW, = 512, rate = 0.4995
—x—w = 1024, rate = 0.5000
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(b) Frozen auxiliary noise nodes
Fig. 8. Error probability for polar-ADRS codes with N = 1024,

K =512 and w,, 5. € {64,128,256,512,1024}.

argument similar to the one used in the proof of Theorem 2.
This is because the term ~ vanishes as n grows large according
to Proposition 4. Finally, note that the fourth claim is equiva-
lent to Proposition 3. |

We evaluate the performance of the polar-ADRS codes
with N = 1024, K = 512 and weight thresholds w, ; €
{64,128,256,512,1024}, under the SC decoding scheme,
over the BILAWGN channels whose SNR (E,/Ny) ranges
from 0.5 to 3 dB. The indices of frozen bits are designed
using a Monte-Carlo scheme for the BI-AWGN channel
with E,/Ny = 2 dB. The auxiliary noise variables are
generated with independent Bernoulli(0.5) distribution. The
stopping criterion for each data point is ITERATION = 10° or
BLOCK ERROR COUNT = 100, whichever is reached first.
In Figure 8a, the block error probabilities are very close
for codes with different weight thresholds over the range of
simulated SNR. This is because the bit-channels observed by
each information bit are exactly the same with or without the
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ADRS scheme, and that the block error probability of the
codes are determined by the characteristics of the information
bit channels.

Note that the use of the auxiliary noise variables are of
theoretical reasons and is required for the proof of Theorem 3.
In practice, we may freeze the auxiliary noise variables to
avoid the channel uses for the transmission of them. In par-
ticular, when the auxiliary noise variables are frozen to fixed
values known to both the encoder and decoder, the decoder can
be considered as a genie-assisted decoder and its performance
is better or equivalent to that of a decoder without the
information of the auxiliary noise variables. We simulate the
performance of the ADRS-polar code with N = 1024, K =
512 and weight thresholds w, ;. € {64,128,256,512,1024},
where the values of the auxiliary noise variables are fixed to
0’s, over the BILAWGN channels with 0.5 < E,/Ny < 3 (dB),
and obtain Figure 8b. The error rates of codes with small
thresholds are lower than those with large or no thresholds,
a trend which is similar to that observed in Figure Sa.

V. CONCLUSION

This paper provided three constructions for capacity-
achieving linear codes, based on polar coding, where all the
GM column weights are upper bounded sublinearly in the
block length. The first construction is a sequence of polar
codes based on general polarization kernels where the GM
column weights are upper bounded by N® for any fixed
s > 0, and allows the codes to be decoded by a SC decoder.
In order to attain a better trade-off between the GM sparsity
and the fall in error probability, we then proposed a column-
splitting algorithm for the GM, termed the DRS algorithm.
With the DRS algorithm, we designed two encoding schemes
which yield two polar-based codes, referred to as polar-DRS
codes and polar-ADRS codes, that are decodable with low-
complexity decoders for the BECs and general BMS channels,
respectively. The polar-based codes preserve several funda-
mental properties of the standard polar code with G5 kernel
including the asymptotic error rate upper bound and decoding
complexity. Further, the GM column weights of the polar-DRS
and polar-ADRS codes are bounded from above by N*, for
A = 0.585 and )\ = 0.631, respectively, while the best bound
for the standard polar codes scales linearly in N. The proposed
constructions are also distinct from known constructions for
codes with constraints on the GM sparsity by having analytical
error probability upper bounds scaling as O(2=~ t) under SC
decoders, for any ¢ < 0.5. A future direction is to design
splitting algorithm and/or encoding schemes that preserve key
properties of the polar codes based on general polarization
kernels, and show that the corresponding polar-based codes
exhibit better sparsity versus error rate trade-off.

APPENDIX
A. Proof for Section 11l
Proof of Proposition 1: Since G is a polarization kernel,
there is at least one column in G; with weight at least 2.

To see this, note that GG; being invertible implies that all rows
and columns are nonzero vectors. If all the columns of GG} have

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 9, SEPTEMBER 2023

weights equal to 1, then all the rows must also have weights
equal to 1, i.e., G; is a permutation matrix. Then D; = 1, Vz,
and E(G;) = 0, which implies that G; can not be polarization
kernel. The contradiction shows that at least one column in
G, have a weight at least 2.

