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AbstractÐThe challenges of managing datacenter traffic in-
crease with the complexity and variety of new Internet and
Web applications. Efficient network management systems are
often required to thwart delays and minimize failures. In this
regard, it appears helpful to identify in advance the different
classes of flows that (co)exist in the network, characterizing them
into different types according to the different latency/bandwidth
requirements. In this paper, we propose Howdah, a traffic iden-
tification and profiling mechanism that uses Machine Learning
and a congestion-aware forwarding strategy to offer adaptation
to different traffic classes with the support of programmable
data-planes. With Howdah, sender and gateway elements inject
in-band traffic information obtained using supervised learning.
When a switch or a router receives a packet, it exploits such host-
based traffic classification to adapt to a desirable traffic profile,
for example, balancing the load. We compare our solutions
against recent traffic engineering solutions and show the efficacy
of cooperation between host traffic classification and P4-based
switch forwarding policies, reducing packet transmission time in
datacenter scenarios.

Index TermsÐload profiling, machine learning, traffic classifi-
cation

I. INTRODUCTION

In the last decades, datacenters have changed their topol-

ogy where the demand of the global network has increased

especially when new applications ask for more data at faster

speeds but still requiring low latency. Because of that, a new

focus was given not only to traffic in and out of the datacenter,

but even within it, with the need of changing datacenter’s

architecture to multi-rooted leaf-spine or fat-tree topologies.

These topologies have in common the presence of multiple

source-destination paths to handle the high traffic volume.

However, efficiently using the network resources requires

a load-balancing strategy that moves network performance

towards optimality. One of the most used load-balancing

techniques remains ECMP (Equal-Cost Multi-Path), a routing

strategy that static hashes flows for path assignment. However,

because flows are randomly assigned to a path, ECMP does

not take into account potential congestion in the network (as

well as link failures) and leads to uneven flows distribution (as

well as poor performance) [1]. Recent approaches attempted

to overcome these limitations and, while they are all sound

solutions, they either introduced additional overhead, e.g., [2],

[3] or failed to apply efficient logic per-packet, e.g., [4], [5].

On the one hand, centralized schemes, such as Hedera [4],

B4 [5], FastPass [6] and SWAN [7], can perform congestion-

aware decisions, but demand considerable control traffic and

react too slowly for volatile (datacenter) traffic. On the other

hand, recent distributed approaches, such as CONGA [2] and

HULA [3], introduce periodic network feedback that might

lead to excessive overhead traffic and contribute to congestion.

In line with these efforts, the research question that we are

addressing in this paper is: ªCan we balance network traffic

over uncongested paths without the need of defining elaborate

protocols for the exchange of information between the switches

or between the switches and a centralized controller?º

In this paper, we answer this question with Howdah, a

data-plane solution that aims at improving load profiling by

taking forwarding decisions via a distributed and (partially)

congestion-aware logic. The idea behind Howdah is a joint

optimization: minimization of collisions between flows and

maintenance of high utilization inside the datacenter network. 1

Load profiling [8], [9] subsumes load balancing: it may be

desirable to have different classes of traffic with different

priorities and demands, hence it may be desirable to depart

from a merely balanced load. In Howdah, network switches

are instructed with P4 programs to run a data-driven load

profiling that, rather than flows, operates over flowlets Ð

burst of packets in a flow, split by a sufficiently large time

gap. Approaches based on flowlets have been shown to be

desirable as there are no packet reordering problems and no

modifications to the TCP stack needed [10].

To further optimize path selection, forwarding actions are

differentiated according to the type of traffic carried in the

packets. Howdah internal sending hosts and peripheral gate-

ways run a supervised Machine Learning (ML) model to

predict if each flow entails a large amount of data, elephant

flow, or a small amount, mouse flow, and this traffic knowledge

is transferred directly to the intermediate switches and inserted

into the packet in an in-band fashion. Based on the fact that

elephant flows are the ones responsible for network conges-

tion, they are routed over the fastest paths by considering the

least utilized path from the switch perspective; mice, less likely

to overload network nodes, just flow via flowlet ECMP.

