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AbstractÐ In general, the generator matrix sparsity is a critical
factor in determining the encoding complexity of a linear code.
Further, certain applications, e.g., distributed crowdsourcing
schemes utilizing linear codes, require most or even all the
columns of the generator matrix to have some degree of sparsity.
In this paper, we leverage polar codes and the well-established
channel polarization to design capacity-achieving codes with a
certain constraint on the weights of all the columns in the
generator matrix (GM) while having a low-complexity decoding
algorithm. We first show that given a binary-input memoryless
symmetric (BMS) channel W and a constant s ∈ (0, 1],
there exists a polarization kernel such that the corresponding
polar code is capacity-achieving with the rate of polarization
s/2, and the GM column weights being bounded from above
by Ns. To improve the sparsity versus error rate trade-off,
we devise a column-splitting algorithm and two coding schemes
for BEC and then for general BMS channels. The polar-based
codes generated by the two schemes inherit several fundamental
properties of polar codes with the original 2×2 kernel including
the decay in error probability, decoding complexity, and the
capacity-achieving property. Furthermore, they demonstrate the
additional property that their GM column weights are bounded
from above sublinearly in N , while the original polar codes have
some column weights that are linear in N . In particular, for any
BEC and β < 0.5, the existence of a sequence of capacity-
achieving polar-based codes where all the GM column weights
are bounded from above by Nλ with λ ≈ 0.585, and with

the error probability bounded by O(2−N
β

) under a decoder
with complexity O(N logN), is shown. The existence of similar
capacity-achieving polar-based codes with the same decoding
complexity is shown for any BMS channel and β < 0.5 with
λ ≈ 0.631.

Index TermsÐ Linear codes, polar codes, channel coding,
Hamming weight, sparse matrices, error probability.

I. INTRODUCTION

C
APACITY-APPROACHING error-correcting codes such

as low-density parity-check (LDPC) codes [1] and polar
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codes [2] have been extensively studied for applications in

wireless and storage systems. Besides conventional applica-

tions of codes for error correction, a surge of new applications

has also emerged in the past decade including crowdsourc-

ing [3], [4], distributed storage [5], and speeding up distributed

machine learning [6], [7]. To this end, new motivations have

arisen to study codes with sparsity constraints on their gen-

erator and/or parity-check matrices. For instance, the stored

data in a failed server needs to be recovered by downloading

data from a few servers only, due to bandwidth constraints,

imposing sparsity constraints in the decoding process in a

distributed storage system. In crowdsourcing applications, e.g.,

when workers are asked to label items in a dataset, each worker

can be assigned only a few items due to capability limita-

tions, imposing sparsity constraints in the encoding process.

More specifically, codes defined by sparse generator matrices

become relevant for such applications [8], [9].

In this paper, we focus on polar codes in order to construct

a sequence of codes defined by sparse GMs with practical

utility, such as low decoding complexity, explicit construction,

sufficiently fast decay in the error probability, and the potential

to approach capacity at large block-length.

A. Polar Codes

Channel polarization, introduced by Arıkan [2], [10], is one

of the most recent breakthroughs in coding theory. Polar codes

are a class of provably capacity-achieving channel codes with

explicit construction for general BMS channels, and have

attracted significant attention due to their error correction

performance, as well as their low-complexity decoding algo-

rithms. Within the ongoing fifth generation wireless systems

(5G) standardization process, polar codes have been adopted

for uplink and downlink control information for the enhanced

mobile broadband (eMBB) communication service. Further-

more, polar codes and polarization phenomenon have been

successfully applied to a wide range of problems including

data compression [11], [12], broadcast channels [13], [14],

multiple access channels [15], [16], physical layer secu-

rity [17], [18], and coded modulations [19].

B. LDGM and Related Works

A related line of work on studying linear codes with sparsity

constraints on their generator matrices is by associating them

with sparse graph representations [20]. In this context, they are

referred to as low-density generator matrix (LDGM) codes,

also regarded as the counterpart of LDPC codes. The sparsity
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of the generator matrices of LDGM codes leads to a low

encoding complexity, and has been adopted in applications

such as lossy source compression [21] and multiple description

coding [22]. In [23] and [24] it was pointed out that certain

constructions of LDGM codes are not asymptotically good,

a behavior which is also studied using an error floor analysis

in [25] and [26].

In terms of the sparsity of the GM, the authors of [27]

showed the existence of capacity-achieving codes over binary

symmetric channels (BSC) using random linear coding argu-

ments when the column weights of the GM are upper bounded

by ϵN , for any ϵ > 0, where N is the code block length. Also,

it is conjectured in [27] that column weight upper bounds

that scale sublinearly in N suffice to achieve the capacity. For

binary erasure channels (BEC), bounds that scale as O(logN)
suffice for achieving the capacity, again using random linear

coding arguments [27]. Furthermore, the scaling exponent of

such random linear codes are studied in [28]. Later, in [29], the

existence of capacity-achieving systematic LDGM ensembles

over any BMS channel with the expected value of the weight

of the entire GM bounded by ϵN2, for any ϵ > 0, is shown.

While the (ensemble-averaged) block-error probability for

the codes goes to zero as the block-length grows large,

the speed of decay in the error probability is not provided

in [27] and [29].

In [8], the problem of label learning through queries from a

crowd of workers was formulated as a coding theory problem.

Due to practical constraints in such crowdsourcing scenarios,

each query can only contain a small number of items. In [9],

we considered the same setting as in [8] with the additional

consideration that some workers may not respond to queries,

a scenario that resembles a binary erasure channel. Then we

showed that a combination of LDPC codes and LDGM codes

gives a query scheme where the number of queries approaches

the information-theoretic lower bound [9].

In the realm of quantum error correction, quantum

low-density-generator-matrix (QLDGM) codes, quantum low-

density-parity-check (QLDPC) codes, and other sparse-graph-

based schemes have been extensively studied due to the small

numbers of quantum interactions per qubit during the encoding

and/or error correction procedure, avoiding additional quantum

gate errors and facilitating fault-tolerant decoding. Amongst

these schemes, the error correction performance of the LDGM-

based codes proposed in [30] was shown to outperform all

other Calderbank-Steane-Shor (CSS) and non-CSS codes of

similar complexity.

In both applications highlighted above, the benefit of the

LDGM codes follows from a certain upper bound on the

column weights of the GM, ensuring the columns are relatively

low weight. Motivated by these applications, the main goal

of this work is to construct sequences of codes where all of

the columns of the GM are low weight, where certain upper

bounds on the weight will be specified later.

C. Our Contributions

In this paper, we study capacity-achieving polar and polar-

based codes over BMS channels with sparsity constraints

on generator matrix column weights. Leveraging polar codes

based on general kernels, with rates of polarization studied

in [31], we show that capacity-achieving polar codes with

column weights bounded from above by Ns exist for any

given s > 0, where N is the code block length. This verifies

the conjecture given in [27]. There is, however, a trade-off

between the sparsity parameter s and the rate of polarization,

given by s
2 .

For the case when the speed of decay for block-error prob-

ability and the GM sparsity are both constrained, we propose

two new code constructions with sparse GM columns, which

provide a better trade-off for s > 0.585. We first consider

BEC, and propose a splitting algorithm termed decoder-

respecting splitting (DRS) algorithm, which, roughly speaking,

splits heavy columns in the GM into several light columns.

Note that if one splits the heavy columns in an arbitrary

manner to form a new GM, the code defined by the new

GM may be substantially different from the original one in

terms of the error probability and/or having a low-complexity

decoder. Leveraging the fact that the polarization transform

of a BEC leads to BECs, the DRS algorithm converts the

encoder of a standard polar code into an encoder defined by a

sparse GM without hurting the reliability of the bit-channels

observed by the source bits. Furthermore, the specific structure

of DRS enables a low-complexity successive cancellation

decoder in a recursive fashion inheriting that of original polar

codes. In particular, we show a sequence of codes defined

by GMs with column weights upper bounded by Nλ, for

any λ > λ∗ ≈ 0.585 and the existence of a decoder with

computation complexity O(N logN) under which the block-

error probability is bounded by 2−Nβ

for any β < 0.5.

Next, for general BMS channels, we propose an enhance-

ment of the DRS-based encoding scheme, referred to as

augmented-DRS (ADRS) scheme, which requires additional

channel uses and decoding complexity. In spite of these

limitations, we show that there exists a sequence of capacity-

achieving codes, referred to as the polar-ADRS codes. The

sequence of codes is defined by GMs with column weights

upper bounded by Nλ, for any λ > λ† ≈ 0.631, and can be

decoded with complexity O(N logN).
The rest of the paper is organized as follows. In Section

II, we introduce basic notations and definitions for channel

polarization and polar codes. Section III provides a sparsity

result for polar codes with general kernels. In Section IV,

we introduce the DRS algorithm and the ADRS scheme, and

the corresponding code constructions over the BEC and BMS

channels, respectively. The successive cancellation decoders

are also described and shown to be of low computation

complexity. Finally, Section V concludes the paper. The proofs

for the results in Sections III and IV are included in the

Appendix.

