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Abstract

Vision transformers (ViTs) have recently obtained success in
many applications, but their intensive computation and heavy
memory usage at both training and inference time limit their
generalization. Previous compression algorithms usually start
from the pre-trained dense models and only focus on efficient
inference, while time-consuming training is still unavoidable.
In contrast, this paper points out that the million-scale training
data is redundant, which is the fundamental reason for the
tedious training. To address the issue, this paper aims to intro-
duce sparsity into data and proposes an end-to-end efficient
training framework from three sparse perspectives, dubbed
Tri-Level E-ViT. Specifically, we leverage a hierarchical data
redundancy reduction scheme by exploring the sparsity under
three levels: the number of training examples in the dataset,
the number of patches (tokens) in each example, and the num-
ber of connections between tokens that lie in attention weights.
With extensive experiments, we demonstrate that our proposed
technique can noticeably accelerate training for various ViT
architectures while maintaining accuracy. Remarkably, under
certain ratios, we are able to improve the ViT accuracy rather
than compromising it. For example, we can achieve 15.2%
speedup with 72.6% (+0.4) Top-1 accuracy on Deit-T, and
15.7% speedup with 79.9% (+0.1) Top-1 accuracy on Deit-S.
This proves the existence of data redundancy in ViT. Our code
is released at https://github.com/ZLKong/Tri-Level- ViT

Introduction

After the convolutional neural networks (CNNs) dominated
the computer vision field for more than a decade, the recent
vision transformer (ViT) (Dosovitskiy et al. 2020) has ush-
ered in a new era in the field of vision (Hudson and Zitnick
2021; Chen et al. 2021c¢; Kim et al. 2021; Deng et al. 2021;
Xue, Wang, and Guo 2021; Guo et al. 2021; Srinivas et al.
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Figure 1: Comparison of different models with various
accuracy-training efficiency trade-offs. Our Tri-level method
achieves a better trade-off than the other methods.

2021; Li et al. 2022; Yang et al. 2021). Existing ViT and vari-
ants, despite the impressive empirical performance, suffer in
general from large computation effort, and heavy run-time
memory usages (Liang et al. 2021; Chen, Fan, and Panda
2021; Carion et al. 2020; Dai et al. 2021; Amini, Periyasamy,
and Behnke 2021; Misra, Girdhar, and Joulin 2021; Chen
et al. 2021d; El-Nouby et al. 2021; Yang et al. 2020; Chen
etal. 2021a; Lu et al. 2021). To reduce the computational and
memory intensity of the ViT models, many compression algo-
rithms have been proposed (Ryoo et al. 2021; Pan et al. 2021;
Liang et al. 2022; Yu et al. 2022b; Kong et al. 2022; Ma et al.
2022). These methods mainly target efficient inference, and
they are either conducted during the fine-tuning phase with
a pre-trained model or require the full over-parameterized
model to be stored and updated during training.

The self-attention mechanism in ViTs abandons the in-
ductive bias that is inherent in CNNs, making the training
of ViTs extremely data-hungry. Specifically, the early ViT



work (Dosovitskiy et al. 2020) requires to be trained on a
much larger dataset (i.e., JFT-300M with 300 million im-
ages) to claim its superiority compared to CNNs that are
directly trained using the ImageNet dataset. This issue is par-
tially mitigated by the following works, which incorporate
knowledge distillation techniques to transfer inductive bias
from a convolutional teacher model during training (Touvron
et al. 2021) or introduce the design of CNNs into transformer
blocks (Liu et al. 2021; Heo et al. 2021). However, the time-
consuming training process still remains computational and
memory intensive and even more costly than before, becom-
ing a huge obstacle to a vast number of ViT-based research
and applications. Therefore, an efficient training paradigm for
ViT models is in demand more than ever. Motivated by such
needs, we raise a question: Can we incorporate data sparsity
into the training process to amortize the high training costs
caused by the data-hungry nature of the ViTs?