Let k¥ > 1 denote the number of columns in G; with a
weight at least 2. Let v be a randomly uniformly chosen
column of G°", and w(v) be the Hamming weight of v. For
$>r>0,

Pr (w(v) = (’)(N’“logﬂ))
< Pr (227:1 F; _ 0(N7'10g12) _ 0(27”.)) 7

where F; is the indicator variable that one of k£ non-unit-weight
columns is used in the i-th Kronecker product of G; to form v.
The variables Fi, Fy, ..., F, are i.i.d. as Ber(k/l). The law
of large numbers implies that Z?Zl F; > an > nr with high
probability. Thus, Pr (22i=1 % = O(2"")) — 0 as n — oo
for any r > 0. [ ]

B. Proofs for Subsection IV-A

1) Proof of Lemma 1: In order to understand the DRS
algorithm’s effect on G = G%Z’ ", we first study how the order of
two special Kronecker product operations affects the number
of output vectors. We present the following Lemmas 3 and 4
toward the proof of Lemma 1.

Lemma 3: Let a column vector v and a column weight
threshold w,, . be given. Then the outputs of the DRS algo-
rithm for (v ® [1,1]7) ® [0,1]7 and (v ® [0,1]T) ® [1,1]T
contain the same number of vectors.

Proof: The input vectors can be denoted by:

(’U ® [17 1]T) ® [07 1]T = VLR
(U ® [0, 1]T) ® [1, ].]T = VR

We note that 2 wy (v) = wy(vLr) = wy(vRL), and prove

the lemma in two cases:

1) 2wy (v) € wyp.: In this case, the algorithm will not
split either v g or vgr. Both outputs contain exactly
one vector.

2) 2wy (v) > wyp.: Let nprs(v) denote the size, or more
precisely, the number of column vectors the DRS algo-
rithm returns when it is applied to v.

For vy g, the DRS algorithm observes x;, = 0, hence
the number of output vectors is the same as the size of
DRS-SPLIT(w, 5., (vT,vT)T) (see Section TV-A). With
2w (V) > wy.p., the size of DRS-SPLIT((vT,vT)T) is
the sum of the sizes of Y}, = DRS-SPLIT(w,, 3., Xp = v)
and Y; = DRS-SPLIT(wyp.,%X¢ = v). By assump-
tion, ‘th = |Y2‘ = nDRs(’U), g1V1ng nDRs(’ULR) =
2nprs(v).
For vrr, the number of vectors in the DRS algorithm
output is the sum of the sizes of two sets Y;, =
DRS-SPLIT(wy ., %, = (07,vT7)T) and Y; = DRS-
SPLIT(wyp,x; = (07, vT)T). It is easy to see that
Y| = |Yi] = |DRS-SPLIT(wy.p.,v)|, which equals
nDRs(U). Thus, nDRs(URL) = QHDRs(’U).

]
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The next lemma shows the effect of the DRS algorithm from
a different perspective. If there are two vectors with the same
column weights, and numbers of vectors of the DRS algorithm
outputs are identical when they are the inputs, the properties
will be preserved when they undergo some basic Kronecker
product operations.

Lemma 4: Let u; and ug be two vectors with equal Ham-
ming weights. Assume, for a given w,, ;. , the DRS algorithm
splits u; and wy into the same number of vectors. Then the
DRS algorithm also returns the same number of vectors for
up @ [1,1]7 and uy ® [1,1]7, as well as for u; ® [0,1] and
Uy & [O, 1]T.

Proof: We first discuss the case when u; ® [1,1]7
and uy ® [1,1]7 are processed by the DRS algorithm.
If 2wy(u1) = 2wg(uz) < wyp., no splitting is done.
If 2wy (u) = 2wpg(uz) > wyp., the size of the DRS
algorithm output for the input u; ® [1,1]7 is the sum of the
sizes of Y, = DRS-SPLIT(w, p.,%xr = u1) and Yy = DRS-
SPLIT(w,, ., Xt = u1), both of which are npprs(u). The size
of the output for the input us®|[1, 1] can be found in a similar
way to be 2nDR5(u2). Note that nDRS(ul) = TLDRs(UQ) by
assumption. Therefore, the sizes of the outputs of the DRS
algorithm, when u; ®[1, 1]7 and uo®[1, 1]7 are the inputs, are
equal. Similarly, one can easily show that when u; ® [0, 1]
and us ® [0,1]7 are processed by the DRS algorithm, the
number of output columns are equal. ]