We evaluated our classifier’s accuracy over real-world dat-

1An howdah, derived from the Arabic word hawdaj, which means ªbed
carried by a camelº, is a carriage positioned on the back of an elephant or
occasionally on some other animal such as a camel. We called our solution
Howdah since, as in the real howdah, it is a tiny overhead that can serve
several applications and can be carried over elephants (or other) flows.
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acenter traffic traces and experienced how a Support Vector

Machine (SVM) algorithm is simple yet effective enough to

split traffic into classes accurately. Then, we studied how

Howdah’s performance changes when different protocols are

used to carry the in-band traffic information. As discussed in

Section IV, our mechanism can operate as an in-band strategy

on different existing protocols, e.g., MPLS, IPv4, IPv6, or even

on future Internet architectures [11]. We found how IP type-of-

service fields provide negligible overhead and represent a valid

implementation of our proposed architecture in transferring

information on traffic classes. We tested such implementation

in datacenter network scenarios and compared it to recently

proposed benchmarks. Our results validate how our solution

can reduce both Round-Trip-Time (RTT) and Flow Comple-

tion Time (FCT) at high network loads, especially for elephant

flows.

The rest of the paper is structured as follows. Section II

describes state-of-the-art techniques, while Section III outlines

the scenario considered and overviews our solution design.

In Section IV we study some options to carry the in-band

information using already defined protocols, and Section V

describes our traffic classification method. We present our

results in section VI and conclude the paper in section VII.

II. RELATED WORK

Efficient balancing/profiling of traffic load among available

paths is a critical issue, especially in highly stressed net-

works such as datacenters. Many recent studies addressed this

problem, proposing solutions that fully utilize the available

bandwidth resources. Although traditional and local routing

strategies (e.g., the standard ECMP) are extensively used

in practice, their performance is suboptimal for datacenters,

given the local, trivial, and stateless decisions that lead to

split traffic without knowledge of potential congestion on

the network [4], [12], [13]. Recent local approaches, such

as DRILL [14], Clove [15], and PRESTO [16], attempt to

solve ECMP’s shortcomings while confining decisions within

each switch, ignoring global information. DRILL forwarding

decisions are load-aware and based on local queue occu-

pancy, enabling operating on microsecond (packet-by-packet)

timescales. PRESTO [16] is based on the insight that, in a

symmetric Clos where all flows are small, ECMP provides

near-optimal load balance. As such, it divides flows into

ªmiceº, that are source-routed so they are striped across

all paths, without load-awareness. However, both solutions

have to deal with the performance impact and computational

bottleneck of TCP reordering, whose problem is exacerbated

in asymmetric topologies.

A common approach to taking more appropriate actions is to

delegate forwarding logic to centralized controllers and take

congestion-aware decisions, as in as B4 [5], F10 [17], Ma-

hout [18], MicroTE [19], and Hedera [4], which are based on

the assumption that non-local (i.e., global) congestion informa-

tion is helpful to evenly balance load. While they have shown

near-optimal traffic engineering for inter-datacenter WANs,

they are not designed for highly volatile datacenter networks

because of the coarse timescales of their control operations.

To reach microseconds performance yet using global infor-

mation, CONGA [2] operates in the data plane and makes

globally optimal allocations using a distributed approach,

allowing a faster reaction when handling asymmetry. Using a

leaf-to-leaf mechanism, in which switches at the edge (leaves

in Clos networks) gather and analyze congestion feedback

from remote switches to estimate real-time congestion on fab-

ric paths, CONGA combines this mechanism with the flowlet

switching strategy. Although this study validates the efficacy

of flowlet switching strategy to ensure efficient utilization

of network resources, especially if applied to datacenters, it

comes with two main limitations: first, the global congestion

state at the edge switches may drastically increase and exceed

the switch memory; second, its implementation is designed for

custom hardware. These limitations are addressed explicitly

by HULA [3], a data-plane load balancing algorithm applied

on P4-based programmable switches, in which leaf switches

track congestion for the best path to a destination through

a neighboring switch and not for all paths, with no need to

have specifically designed hardware. In particular, HULA uses

probes to get information on the network status (i.e., link

failure, topology change) and update switches’ internal tables.

Our solution uses the same load profiling principles as HULA.

However, instead of using Top of Rack (ToR) switches to send

probes, we send additional information in each packet so that

each switch can better handle traffic congestion, leading to a

positive impact on performance.

A recent solution as CONTRA [20] provides a performance-

aware routing that can adapt to traffic changes at hardware

speed, allowing the users to specify network policies to rank

network paths given their current performance. After a verifi-

cation process, the CONTRA compiler decomposes these non-

arbitrary policies into P4 switch local programs opportunely

adapted to the topology. Nevertheless, HULA’s policy is the

default and best-performing setting.

Inspired by the idea of adapting forwarding decisions,

we also provide some readily-available load profiling actions

that can be extended and customized by the users to meet

specific performance objectives. However, different from these

load profiling solutions, in our local congestion-aware routing

solution, the switches are not the only ones doing all the work,

but they are assisted by the host machines for the traffic type

identification. This host-based traffic classification is inserted

in-band and then used for the forwarding decisions of the

switches in the network.