Due to the quadratic image patch-based computation com-
plexity in the self-attention mechanism of ViT models (Doso-
vitskiy et al. 2020), it is desirable and reasonable to explore
the sparsity by leveraging the redundancy that inherent in
natural image data. Towards this end, we propose an effi-
cient ViT training framework, named Tri-Level E-ViT, which
hierarchically eliminates the data redundancy in different
levels of the ViT training, just like peeling the onion. Specif-
ically, to reduce the training costs and accelerate the training
process, we explore a tri-level data sparsity, which includes
example-level sparsity, token-level sparsity, and attention-
level sparsity.

Prior works have only focused on removing redundant
patches (tokens) instead of removing the whole image (train-
ing example) (Rao et al. 2021; Liang et al. 2022; Kong et al.
2022; Xu et al. 2021). This is due to the fact that the tendency
to train a ViT with a large amount of data has become “deeply
rooted” and led people to overlook the existence of redun-
dancy in the example level. Motivated by this, we design a
ViT-specific online example filtering method to assess the
importance of each example and to remove less important
ones during training. More specifically, we use both the out-
put classification logit, and the variance of the attention map
in the [CLS] token (Dosovitskiy et al. 2020) to evaluate
the importance of each example. We train the model with a
subset of the full training examples (e.g., 80%) and employ
a remove-and-restore algorithm to continuously update the
training subset, ensuring both the example-level sparsity and
optimization throughout the entire ViT training process.

The ViT decomposes an image into several non-
overlapping patches. The patch-based representation (Trock-
man and Kolter 2022) preserves the locality and detailed
information of an image. Thus, the patch can be considered a
type of fine-grained data. The ViT conducts the dense self-
attention among all patches, which leads to quadratic com-
plexity with respect to the number of patches. Recent works
suggest that not all patches are informative (Rao et al. 2021)
and not all attention connections among patches are necessary
(Liu et al. 2021; Heo et al. 2021). Thus, we further explore
two levels of data sparsity from the perspective of the patch:
One is token-level sparsity, which aims to reduce the number
of patches (tokens), and the other is attention-level sparsity,
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which aims to remove redundant attention connections. We
propose the Token& Attention selector (TA-selector) to simul-
taneously achieve both levels of sparsity during training. In
detail, the TA-selector directly selects informative tokens and
critical attention connections based on the attention maps
of early layers. It is a data-dependent scheme and does not
introduce any new weights. Thus, TA-selector is flexible to
be installed into many ViT variants.

By incorporating the tri-level data sparsity, our framework
significantly reduces the training costs and accelerates the
training process while maintaining the original accuracy. To
the best of our knowledge, we are the first to explore all levels
of data sparsity for efficient ViT training. As shown in Figure
1, our method achieves the best accuracy-efficiency trade-offs
compared to existing sparsity methods. Most importantly, our
Tri-Level E-ViT framework is efficient and practical since
we do not require to introduce extra networks during training,
such as using a CNN teacher for distillation (Touvron et al.
2021) or a predictor network for token selection (Rao et al.
2021). In addition to the training acceleration, the data-sparse
ViT model obtained by our framework can also be directly
used for efficient inference without further fine-tuning. To
verify the robustness, we evaluate the training acceleration of
our framework on general-purpose GPU and FPGA devices.

Our contributions are summarized as follows:

e We propose an efficient framework that employs tri-level
data sparsity to eliminate data redundancy in the ViT train-
ing process.

e We propose an attention-aware online example filtering
method specifically for ViT to generate example-level spar-
sity. We use a remove-and-restore approach to ensure data
efficiency throughout the entire training process while opti-
mizing the reduced dataset.

e We propose a joint attention-based token&attention pruning
strategy to simultaneously achieve both token and attention
connection sparsity during training. Our method does not re-
quire a complex token selector module or additional training
loss or hyper-parameters.

o We conduct extensive experiments on ImageNet with Deit-T
and Deit-S, and demonstrate that our method can save up to
35.6% training time with comparable accuracy. We evaluate
the training acceleration on both GPU and FPGA.

