
1

Load Profiling via In-Band Flow Classification and

P4 with Howdah
Antonino Angi, Student Member, IEEE, Alessio Sacco, Member, IEEE, Flavio Esposito, Member, IEEE,

Guido Marchetto, Senior Member, IEEE, and Alexander Clemm, Member, IEEE

AbstractÐData center traffic management challenges increase
with the complexity and variety of new Internet and Web
applications. Efficient network management systems are often
needed to thwart delays and minimize failures. In this regard, it
seems helpful to identify in advance the different classes of flows
that (co)exist in the network, characterizing them into different
types based on different latency/bandwidth requirements. In
this paper, we propose Howdah, a traffic identification and
profiling mechanism that uses Machine Learning and a load-
aware forwarding strategy to offer adaptation to different classes
of traffic with the support of programmable data planes. With
Howdah, the sender and gateway elements inject in-band traffic
information obtained by a supervised learning algorithm. When
a switch or router receives a packet, it exploits this host-based
traffic classification to adapt to a desirable traffic profile, for
example, to balance the traffic load. We compare our solution
against recent traffic engineering proposals and demonstrate the
effectiveness of the cooperation between host traffic classifica-
tion and P4-based switch forwarding policies, reducing packet
transmission time in data center scenarios.

Index TermsÐload profiling, machine learning, traffic classifi-
cation

I. INTRODUCTION

In the last two decades, data centers have changed their

topology in response to the increasing demands of networked

applications that continue to require more data at a faster speed

while requiring lower latency. Because of these requirements,

new data center architectures have been proposed, focusing

on ingress and egress traffic optimizations but also on better

orchestration of data center internal traffic. Data center topolo-

gies have also evolved to represent multi-rooted leaf-spine or,

more often, fat-trees. Such topologies have in common the

presence of multiple source-destination paths to handle the

high traffic volume, which can lead to the necessity of having

routing strategies that deal with different traffic loads in the

network, aimed at avoiding congestion, lowering delays, and

still high performance.

One problem concerns ensuring that traffic is properly

balanced, meaning that traffic is evenly distributed so that the

maximum link utilization of any links is minimized. This way,

This paper is an extended version of [1].
This work has been partially supported by NSF awards #1908574 and

#2201536.
Antonino Angi, Alessio Sacco and Guido Marchetto are with DAUIN,

Politecnico di Torino, 10129 Turin, Italy (e-mail: antonino.angi@polito.it,
alessio sacco@polito.it, guido.marchetto@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

Alexander Clemm is with the Futurewei Technologies Inc, Santa Clara, CA,
95050-2516 USA (e-mail: alex@clemm.org).

problems such as congestion and resulting sudden packet loss

or delay variations can be avoided. However, compounding the

problem are aspects such as uneven link bandwidth and the

differing quality of service requirements and traffic priorities

across flows. In these cases, it is desirable to have routing

algorithms that deal with different classes of traffic, character-

ized by different priorities and demands. These solutions are

referred to as load-profiling routing algorithms [2], [3].

One of the most common strategies is still Equal-Cost

Multi-Path (ECMP), a routing algorithm that statically hashes

flows for path assignment. This algorithm is known to forward

flows randomly to a path and does not consider potential

congestion or link failure in the network. For this reason,

ECMP might lead to uneven flow distribution and, conse-

quently, poor performances [4]. Recent solutions attempted to

overcome such ECMP limitations, and while they are all sound

solutions, they either introduced additional overhead, e.g., [5],

[6] or failed to apply efficient logic per-packet, e.g., [7], [8].

On the one hand, centralized schemes, such as Hedera [7],

B4 [8], FastPass [9] and SWAN [10], can perform congestion-

aware decisions, but demand considerable control traffic and

react too slowly for volatile (data center) traffic. On the other

hand, recent distributed approaches, such as CONGA [5] and

HULA [6], introduce periodic network feedback that might

lead to excessive overhead traffic and contribute to congestion.