III. ARCHITECTURE AND PROTOCOL DESIGN

Howdah is constituted by a data-plane load balancing sys-

tem that uses a traffic classifier to differentiate forwarding

actions properly. Although the traffic classifier can be deployed

at the ingress of the network provider or at the sender, we

simply refer to this element as Howdah host. As such, we

can summarize the overall Howdah algorithm in a two-step

process and two main architectural components: one running
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Flowlet table

Flow Id Next-hop
10 1
327 2

Traffic
classification

data

ML 
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Data center

Fig. 1: Howdah overview. The system is based on the coopera-

tion of hosts that help network nodes by inserting information

about traffic classification, then processed by the P4 switches.

on local machines and gateways, and one running on P4-

enabled switches, as shown in Fig. 1. At first, the host classifies

the traffic using a supervised machine learning algorithm and

injects the output of the classification process in an opportune

field of the packet header (see Section IV). Secondly, when

an intermediate switch receives the flow, it checks the type of

traffic that is being sent and differentiates the actions. While

mouse flows are forwarded only following the information in

the packet header without the need to update each switch’s

statistics, this is not true for elephants, given their major

impact.

In the rest of this section, we detail our design decisions,

focusing on how functionalities are split between end-hosts

and P4-enabled switches.

A. Host-based Traffic Classification within Howdah Hosts

While switches implement load profiling and traffic engi-

neering decisions, senders and gateways traditionally house the

traffic classification logic used during the forwarding process

of the switches. Since our network scenario is constituted

by a datacenter topology, we assumed that the sending hosts

for East-West (internal) traffic can be easily instructed to

classify the traffic via an ML model and insert this infor-

mation in the packet itself (see the details of our design in

Section V). Conversely, for the North-South traffic (from/to

outside), we assume that external hosts may not implement

any ML classification logic. Our gateway also applies the

same traffic classification algorithm before letting packets

in the datacenter network, along with other packet filtering

operations that are common in a datacenter. For traffic directed

outside, the classification data is stripped away before leaving

the datacenter.

Why traffic classification. Datacenters typically encounter a

variety of traffic classes hosting diverse services. Among them,

we can enumerate on-demand video delivery, storage and

file sharing, web search, social networks, cloud computing,

financial services, recommendation systems, and interactive

online tools [21], [22]. These applications present different

traffic characteristics and distribution of flow arrivals, flow

sizes, and flow duration [23]. As an example, flows generated

by web search queries are usually much smaller and shorter

than flows of batch computing jobs. Instead, high-performance

computing (HPC) jobs like Hadoop, transfer petabytes of data

during the shuffle MapReduce phase [24].

Such a variety of applications leads to the creation of

long-lived connections, as well as short microbursts on the

same network. As common in the network management

literature [18], [25], we refer to long-lived flows as ªele-

phantsº, and short microbursts as ªmiceº. The goal of our

load profiling solution is to provide high bisection bandwidth

for throughput-sensitive and latency-sensitive flows without

introducing excessive delay on remaining flows, by properly

balancing traffic loads among the available links. In line with

recent studies [26], [27] that have pointed out the importance

of classifying traffic in ªelephantsº and ªmiceº, we also argue

that long-lived flows must be identified to take appropriate

actions and better orchestrate traffic.

Moreover, while in this paper we only consider two different

types, the Howdah architecture, along with the P4 language,

provides flexibility to generalize on multiple differentiation

traffic types, e.g., bandwidth vs. delay-sensitive applications,

or web vs. database vs. HPC traffic.

Why host-based classification. A possible place where clas-

sifying packets would be the switch itself. However, the hard-

ware characteristics of network nodes badly fit the learning

procedure of an ML model, resulting in poor performance. Be-

sides, given the strict packet scheduling of datacenter switches,

the application of ML models would either negatively affect

the packet forwarding process or necessitate a specific software

and hardware design. To guarantee fast packet forwarding,

the literature has presented valuable examples of switches

collecting flow metrics but delegating the ML learning phase

to a centralized controller [4], [5], [28]. However, both a per-

flow statistic and a sampling mechanism do not scale: The

bandwidth between switches and the controller is limited, so

transferring statistics becomes the bottleneck in this traffic

management scheme. Moreover, collecting statistics per flow

would consume significant switch resources, while sampling

detection, i.e., sampling only a small fraction of incoming

packets, would lead to accurate detection of elephant flows

only after 10K packets [29]. In light of this, we argue that

the host and the gateway are the optimal places for detecting

elephant flows in datacenters. First, they have better visibility

over the frequency and amount of application data generated,

while network nodes can be biased by network congestion.