Related Work

Vision Transformers

ViT (Dosovitskiy et al. 2020) is a pioneering work that uses
a transformer-only structure to solve various vision tasks.
Compared to traditional CNN structures, ViT allows all the
positions in an image to interact through transformer blocks,
whereas CNNs operated on a fixed-sized window with re-
stricted spatial interactions, which can have trouble capturing
relations at the pixel level in both spatial and time domains.
Since then, many variants have been proposed. For example,
DeiT (Touvron et al. 2021), T2T-ViT (Yuan et al. 2021b),
and Mixer (Tolstikhin et al. 2021) tackle the data-inefficiency
problem in ViT by training only with ImageNet. PiT (Heo
et al. 2021) replaces the uniform structure of the transformer
with a depth-wise convolution pooling layer to reduce spacial
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Figure 2: The overall procedure of our proposed Tri-Level E-ViT framework. We explore the training sparsity under three
levels: Left: Example-Level Sparsity. Randomly remove a number of examples prior to training. During the training process, the
example selector updates the training subset by removing the most unforgettable examples from the training data and restoring
the same amount of data from the portion removed before training. Right: Token & Attention level sparsity. Evaluate token
importance by the [CLS] token and prune the less informative tokens. We further use the attention vector of each remaining

token to decide critical attention connections.

dimension and increase channel dimension. SViTE (Chen
et al. 2021b) alleviates training memory bottleneck and im-
proves inference efficiency by co-exploring input token and
attention head sparsity. Recent works have also attempted to
design various self-supervised learning schemes for ViTs to
address the data-hungry issue. BEiT (Bao, Dong, and Wei
2021) pre-trains ViT by masked image modeling with an
image tokenizer based on dVAE that vectorizes images into
discrete visual tokens. MAE (He et al. 2021) eliminates the
dVAE pre-training process by reconstructing pixels, in con-
trast to predicting tokens.

Data Redundancy Reduction

There are many attempts to explore redundancy in data. For
example level, (Katharopoulos and Fleuret 2018) proposed
an importance sampling scheme based on an upper bound
to the gradient norm, which is added to the loss function.
(Chang, Learned-Miller, and McCallum 2017) emphasizes
high-variance samples by reweighting all the examples. How-
ever, the additional computation overhead makes them less
efficient for training. (Toneva et al. 2018) used the number of
forgotten counts of training examples as a metric to reflect
the complexity (importance) of the examples. However, it re-
quires a two-phase training approach that the partial training
examples are only removed in the second phase, which limits
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the overall acceleration. Moreover, all the existing methods
are applied only to CNN, making them less suitable for ViT,
because their proposed criteria do not consider the ViT ar-
chitecture for evaluation. For Patch level (token/attention),
DynamicViT (Rao et al. 2021) removes redundant tokens by
estimating their importance score with an MLP (Vaswani et al.
2017) based prediction module. Evo-ViT (Xu et al. 2021) de-
velops a slow-fast token evolution method to preserve more
image information during pruning. DAT (Xia et al. 2022)
selects important key and value pairs in self-attention with
a deformable self-attention module. However, all of these
methods require additional selectors to guide the removal
of redundant data, which is not efficient for training. EViT
(Liang et al. 2022) provides a token reorganization method
that reduces and reorganizes the tokens. However, it does not
take into account example level or attention level redundancy.

Methodology
Overall Framework

To reduce the redundant computing caused by the training
data, we propose the Tri-Level E-ViT. The overall framework
is shown in Figure 2. Specifically, we introduce the sparsity
relevant to the data from three levels: The training example
level, the token level, and the attention connection level. All
of these sparse methods are combined together during the



training process of ViTs.

Sparsity in Training Examples

Prior works (Toneva et al. 2018; Paul 2021) show that re-
moving some less informative and easy examples from the
training dataset will not lesion the performance of the trained
CNN model. The amount of information (complexity) of
the examples can be identified by recording the number of
forgotten events of examples during CNN training. Exam-
ples with lower forgetting counts are generally considered
easy to be learned and less informative than others and can
therefore be removed in order. More discussions are shown
in the Appendix. We intend to incorporate this idea into our
example-level sparse ViT training. We face two challenges:
1) How to design such an example evaluation method for
VIiT, considering its unique model characteristics? 2) How to
identify and remove easy examples from the dataset during
training to reduce the training time without prior knowledge
of training examples?