II. PRELIMINARIES

Let hb(·) denote the binary entropy function, exp2 (x)
denotes the function 2x, ln(·) be the logarithmic function with

base e, and log(·) be the logarithmic function with base 2.

Z(W ) denote the Bhattacharyya parameter of a channel W .
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We give formal definitions for the BMS channel and capacity-

achieving codes for readers’ reference.

Definition 1: A binary memoryless symmetric channel

(BMS) W : X → Y is a noisy memoryless channel with

binary input alphabet X , and channel output alphabet Y , (we

use X = {0, 1}, and assume Y is finite, in this paper.) such

that Pr[Y = y|X = 0] = Pr[Y = ϕ(y)|X = 1] for all y ∈ Y
for some involution ϕ on Y .

Definition 2: A type of code is said to be capacity achieving

over a BMS channel W with capacity C = I(W ) > 0 if,

for any given constant R < C, there exists a sequence of

codes with rate R and the block-error probability vanishes as

the block length N grows large. The block-error probability is

evaluated under the maximum likelihood (ML) decoder, unless

a different decoding scheme is specified.

A. Channel Polarization and Polar Codes

The channel polarization phenomenon was discovered by

Arıkan [2] and is based on the polarization transform as the

building block. Let W denote the class of all BMS channels.

The channel transform W 7→ (W−,W+) that mapsW toW2,

where W− : X → Y2 and W+ : X → Y2 × X , is defined

in [2] and is often referred to as a polarization recursion. Then

a channel W s1,s2,...,sn with si ∈ {−,+} , i = 1, 2, . . . , n,

can be defined by applying the channel transform n times

recursively, as in [2].

For N = 2n, the polarization transform is obtained from

the N × N matrix G⊗n
2 , where G2 =

[

1 0
1 1

]

[2], and A⊗n

denote the n-fold Kronecker product of A. A polar code

of length N is constructed by selecting certain rows of

G⊗n
2 as its generator matrix. More specifically, let K denote

the code dimension. Then all the N bit-channels in the set

{W s1,s2,...,sn : si ∈ {−,+} for i = 1, 2, . . . , n}, resulting

from the polarization transform, are sorted with respect to

an associated parameter, e.g., their probability of error (or

Bhattacharyya parameter), the best K of them with the lowest

probability of error are selected, and then the corresponding

rows from G⊗n
2 are selected to form the GM. Hence, the GM

of an (N,K) polar code is a K × N sub-matrix of G⊗n
2 .

Then the probability of error of this code, under successive

cancellation (SC) decoding, is upper bounded by the sum of

probabilities of error of the selected K best bit-channels [2].

B. General Kernels and Error Exponent

It is shown in [31] that if G2 is replaced by an l × l
matrix Gl, then polarization still occurs if and only if Gl

is an invertible matrix in F2 and it is not upper triangular

under any column permutation, in which case the matrix Gl is

called a polarization kernel. Furthermore, the authors of [31]

provided a general formula for the speed of the error rate

decay of polar codes constructed based on an arbitrary l × l
polarization kernel Gl. More specifically, let N = ln denote

the block length and C denote the capacity of the channel.

For any fixed β < E(Gl) and fixed code rate R < C, where

E(Gl) denotes the rate of polarization (see [31, Definition 7]),

there is a sequence of polar codes based on Gl with probability

of error Pe under SC decoding bounded by Pe(n) ⩽ 2−Nβ

,
for all sufficiently large n. The rate of polarization E(Gl)
is given by E(Gl) = 1

l

∑l
i=1 loglDi, where {Di}

l
i=1 are

the partial distances of Gl. More specifically, for Gl =
[gT

1 , g
T
2 , . . . , g

T
l ]T , the partial distances Di are given by Di ≜

dH(gi, span(gi+1, . . . , gl)) for i = 1, 2, . . . , l, where dH(a, b)
is the Hamming distance between two vectors a and b, and

dH(a, U) is the minimum distance between a vector a and a

subspace U , i.e., dH(a, U) = minu∈U dH(a, u).

III. SPARSE POLAR CODE CONSTRUCTIONS

BASED ON LARGE KERNELS

In this section we first show the existence of capacity-

achieving polar codes with generator matrices for which all

column weights scale at most polynomially with arbitrarily

small degree in the block length N , hence validating the

conjecture in [27]. Second, we show that, for any polar code

of rate 1, almost all of the column weights of the GM are

polynomial in N .

Theorem 1: For any fixed s ∈ (0, 1) and any BMS channel,

there are capacity-achieving polar codes under SC decoding,

with generator matrices having column weights bounded by

Ns, where N denotes the block length of the code.

Proof: Consider an l×l polarizing matrix Gl =

[

I l
2

0 l
2

I l
2
I l

2

]

,

where l is an even integer such that l ⩾ 2
1
s . The partial

distances are Di = 1 for 1 ⩽ i ⩽ l
2 and Di = 2 for

l
2 + 1 ⩽ i ⩽ l. Hence, the rate of polarization E(Gl) =
1
2 logl 2 > 0, and there is a sequence of capacity-achieving

polar codes constructed using Gl as the polarizing kernel. Note

that in Gl, each column has weight at most 2 and, hence, the

column weights of G⊗n
l are upper bounded by 2n. By the

specific choice of l, we have 2n ⩽ (ls)
n

= (ln)
s

= Ns,
where N = ls is the block length of the code. This completes

the proof.

Remark 1: While Theorem 1 provides a theoretical guar-

antee on the existence of capacity-achieving polar codes

with sparse generator matrices, the sparsity comes at a cost.

Specifically, the rate of polarization E(Gl) = 1
2 logl 2 ⩽ s

2
is smaller than that associated with the kernel G2, given by

E(G2) = 0.5. On the other hand, while the SC decoding

complexity for polar codes defined by general l × l kernels

behaves as O( 2l

l
N loglN) [31], in this case, the complexity

scales asO(N loglN) by considering the following viewpoint.

Interleave (l/2)n copies of the polar code with block length

2n based the standard G2 kernel, to form a code with block

length N = ln with an n-stage recursive encoder structure.

By decoding each copy with complexity O(2n log 2n) =
O(n2n) under the SC decoder, the entire code can be decoded

with complexity O((l/2)n · n2n) = O(N loglN).
Since we can construct capacity-achieving codes with col-

umn weights upper bounded by Ns with any fixed s > 0,

by using polar codes, the question now is whether it is

possible to further improve the sparsity of polar code GMs.

For instance, we know it is possible to have an upper bound

of O(logN) on all the GM column weights of capacity-

achieving codes, over the BEC, by utilizing random linear
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ensembles [27]. For rate-1 polar codes, the proposition below

answers the inquiry in the negative, by showing that almost all

the GM columns have weights lower bounded by a polynomial

in N .

Proposition 1: Given any l ⩾ 2, l × l polarizing kernel

Gl, and 1
l
> r > 0, the fraction of columns in G⊗n

l with

O(Nr logl 2) Hamming weight vanishes as n grows large,

where N = ln.

Proof: The proof is given in Appendix Section A.

The trade-off highlighted in Remark 1 suggests that off-

the-shelf polar code constructions with large kernels may not

be the ideal option when the speed of decay of the error

probability is a concern. However, the heaviest column in the

polar code with kernel G2 scales as Θ(N) for any code rate.

To construct codes with sparse GM and suitable decay of the

error probability, in the next section, we propose a splitting

algorithm for the generator matrix and investigate the resulting

codes in terms of the error probability, GM column sparsity,

and the decoding complexity.

IV. SPARSE POLAR-BASED CODES WITH

LOW-COMPLEXITY DECODING

When all columns of a matrix G are required to be sparse,

that is, have low Hamming weights, a splitting algorithm is

applied. Given a column weight threshold wu.b., a splitting

algorithm splits any column in G with weight exceeding wu.b.

into columns that sum to the original column both in F2 and

in R, and that have weights no larger than wu.b..

Note that a column of G is left intact by the splitting

algorithm as long as its Hamming weight does not only

exceed wu.b.. Thus a splitting algorithm would be described

as an algorithm which takes as input a column vector v

and a weight threshold wu.b., and returns a set of column

vectors whose lengths are equal to the length of v. Given

a matrix A with m columns and a threshold wu.b., with a

slight abuse of notation, the matrix generated by a splitting

algorithm is defined as the matrix whose column vectors are

those from the m sets, which are respectively the outputs of

the algorithm for each column of A. For example, consider

a 4 × 2 matrix A =

[

1 0 1 1
1 1 1 0

]T

= [a1,a2], a threshold

wu.b. = 2, and a splitting algorithm S. Let S(ai, wu.b.),
i = 1, 2, be the sets of vectors returned by S, given by

S(a1, wu.b.) =
{

[1, 0, 1, 0]T , [0, 0, 0, 1]T
}

,S(a2, wu.b.) =
{

[1, 0, 1, 0]T , [0, 1, 0, 0]T
}

. The matrix generated by S for A
is then a 4 × 4 matrix of the form [[1, 0, 1, 0]T , [0, 0, 0, 1]T ,
[1, 0, 1, 0]T , [0, 1, 0, 0]T ], or a column permutation of it.