Second, the application layer of datacenter programs can be

augmented with our Howdah layer, and this option is favored

by the single administrative domain and software uniformity of
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common datacenters. Third, there are likely GPUs or general-

purpose CPUs on the hosts that better fit the ML classification

process.

B. P4-compatible Switches

The main task of the switch is to profile flowlets ± bursts

of packets belonging to the same flow separated by a signif-

icant time interval ± without the need for reordering when

those arrive at the destination [10]. It has been shown how

this method allows higher granularity while providing better

performance [2].

To make our switches programmable and make them control

plane independent, we instruct them with P4, a programming

language for protocol-independent packet processes [30]. Such

a language enables to program packet processing pipelines in

packet forwarding ASICs and allows defining custom parsing

rules and new protocol logic. P4’s control model follows

the SDN architecture and involves a separate control plane

to deploy commands directly on networking devices. This

approach provides many advantages compared to a hardware

implementation: the user can modify the size of all variables

and registers according to the topology of interest and the

workload demands. For example, since Howdah can work

with different packet header formats (see Section IV), the

packet parsing can be smoothly adapted to meet the desired

header policy. Moreover, P4 offers a switch abstraction that is

independent of the actual hardware: P4 programs are compiled

to a target-independent representation (front-end), and then

compiled again to different specific platforms, e.g., NetFPGA.

Howdah switch forwarding. In our solution, we redefine

P4 tables to apply match-action entries to implement our

load-profiling actions. In general, P4 tables of switches can

be used to specify behavior such as preliminary next-hops,

multicast groups, and ISO-OSI level-2 forwarding using MAC

addresses. With Howdah, once the hosts have inserted the

information about the traffic type, our P4 switches forward

the packets on the basis of this information and the port

utilization. Concretely, we make use of a table that contains

the hash of the arriving flowlet, helpful to record the last time

a flowlet belonging to a certain flow was seen, and compute

the difference between the stored value and the arriving time

of a new flow. If such a difference is below T, whose value

is chosen according to other state-of-the-art techniques [3],

then the switch forwards the flowlet to the stored best-hop;

otherwise, the switch recognizes a new flowlet, computes the

hash of the 5-tuple composed of the protocol, IP source &

destination address, TCP source & destination port, and finally

stores the current best next-hop. We recall the concept of load

profile as the desired load on an outgoing link of the switch,

enabling the user to specify how to split traffic over these

links [8]. One common scenario is an even load on the links

of the switch, but other circumstances may demand unequal

balance if links have different features or traffic have different

priority. Our P4-enabled switches can be effortlessly adapted

to implement the desired policy.

Ethernet IP BPP TCP

Ethernet IP TCP

Ethernet IPMPLS TCP

Fig. 2: Possible policies for Howdah’s packet header. Traffic

classification information is inserted directly into packet, lead-

ing to a small impact on the switch forwarding process.

In the special case of load balancing, forwarding rules

are applied on top a flowlet-based version of ECMP packet

forwarding: like traditional ECMP is based on selecting next-

hop hashing the 5-tuple, but rather than per-flow, decisions are

per-flowlet. In the case of mice, the switch simply forwards

the packet to the next best hop according to the flowlet-based

version of ECMP. Otherwise, in the case of elephant traffic, the

selection of the next hop also considers the least recently used

(LRU) port. As they are more prone to cause congestion in

the network, we consider the frequency of port utilization, and

we also need to update the statistics about the network in each

switch. As such, aside from the hash function computation, the

switch needs to update this utilization metric for each arriving

packet. Despite being simple, this LRU criterion effectively

avoids congestion± and reduces delay ± as the flowlet is sent

throughout different ports where the probability of sharing the

bandwidth with other ongoing flows is reduced.

IV. IN-BAND TRAFFIC KNOWLEDGE POLICY

Recent studies have pointed out that additional network

information can reach a considerable amount of bytes and

become some of the heaviest packets in the network [31]. A

significant countermeasure is provided by the In-band network

measurement, which is becoming highly used in a variety of

network management applications to add network information

directly into each packet’s data.