Attention Aware Example Selector We learn the
conditional probability distribution given a dataset D =
(24;y:); of observation/label pairs. For example x;, the pre-
dicted label (classification logits) obtained after ¢ steps of
AdamW is denoted as g! arg maxy p(yix|zs; 0%). Let
corrt = B¢y, be a binary variable indicating whether the
example is correctly classified at a time step. When example
1 gets misclassified at step t+1 after having been correctly
classified at step ¢, example ¢ undergoes a forgetting event.
The binary variable corr! decreases between two consecu-
tive updates: corrf > corrf“. On the other hand, a learning
event occurs if corr! < corri™!.

3

After counting the number of forgetting events for each
example, we sort the examples based on the number of forget-
ting events they undergo. However, there exist examples with
the same number of forgetting events. Even if the number
is the same, the complexity of the images is still different.
Therefore, in addition to the classification logits, we employ
the unique self-attention mechanism in the transformer to
better measure the complexity of images. We calculate the
variance of the attention map of the [CLS] token (Dosovit-
skiy et al. 2020) to obtain the similarity of the image patches.
We extract the attention map of the [CLS] token from the
self-attention layer of the model and obtain the variance of
the attention map, which is exported along with the classifica-
tion logits to assist in sorting the images, as shown in Figure
2. Note that for ViT variants without [CLS] token (Swin),
we replace the variance with the cumulative token of the at-
tention map. After removing the unforgettable examples, the

compressed training dataset D is described as:

D = {x;|z; € D, f(x;) > threshold}, (1)

tL)

where f() stands for the “sort examples by forgetting counts
process. Therefore, f(xi) is the list of examples x; sorted
by counts. “f(xi) > threshold” means choosing examples
whose forgetting count is larger than the threshold. These

selected examples will be our training subset D.

8363

Online Example Filtering Existing example sparsity
works (Toneva et al. 2018; Yuan et al. 2021a) on CNN split
the training process into two phases: 1) Training with the
complete dataset to obtain statistics on forgetting events. 2)
Training with the remaining dataset by removing the less
informative examples based on the learning statistics. In this
way, training acceleration can only be achieved in the sec-
ond phase, which only accounts for 40%~70% of the total
training process (Yuan et al. 2021a). This greatly limits the
overall acceleration performance.

Unlike their semi-sparse training approach, we use an end-
to-end sparse training approach, which keeps the training
dataset sparse throughout the training process. This is the
first time that the example sparsity is introduced in the ViT
training scenario. Our approach is shown in the left part of
Figure 2. The main idea is to first remove a random portion
of training examples from the dataset and then continuously
update the remaining training subset during the training pro-
cess by using a remove-and-restore mechanism. After several
iterations, only relatively more informative examples remain
in the training subset.

Specifically, before the training starts, we first reduce the
training subset by randomly removing a given m% of training
examples. We define r. = 1 — m% as the keep ratio of
training examples. Then, during the training, we periodically
remove the n% least informative examples from the training
subset (n < m) and randomly select n% examples from
the removed examples to restore to the training subset. And
during the training process, we continuously track the number
of forgetting events for each training example and identify
the least informative examples. In this way, the data set is
optimized after several iterations during training, and m%
the data size remains constant throughout the entire training
process, leading to a more consistent training acceleration.

Sparsity in Patches: Token and Attention Level

The dense attention of ViTs leads to quadratic complexity
with respect to the number of patches. Thus, introducing
sparsity into patches can significantly reduce the computation.
We consider both token-level sparsity and attention-level
sparsity for patches based on the attention matrix.

Revisiting ViT The ViT decomposes image I into N non-
overlapping tokens {P;}¥ ,, and apply a linear projection
to obtain the patch embedding Xp € RN*?, where d is
the dimension of embedding. The classification token X
is appended to accumulate information from other tokens
and predict the class. Thus, the input to the transformer is
X = [Xus,Xp] € RE*4 where L=N+1 for short. The
transformer encoder consists of a self-attention layer and a
feed-forward network. In self-attention, the input tokens X
go through three linear layers to produce the query (Q), key
(K), and value (V) matrices respectively, where Q, K, V
€ REX4, The attention operation is conducted as follows:

Attention(Q, K, V) = Softmax(QK” /Vd)V. (2)

For multi-head self-attention (MHSA), H self-attention mod-
ules are applied to X separately, and each of them produces
an output sequence.