Let an (N,K) polar code C have a K×N submatrix of G =
G⊗n

2 as the generator matrix, and G′ denote the N×N(1+γ)
matrix generated by the splitting algorithm, where N = 2n.

A new code based on G′ selects the same K rows of G′ as

the polar code C to form the generator matrix, where all the

column weights are bounded by wu.b.. Such a code is referred

to as a polar-based code corresponding to G′, or a PB(G′)
code, in this paper.

Note that more detailed description is needed to uniquely

specify a splitting algorithm, which then determines the term

γ and the performance of the PB(G′) code. Specifically, the

channel polarization phenomenon and the recursive encoding

and decoding structure may be invalid when the GM is modi-

fied by the splitting algorithm. These changes also imply that

the codes with the split GM may suffer from drawbacks such

as weaker bounds on error probability and larger decoding

complexity, as well as the rate loss with a multiplicative

factor of 1 + γ, when compared to the polar codes. In this

section, we introduce a splitting algorithms, referred to as

the decoder-respecting splitting (DRS) algorithm, and two

encoding schemes that are effective in avoiding the drawbacks.

These schemes enable low-complexity SC decoders based

on likelihood ratios that can be calculated with a recursive

algorithm. Specifically, when the threshold wu.b. is chosen

appropriately, we show in Section IV-A that the term γ goes

to 0 exponentially fast in n, when the DRS algorithm is

applied to columns of the matrix G = G⊗n
2 . The encoding

of the resulting PB(G′) codes can be realized by a encoding

scheme which inherits the recursive structure of the original

polar codes, except only at locations that corresponds to a

split of a column of G, as dictated by the DRS algorithm.

At these locations, the exclusive-OR operations are removed

and additional copies of the underlying channel are used. The

PB(G′) codes suffer only a negligible 1 + γ multiplicative

factor of rate loss compared to the original polar codes for

large n. For BEC, this sequence of codes is capacity-achieving

with an error exponent of 1
2 , under a new SC decoding

scheme (see Theorem 2 in Section IV-B). For general BMS

channels, another encoding scheme, referred to as the ADRS

scheme, is proposed in Section IV-C. This scheme introduces

additional ‘noise’ nodes and requires even more copies of the

underlying channel when the DRS algorithm requires a split.

For codes generated by this scheme, results similar to that in

Theorem 2 are available with a slightly stricter condition on the

choice of wu.b..

A. Decoder-Respecting Splitting Algorithm

The main idea of the DRS algorithm is to construct a

generator matrix that can be realized with an encoding pattern

similar to conventional polar codes such that the column

weights of the matrix associated with the diagram are at

most wu.b.. The pseudo code for the algorithm is provided

in Algorithm 1.

The core of the algorithm is the DRS-SPLIT function.

When the weight of the input the vector x is larger than

the threshold, it splits the vector in half into vectors xh and

xt, and recursively finds two sets, Yh and Yt, composed of

vectors with the length halved compared to the length of x.

The vectors are then appended to the length of x, which

collectively form the output of the function. For a vector

u ∈ {0, 1}
m×1

, let |u| = m denote its length, and wH(u)
its Hamming weight. We note that the weights of vectors in

Yh and Yt are respectively upper bounded by the weights of

xh and xt, both of which are bounded by k = |xh| = |xt|,
and that the value of k is halved each iteration. Hence, the

function is guaranteed to terminate as long as the threshold is

a positive integer.

We use a simple example to illustrate the algorithm. Let

n = 3, v = [0, 0, 0, 0, 1, 1, 1, 1]T and wu.b. = 2. Since
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Algorithm 1 DRS Algorithm

Input: weight threshold wu.b. ∈ N, a column vector v ∈
{0, 1}

2n×1

Output: the set of vectors with length 2n returned by DRS-

SPLIT(wu.b.,v)

1: function DRS-SPLIT(wu.b.,x)

2: if wH(x) > wu.b. then

3: k ← length(x)/2
4: xh ← (x1, . . . , xk)T , xt ← (xk+1, . . . , x2k)T

5: Yh ← DRS-SPLIT(wu.b.,xh)

6: Yt ← DRS-SPLIT(wu.b.,xt)

7: if xh = 0k×1 then

8: return
⋃

y∈Yt

{(01×k, y
T )T }

9: else if xt = 0k×1 then

10: return
⋃

y∈Yh

{(yT ,01×k)T }

11: else

12: return
⋃

y∈Yt

{(01×k, y
T )T }∪

⋃

y∈Yh

{(yT ,01×k)T }

13: end if

14: else if wH(x) = 0 then

15: return {}

16: else

17: return {x}
18: end if

19: end function

the weight of v exceeds the threshold, it is first split into

xh = [0, 0, 0, 0]T and xt = [1, 1, 1, 1]T . Since xh is an

all-zero vector, Yh is an empty set according to line 14 to

15. To compute Yt =DRS-SPLIT(2, [1, 1, 1, 1]T ), the function

splits the input into half again, thereby obtaining x
′
h = [1, 1]T

and x
′
t = [1, 1]T . The corresponding Y ′

h and Y ′
t are then

both
{

[1, 1]T
}

and, hence, we have Yt =
{

[0, 0, 1, 1]T
}

∪
{

[1, 1, 0, 0]T
}

=
{

[0, 0, 1, 1]T , [1, 1, 0, 0]T
}

. Since xh =
04×1, the function proceeds to lines 7 and 8, and returns
{

[0, 0, 0, 0, 0, 0, 1, 1]T , [0, 0, 0, 0, 1, 1, 0, 0]T
}

.

In order to analyze the effect of the DRS algorithm on the

matrix G⊗n
2 , we show that the size of the algorithm output

does not depend on the order of a sequence of Kronecker

product operations, where the size of a set of vectors stands for

the number of vectors in the set. Suppose that the Kronecker

product operations with the vector [1, 1]T for n1 times and

with the vector [0, 1]T for n2 times are applied on a vector

v, where n = n1 + n2 and the order of the operations

is specified by a sequence (s1, s2, . . . , sn) ∈ {−,+}
n

with

|{i : si = −}| = n1 and |{i : si = +}| = n2. Also, let v(i)

denote the output of applying the first i Kronecker product

operations on v. It is defined by the following recursive

relation:

v(i) =

{

v(i−1) ⊗ [1, 1]T , if si = −,

v(i−1) ⊗ [0, 1]T , if si = +,
(1)

for i ⩾ 1 and the initial condition v(0) = v. We use

v(s1,s2,...,si) instead of v(i) when the sequence is needed for

clarity. The following lemma shows that any two vectors of

the form v(s1,s2,...sn) will be split into the same number of

columns under the DRS algorithm as long as the sequences

associated with them contain the same number of − and +
signs.

Lemma 1: Let n = n1 + n2 and (s1, . . . , sn) ∈ {−,+}
n

be a sequence with n1 minus signs and n2 plus signs. Let

v(n) be the vector defined by a vector v and the sequence

(s1, . . . , sn) through equation (1). Then the size of the

DRS algorithm output for v(n) depends only on the values

n1 and n2.

Proof: The proof is given in Appendix Section B.1.

Let a K×N matrix M = [u1,u2, . . . ,uN ] and a threshold

wu.b. be given. Suppose that the DRS algorithm is applied to

each column in M and the sum of the sizes of the output sets

is N(1 + γ). Then DRS(M) is defined as the K ×N(1 + γ)
matrix consisting of all the vectors in the output sets (with

repetition).

We study the effect of the DRS algorithm in terms of the

multiplicative rate loss, i.e., 1 + γ. Since all the columns of

G⊗n
2 are in the form of v(s1,s2,...,sn) with v = [0, 1]T or v =

[1, 1]T , Lemma 1 substantially simplifies the analysis for γ.

In particular, the following proposition shows an appropriate

choice of wu.b. guarantees the existence of a sparse polar-

based GM with vanishing γ.

Proposition 2: Let the columns of G⊗n
2 be the inputs for

the DRS algorithm and DRS(G⊗n
2 ) be the N × N(1 + γ)

matrix generated by the DRS algorithm for G⊗n
2 . The term

γ vanishes exponentially fast as n goes to infinity for any

wu.b. = 2nλ with λ > λ∗ ≜ hb(
2
3 )− 1

3 ≈ 0.585.

Proof: The proof is given in Appendix Section B.2.

For the effect of the DRS algorithm on G⊗n
2 with finite n,

we compute values of γ for various combinations of n and λ,

as shown in Figure 1. The numerical results with 6 ⩽ n ⩽
26 indicate that, for 0.5 ⩽ λ < 0.6, the multiplicative rate

loss γ is larger with larger n, and for λ ⩾ 0.65, γ is smaller

with larger n. The fact that the n = 26 does not provide

the smallest γ for λ close to λ∗ should not be considered

a contradiction to Proposition 2. Instead, the closer λ > λ∗

is, the larger n it takes for the exponential decay of γ to

dominate.