Proof of Lemma 1: Suppose that there is an index 7 such
that (s;,si41) = (+, —). Let 0D and (v*+D) be defined
by (1) with sequences (s1,...,Si—1,8; = +, Si+1 = —) and
(81,...,8i—1,8; = —, 87, = +), respectively. We note that

o+ = (u“*” ® [0, 1]T) ®[1,1T

(Y = (WD @ [1L17) © 0, 17

Lemma 3 shows that the DRS algorithm splits v(*t1) and
(v@*1)) into the same number of columns. Furthermore,
Lemma 4 shows that the number of output vectors of the
DRS algorithm for v(™ = [p(+D](sit208n) and (v =
[(v(FD)](Si42:50) are equal.

Therefore, an occurrence of (s;,$;41) = (+,—) in a
sequence can be replaced by (s;,s;41) = (—,+) without
changing the number of output vectors of the DRS algorithm.
Since any sequence (s1, S2,...,S,) With n; minus signs and
ny plus signs can be permuted into (sf,sh,...s)), where
st = — for i < ny and s, = + for i > nq, by repeatedly
replacing any occurrence of (+,—) by (—,+), the above
arguments show nDRS(v(")) = nDRS(v(Sll’S/Zv“'SiL)) always
holds. Hence, the size of DRS algorithm output for v(™
depends only on the values nj and no. ]

2) Proof for Proposition 2: First note that there is a bijec-
tion between {—,4}" and the columns of G5 as follows.
For each s = (s1,...,8,) € {—,+}", there is exactly one
column of G?" in the form 16 (see equation (1) and the
paragraph following it, where we use v = v(® = [1] € T,
to be the length-1 vector). The term ~ can be characterized
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as follows:

,[i
TTIN

> nDRS(l(S))} - L

SE{—,"F}"

By Lemma 1, the terms in the summation can be grouped
according to the number of minus and plus signs in the
sequence. Hence,

1 < [n i giii— . =
R

=0

Let u; denote the vector 1(51:-5n) with s; = — for [ < ¢
and s; = + for [ > 4. Without loss of generality, let nA € N.
For i < n), the Hamming weight of wu; is 2 < 2™ = wy ..
Hence, npprs(u;) = 1. For i > n\, u; is split into 207
vectors, each of which having weight equal to 2"*. Therefore,
nDRS(ui) = 9i—nA,

The term  can be written as follows:

Z N<i>21—n)\_1: Z ai,

i=nA+1

(6)
where a; £ £ () (277" —1). Now, let o = i/n. Since i > nA
for each summand a;, we consider o > \ > % in the following
calculations. The term a; can be written as

45 = ne = an( " )gnam+o<1>
no

—9 . 2nhb(o¢)+o(1) . 2na7n/\+o(1)

= 2”')‘(049\)-*-0(1)7 (7

where the third equality is due to an asymptotic approximation
of the binomial coefficient, and f(a, \) = hy(a) +a— A — 1.

Consider f(a, ) as a function of « over the interval [0, 1].
We find its first and second derivatives with respect to « as
follows:

Of(a,N) o

Do =1 logl_a, 3
0%f (e, A) 11 1
T g tog) <0 for0<a<l ()

Thus, for any fixed A\, f(a, ) is a concave function of «
and has local maximum when 9/(e))/aa = 0. From (8), the
equality holds if and only if & = 2, and the maximum is

sup f(oz,)\):hb<2)+2—)\—1:/\*—/\. (10)

«e(0,1) 3 3

Also, when @ = 0, f(0,A) = —A — 1, and when o = 1,
f(1,A) = —A. Hence, sup,epo,1) f(a,A) = A" — A. When
A > X%, we know f(,\) <sup, f(a,\) < 0 for all integers
0 <7 < n, and (7) implies that a; — 0 exponentially fast for
each i. Equation (6) then shows that v vanishes exponentially
fast in n. [ ]
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Fig. 9. Encoding Block for GY.