Token-level Sparsity Previous works (Rao et al. 2021;
Kong et al. 2022) suggests that pruning less informative
tokens, such as the background, has little impact on the accu-
racy. Thus, we can improve training efficiency at the token
level by eliminating redundant tokens. However, these works
require an additional token selector module to evaluate the
importance of each token. Moreover, they target fine-tuning,
which is incompatible with training from scratch, as addi-
tional losses need to be introduced. In this work, we aim
to prune tokens without introducing additional modules and
train ViTs from scratch with original training recipes.

In Eq. 2, Q and K can be regarded as a concatena-
tion of L token vectors: Q = [q1,q2,...,qz]T and K =
[k1, k2, ..., kr]T. For the i-th token, the attention probabil-
ity a; = Softmax(q; - KT /v/d) € R” shows the degree
of correlation of each key k; with the query ¢;. The output
a; - V can be considered as a linear combination of all value
vectors, with a; being the combination coefficients. Thus,
we can assume that a; indicates the importance score of all
tokens. Typically, a large attention value suggests that the
corresponding token is important to the query token .

For ViT, the final output only depends on the [CLS] to-
ken. Thus, the attention map of this special tokens a.; =
Softmax(qqs - K7 /v/d) represents the extent to which the
token contributes to the final result. To this end, we utilize
ags € RY, which excludes the first element of ag, as the
criterion to select tokens. In MHSA, we use the average atten-
tion probability of all heads az; = 7 Zfil éﬁ,};). We select
K (K < N) most important patch tokens based on the value
of a_;s and define Ry = % as the token keep ratio. Thus,
only 1 + Rp N tokens are left in the following layers.

For ViT variants without the [CLS] token, we calculate
the importance scores of tokens by summing each column of
the attention map (Wang, Zhang, and Han 2021). In detail,
we use the cumulative attention probability . a; € RY to
select informative tokens. We hypothesize that tokens that
are important to many query tokens should be informative.

Attention-level Sparsity Since attention maps are usually
sparse, dense attention is unnecessary. Thus, we also intro-
duce sparsity at the attention level by pruning attention con-
nections. In detail, given a query token, we only calculate its
attention connections with a few selected tokens. Previous
ViT variants usually utilize some hand-craft predetermined
sparse patterns, such as a neighborhood window (Liu et al.
2021) or dilated sliding window (Beltagy, Peters, and Co-
han 2020). However, objects of different sizes and shapes
may require different attention connections. Thus, these data-
agnostic method is limited. Some input-dependent methods
apply the deformable attention (Zhu et al. 2020) to find cor-
responding tokens. However, these works also require addi-
tional modules to learn the selected tokens.

In this work, we utilize the attention vector of each patch
token to decide critical connections. Thus, no additional mod-
ules are introduced. In detail, given the image patch token
P; and its corresponding query g;, we use a; as the saliency
criteria. In detail, we take the index of R4 /N tokens with
the largest value of a;, where R4 < 1 is the attention-keep
ratio. Thus, each patch token P; only needs to calculate the
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attention score with the selected R4 N tokens for the rest
layers.

Token&Attention Selector (TA-Selector) We further com-
bine the above token selector and attention connections se-
lector into a single module, named TA-Selector. As shown in
the right part of Figure 2, the TA-Selector is inserted after the
self-attention module of one transformer encoder layer. Given
the attention matrix A = Softmax(QK” /v/d) € REXE, we
first utilize the attention probability of [CLS] tokens ags
(the blue row of Figure 2) to locate RN most informative
tokens. We denote the index of selected tokens as set 7. We
then extract the attention map of select tokens A, whose
element is defined by A[i, j] with {¢,5} € T x T (the ticked
red cell). Then we perform the attention-selector on A7. In
summary, 1 + R N tokens are left after the TA-selector, and
each token only calculates the attention with R R4 N tokens
in the following transformer encoder layers.