B. Low-Complexity Decoder for Polar-Based Codes: BEC

In this section, we show two results for the polar-based

code corresponding to DRS(G⊗n
2 ) over the BEC. Such codes

are referred to as the polar-DRS codes in this paper. First,

we propose a low-complexity suboptimal decoder for the

polar-DRS codes. Second, with the low-complexity subopti-

mal decoder, the polar-DRS codes are capacity-achieving for

suitable column weight threshold.

It is known that when the channel transformation with kernel

G2 is applied to two BECs, the two new bit-channels are

also BECs. Specifically, for two binary erasure channels W1

and W2 with erasure probabilities ϵ1 and ϵ2, respectively, the

polarized bit-channels W−(W1,W2) and W+(W1,W2) are

binary erasure channels with erasure probabilities ϵ1+ϵ2−ϵ1ϵ2
and ϵ1ϵ2, respectively.

The mutual information I(·) and Bhattacharyya parameter

Z(·) of a BEC W with erasure probability ϵ are given by:
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Fig. 1. Multiplicative rate loss factor γ versus λ, where wu.b. = Nλ.

I(W ) = 1− ϵ, Z(W ) = ϵ. For a sequence (s1, s2, . . . , sn) ∈
{−,+}

n
, the function Bi2De(s1, s2, . . . , sn) returns the dec-

imal value of the binary string in which a minus sign

for si is regarded as a 0 and a plus sign as a 1, e.g.,

Bi2De(−,+,+) = (011)2 = 3. Let G denote G⊗n
2 and

G′ denote DRS(G⊗n
2 ), and let Z

(s1s2...sn)
G denote the Bhat-

tacharyya parameter of the bit-channel W s1s2...sn , which is

equal to W
(Bi2De(s1,s2,...,sn)+1)
N in [2, page 3]. The term

Z
(s1s2...sn)
G′ denotes the Bhattacharyya parameter of the bit-

channel observed by the source bit of the same index corre-

sponding to G′.

The following lemma shows that the bit-channel observed

by each source bit is better in terms of the Bhattacharyya

parameter when G′ is the generator matrix instead of G.

Lemma 2: Let wu.b. and n be given, and let G denote

G⊗n
2 and G′ denote DRS(G⊗n

2 ). The following is true for

any (s1, s2, . . . , sn) ∈ {−,+}
n

:

Z
(s1s2...sn)
G′ ⩽ Z

(s1s2...sn)
G .

Proof: The proof is given in Appendix C.

Remark 2: A key to the proof of Lemma 2 is a recursive

encoding scheme for the relationship x = uG′, where u and x

are row vectors of lengths N = 2n and N(1+γ), respectively.

The encoding scheme is most easily understood by consider-

ing the low-complexity encoding structure for the standard

polar code, as seen in [32], and replacing the exclusive-OR

(XOR) operations at locations that correspond to the splitting

operations dictated by the DRS algorithm. Specifically, when

a split is required on a column of G, the corresponding XOR

node is removed, the input bit for the ‘worse’ channel remains

untouched, and two copies of the input bit for the ‘good’

channel are transmited through the underlying channel. For

example, consider G = G⊗3
2 . The encoding diagram for codes

Fig. 2. Encoding structure change due to the DRS algorithm with
N = 8, wu.b. = 4.

defined by G is shown in Figure 2a. We have

G =

























1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

























,

G′ =

























1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0
0 1 1 1 1 1 1 1 1

























,

where G′ is the matrix DRS(G⊗3
2 ) when wu.b. = 4. The

encoding structure for G′ is shown in Figure 2b. Since the first

column is the only column of G split by the DRS algorithm
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Fig. 3. Encoding block for generator matrix DRS(G⊗3

2
) when wu.b. = 2.

when wu.b. = 4, we remove the XOR node that performs

U ′′′
1 = U ′′

1 + U ′′
5 , and assigns U ′′′

1 = U ′′
1 , U ′′′

5,1 = U ′′
5 and

U ′′′
5,2 = U ′′

5 . Two solid circles, representing transparent nodes

where the output variable(s) are identical to the input variable,

are used to indicate the location of the removed XOR node.

For the case when wu.b. = 2, the DRS algorithm would

split the first column of G into three vectors, and the second,

third, and fifth column once each. The corresponding encoding

diagram is shown in Figure 3, where we color the solid circles

associated with splits on the first, second, third, and fifth

columns by black, green, orange, and blue, respectively.

We are ready to show the existence of a sequence of

capacity-achieving codes over the BEC with GMs where

the column weights are bounded by a polynomial in the

blocklength, and that the block error probability under a low

complexity decoder vanishes as n grows large.

Theorem 2: Let β < E(G2) = 0.5, λ > λ∗ = hb(
2
3 )− 1

3 ≈
0.585, and a BEC W with capacity C be given. There exists

a sequence of polar-based codes corresponding to DRS(G⊗n
2 )

with the following properties for all sufficiently large n: (1)

The error probability under a SC decoder is upper bounded

by 2−Nβ

, where N = 2n, (2) The Hamming weight of

each column of the GM is upper bounded by Nλ, (3) The

rate approaches C as n grows large, and (4) The codes

can be decoded by a SC decoding scheme with complexity

O(N logN).
Proof: Let the threshold for DRS algorithm be wu.b. =

2nλ, G denote G⊗n
2 , and G′ denote DRS(G⊗n

2 ). We prove the

four claims in order. First, Lemma 2 shows that for a given n
and any t > 0, the following is true:

{s ∈ {−,+}
n

: Zs

G ⩽ t} ⊆ {s ∈ {−,+}
n

: Zs

G′ ⩽ t} . (2)

Using [2, Theorem 2], for any β < 1
2 , we have

lim inf
n→∞

1

N

∣

∣

∣

{

s ∈ {−,+}
n

: Zs

G ⩽ 2−Nβ
}

∣

∣

∣
= I(W ) = C (3)

Let SG and SG′ denote the sets of the sequences s ∈
{−,+}

n
that satisfy Zs

G ⩽ 2−Nβ

and Zs

G′ ⩽ 2−Nβ

, respec-

tively. Equation (2) guarantees that SG is a subset of SG′ .

Assume the code corresponding to G freezes the input bits

observing bit-channels W s1s2...sn for all (s1, s2, . . . , sn) /∈
SG. For the code corresponding to G′, we use the bit-channels

with the same index as the code corresponding to G, for

transmission of information bits, and leave the rest as frozen.

The probability of block error under SC decoding, which

is described in the last part of this proof, for the code

corresponding to G′, Pe,G′ , can be bounded above, as in [2],

by the sum of the Bhattacharyya parameters of the bit-channels

for the source bits (that are not frozen), that is,

Pe,G′ ⩽
∑

s∈SG

Zs

G′ ⩽
∑

s∈SG

2−Nβ

= |SG| 2
−Nβ

,

where the second inequality follows because, for s ∈ SG,

we must have s ∈ SG′ and thus Zs

G′ ⩽ 2−Nβ

. From (3), for all

sufficiently large n, we have Pe,G′ ⩽ NC2−Nβ

. With some

calculus, one may show that, for any β′ < 1
2 , Pe,G′ ⩽ 2−Nβ′

for all sufficiently large n.

The second claim follows from the fact that the GM for

the code corresponding to G′ is a submatrix of G′, and the

Hamming weight of each column of G′ is upper bounded by

wu.b. = 2nλ = Nλ.

The third claim is a consequence of Proposition 2 and

Lemma 2. The number of information bits of the code corre-

sponding to G′ is given by |SG|, and the length of the code is

N(1 + γ). Hence the code rate is
|SG|

N(1+γ) . Since the term γ
vanishes as n grows large, we have

lim inf
n→∞

|SG|

N(1 + γ)
= lim inf

n→∞

|SG|

N
= I(W ) = C. (4)

Finally, we prove the claim for the existence of a low-

complexity decoder. Just like that of the SC decoder for

conventional polar codes with kernel G2, the decoding algo-

rithm proceeds in a recursive manner. Let U1, . . . , UN be

the inputs, and Y1, . . . , YN1
, YN1+1, . . . , YN1+N2

the outputs,

where N1 +N2 = N(1+γ), as shown in Figure 4b. However,

while the polar code based on G⊗n
2 , as shown in Figure 4a,

is recursive in the encoder structure, i.e., the two encoding

sub-blocks corresponding to G⊗n−1
2 are identical, the code

based on (G⊗n
2 )′ is not, as the blocks Wu

n and W l
n are not

necessarily equal. In fact, when there is a split in the GM due

to the DRS algorithm, i.e., when one or more of the XOR

operations shown in Figure 4b is replaced by two solid black

circle, the number of inputs of the block W l
n will be larger

than that of Wu
n .

Let F ⊆ {1, . . . , N} be the set of the indices of the frozen

bits. The decoder declares estimates Ûi of the inputs, for
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Fig. 4. Encoding/decoding diagrams for standard and DRS-modified polar
codes.