For this reason, we use in-band network management in our

solution and configure the switch to forward the packet to the

next hop, taking into account the additional data contained in

the packet itself. By combining in-band flow information with

P4, we reduce the control traffic of traditional SDN architec-

tures, e.g., OpenFlow, where the switches communicate with

the controller to decide flow rules. As explained in Fig. 1, the

control traffic is now carried in the header of the packets. In

what follows, we describe three possible algorithms to prove

the viability of this architecture, and to demonstrate that the

network programming framework can indeed be used to sup-

port applications with real-time networking demands without

needing to deploy custom hardware in networking devices

or even controllers. In particular, we examine the following

alternatives and identify the advantages and disadvantages of

each of them.
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IP Type of Service. The Type of Service (ToS) field has

been designed as the way to specify a datagram’s priority and

request a route for low-latency, high-throughput, or highly-

reliable service. These 8-bits have been split to serve the

function of Differentiated Services Code Point (DSCP), with

6 bits, and Explicit Congestion Notification (ECN), with 2

bits. Although the behavior of the router in response to these

values is not specifically defined, IP ToS definitions are widely

found in Unix implementations. For this reason, they appear as

the most viable approach to introduce our traffic classification

data in combination with our programmable switches. Results

in Section VI confirm the low overhead introduced by this

solution. However, the limited bits available also limit the

scalability and generability of the solution, which is unable

to accommodate a broader range of application requirements

and switch’s actions specification.

MPLS. Multiprotocol Label Switching (MPLS) is a routing

technique based on the key idea that packet-forwarding deci-

sions are made solely on the contents of labels assigned to data

packets, without the need to examine the packet itself. MPLS

works by prefixing packets with an MPLS header, containing

one or more labels and forming a label stack. Each entry in

the label stack contains four fields; among them comes the 3-

bit for Traffic Class field, typically used for QoS. An MPLS-

compliant version of Howdah would use this field to carry

the information about the traffic flow. Possibly, paths per flow

are reserved in advance by means of the Label Distribution

Protocol (LDP). This approach provides remarkable flexibility,

with more thorough traffic engineering decisions, at the cost of

an additional packet header, and an additional protocol, such

as LDP, for label distribution, or administrator effort to set up

the paths on each network device.

BPP. Big Packet Protocol (BPP) is a novel approach to

customize packet-based networking behavior, based on the

introduction of the concept of a BPP Collateral: a block of

data (metadata and forwarding instructions) carried with the

header and the user payload, used to inject meta-information

and guide intermediate switches on how to process those

packets [11]. Such BPP Collateral can be viewed as three

smaller blocks: BPP header, BPP command block, and BPP

metadata block. While the command and the metadata blocks

are optional, the header is essential because it contains infor-

mation on the BPP version, block length, some error handling,

and the ªnext headerº or ªnext BPP blockº field, which

links BPP blocks to each other. The command block is used

for condition type purposes or to evaluate some true/false

statements; the metadata block, as the name already suggests,

might be used to gather more information on the flow type

or to perform counting on hops or other values of interest.

In light of this, we envision our solution to work optimally

when the traffic knowledge is included in the metadata field.

We can, however, easily observe how this option implies a

larger amount of additional bytes, nearly 30 bits, but can be

easily extended to support precise service level guarantees and

to facilitate other traffic engineering operations.

Howdah essentials. Given the building blocks of Howdah

exposed previously, we envisioned our solution to work with

multiple protocols carrying the traffic information. In this

paper we limit our attention to some options that can be used to

inform the switches about the traffic type, as shown in Fig. 2.

However, we argue that other possible protocols, e.g., IPv6 or

VXLAN, can be employed given the programmability of our

P4 switches. Whatever the protocol carrying the classification

output, our solution involves a cooperation hosts-switches

towards optimized forwarding decisions: when the packet is

ready to be sent, the host adds a flow type bit useful to

the switches to distinguish between an elephant or a mouse

flow and react accordingly. The Howdah’s header is used by

the switch to distinguish between an elephant flow and a

mouse one by using a bit in this block: ª0º if mouse, ª1º

if elephant. In conclusion, this header field is used to inject

meta-information directly into the packet allowing guidance

through the network, where our Howdah switches, based on

this value, apply load balancing at the granularity of flowlets.

V. HOWDAH TRAFFIC CLASSIFICATION

One key aspect to consider in our system is traffic clas-

sification, as it impacts how packets are forwarded. In this

section, we describe the process running on the host machines

responsible for accomplishing the classification task.

A. SVM with SGD

In Howdah we model each flow using a Support Vector Ma-

chine (SVM) algorithm, a supervised machine learning algo-

rithm typically used for classification and regression purposes.

Its goal is to classify and label the data by finding a hyper-

plane that better divides items in a dataset and maximizes the

distance between the support vectors. This hyper-plane can

be of two types: a linear and an N-dimension one. A linear

hyper-plane splits the space (and consequently the dataset)

into two categories (or classes), while the N-dimension one

splits the space in N-dimensions (and classes). SVM is highly

used for big datasets, especially for document classification or

sentiment analysis. In the prototype presented in this paper, we

make use of a linear hyper-plane because we need to classify

our data using only two labels: elephants and mice flows.