With TA-Selector, we dynamically prune both tokens and
attention connections at the same time. As the attention map
at the early layer may be inaccurate (Xu et al. 2021), we
follow a hierarchical pruning scheme, which incorporates
the TA-Selector between transformer encoder layers several
times. Thus, we gradually prune tokens and attention connec-
tions with the network, going deeper.

Experiments

Datasets and Implementation Details

Our experiments are conducted on ImageNet-1K (Deng et al.
2009), with approximately 1.2 million images. We report the
accuracy on the validation set with 50k images. The image
resolution is 224 x 224. We also report results on Imagenet-
V2 matched frequency (Recht et al. 2019) to control over-
fitting. We apply our framework to different backbones in-
cluding DeiT (Touvron et al. 2021), Swin (Liu et al. 2021),
PiT (Heo et al. 2021), and LV-ViT (Jiang et al. 2021) with
the corresponding settings. In detail, the network is trained
for 300 epochs on 4 NVIDIA V100 GPUs and is optimized
by AdamW (Loshchilov and Hutter 2019) with weight decay
0.05. The batch size is set to 512, The learning rate is set to
5 x 10~* initially, and is decayed with a cosine annealing
schedule. For example level sparsity, we apply the remove-
and-restore approach every 30 epoch with 5% data removal
for each iteration. Since this approach takes extra time and
the accuracy decreases slightly after each iteration, we only
iterate the number of times in which all the removed data can
be covered. Hence, we set the different number of iterations
for different keep rates. For 10% removed data, we iterate 3
times (30th, 60th, 90th epoch). For 20% removed data, we
iterate 5 times (30th, 60th, 90th, 120th, 150th epoch). For
token and attention level sparsity, we insert our TA-Selector
before the 4, 7", 10" layer for the hierarchical pruning
scheme as in (Rao et al. 2021). Besides, during the training
process, we adopt a warm-up strategy for the TA-Selector.
The token keep ratio Rr starts from 1.0 and is gradually
reduced to the given Ry with a cosine annealing schedule.
For simplicity and fair comparison, we set the keep ratio
to 0.7, 0.8, and 0.9 in our main experiments, denoting as



METHOD \ TRAINING TIME REDUCED MACS (G) SAVING 1K Acc(%) V2 Acc(%)
DEIT-T
DENSE - - 72.2 65.0
DYNAMICVIT/0.7 (RAO ET AL. 2021) 0% 30.0% 71.8 (-0.4) 64.6
S2VITE (CHEN ET AL. 2021B) 10.6% 23.7% 70.1 (-2.1) -
TRI-LEVEL/0.9 15.2% 17.4% 72.6 (+0.4) 65.9
TRI-LEVEL/0.8 29.4% 31.9% 72.1 (-0.1) 65.0
TRI-LEVEL/0.7 35.6% 38.5% 71.9 (-0.3) 64.6
DEIT-S
DENSE - - 79.8 73.6
IA-RED? (PAN ET AL. 2021) 0% 32.0% 79.1 (-0.7) -
DYNAMICVIT/0.7 (RAO ET AL. 2021) 0% 36.7% 79.3 (-0.5) 72.8
UVC (YU ET AL. 2022B) 0% 42.4% 79.4 (-0.4) -
DYNAMICVIT/0.7* (RAO ET AL. 2021) 7.2% 34.7% 77.6 (-2.2) 71.1
EVIT/0.8 (LIANG ET AL. 2022) 6.0% 13.0% 79.8 (-0.1) 73.4
EVIT/0.7 (LIANG ET AL. 2022) 20.0% 35.0% 79.5 (-0.3) 73.2
EVIT/0.6 (LIANG ET AL. 2022) 25.0% 43.0% 78.9 (-0.9) 72.3
S2VITE (CHEN ET AL. 2021B) 22.7% 31.6% 79.2 (-0.6) -
TRI-LEVEL/0.9 15.7% 17.0% 79.9 (+0.1) 73.8
TRI-LEVEL/0.8 29.8% 31.3% 79.5 (-0.3) 73.3
TRI-LEVEL/0.7 34.3% 37.6% 79.3 (-0.5) 72.9
DEIT-B
DENSE - - 81.8 75.8
IA-RED? (PAN ET AL. 2021) 0% 33.0% 80.3 (-1.5) -
DYNAMICVIT/0.7 (RAO ET AL. 2021) 0% 37.4% 80.7 (-1.1) 74.2
EVIT/0.7 (LIANG ET AL. 2022) 15.2% 35.0% 81.3 (-0.5) 75.1
TRI-LEVEL/0.9 10.2% 15.6% 81.6 (-0.2) 75.3
TRI-LEVEL/0.8 23.7% 29.1% 81.3 (-0.5) 75.1
SWIN-T
DENSE - - 81.2 75.1
DYNAMICSWIN/0.9 (RAO ET AL. 2022) 0% 7% 81.0 (-0.2) 75.0
TRI-LEVEL/0.9 13.1% 15.6% 81.2 (-0.0) 75.1
TRI-LEVEL/0.8 21.1% 25.3% 81.0 (-0.1) 74.9
SWIN-S
DENSE - - 83.2 76.9
DYNAMICSWIN/0.7 (RAO ET AL. 2022) 0% 21% 83.2(-0.0) 76.9
WDPRUNING (YU ET AL. 2022A) 0% 12.6% 82.4 (-0.6) 76.1
TRI-LEVEL/0.8 20.2% 24.1% 83.2 (-0.0) 76.8