1 ⩽ i ⩽ N , sequentially by:

Ûi =

{

ui, if i ∈ F ,

ψi(Y
N1+N2

1 , Û i−1
1 ,Wn) if i /∈ F ,

(5)

where ψi(Y
N1+N2

1 , Û i−1
1 ,Wn) can be found in following

four cases, and Wn denotes the encoding block shown in

Figure 4b. Let the symbol e denotes an erasure, and assume

e ⊕ b = e for b ∈ {0, 1, e}. We write ψi in place of

ψi(Y
N1+N2

1 , Û i−1
1 ,Wn) for the sake of space in the following.

• If i is odd and Xi = Ui ⊕ Ui+1, which corresponds to

an unsplit XOR operation observed by Ui,

ψi ≜

{

X̂i ⊕ X̂i+1 if X̂i ̸= e, X̂i+1 ̸= e,

e, otherwise.

• If i is odd and Xi = Ui, which corresponds to a split

XOR operation, ψi ≜ X̂i.

• If i is even and Xi−1 = Ui ⊕ Ui−1, which corresponds

to an unsplit XOR operation,

ψi ≜







































X̂i, if X̂i ̸= e, X̂i−1 ̸= e,

X̂i = X̂i−1 ⊕ Ûi−1

or X̂i ̸= e, X̂i−1 = e,

X̂i−1 ⊕ Ûi−1, if X̂i = e, X̂i−1 ̸= e,

Ûi−1 ̸= e

e, otherwise.

• If i is even and Xi,1 = Xi,2 = Ui, which corresponds to

a split XOR operation,

ψi ≜



















X̂i,1, if X̂i,1 ̸= e, X̂i,2 = e,

or X̂i,1 = X̂i,2 ̸= e,

X̂i,2, if X̂i,1 = e, X̂i,2 ̸= e,

e, otherwise.

The estimates X̂1, X̂3, . . . , X̂N−1 and X̂2, X̂4, . . . , X̂2j,1,
X̂2j,2, . . . , X̂N are found in a similar approach using the

blocks Wu
n and W l

n along with the outputs Y1, . . . , YN1
and

YN1+1, . . . , YN1+N2
, respectively.

For the right-most variables, the blocks they observe are

identical copies of the BEC W . Hence the estimates of the

variables, denoted as X̂
(n)
1 , X̂

(n)
2 , . . . , X̂

(n)
N1+N2

are naturally

defined by the outputs of the channels, i.e., X̂
(n)
i = Yi for

i = 1, 2, . . . , N1 +N2.
At each stage there are at most N1 + N2 = N(1 +

γ) = O(N) estimates to make, and the recursion ends in

log(N) steps. Since each estimate is obtained with constant

complexity, the total decoding complexity for the code based

on DRS(G⊗n
2 ) is bounded by O(N logN).

We evaluate the performance of the polar-DRS codes with

n = 10 and λ = 0.6, 0.8, 1.0, under the SC decoding scheme

described in the proof of Theorem 2, over the BEC with

erasure probability ϵ = 0.5. In Figure 5a, the block error

probabilities for the curves with smaller λ are smaller, due

to the improvement of some of the Bhattacharyya param-

eters observed by the information bits. That is, there are

sequences (s1, s2, . . . , sn) ∈ {−,+}
n

for which the inequality

in Lemma 2 is strict. However, after factoring in multiplicative

rate loss γ, we may observe in Figure 5b that the performance

of the codes with λ = 0.6 are substantially worse than the

original polar code (λ = 1 curve), and those with λ =
0.8 deliver trade-off between code rate and error probability

comparable to the original polar code, while guaranteeing the

threshold wu.b. is one-fourth of the latter.

Remark 3: We note that for general BMS channels,

Lemma 2 may fail. One key part in the proof (see Appendix C)

is the fact that the Bhattacharyya parameter for the bit-

channel observed by Ui is a non-decreasing function of

those of W (X1), . . . ,W (Xf(m)) for i ⩽ 2m, and of

W (Xf(m)+1), . . . , W (X2f(m)) for i > 2m, when all the chan-

nels are BECs. We now provide an example where we see the

argument for Lemma 2 fail for BMS channels. Let a, a′, b, b′

be four distinct elements and Y = {a, a′, b, b′}. Let two BMS

channels W1,W2 : {0, 1} → Y be given, and that W1(y|0) =
W1(ϕ(y)|1) and W2(y|0) = W2(ϕ(y)|1) for all y ∈ Y where
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Fig. 5. Error probability for polar-DRS codes with n = 10 with
wu.b. ∈ {64, 256, 1024}.

the involution ϕ maps a 7→ a′, b 7→ b′. Assume the channel

transition probabilities are W1(a|0) = 6/9,W1(b|0) = 1/9,

W1(b
′|0) = 1/9,W1(a

′|0) = 1/9 and W2(a|0) = 5/11,

W2(b|0) = 4/11, W2(b
′|0) = 1/11, W2(a

′|0) = 1/11.

The Bhattacharyya parameters for W1,W2 are respectively

0.7666 and 0.7702. If m = 1 and Bm is simply the kernel

G2, the symbols X1, X2 are functions of U1, U2 given by

X1 = U1 + U2 and X2 = U2.

We now consider two possible cases for the pair

(W (X1), W (X2)). If (W (X1),W (X2)) = (W1,W2),
the Bhattacharyya parameters for the bit-channels

observed by U1, U2 are respectively 0.9147 and 0.5904.

If (W (X1),W (X2)) = (W2,W2), the Bhattacharyya

parameters for the bit-channels observed by U1, U2 are

respectively 0.9137 and 0.5932. We note that while the

Bhattacharyya parameters for W (X1), W (X2) in the second

case are no less than in the first case, the Bhattacharyya

Fig. 6. ADRS scheme for a split XOR of first iteration of polarization.

parameter Z(U1) in the second case is smaller than in the

first case. With the above observation, one can not claim

the validity of Theorem 2 for general BMS channels. This

motivates a new code construction for general BMS channels.

C. Low-Complexity Decoder for Polar-Based Codes: BMS

This section introduces a capacity-achieving polar-based

coding scheme with low-complexity decoder for general

BMS channels. For general BMS channels, the Bhattacharyya

parameter of the bit-channel W− cannot be expressed only

in terms of parameters of the channel W . This implies that

Lemma 2 and Theorem 2 are not applicable for channels

other than BEC, as pointed out in Remark 3. A procedure

that augments the generator matrix corresponding to G′, the

output of the DRS algorithm for the matrix G⊗n
2 , may be used

to construct a capacity-achieving linear code over any BMS

channel W .

1) ADRS Scheme: The encoding scheme, termed

augmented-DRS (ADRS) scheme, avoids heavy columns

in the GM and, at the same time, guarantees that the

bit-channels observed by the source bits Ui have the same

statistical characteristics as when they are encoded with

the generator matrix G⊗n
2 . Specifically, the ADRS scheme

modifies the encoder for G⊗n
2 starting from the split XOR

operations associated with the first polarization recursion,

then the second recursion, and proceed all the way to the

n-th recursion, where a XOR operation is split if and only if

it is split in an encoder with generator matrix DRS(G⊗n
2 ).

Assume an XOR operation with operands U
(n−j)
i1

and

U
(n−j)
i2

and the output U
(n−j+1)
i1

, where i1 = Bi2De(s1, . . . ,
sj−1, sj = −, sj+1, . . . , sn)+1 and i2 = Bi2De(s1, . . . , sj−1,
sj = +, sj+1, . . . , sn) + 1 = i1 + 2n−j , is to be split (see

Section IV-B for the function Bi2De(·)). If j = 1, before

modification, the variables U
(n)
i1

and U
(n)
i2

are transmitted

through two copies of W , and the bit-channels observed by

U
(n−1)
i1

and U
(n−1)
i2

are W− and W+, respectively, as shown
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Fig. 7. ADRS example with N = 8 and wu.b. = 2.

in Figure 6a. If the XOR operation is split according to

DRS(G⊗n
2 ), ADRS scheme replaces the structure by that given

in Figure 6b, where ni1,1 is a Bernoulli(0.5) random variable

independent of all the other variables.

If j ⩾ 2, assume that the ADRS modification for the split

operations for the first (j − 1) recursions are completed. Let

ni1,j be a Bernoulli(0.5) random variable independent of all

the other given variables. The part of encoding diagram to the

right of U
(n−j+1)
i1

is replicated, where ni1,j takes the place

of U
(n−j+1)
i1

in the replica. And then we let U
(n−j+1)
i1

=

U
(n−j)
i1

⊕ ni1,j . In addition, the part of encoding diagram to

the right of U
(n−j+1)
i2

is replicated, and a copy of U
(n−j)
i2

is transmitted through the replica. The variable U
(n−j+1)
i2

remains U
(n−j+1)
i2

= U
(n−j)
i2

.

We demonstrate the procedure described above through the

following example. Assume n = 3, N = 8, and wu.b. = 2.

The encoding diagram for G⊗3
2 is shown in Figure 7a, and the

XOR operations that are split in DRS(G⊗3
2 ) are marked in

green and blue, which indicate the operations are due to the

first and the second polarization recursions (i.e., s1 and s2),

respectively. The notations U ′
i , U

′′
i , U

′′′
i are used to represent

U
(1)
i , U

(2)
i , U

(3)
i . Replacing the XOR operations marked in

green as described for the case of j = 1, the encoding diagram

is now shown in Figure 7b. For the XOR operations marked

in blue, we proceed by using the step for j ⩾ 2 and obtain

the diagram shown in Figure 7b.