In line with these efforts, the research question we are address-

ing in this paper is: ªCan we profile the network traffic’s load

over uncongested paths without the need to define elaborate

protocols for exchanging information amongst the switches or

between the switches and a centralized controller?º

In this paper, we answer this question with Howdah, a data-

plane programmable architecture that enables load profiling by

taking forwarding decisions via a distributed and (partially)

congestion-aware logic. The idea behind Howdah is a joint

optimization: minimization of collisions between flows and

maintenance of high utilization inside the datacenter network.1

In Howdah, network switches are instructed with P4 programs

to run a data-driven load profiling that, rather than flows,

operates over flowlets: bursts of packets in a flow, split by

a sufficiently large time gap. Approaches based on flowlets

have been shown [11] to be preferred as there are no packet

reordering problems (since packets of the same flowlet are

1An howdah, derived from the Arabic word hawdaj, which means ªbed
carried by a camelº, is a carriage positioned on the back of an animal, typically
an elephant or occasionally a camel. We called our solution Howdah since,
as in the real howdah, it is a tiny overhead that can serve several applications
and can be carried over elephant (or other) flows.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



2

forwarded along the same path) and no modifications to the

TCP stack are needed.

To further optimize path selection, forwarding actions are

differentiated according to the type of traffic carried in the

packets. Howdah’s sending hosts internal to the data center and

peripheral gateways run a supervised Machine Learning (ML)

model to predict if each flow entails a large amount of data,

elephant flow, or a small amount, mouse flow, and this traffic

knowledge is transferred directly to the intermediate switches

and inserted into the packet in an in-band fashion. Because

elephant flows are mostly responsible for network congestion,

they are routed over the fastest paths by considering the

least utilized path from the switch perspective; mice, less

likely to overload network nodes, are just forwarded with a

weighted version of the ECMP algorithm in combination with

the flowlet-based grouping.

An ML classifier can help generalize over diverse traffic

patterns while reducing the classification time compared to

other statistical traffic classifiers. For this reason, in Howdah

we looked for a ML model that could give us the smallest

overhead in terms of training and classification time, RAM

and CPU percentile usage, and could also generate fewer

carbon emission when compared to other tested ML models

(i.e., Support Vector Machine, k-means, Random Forest, and

Neural Network). After analyzing the accuracy of each model

on real-world traffic, in our architecture we decided to rely on

an easily explainable and decision-maker transparent model as

a Decision Tree.

Then, we studied how Howdah’s performance changes when

different protocols are used to carry the in-band traffic infor-

mation.Among different tested protocols (e.g., MPLS, New

IP, IPv6), we found how IP type-of-service fields provide

negligible overhead and represent the first implementation of

our proposed architecture in transferring information on traffic

classes. We tested such implementation in data center network

scenarios and compared it to recently proposed benchmarks.

Our results validate how our solution can reduce both Round-

Trip-Time (RTT) and Flow Completion Time (FCT) compared

to other load-profiling routing algorithms, especially for ele-

phant flows and congested networks.

The rest of the paper is organized as follows. Section II

describes the state-of-art methodologies that also focus on

variations of load profiling techniques. Section III shows the

considered scenario, giving a general overview of our solution

design. In Section IV we focus on different methods to

carry the in-band information using already defined protocols.

Section V describes the traffic classification method chosen

for our solution. Finally, results are shown in Section VI, and

the conclusion in Section VII.

II. RELATED WORK

Efficient balancing/profiling of traffic load among available

paths is a critical issue, especially in highly stressed net-

works such as data centers. Many recent studies addressed

this problem, proposing solutions that fully use available

bandwidth resources. Although traditional and local routing

strategies (e.g., the standard ECMP) are widely used in prac-

tice, their performance is suboptimal for data centers due to

local, trivial, and stateless decisions that lead to split traffic

without knowledge of potential congestion on the network [7],

[12], [13]. Recent local approaches, such as DRILL [14],

Clove [15], and PRESTO [16], attempt to solve ECMP’s

shortcomings while confining decisions within each switch and

ignoring global information. For example, DRILL forwarding

decisions are load-aware and based on the local queue occu-

pancy, enabling operating on microsecond (packet-by-packet)

timescales. PRESTO [16] instead is based on the insight that

ECMP provides near-optimal load balance in a symmetric Clos

where all flows are small. As such, it divides flows into ªmiceº

that are source-routed, so they are striped across all paths

without demanding load awareness. However, both solutions

have to deal with the performance impact and computational

bottleneck of TCP reordering, which problem is exacerbated

in asymmetric topologies.