Table 1: The training time reduced, MACs (G) saving and Top-1 accuracy comparison on the ImageNet-1K and Imagenet-V2
matched frequency. “*” refers to our reproduced results of DynamicViT training from scratch.

Tri-Level/0.7, Tri-Level/0.8, and Tri-Level/0.9, respectively.

Experimental Results

We report the Top-1 accuracy of each model with different
keep ratios. For efficient training metrics, we evaluate the
reduced running time and MACs (G) saving of the entire
training process. Our main results are shown in Table 1. Re-
markably, our efficient training method can even improve
the ViT accuracy rather than compromising it (15.2% time
reduction with 72.6% Top-1 accuracy on Deit-T, and 15.7%
time reduction with 79.9% Top-1 accuracy on Deit-S). This
demonstrates the existence of data redundancy in ViT.

We also compare our method with other efficient ViTs
aiming at reducing redundancy. Most of the existing efforts
target only efficient inference. They either apply to the fine-
tuning phase (Rao et al. 2021; Pan et al. 2021) or introduce
additional modules with additional training cost (Chen et al.
2021b; Yu et al. 2022b). In contrast to others, we can accel-
erate both the training and inference process. Our method
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significantly reduces the training time while restricting the
accuracy drop in a relatively small range. Notably, we are
able to reduce the training time by 35.6% for DieT-T with a
negligible 0.3% accuracy degradation and 4.3% for DieT-S
with a 0.5% decrease in accuracy, which outperforms existing
pruning methods in terms of accuracy and efficiency.

Generalization

To verify the generalizability of our approach, we conduct ex-
periments with other vision transformer models and evaluate
them on object detection and instance segmentation tasks.

Swin Transformer We further apply our method to other
ViT variants, such as Swin Transformer (Liu et al. 2021).
Instead of using the [CLS] token, it applies a global average
pooling on features of all tokens. Thus, we use the cumulative
attention probability to select tokens. For the example level
sparsity, we also replace the variance of [CLS] token’s atten-
tion map with that of the cumulative attention map. Results



MACs (G) Training Inference
Method Saving Latency (hour) Latency (ms)
DeiT-T
Dense - 13.79 10.91
Tri-Level/0.9 17.4% 11.49 9.68
Tri-Level/0.8 31.9% 9.61 8.50
Tri-Level/0.7 38.5% 8.91 7.36
Deit-S
Dense - 32.44 25.68
Tri-Level/0.9 17.0% 27.28 22.92
Tri-Level/0.8 31.3% 22.55 20.25
Tri-Level/0.7 37.6% 21.15 17.61

Table 2: The inference latency and the average per epoch
training latency on Xilinx ZCU102 FPGA board.

are shown in Table 1. We are able to reduce the training time
by 13.1% for Swin-T and 20.2% for Swin-S with no accuracy
drop. Thus, our method can be generalized to other ViT archi-
tectures. More results for other architectures such as LV-ViT
(Jiang et al. 2021) and other datasets such as ImageNet-Real
and CIFAR can be found in the Appendix.