It can be noted that the bit-channels observed by each of

U
(j)
i , for i = 1, 2, . . . , N and j = 0, 1, 2, . . . , n, in the ADRS

encoder are the same as those in the standard encoder for the

generator matrix G⊗n
2 (The variable U

(0)
i are given by Ui for

1 ⩽ i ⩽ N ). When an XOR operation associated with the j-th

recursion, with operands U
(n−j)
i1

and U
(n−j)
i2

and the output

U
(n−j+1)
i1

, is split and modified under the ADRS scheme, the

complexity of computing the likelihood or log-likelihood for
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U
(n−j)
i1

and U
(n−j)
i2

can be upper bounded by 2(21 + 22 +
. . .+ 2j)c = 2(2j+1 − 2)c, for some constant c > 0.

2) Polar-ADRS Code Performance: We are now ready to

show the performance of the polar-based code whose encoding

structure is given by the ADRS scheme, referred to as the

polar-ADRS code. First we show the existence of a low-

complexity decoder.

Proposition 3: Let a constant λ > λ† ≜ (log2 3)−1 ≈
0.631 be given. The decoding complexity for a SC decoder

for the polar-ADRS code is bounded by O(N logN) for all

sufficiently large n if the threshold for the DRS algorithm is

wu.b. = 2nλ.

Proof: The proof is provided in Appendix D.1.

Second, it can be observed that the number of additional

copies of channels due to the modification for an XOR

operation at the j-th polarization recursion is 2j . We find the

total number of extra channel uses and the ratio γ of that to the

number N = 2n of channel uses for the code corresponding

to G⊗n
2 in the following. Assume that the column weight

threshold of the DRS algorithm is given by wu.b. = 2nλ.

Proposition 4: Let N(1+γ) be the number of channel uses

of the encoder for the ADRS scheme based on DRS(G⊗n
2 )

with wu.b. = 2nλ. Then the term γ goes to 0 as n grows

large, if we have λ > λ†.

Proof: The proof is provided in Appendix D.2.

We are ready to show the existence of a sequence of

capacity-achieving codes over general BMS channels with

GMs where the column weights are bounded by a polynomial

in the blocklength, and that the block error probability under

a low complexity decoder vanishes as n grows large. Note

that while this result is also applicable when the underlying

channel is a BEC, the constraint on λ is stricter than that in

Theorem 2, due to the difference in the encoding and decoding

schemes.

Theorem 3: Let β < E(G2) = 0.5, λ > λ†, and a BMS

channel W with capacity C be given. There exists a sequence

of codes with the following properties for all sufficiently

large n: (1) The error probability under SC decoding is upper

bounded by 2−Nβ

, where N = 2n, (2) The Hamming weight

of each column of the GM is upper bounded by Nλ, (3)

The rate approaches C as n grows large, and (4) The codes

can be decoded by a SC decoding scheme with complexity

O(N logN).
Proof: We prove the four properties in order as follows.

First, similar to the proof of Theorem 2, for i = 1, 2, . . . , N ,

the bit Ui is frozen in the polar-ADRS code with rate R < C
if and only if it is frozen in the polar code with kernel G2,

blocklength N = 2n, and the rate R. Hence, the probability of

error of the polar-ADRS code can be bounded in the same way

as its polar-code counterpart, since the bit-channels observed

by the source bits Ui, and the corresponding Bhattacharyya

parameters, are identical to those when they are encoded with

the standard polar code.

Second, when the ADRS scheme is based on DRS(G⊗n
2 )

with wu.b. = 2nλ, the generator matrix for the polar-ADRS

code is a submatrix of DRS(G⊗n
2 ). The column weights of

the GM for the polar-ADRS code are thus upper bounded

by wu.b. = 2nλ = Nλ. The third claim holds by using an

Fig. 8. Error probability for polar-ADRS codes with N = 1024,
K = 512 and wu.b. ∈ {64, 128, 256, 512, 1024}.

argument similar to the one used in the proof of Theorem 2.

This is because the term γ vanishes as n grows large according

to Proposition 4. Finally, note that the fourth claim is equiva-

lent to Proposition 3.

We evaluate the performance of the polar-ADRS codes

with N = 1024,K = 512 and weight thresholds wu.b. ∈
{64, 128, 256, 512, 1024}, under the SC decoding scheme,

over the BI-AWGN channels whose SNR (Eb/N0) ranges

from 0.5 to 3 dB. The indices of frozen bits are designed

using a Monte-Carlo scheme for the BI-AWGN channel

with Eb/N0 = 2 dB. The auxiliary noise variables are

generated with independent Bernoulli(0.5) distribution. The

stopping criterion for each data point is ITERATION = 105 or

BLOCK ERROR COUNT = 100, whichever is reached first.

In Figure 8a, the block error probabilities are very close

for codes with different weight thresholds over the range of

simulated SNR. This is because the bit-channels observed by

each information bit are exactly the same with or without the
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ADRS scheme, and that the block error probability of the

codes are determined by the characteristics of the information

bit channels.

Note that the use of the auxiliary noise variables are of

theoretical reasons and is required for the proof of Theorem 3.

In practice, we may freeze the auxiliary noise variables to

avoid the channel uses for the transmission of them. In par-

ticular, when the auxiliary noise variables are frozen to fixed

values known to both the encoder and decoder, the decoder can

be considered as a genie-assisted decoder and its performance

is better or equivalent to that of a decoder without the

information of the auxiliary noise variables. We simulate the

performance of the ADRS-polar code with N = 1024,K =
512 and weight thresholds wu.b. ∈ {64, 128, 256, 512, 1024},
where the values of the auxiliary noise variables are fixed to

0’s, over the BI-AWGN channels with 0.5 ⩽ Eb/N0 ⩽ 3 (dB),

and obtain Figure 8b. The error rates of codes with small

thresholds are lower than those with large or no thresholds,

a trend which is similar to that observed in Figure 5a.

V. CONCLUSION

This paper provided three constructions for capacity-

achieving linear codes, based on polar coding, where all the

GM column weights are upper bounded sublinearly in the

block length. The first construction is a sequence of polar

codes based on general polarization kernels where the GM

column weights are upper bounded by Ns for any fixed

s > 0, and allows the codes to be decoded by a SC decoder.

In order to attain a better trade-off between the GM sparsity

and the fall in error probability, we then proposed a column-

splitting algorithm for the GM, termed the DRS algorithm.

With the DRS algorithm, we designed two encoding schemes

which yield two polar-based codes, referred to as polar-DRS

codes and polar-ADRS codes, that are decodable with low-

complexity decoders for the BECs and general BMS channels,

respectively. The polar-based codes preserve several funda-

mental properties of the standard polar code with G2 kernel

including the asymptotic error rate upper bound and decoding

complexity. Further, the GM column weights of the polar-DRS

and polar-ADRS codes are bounded from above by Nλ, for

λ ≈ 0.585 and λ ≈ 0.631, respectively, while the best bound

for the standard polar codes scales linearly in N . The proposed

constructions are also distinct from known constructions for

codes with constraints on the GM sparsity by having analytical

error probability upper bounds scaling as O(2−Nt

) under SC

decoders, for any t < 0.5. A future direction is to design

splitting algorithm and/or encoding schemes that preserve key

properties of the polar codes based on general polarization

kernels, and show that the corresponding polar-based codes

exhibit better sparsity versus error rate trade-off.

APPENDIX

A. Proof for Section III

Proof of Proposition 1: Since Gl is a polarization kernel,

there is at least one column in Gl with weight at least 2.

To see this, note that Gl being invertible implies that all rows

and columns are nonzero vectors. If all the columns of Gl have

weights equal to 1, then all the rows must also have weights

equal to 1, i.e., Gl is a permutation matrix. Then Di = 1,∀i,
and E(Gl) = 0, which implies that Gl can not be polarization

kernel. The contradiction shows that at least one column in

Gl have a weight at least 2.

Let k ⩾ 1 denote the number of columns in Gl with a

weight at least 2. Let v be a randomly uniformly chosen

column of G⊗n
l , and w(v) be the Hamming weight of v. For

1
l
> r > 0,

Pr
(

w(v) = O(Nr logl 2)
)

⩽ Pr
(

2
∑n

i=1
Fi = O(Nr logl 2) = O(2nr)

)

,

where Fi is the indicator variable that one of k non-unit-weight

columns is used in the i-th Kronecker product of Gl to form v.

The variables F1, F2, . . . , Fn are i.i.d. as Ber(k/l). The law

of large numbers implies that
∑n

i=1 Fi ⩾ kn
l
> nr with high

probability. Thus, Pr
(

2
∑n

i=1
Fi = O(2nr)

)

→ 0 as n → ∞
for any r > 0.

B. Proofs for Subsection IV-A

1) Proof of Lemma 1: In order to understand the DRS

algorithm’s effect on G = G⊗n
2 , we first study how the order of

two special Kronecker product operations affects the number

of output vectors. We present the following Lemmas 3 and 4

toward the proof of Lemma 1.