A common approach to taking more appropriate actions

is to delegate forwarding logic to centralized controllers and

make congestion-aware decisions, as in B4 [8], F10 [17],

Mahout [18], MicroTE [19], and Hedera [7], which are based

on the assumption that global congestion information is helpful

to balance the load evenly. However, despite having shown

near-optimal traffic engineering for inter-data center WANs,

these solutions were not designed to depart from balanced

loads and for highly volatile data center networks due to

the coarse time scale of their control operations. A recent

centralized yet performant solution is Tiara [20], a three-

tier architecture composed of a programmable switch that

encapsulates/decapsulates the packet, an FPGA that handles

the match-action tables, and an x86 server that stores the load

balancing software for the slow paths. Despite the efficiency

and scalability brought by this architecture, this solution is

strictly dependent on specific hardware operations, which

could increase the deployment cost.

To achieve microsecond performance while still using

global information, CONGA [5] operates in the data plane

and makes globally optimal allocations using a distributed

approach, allowing a faster reaction in the presence of asym-

metries. Using a leaf-to-leaf mechanism, in which switches at

the edge (leaves in Clos networks) gather and analyze conges-

tion feedback from remote switches to estimate congestion on

fabric paths in real-time, CONGA combines this mechanism

with the flowlet switching strategy. This study confirms the

effectiveness and efficient utilization of network resources

of flowlet-based forwarding, especially when applied in data

centers. It has, however, two main limitations: first, the global

congestion state at the edge switches can increase dramatically

and exceed the switch memory; second, its implementation is

designed for custom hardware. These limitations are explicitly

addressed by HULA [6], a data-plane load balancing algorithm

applied to P4-based programmable switches, in which leaf

switches track congestion for the best path to a destination

through a neighboring switch rather than for all paths, without

requiring specifically designed hardware. Specifically, HULA

uses probes to obtain network status information (i.e., link

failure, topology change) and update the switches’ internal

tables. In a similar way, our solution uses the same principles

for a data-plane load profiling strategy. However, instead of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



3

using Top of Rack (ToR) switches to send probes, we send

additional information in each packet so that each switch

can better handle traffic congestion, which positively impacts

performance.

A recent solution as CONTRA [21] provides a performance-

aware routing that can adapt to traffic changes at hardware

speed, allowing the users to specify network policies to rank

network paths given their current performance. After a verifi-

cation process, the CONTRA compiler decomposes these non-

arbitrary policies into P4 switch local programs opportunely

adapted to the topology. Nevertheless, HULA’s policy is the

default and best-performing setting.

Inspired by the idea of customizing forwarding decisions,

we also provide some out-of-the-box load profiling actions that

can be extended and adapted by the users to achieve specific

performance goals. Unlike these load profiling solutions, how-

ever, in our local congestion-aware routing solution, switches

are not the only ones doing all the work, but they are assisted

by the host machines for the traffic type identification. This

host-based traffic classification is inserted in-band and then

used for the switches’ forwarding decisions in the network.

Other recent proposals as Application Aware Networking

(APN) [22] allow senders to convey information about specific

flows for fine-granularity traffic steering and network resource

adjustment. However, this framework requires multiple addi-

tional entities involved in the process, e.g., controller, edge

node, head-end, and mid-point, which hinder deployment.

In addition, they allow any client to convey metadata about

traffic, assuming that senders act in good faith and are truthful.

In contrast, our approach makes no such assumptions. For

external traffic, the metadata insertion is performed by nodes

of the network provider, while internal machines are under

control.

III. ARCHITECTURE AND PROTOCOL DESIGN

Howdah is an architecture for data-plane programmability

customized for load profiling. In particular, the switch attempts

to maximize network resources using a load profiling approach

combined with a classifier to label the flow and properly

differentiate forwarding actions according to it. Such a traffic

classifier can be deployed at the ingress of the network

provider or at the local sender. Either way, in the context of

our solution, we refer to this element as Howdah host.

Our Howdah algorithm is composed of two steps and two

main architectural components: one running on local machines

or gateways, and one running on P4-enabled switches (Fig. 1).

As shown in the figure, the host classifies the traffic before

sending it out throughout the network using a decision tree

(D-Tree) model and injects the classification label into an

appropriate field of the packet header (details in Section IV).