C. Proof for Subsection IV-B

Proof for Lemma 2: We show the claim by proving the
following: when we encode the source bits according to G’,
the bit-channels observed by the source bits are BECs and
that the erasure probabilities are less than or equal to those
when G is used. We use proof by induction on n. For ease of
notation, we use M’ to denote DRS(M) for a given matrix
M in this proof.

For n = 1, if Gy = GY, we naturally have Zg{:) = Zg;)

100

01 1}’
corresponding to the encoding block diagram in Figure9,
where the solid black circles indicate a split of the XOR
operation, i.e., the two operands of the original XOR operation
are transmitted through two copies of channel W. The bit-
channels observed by U; and Us, denoted by WE and WEE,
are BECs with erasure probability € and €2, respectively. Note
that the Bhattacharyya parameters satisfy the following:

for 51 € {—,+}. If G2 # G, the latter must be {

25) = 2(W9) =e< 2i) = 2(W) =2 - &,
25) = 2w = & = 20 = Z(WH),

Suppose that, for a fixed w,, p., the claim holds for all n < m
for some integer m > 1. Let B, denote the encoding block
corresponding to the generator matrix (G5™)’, with inputs
Ui,...,Usm and encoded bits Xy, ..., Xy, where f(m) is
the number of columns in (G¥™)’. Using the matrix notation,
the relation between the input bits and encoded bits is:

(Ur, ..., U )(GE™) = (X1,..., Xp(m)-

For n = m + 1, the matrix (G¥™!)’ is associated with
(G$™)" as follows:

ami1y _ prs ([GE7) 0
65+ = oS ([{Gim) gmy )
Since (G$™)" consists of the outputs of the DRS algorithm,
the columns in the right half of the input matrix in equation
(11) remain unaltered in the output. For the columns in the
left half, they are of the form [vT, vT]T for some column v of
(GS™)'. If 2wg (v) > w,.p., the outputs of the DRS algorithm
are [07,v7]T and [vT,07]T because the vector v must have
weight no larger than the threshold. If 2wgy (v) < wy.p., the
algorithm leaves the vector unchanged. We may represent the
encoding block B,,1; as in Figure 10, where it is assumed
that the j-th column of the input matrix in (11) is halved by
the DRS algorithm.
The erasure probabilities for the bit-channels observed
by X;, denoted here as W(X;), are less than or equal to
2¢ — €2 for 1 < i < f(m), and are equal to € for

(1)
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Fig. 10. Encoding Block By, 41.

X1
Uy X W (Xy) — ¥ = Y1, Yrmy+1)
2
U, : W (Xz) — Yy = (Y2, Yomy+2)
’ B, j - _
U, T W) Y=Y

X,
rom '-W(Xf(m)) — Yy = Wrem Yapom)

X
f(m)+1 ’
W(Xf(m)+1) yf(m)+1 = (leylryf(m)+1)
X
fm)+2
- W (Xfmy+2) F* Yoz = X2, Y2, Yeemy+2)

H B X ) : H
Upngy —— “TH WX ramy+) [ Yimes = Gomrsin Yrom+ji2)

Ugm ———»

Upmyy ——

Uzmya

X2m

W Kzram) | Yaram) = Krmy Yyamy Yaram)

Equivalent Encoding Block By, 1.

Ugmer ——

Fig. 11.

f(m)+1 < i < 2 f(m), respectively. Hence we may
replace the XOR operations to the right of the X;’s as well as
the transmission over W’s by BECs W (X1),..., W (X)),
W(X¢my+1)s- -+ W(Xaf(m)), as in Figure 11.

One may observe that the erasure probability for the
bit-channel observed by U; is a non-decreasing function
of those of W(X1),...,W(Xy(y) for i < 2™, and of
W(Xf(m)Jrl)’ RN W(ng(m)) for ¢+ > 2™. Thus, for ¢ < 2™,
we have

Ziggmery, (Ui | Z(W) = )
SZ[W(Ui) | ZW(X;)) =26 — €, for 1 < j < f(m)]
= Zgomy (Ui | ZW) = 2¢ — &%)

< Zgem (Ui | Z(W) = 2¢ — €%)

= Zggm+ (Us | Z(W) =€),
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where the first inequality is due to Z(W(X;)) < 2¢ —
€2 for 1 < j < f(m) and the second inequality follows from
the hypothesis of the induction.