Lemma 3: Let a column vector v and a column weight

threshold wu.b. be given. Then the outputs of the DRS algo-

rithm for (v ⊗ [1, 1]T ) ⊗ [0, 1]T and (v ⊗ [0, 1]T ) ⊗ [1, 1]T

contain the same number of vectors.

Proof: The input vectors can be denoted by:

(v ⊗ [1, 1]T )⊗ [0, 1]T ≡ vLR

(v ⊗ [0, 1]T )⊗ [1, 1]T ≡ vRL.

We note that 2 wH(v) = wH(vLR) = wH(vRL), and prove

the lemma in two cases:

1) 2wH(v) ⩽ wu.b.: In this case, the algorithm will not

split either vLR or vRL. Both outputs contain exactly

one vector.

2) 2wH(v) > wu.b.: Let nDRS(v) denote the size, or more

precisely, the number of column vectors the DRS algo-

rithm returns when it is applied to v.

For vLR, the DRS algorithm observes xh = 0, hence

the number of output vectors is the same as the size of

DRS-SPLIT(wu.b., (v
T , vT )T ) (see Section IV-A). With

2wH(v) > wu.b., the size of DRS-SPLIT((vT , vT )T ) is

the sum of the sizes of Yh = DRS-SPLIT(wu.b.,xh = v)

and Yt = DRS-SPLIT(wu.b.,xt = v). By assump-

tion, |Yh| = |Yt| = nDRS(v), giving nDRS(vLR) =
2nDRS(v).
For vRL, the number of vectors in the DRS algorithm

output is the sum of the sizes of two sets Yh =
DRS-SPLIT(wu.b.,xh = (0T , vT )T ) and Yt = DRS-

SPLIT(wu.b.,xt = (0T , vT )T ). It is easy to see that

|Yh| = |Yt| = |DRS-SPLIT(wu.b., v)|, which equals

nDRS(v). Thus, nDRS(vRL) = 2nDRS(v).
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The next lemma shows the effect of the DRS algorithm from

a different perspective. If there are two vectors with the same

column weights, and numbers of vectors of the DRS algorithm

outputs are identical when they are the inputs, the properties

will be preserved when they undergo some basic Kronecker

product operations.

Lemma 4: Let u1 and u2 be two vectors with equal Ham-

ming weights. Assume, for a given wu.b., the DRS algorithm

splits u1 and u2 into the same number of vectors. Then the

DRS algorithm also returns the same number of vectors for

u1 ⊗ [1, 1]T and u2 ⊗ [1, 1]T , as well as for u1 ⊗ [0, 1]T and

u2 ⊗ [0, 1]T .

Proof: We first discuss the case when u1 ⊗ [1, 1]T

and u2 ⊗ [1, 1]T are processed by the DRS algorithm.

If 2wH(u1) = 2wH(u2) ⩽ wu.b., no splitting is done.

If 2wH(u1) = 2wH(u2) > wu.b., the size of the DRS

algorithm output for the input u1 ⊗ [1, 1]T is the sum of the

sizes of Yh = DRS-SPLIT(wu.b.,xh = u1) and Yt = DRS-

SPLIT(wu.b.,xt = u1), both of which are nDRS(u1). The size

of the output for the input u2⊗[1, 1]T can be found in a similar

way to be 2nDRS(u2). Note that nDRS(u1) = nDRS(u2) by

assumption. Therefore, the sizes of the outputs of the DRS

algorithm, when u1⊗[1, 1]T and u2⊗[1, 1]T are the inputs, are

equal. Similarly, one can easily show that when u1 ⊗ [0, 1]T

and u2 ⊗ [0, 1]T are processed by the DRS algorithm, the

number of output columns are equal.

Proof of Lemma 1: Suppose that there is an index i such

that (si, si+1) = (+,−). Let v(i+1) and (v(i+1))′ be defined

by (1) with sequences (s1, . . . , si−1, si = +, si+1 = −) and

(s1, . . . , si−1, s
′
i = −, s′i+1 = +), respectively. We note that

v(i+1) =
(

v(i−1) ⊗ [0, 1]T
)

⊗ [1, 1]T

(v(i+1))′ =
(

v(i−1) ⊗ [1, 1]T
)

⊗ [0, 1]T .

Lemma 3 shows that the DRS algorithm splits v(i+1) and

(v(i+1))′ into the same number of columns. Furthermore,

Lemma 4 shows that the number of output vectors of the

DRS algorithm for v(n) = [v(i+1)](si+2,...,sn) and (v(n))′ =
[(v(i+1))′](si+2,...,sn) are equal.

Therefore, an occurrence of (si, si+1) = (+,−) in a

sequence can be replaced by (si, si+1) = (−,+) without

changing the number of output vectors of the DRS algorithm.

Since any sequence (s1, s2, . . . , sn) with n1 minus signs and

n2 plus signs can be permuted into (s′1, s
′
2, . . . s

′
n), where

s′i = − for i ⩽ n1 and s′i = + for i > n1, by repeatedly

replacing any occurrence of (+,−) by (−,+), the above

arguments show nDRS(v(n)) = nDRS(v(s′
1,s′

2,...s′
n)) always

holds. Hence, the size of DRS algorithm output for v(n)

depends only on the values n1 and n2.

2) Proof for Proposition 2: First note that there is a bijec-

tion between {−,+}
n

and the columns of G⊗n
2 as follows.

For each s = (s1, . . . , sn) ∈ {−,+}
n

, there is exactly one

column of G⊗n
2 in the form 1(s) (see equation (1) and the

paragraph following it, where we use v = v(0) = [1] ∈ F2

to be the length-1 vector). The term γ can be characterized

as follows:

γ =
[ 1

N

∑

s∈{−,+}n

nDRS(1(s))
]

− 1.

By Lemma 1, the terms in the summation can be grouped

according to the number of minus and plus signs in the

sequence. Hence,

γ=

[

1

N

n
∑

i=0

(

n

i

)

nDRS(1(s1=−,...,si=−,si+1=+,...,sn=+))

]

− 1.

Let ui denote the vector 1(s1,...,sn) with sl = − for l ⩽ i
and sl = + for l > i. Without loss of generality, let nλ ∈ N.

For i ⩽ nλ, the Hamming weight of ui is 2i ⩽ 2nλ = wu.b..

Hence, nDRS(ui) = 1. For i > nλ, ui is split into 2i−nλ

vectors, each of which having weight equal to 2nλ. Therefore,

nDRS(ui) = 2i−nλ.

The term γ can be written as follows:

γ =

nλ
∑

i=0

1

N

(

n

i

)

+

n
∑

i=nλ+1

1

N

(

n

i

)

2i−nλ − 1 =

n
∑

i=nλ+1

ai,

(6)

where ai ≜ 1
N

(

n
i

)

(2i−nλ−1). Now, let α = i/n. Since i > nλ
for each summand ai, we consider α > λ > 1

2 in the following

calculations. The term ai can be written as

ai = anα = 2−n

(

n

nα

)

2nα−nλ+o(1)

= 2−n · 2nhb(α)+o(1) · 2nα−nλ+o(1)

= 2n·f(α,λ)+o(1), (7)

where the third equality is due to an asymptotic approximation

of the binomial coefficient, and f(α, λ) ≜ hb(α) +α−λ− 1.

Consider f(α, λ) as a function of α over the interval [0, 1].
We find its first and second derivatives with respect to α as

follows:

∂f(α, λ)

∂α
= 1− log

α

1− α
, (8)

∂2f(α, λ)

∂2α
= −

1

ln 2

( 1

α
+

1

1− α

)

< 0, for 0 < α < 1. (9)

Thus, for any fixed λ, f(α, λ) is a concave function of α
and has local maximum when ∂f(α,λ)/∂α = 0. From (8), the

equality holds if and only if α = 2
3 , and the maximum is

sup
α∈(0,1)

f(α, λ) = hb

(

2

3

)

+
2

3
− λ− 1 = λ∗ − λ. (10)

Also, when α = 0, f(0, λ) = −λ − 1, and when α = 1,

f(1, λ) = −λ. Hence, supα∈[0,1] f(α, λ) = λ∗ − λ. When

λ > λ∗, we know f( i
n
, λ) ⩽ supα f(α, λ) < 0 for all integers

0 ⩽ i ⩽ n, and (7) implies that ai → 0 exponentially fast for

each i. Equation (6) then shows that γ vanishes exponentially

fast in n.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 02,2023 at 21:04:14 UTC from IEEE Xplore.  Restrictions apply. 



5036 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 9, SEPTEMBER 2023

Fig. 9. Encoding Block for G′
2

.

C. Proof for Subsection IV-B

Proof for Lemma 2: We show the claim by proving the

following: when we encode the source bits according to G′,

the bit-channels observed by the source bits are BECs and

that the erasure probabilities are less than or equal to those

when G is used. We use proof by induction on n. For ease of

notation, we use M ′ to denote DRS(M) for a given matrix

M in this proof.