The considerable dimension of our dataset, however, can

cause issues during the learning process. The literature has

presented alternative gradient descent (GD) techniques to solve

this issue, where three of the most common optimization

strategies are:

• Batch gradient descent (BGD), defined as a GD that at

each iteration takes the whole training set and computes

an average of all gradients;

• Stochastic gradient descent (SGD), defined as a GD that

deals with randomness in the training dataset using only

a simple sample at each iteration;

• Mini-batch gradient descent (MBGD), a mixture between

BGD and SGD where the training set is divided into

many groups. However, it needs to know the size of each

group (ªmini-batch sizeº) as an additional variable for the

algorithm.
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In our Howdah classifier, we make use of stochastic gradient

descent (SGD) since it can efficiently deal with a large dataset

like ours while also reducing the computation cost efficiently.

B. Howdah Classifier Methodology

Using an SVM algorithm in combination with SGD (re-

ferred to as SVM in the following), our Howdah’s hosts

classify the type of traffic before transmission and tag the

packet accordingly. Our supervised classifier acts over an input

space of 1×N , where 1 refers to the fact that it just considers a

single packet, and N is the cardinality of features considered.

In particular, the features list of our ML model consists of

5-tuple: source IP address, destination IP address, source port

number, destination port number, and transport protocol (such

as TCP or UDP). The output of this classification process is a

binary label indicating whether it is an ªelephantº or ªmouseº.

Any host in our datacenter, as well as the gateway, should

run a modified instance of either kernel-level network services

or application-level socket instances. While the literature has

shown profitable usage of a shim layer on the end hosts [18],

[23], in our prototype we considered the latter option and

our results validate the efficacy VI. To further simplify the

operations over the host machines, we apply the classification

process only if necessary. In detail, protocols known to bring

little contribution to network congestion, such as ICMP, are

automatically labeled as mouse flows. On the other hand, for

unknown protocols and transport protocols that may be heavy

(i.e., TCP and UDP), the Howdah classifier runs before the

sending, and the output label is set in the packet header. Our

SVM classifier enables an accurate traffic classification while

not incurring an excessive burden for the host machine, as

detailed in Section VI. It must be noted that even though

forwarding is flowlet-based, the classification is per flow, thus

reducing the number of times classification is executed.

VI. EVALUATION

In this section, we illustrate our evaluation results that

guided our solution design and validated Howdah’s benefits.

A. Evaluation Settings

To validate our solution over a datacenter-like network, we

deploy Howdah over Mininet, a network emulator that allows

reproducing arbitrary virtual networks for fast simulations.

Being specifically designed for software-defined networking

(SDN), it can also support P4-compatible switches via be-

havioral model version 2 (bmv2), which allows compiling a

P4 program into packet-processing actions of C++11 software

switches. We limit our attention to a load balancing problem.

We replicate in Mininet a leaf-spine topology with 10 server

racks connected to their related switches and each of these

connected to other 4 switches, as shown in Fig. 3; where

every link has 100 Mbps bandwidth. We use the iperf3 tool to

reproduce different traffic workloads and to induce congestion

in the network.

We then tested the traffic classifiers when the input

is three realistic workloads, taken from publicly available

Fig. 3: Network topology used throughout the experimental

evaluation.

datasets [32]. We extracted three different datasets and stored

them in a .pcap file, corresponding to three captures obtained

during the same day in the same datacenter but at diverse

time instants. We refer to them as: ªUS-UNV-1º composed of

887, 647 items, ªUS-UNV-2º composed of 913, 026 items, and

ªUS-UNV-3º composed of 887, 647 items. By scanning these

files, we extracted the necessary features for each flow, and

the flow label is assigned based on the total bytes exchanged

by the flow: if this number is greater than D or the connection

lasts more than L seconds, it is an elephant; otherwise, it is a

mouse. As in [3], the threshold D is set to 1700 bytes while L

is 10 seconds since we experienced these values are realistic

and the label assignment is not strongly imbalanced.

Traffic classifier benchmarks. We compare our Howdah

classifier against three recent solutions and a well-known

(and widely used) model. First, a Random Forest (RF )

model-based technique as in [26], where the solution of

this study classifies flows with the goal of optimizing the

incast completion time on different buffered switches using

elephant-based traffic. Second, [27], investigates supervised

and unsupervised ML methods to identify flow types based on

traffic characteristics. Its prediction proposes an unsupervised

ML solution that uses a clustering technique as k − means,

to predict classes, labeling each flow ªelephantº or ªmouseº.