Similarly, for + > 2™, we have

Zgemny (Ui | Z(W) = ¢)

=Z [W(U;) | Z(W(X;)) = €%, for f(m)+1<5< 2f (m)]
= Zggmy Uimgom) | Z(W) = €)

< Zggn (Uiepomy | Z(W) =€)

= Zgeni (Ui | ZW) =¢).

Hence the inequality holds when n = m + 1 as well. ]

D. Proofs for Subsection IV-C

1) Proof of Proposition 3: First note that each XOR oper-
ation at the j-th recursion can be associated with exactly one
vector s = (81, 82,...,8,) € {—,+}" and s; = —. For exam-
ple, assume that the number of minus signs in s, denoted as
m(s), is larger than n;,, = logw, .. = nA, and let 7 = 7(s)
be the index such that m(s;, Sr41,...,8,) = Nyup and s, =
—. Then for each index ¢ in the set {k:1 <k < 7,8, = —},
there is a bijection between the pair (s,i) and an XOR
operation at the i-recursion which is split and modified in the
ADRS scheme. Hence, the extra complexity of the SC decoder
for the ADRS scheme, compared to that of the SC decoder
for the code based on G, is given by

n—ngup+1

D

=1
n—ngyub+1n—niup+1

=2 2

Hs € {—, +}":7(s) > I, s = =} 2(2"T! — 2)c

s e{—+}":7(s) =k, s = —}I-

=1 k=i+1
202141 — 2)¢
n—niup+1 k—1
n—k+1\ o 1+1
= 2 2(2 —2)c
> (e
n—mpup+1 k—1
n—k+1\ 4 o I
< de 2 2
> (T )y
n—njyup+1
n—k+1\ p 5k
= 4¢ 2 2% —2
S (T e
N—"Niub _ k
< de (” )2%. (12)
k=0 Niub

Now, let & = £ € [0,1 — A]. Using Stirling’s approximation
we have

(n — k) o2k _ (n(l - a)>220m ~ 2n(lfo¢)hb(ﬁ)+2an,
am TL/\

for all sufficiently large n. It suffices to assume that A < %.
For A > %, note that fewer XOR operations are split and
modified, and that the resulting additional decoding complex-
ity is not larger than when A < 2 is used. Let f(a, ) =
(1 — a)hy(72) + 20 We find its maximum, for a given A,
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by solving
0 0 A A
0= geflan = 5[~ =) (22 )
A A
—(1—0[) (1—1_a>log(1—1_a>—|—2a}
1

which is true if and only if @ = 1 — %)\. And note that

P — b [ - =] < 0forall a € [0,1- AL
The maximum of the function is then given by f(1— %)\, A) =
2 — Alog 3. Using the union bound, the sum in (12) can
be bounded by 4en2™2-X210g3) and the ratio of the sum to
N = 2", denoted by 7¢, is bounded from above as yo <
4en2n(1=Aoe3) - Since the exponent n(1 — Alog3) goes to
negative infinity as n grows when A > AT = 1/log 3 ~ 0.631,
the ratio o vanishes exponentially in n when A > Af. The
proposition follows by noting that the SC decoding complexity
for the code based on G5 is Nlog N. ]

2) Proof of Proposition4: Similar to the proof of Propo-
sition 3, the number of additional channels due to the ADRS
scheme modification is given by

n—"niup+1

>

=1
n—niub+1ln—npp+1

> X

Hse{— +}":7(s) > 1,5 = —}| 2!

Hs e {—, +}":7(s) =k, s, = —}| 2!

=1 k=Il+1
n—mniyup+1 k—1
n—k+1\ 5 o .
< 2 2
> (" )y
N—"nNrub n— k
< 22k (13)
> ()

By the argument in the proof of Proposition 3, the sum in (13)
can be upper bounded by n2"(2~*1083) "and the ratio of the
sum to N = 27, denoted by -, is bounded from above as
v < n2n(1=A1og3) Since the exponent n(1 — Alog3) goes to
negative infinity as n grows when A > A = 1/log,3 =~
0.631, the ratio ~ vanishes exponentially in n when
A > Af ]
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