For n = 1, if G2 = G′
2, we naturally have Z

(s1)
G′

2

= Z
(s1)
G2

for s1 ∈ {−,+}. If G2 ̸= G′
2, the latter must be

[

1 0 0
0 1 1

]

,

corresponding to the encoding block diagram in Figure 9,

where the solid black circles indicate a split of the XOR

operation, i.e., the two operands of the original XOR operation

are transmitted through two copies of channel W . The bit-

channels observed by U1 and U2, denoted by W⊟ and W⊞,

are BECs with erasure probability ϵ and ϵ2, respectively. Note

that the Bhattacharyya parameters satisfy the following:

Z
(−)
G′

2

= Z(W⊟) = ϵ ⩽ Z
(−)
G2

= Z(W−) = 2ϵ− ϵ2,

Z
(+)
G′

2

= Z(W⊞) = ϵ2 = Z
(+)
G2

= Z(W+).

Suppose that, for a fixed wu.b., the claim holds for all n ⩽ m
for some integer m ⩾ 1. Let Bm denote the encoding block

corresponding to the generator matrix (G⊗m
2 )′, with inputs

U1, . . . , U2m and encoded bits X1, . . . , Xf(m), where f(m) is

the number of columns in (G⊗m
2 )′. Using the matrix notation,

the relation between the input bits and encoded bits is:

(U1, . . . , U2m)(G⊗m
2 )′ = (X1, . . . , Xf(m)).

For n = m + 1, the matrix (G⊗m+1
2 )′ is associated with

(G⊗m
2 )′ as follows:

(G⊗m+1
2 )′ = DRS

([

(G⊗m
2 )′ 0

(G⊗m
2 )′ (G⊗m

2 )′

])

. (11)

Since (G⊗m
2 )′ consists of the outputs of the DRS algorithm,

the columns in the right half of the input matrix in equation

(11) remain unaltered in the output. For the columns in the

left half, they are of the form [vT , vT ]T for some column v of

(G⊗m
2 )′. If 2wH(v) > wu.b., the outputs of the DRS algorithm

are [0T , vT ]T and [vT ,0T ]T because the vector v must have

weight no larger than the threshold. If 2wH(v) ⩽ wu.b., the

algorithm leaves the vector unchanged. We may represent the

encoding block Bm+1 as in Figure 10, where it is assumed

that the j-th column of the input matrix in (11) is halved by

the DRS algorithm.

The erasure probabilities for the bit-channels observed

by Xi, denoted here as W (Xi), are less than or equal to

2ϵ − ϵ2 for 1 ⩽ i ⩽ f(m), and are equal to ϵ2 for

Fig. 10. Encoding Block Bm+1.

Fig. 11. Equivalent Encoding Block Bm+1.

f(m) + 1 ⩽ i ⩽ 2 f(m), respectively. Hence we may

replace the XOR operations to the right of the Xi’s as well as

the transmission over W ’s by BECs W (X1), . . . ,W (Xf(m)),
W (Xf(m)+1), . . . ,W (X2f(m)), as in Figure 11.

One may observe that the erasure probability for the

bit-channel observed by Ui is a non-decreasing function

of those of W (X1), . . . ,W (Xf(m)) for i ⩽ 2m, and of

W (Xf(m)+1), . . . , W (X2f(m)) for i > 2m. Thus, for i ⩽ 2m,

we have

Z(G⊗m+1

2
)′ (Ui | Z(W ) = ϵ)

⩽ Z
[

W (Ui) | Z(W (Xj)) = 2ϵ− ϵ2, for 1 ⩽ j ⩽ f(m)
]

= Z(G⊗m
2

)′

(

Ui | Z(W ) = 2ϵ− ϵ2
)

⩽ ZG⊗m
2

(

Ui | Z(W ) = 2ϵ− ϵ2
)

= ZG⊗m+1

2

(Ui | Z(W ) = ϵ) ,
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where the first inequality is due to Z(W (Xj)) ⩽ 2ϵ −
ϵ2 for 1 ⩽ j ⩽ f(m) and the second inequality follows from

the hypothesis of the induction.

Similarly, for i > 2m, we have

Z(G⊗m+1

2
)′ (Ui | Z(W ) = ϵ)

=Z
[

W (Ui) | Z(W (Xj)) = ϵ2, for f(m)+1⩽j⩽ 2f(m)
]

= Z(G⊗m
2

)′

(

Ui−f(m) | Z(W ) = ϵ2
)

⩽ ZG⊗m
2

(

Ui−f(m) | Z(W ) = ϵ2
)

= ZG⊗m+1

2

(Ui | Z(W ) = ϵ) .

Hence the inequality holds when n = m+ 1 as well.

D. Proofs for Subsection IV-C

1) Proof of Proposition 3: First note that each XOR oper-

ation at the j-th recursion can be associated with exactly one

vector s = (s1, s2, . . . , sn) ∈ {−,+}
n

and sj = −. For exam-

ple, assume that the number of minus signs in s, denoted as

m(s), is larger than nlub = logwu.b. = nλ, and let τ = τ(s)
be the index such that m(sτ , sτ+1, . . . , sn) = nlub and sτ =
−. Then for each index i in the set {k : 1 ⩽ k < τ, sk = −},
there is a bijection between the pair (s, i) and an XOR

operation at the i-recursion which is split and modified in the

ADRS scheme. Hence, the extra complexity of the SC decoder

for the ADRS scheme, compared to that of the SC decoder

for the code based on G⊗n
2 , is given by

n−nlub+1
∑

l=1

|{s ∈ {−,+}
n

: τ(s) > l, sl = −}| 2(2l+1 − 2)c

=

n−nlub+1
∑

l=1

n−nlub+1
∑

k=l+1

|{s ∈ {−,+}
n

: τ(s) = k, sl = −}| ·

2(2l+1 − 2)c

=

n−nlub+1
∑

k=1

[

(

n− k + 1

nlub

)

2k−2
k−1
∑

l=1

2(2l+1 − 2)c

]

⩽ 4c

n−nlub+1
∑

k=1

(

n− k + 1

nlub

)

2k−2
k−1
∑

l=1

2l

= 4c

n−nlub+1
∑

k=1

(

n− k + 1

nlub

)

2k−2(2k − 2)

⩽ 4c

n−nlub
∑

k=0

(

n− k

nlub

)

22k. (12)

Now, let α = k
n
∈ [0, 1 − λ]. Using Stirling’s approximation

we have
(

n− k

nlub

)

22k =

(

n(1− α)

nλ

)

22αn ≈ 2n(1−α)hb(
λ

1−α
)+2αn,

for all sufficiently large n. It suffices to assume that λ < 3
4 .

For λ ⩾ 3
4 , note that fewer XOR operations are split and

modified, and that the resulting additional decoding complex-

ity is not larger than when λ < 3
4 is used. Let f(α, λ) =

(1 − α)hb(
λ

1−α
) + 2α. We find its maximum, for a given λ,

by solving

0 =
∂

∂α
f(α, λ) =

∂

∂α

[

− (1− α)

(

λ

1− α
log

λ

1− α

)

− (1− α)

(

1−
λ

1− α

)

log

(

1−
λ

1− α

)

+ 2α
]

=
1

ln 2
[− ln(1− α) + ln(1− α− λ)] + 2,

which is true if and only if α = 1 − 4
3λ. And note that

∂2f(α,λ)
∂α2 = 1

ln 2

[

1
1−α
− 1

1−α−λ

]

< 0 for all α ∈ [0, 1 − λ].

The maximum of the function is then given by f(1− 4
3λ, λ) =

2 − λ log 3. Using the union bound, the sum in (12) can

be bounded by 4cn2n(2−λ log 3), and the ratio of the sum to

N = 2n, denoted by γC , is bounded from above as γC ⩽
4cn2n(1−λ log 3). Since the exponent n(1 − λ log 3) goes to

negative infinity as n grows when λ > λ† = 1/ log 3 ≈ 0.631,

the ratio γC vanishes exponentially in n when λ > λ†. The

proposition follows by noting that the SC decoding complexity

for the code based on G⊗n
2 is N logN .

2) Proof of Proposition 4: Similar to the proof of Propo-

sition 3, the number of additional channels due to the ADRS

scheme modification is given by

n−nlub+1
∑

l=1

|{s ∈ {−,+}
n

: τ(s) > l, sl = −}| 2l

=

n−nlub+1
∑

l=1

n−nlub+1
∑

k=l+1

|{s ∈ {−,+}
n

: τ(s) = k, sl = −}| 2l

⩽

n−nlub+1
∑

k=1

(

n− k + 1

nlub

)

2k−2
k−1
∑

l=1

2l

⩽

n−nlub
∑

k=0

(

n− k

nlub

)

22k. (13)

By the argument in the proof of Proposition 3, the sum in (13)

can be upper bounded by n2n(2−λ log 3), and the ratio of the

sum to N = 2n, denoted by γ, is bounded from above as

γ ⩽ n2n(1−λ log 3). Since the exponent n(1− λ log 3) goes to

negative infinity as n grows when λ > λ† = 1/ log2 3 ≈
0.631, the ratio γ vanishes exponentially in n when

λ > λ†.
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