Thirdly, given its popularity, we consider a Neural Network

(NN ) classifier, whose layout is made with three fully

connected layers: The first two hidden layers consist of 12 and

8 nodes and use the rectified linear unit activation function; the

third layer, the output layer, has one node and uses the sigmoid

activation function. The number of layers and nodes for our

classifier was tried in different experiments to find the one that

maximizes the metric measures of our classification problem.

Load balancer benchmarks. We compare our approach

against two of the most recent load balancer systems:

CONGA [2] and HULA [3]. Note that even a more recent

solution, CONTRA [20], employs HULA as its default

approach. Differently from them, we do not use out-of-band

probes because it is overhead traffic, but we inject network

information directly inside the packet. Moreover, we are not

hardware-specific thanks to the P4 language, nor do we need

any centralized controller. Finally, ECMP is used as a baseline.
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TABLE I: Performance comparison of datacenter traffic classification for different ML models. Tests are performed over three

datasets, and SVM shows acceptable accuracy and generability.

US-UNV-1 US-UNV-2 US-UNV-3

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 0.94 0.96 0.94 0.97 0.94 0.96 0.94 0.96 0.99 0.99 0.99 0.99
NN 0.93 0.92 0.99 0.96 0.93 0.93 0.99 0.95 0.99 0.99 0.99 0.99
k-means 0.83 0.99 0.83 0.91 0.84 0.99 0.84 0.91 0.97 0.99 0.98 0.99
RF 0.99 0.99 0.99 0.99 0.93 0.93 0.93 0.93 0.97 0.97 0.97 0.97

B. Traffic Classification Accuracy

To estimate the performance of our model, we use the

standard notation TP for true positive, TN for true negative,

FP for false positive, and FN for false negative. In particular,

we pair TP and TN as the numbers of elephants correctly

predicted (TP) or mice correctly predicted (TN); and FP and

FN as the numbers of elephants erroneously predicted (FP)

or mice erroneously predicted (FN). Considering two classes

± elephants and mice± the definition of positive and negative

classes for a binary classifier is simplified. Then, we focus on

the most relevant ML measures: accuracy, precision, recall,

and f1-score, according to the definitions: (i) Accuracy: the

fraction of the test on which the model provides a correct

prediction:

accuracy = TP+TN

TP+TN+FP+FN
. (ii) Precision: the fraction of

true positives that are effectively and correctly classified as

positives on the total of positives: precision = TP

TP+FP
. (iii)

Recall: the fraction of positives on the total of the real

positives: recall = TP

TP+FN
. Finally, (iv) F1-score is a way

of combining both precisions and recall measures and it is

defined as their harmonic average: F1-score = 2∗TP

2∗TP+FP+FN
.

After having trained all the considered classifiers over the

80% of samples in ªUS-UNV-1º, we measured the clas-

sification performance over the remaining samples in this

dataset and over the other two files. We report the obtained

results in Table I. To obtain these metrics even in the case

of unsupervised learning, i.e., k − means, we combine it

with SVM, to fall in the classification task and convert the

unsupervised results into classification performance metrics.

We can observe how, despite providing high precision, this

unsupervised approach poorly performs in comparison to other

supervised alternatives. Moreover, both RF and NN perform

well over the three datasets but provide lower accuracy and

F1-score than our SVM. Focusing on the RF classifier, we

can notice a good accuracy when tested on the same dataset

in which it is trained. However, this model does not give

comparable performance when applied to the other datasets.

On the other hand, our enhanced SVM model provides overall

more intriguing performance metrics, along with more gener-

ability: its performance is satisfactory even when applied to

other datacenter workloads.

C. Packet Header Impact

As explained in Section III, Howdah can work when com-

bined with multiple protocols responsible for adding extra

information directly in the packet header. Among them, in this

paper, we specifically focus on IP, BPP, and MPLS, although

more options are available. In Fig. 4a, we study the impact

of the diverse header format in terms of flow completion time

(FCT) for different network loads. FCT is defined as the time

when the first packet is sent until the last one is received

and represents a key performance metric when speaking about

network congestion. The error bars in the graph refer to the

95% confidence intervals.

Since using the IP fields would require no additional bytes

and zero overhead, it can be seen that when the traffic load

increases, the benefits of this option are evident, leading to the

lowest FCT. However, when the congestion is minimal and

traffic load is less than 50%, the advantages of IP are minimal

too. This motivates us to use the IP header as the default option

in the following tests, even though the alternatives are valid

and provide more flexibility.