Such a classification can be applied to both unencrypted and

encrypted packets, i.e., flows whose payload is encrypted.

When an intermediate switch receives a packet, it examines

the output of the classification and differentiates its forwarding

actions accordingly. While mouse flows are forwarded based

only on the information in the packet header, without the

need to update each switch’s statistics, this is not true for

load profiler (flowlet) table

Flow Id Next-hop
10 1
327 2

Traffic
classification

data

D-Tree 
Model 

Data center

Fig. 1: Howdah overview. The system is based on the coop-

eration of hosts that help network nodes by inserting traffic

classification information, which is then processed by the P4

switches. The switches run the load profiling algorithm that is

differentiated by traffic type.

elephants, since they have a more considerable impact on

network congestion. For this latter type, the switches forward

the packet to the next hop port according to the least recently

used (LRU) strategy. In the remainder of this section, we

motivate this design choice and describe the algorithms of

both Howdah host and P4-enabled switches.

A. Host-based Traffic Classification within Howdah Hosts

While switches implement load profiling and traffic en-

gineering decisions, senders and gateways are designed to

contain the traffic classification logic used, in turn, during

the forwarding process of the switches. Since our network

scenario consists of a data center topology, we assume that

for East-West (internal) traffic, the sending hosts can be easily

instructed to classify traffic via an ML model and insert this

information into the packet header itself (see Section V for

more details). Conversely, we assume external hosts may not

implement any ML classification logic for the North-South

traffic (to/from outside). Most importantly, external traffic

classification could not be trusted. For this reason, when a

packet is originated outside and arrives at our network, our

gateway applies the same traffic classification algorithm before

letting packets into the data center network, along with other

packet filtering operations that are common in a data center.

For traffic directed outside, instead, the classification data is

stripped away before it leaves the data center.

Howdah for traffic classification. Data centers typically

face a variety of traffic classes since they host multiple

services. Among them, we can cite on-demand video delivery,

storage and file sharing, web search, social networks, cloud

computing, financial services, recommendation systems, and

interactive online tools [23], [24]. These applications present

different traffic characteristics and distribution of flow arrivals,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



4

flow sizes, and flow duration [25]. For one, the data streams

generated by web search queries are usually much smaller

and shorter than the flows generated by batch computing

jobs. Instead, high-performance computing (HPC) jobs, e.g.,

Hadoop, may transfer petabytes of data during the shuffle

MapReduce phase [26]. Moreover, recently there has been a

rapid increment of latency-sensitive and interactive applica-

tions, such as video and voice applications.

Such various applications lead to the emergence of both

long-lived connections and short microbursts in the same

network [27], [28]. As typical in the network management

literature [18], [29], we refer to long-lived flows as ªelephantsº

and short microbursts as ªmice.º

The common goal of a load profiling solution is to provide

high bisection bandwidth for throughput-sensitive and latency-

sensitive flows without unduly delaying remaining flows by

distributing ªavailableº bandwidth across a set of candidate

routes to match the characteristics of incoming QoS requests.

In line with recent studies [30], [31] that have pointed out the

importance of classifying traffic into ªelephantsº and ªmiceº,

we also argue that long-lived flows must be identified to take

appropriate actions and better orchestrate traffic. Not only the

application treatment can be differentiated, but the network

congestion can be alleviated if the load is properly balanced

among the available (and redundant) links. Recent studies

have pointed out how East-West traffic of a data center is

responsible for traffic volume that is one order of magnitude

larger than North-South traffic [32]. Avoiding bottlenecks is

thus extremely important for all the traffic flowing in the

topology.

It can be noted that, although we consider only two different

types in this paper, the Howdah architecture, together with

the P4 language, provides the flexibility to generalize on

multiple types of differentiated traffic, e.g., bandwidth vs.
delay-sensitive applications, or web vs. database vs. HPC

traffic.