Deployment on Edge Devices

We also evaluate our method on an embedded FPGA plat-
form, namely, Xilinx ZCU102. The platform features a Zynq
UltraScale + MPSoC device (ZU9EG), which contains em-
bedded ARM CPUs and 274k LUTs, 2520 DSPs, and 32.1Mb
BRAMs on the programmable logic fabric. The working fre-
quency is set to 150MHz for all the designs implemented
through Xilinx Vitis and Vitis HLS 2021.1. The 16-bit fixed-
point precision is adopted to represent all the model parame-
ters and activation data. We measure both on-device training
latency and inference latency. In detail, the training latency
is measured on FPGA using a prototype implementation that
supports layer-wise forward and backward computations. We
report the average per epoch training time. Both inference and
training use the batch size of 1. As in Table 2, our method can
also accelerate the training and inference on edge devices.

Ablation Study

Sub-method Effectiveness

We evaluate the contribution of each sparse method separately.
The results of DeiT-S with different keep ratios at each sparse
level are shown in Table 3. Removing redundant data in
each sub-method can even lead to improvements in accuracy
while reducing training time. At the same keep ratio, the
example level sparsity contributes the most to the training
time reduction, as it directly removes the entire image. Thus,
it can be considered the coarse-grained level of data reduction.
Meanwhile, the attention level has less reduction in training
time even at low keep ratios because it only contributes to
the matrix multiplication of the MHSA module. Thus, it can
be considered a fine-grained level of data reduction.
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Keep Training 1K V2
Method Ratio Time Reduced Acc.(%) Acc.(%)
Dense 1.0 - 79.8 73.6

Example
Random 0.8 19.9% 78.4 71.7
Active Bais 0.8 4.3% 79.1 72.5
Forgetting 0.8 16.1% 79.0 72.4
ours 0.9 9.9% 80.1 73.8
ours 0.8 19.8% 79.7 73.5
ours 0.7 29.8% 79.2 72.6
Token
Static 0.7 20% 75.2 68.3
DynamicViT 0.7 0% 79.3 72.8
IA-RED? 0.7 0% 79.1 -
Evo-ViT 0.7 13.0% 79.4 -
ours 0.9 6.2% 79.9 73.8
ours 0.8 13.3% 79.7 73.4
ours 0.7 20.6% 79.4 73.2
Attention

Magnitude 0.5 2.8% 78.9 72.3
Longformer 0.2 4.8% 78.8 72.0
ours 0.4 3.3% 79.8 73.5
ours 0.3 3.6% 79.7 73.5
ours 0.2 4.8% 79.7 73.4

Table 3: Sub-method effectiveness on DeiT-S under different
keep ratios. We also compare with existing individual exam-
ple/token/attention sparsity methods.

Comparison of Different Methods

To verify the advantages of our method, we compare it with
other data sparsity strategies on DeiT-S. As shown in Table
3, Random denotes randomly updating the training data with
the same frequency and number of updates as our method.
Under the same keep ratio, it shows a significant accuracy
degradation (78.4% vs. 79.7% ). We also compare it with
the existing work (Toneva et al. 2018), which conducts a
two-phase method for example evaluation and removal. The
accuracy is lower (79.0% vs. 79.7%), and the training accel-
eration is limited (16.1% vs. 19.8%).

Conclusion

In this work, we introduce sparsity into data and propose
an end-to-end efficient training framework to accelerate ViT
training and inference. We leverage a hierarchical data re-
dundancy reduction scheme by exploring the sparsity of the
number of training examples in the dataset, the number of
patches (tokens) in each input image, and the number of con-
nections between tokens in attention weights. Comprehensive
experiments validate the effectiveness of our method. Future
work includes extending our framework to other aspects such
as weight redundancy.
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