D. Load Balancing Effectiveness

After evaluating our predictive model and the impact of

different packet header formats, we studied the load-balancing

effectiveness in a datacenter scenario by comparing Howdah

against the other benchmark solutions. The 10 servers in Fig. 3

are used to send packets so that traffic replicates the datacenter

workload described in [12]. This allows us to consider an

increasing network load by varying the number of receiving

servers (from 1 to 9). First, we compare the FCT obtained by

Howdah and the other benchmark solutions for load-balancing,

normalizing all values obtained to a baseline algorithm as

ECMP. As shown in Fig. 4b, Howdah can stably minimize the

FCT for all network loads considered. While Hula performs

well at high network load, Conga provides the best results at

low load. Our solution, instead, attains the lowest FCT for

any type of traffic in the datacenter, assuring a less congested

network configuration. We then move our attention to another

key metric, the RTT, and we consider a specific network load,

70%, evaluating the cumulative distribution function (CDF) of

the RTT for sending traffic. By plotting the CDF we can study

the distribution of RTT values with a particular focus on tails.

As visible in Fig. 4c, our solution not only diminishes the

RTT on average compared to state-of-the-art but also lowers

the RTT of the transmission of the most long-lived packets.

In particular, all responses are received by 0.12 seconds after

the request is sent, representing the minimum among all the

alternatives considered.

Moreover, to generalize our findings and study the behavior

at different network loads, we also report the RTT evolution

in Fig. 5. Our comparison differentiates the ªelephantº from
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Fig. 4: (a) Flow Completion Time (FCT) performance for different packet headers, measuring their impact. (b) FCT comparison

for benchmark load balancing solutions. (c) CDF for RTT of benchmark solution when the network load is at 70%.
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Fig. 5: RTT evolution at varying network load, for (a) elephant flows, (b) mouse flows, and (c) on average. Differentiating

action per traffic type leads Howdah to attain the lowest RTT overall.

ªmouseº flows to better analyze the behavior. Starting from

elephant traffic, Fig. 5a shows the RTT normalized to ECMP

and demonstrates that the more network loads, the more

notable improvements are brought by our solution. Although

for a load ranging from 50% to 60%, we can notice Conga

slightly outperforming Howdah, we can also observe how

Conga is unable to react to higher loads. If then we compare

the RTT when sending mice traffic (Fig. 5b), it is even

more visible this Conga’s behavior, and occasionally performs

worse than ECMP. On the other hand, Howdah achieves better

performance, and the advantages for mouse flows are the most

prominent. Averaging the results for the two types of traffic in

Fig. 5c, we observe that when the load is low (10% to 40%) the

network is not considerable congested, and Howdah, CONGA,

and HULA achieve almost the same RTTs. However, when the

load increases, Howdah increases its advantage. This enforces

what was already shown in FCT behavior and demonstrates

how our traffic classification, combined with differentiated

actions from switches, enables achieving better results overall.

E. Resource Consumption

Finally, we consider the impact of the traffic classifier

on the host machines. One of the challenges faced by the

design and implementation of Howdah is the efficiency in

terms of processing time, especially on board host machines,

which are typically running resource-consuming processes. A

lightweight yet accurate classifier is thus essential. To this end,

we study the consumption of memory and CPU of different

ML models during the training learning phase and report
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Fig. 6: (a) RAM and (b) CPU consumption of the considered

classifiers during the training process. Our SVM model al-

lows the lowest memory occupancy and a limited processing

requirement.

results in Fig. 6. We can observe how our SVM classifier

consumes the lowest amount of RAM (Fig. 6a), while also

limiting the consumption of CPU (Fig. 6b). The reduced

memory footprint required by SVM, even when no specific

hardware is utilized, validates our design and motivates our

assumption to run the learning process on host machines.

VII. CONCLUSION

In this paper we presented Howdah, an in-band load bal-

ancing technique for programmable switches, whose pillar is

the cooperation host-switch: the host classifies sending traffic

using a specifically trained ML model, i.e., SVM, and inserts

it directly into the packet; the switch takes packet forwarding

decisions based on the information of the flow type and on
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the status of the network itself. By letting each switch locally

decide the best next-hop per packet, our solution assures link

failure resistance and the ability to adapt to topology changes.

Throughout the paper, we also explored possible protocols that

can be used to include in-band information about ongoing

traffic type. Results demonstrate that overall, and especially

at high network loads, our solution reduces RTT and FCT

more than the state-of-the-art techniques.
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