Why host-based classification. A possible place for classify-

ing packets would be the switch itself. However, the hardware

characteristics of the network nodes are a poor fit for the

learning procedure of an ML model, resulting in poor per-

formance. Furthermore, given the strict packet scheduling of

switches in data centers, the application of ML models would

either negatively impact the packet forwarding process or

necessitate a specific software and hardware design. To ensure

fast forwarding of packets, the literature has presented valuable

examples of switches that collect flow metrics but delegate

the ML learning phase to a centralized controller [7], [8],

[33]±[35]. However, both a per-flow statistic and a sampling

mechanism do not scale: the bandwidth between the switches

and the controller is limited, making the statistics transmission

a bottleneck in this traffic management scheme. Moreover,

collecting per-flow statistics would consume significant switch

resources, while sampling detection, i.e., sampling only a

small fraction of incoming packets, would result in accurate

detection of elephant flows only after 10K packets [36]. In

light of this, we argue that the host and the gateway are the

optimal places for elephant flow detection in data centers. The

application layer of data center programs can be augmented

with our Howdah layer, and this option is favored by the single

administrative domain and software uniformity of common

data centers. In addition, there are likely GPUs or general-

purpose CPUs on the hosts that are better suited for the ML

classification process than the processing resources of typical

network nodes. Lastly, hosts and gateways have good visibility

into the patterns of application traffic being generated.

Why ML-based classification. While traditionally elephant

and mouse classification was performed by means of statistics,

we argue that an ML-based classification is faster and more

accurate. As mentioned earlier, traffic classification can occur

either at the host or on the network side. In the first case,

as in Mahout [18], the metrics considered during the decision

process are the buffer occupancy. This means that any packet

has to wait before being sent in order to check the buffer.

However, as demonstrated in Section VI-H, our classification

lasts µs, as opposed to the ms of Mahout. Other host-

based detection methods may still need to wait until the

communication has started before deciding the flow size. On

the other hand, for a network decision, for example inside an

SDN controller as in ZOOM [37], the decision can consider

the number and the size of flows currently in the network.

Although in this case the classification is based on current

data and thus accurate, this process requires a statistics polling

interval and transients in the order of seconds. The usage of

new data-driven algorithms, as in Howdah, allows reducing the

overall process (classification + label stack) while achieving

notable accuracy as demonstrated in Section VI-B.

B. P4-compatible Switches

The main task of the switch is to profile flowlets ± bursts of

packets belonging to the same flow separated by a significant

time interval ± to avoid possible side effects at the destination.

It has been shown how forwarding flowlets over the same

path avoids the possibility of later packets arriving at their

destination sooner than others, which might result in a need

for additional buffering and a negative impact on Quality

of Experience [11]. Moreover, flowlet-based decisions (rather

than flow-based) allow higher granularity while providing

better performance [5].

To make our switches programmable and easily extended to

any possible protocol used (Section IV), we instruct them with

P4, a programming language for protocol-independent packet

processes [38]. Such a language enables the programming of

packet processing pipelines in packet forwarding ASICs and

allows the definition of custom parsing rules and new protocol

logic. P4’s control model follows the SDN architecture and

involves a separate control plane to deploy commands directly

on networking devices. This approach offers many advantages

over a hardware implementation: the user can modify the

size of all variables and registers according to the topology

of interest and the workload demands. For example, since

Howdah can work with different packet header formats (see

Section IV), the packet parsing can be smoothly adapted to

meet the desired header policy. In addition, P4 provides a

switch abstraction that is independent of the actual hardware:

P4 programs are compiled into a target-independent repre-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



5

sentation (front-end) and then recompiled to different specific

platforms, e.g., NetFPGA [39].

Howdah switch forwarding. In our solution, we redefine

P4 tables to apply match-action entries to implement our

load-profiling actions. In general, P4 tables can be used by

switches to specify behaviors such as preliminary next-hops,

multicast groups, and ISO-OSI level-2 forwarding using MAC

addresses. With Howdah, once the hosts have inserted the

information about the traffic type, our P4 switches forward

the packets based on port utilization and the included traffic

type information. In particular, we make use of a table stored

inside the P4 switch registers that contains the hash of the

incoming flowlet and that records the output port and the

last time a flowlet belonging to a certain flow was seen.

This value is helpful in computing the difference between the

stored timestamp and the new flow’s arrival time. If such a

difference is below T, whose value is chosen according to

other state-of-the-art techniques [6], then the switch forwards

the flowlet to the stored best-hop. Otherwise, the switch detects

a new flowlet, computes the hash of the 5-tuple composed of

the protocol, IP source & destination address, TCP source &

destination port, and finally selects the best next-hop for the

current 5-tuple. It is worth noting that the 5-tuple hashing

is performed directly inside the switch, and there are no

controllers involved. This approach allows a reduction of

possible delays that might occur when interacting with a

controller [40].

We recall the concept of load profile as the desired load

on an outgoing link of the switch, which allows the user to

specify how to split traffic over these links [2]. A common

scenario is to load the switch’s links (load balancing) evenly,

but other circumstances may demand unequal distribution if

links have different characteristics (e.g., link capacity) or the

traffic has different priorities. Our P4-enabled switches can

be effortlessly customized to implement the desired profiling

policy.

More formally, consider a system with N different paths

between a particular source and destination, and let W denote

the overall load of the system. A load-balanced system would

tend to distribute its load equally amongst all paths, making the

actual bandwidth on each path as close as possible to W/N .

A load-profiled system would tend to distribute its load so that

the probability of satisfying the QoS requirements of incoming

flow requests is maximized. This goal can be achieved by

having differently loaded paths that maximize the likelihood of

satisfying the bandwidth requirements. One simple algorithm

for load profiling is based on assigning a weight qi to any

switch’s port i, representing the probability of choosing the

path. The switch, then, performs a weighted choice when

selecting the output links so as to match the traffic profile

chosen by the user [41]. Ports with a higher weight are chosen

with a higher probability and hence more frequently than ports

with a lower weight.

In our solution, forwarding rules are applied on top of

a flowlet-based version of ECMP packet forwarding with

weights. Like traditional ECMP, the next-hop selection is

based on hashing the 5-tuple, but instead of per flow, decisions

are made per flowlet. In the case of mice, the switch simply

forwards the packet to the best next-hop according to the

weighted flowlet-based version of ECMP, i.e., it chooses a

path with a weighted probability to avoid congesting a path

quickly. Otherwise, in the case of elephants, the next-hop

selection also considers the least recently used (LRU) port.

Since ports with higher utilization are more prone to cause

congestion in the network, we also consider the frequency with

which paths of a given port are selected. To do so, we need

to update also the statistics about the network in each switch.

Aside from calculating the hash function, the switch updates

this utilization metric for each incoming packet. Despite being

simple, this LRU criterion effectively avoids congestion ± and

reduces delay ± because the flowlet is sent over different

ports where it is less likely to share the bandwidth with other

ongoing (large) flows.

IV. IN-BAND TRAFFIC KNOWLEDGE POLICY

Recent studies have pointed out that additional network

information can reach a significant amount of bytes and some

of the heaviest packets on the network [42]±[44]. Although

their main purpose is to check if the network is congested or

if requirements are being met, telemetry metrics can not exces-

sively harm application data. One important countermeasure

is provided by the In-band network measurement, which is

increasingly used in various network management applications

to insert network information directly as part of packet data,

either as payload or header.

For this reason, in our solution we use in-band network

management and configure the switch to forward the packet

to the next hop by taking into account the additional data

contained in the packet itself. By combining in-band flow

information with P4, we reduce the control traffic of tradi-

tional SDN architectures, e.g., OpenFlow, where the switches

communicate with the controller to decide flow rules (see

Section VI-F for a numerical comparison). As explained in

Fig. 1, the control traffic is now carried in the header of

the packets. In what follows, we describe three possible

algorithms to prove this architecture’s viability and show that

the network programming framework can indeed be used to

support applications with real-time networking requirements

without the need for custom hardware in networking devices

or even controllers. Specifically, we examine the following

alternatives and identify the advantages and disadvantages of

each of them.

IP Type of Service. The Type of Service (ToS) field of IPv4

has been designed to indicate the priority of a datagram and

request a route for a low-latency, high-throughput, or highly-

reliable service. These 8-bits have been split to perform the

Differentiated Services Code Point (DSCP) function with 6

bits, and Explicit Congestion Notification (ECN) with 2 bits.

Although the router’s behavior in response to these values is

not specifically defined, IP ToS definitions are widely found

in Unix implementations. For this reason, they appear to be

the most viable approach to introduce our traffic classification

data in combination with our programmable switches. Results

in Section VI confirm the low overhead introduced by this

solution. However, the limited bits available also limit the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



6

Layer 2
Header IP Metadata Transport Layer

ToSLayer 2
Header

IPv4

Transport Layer

Layer 2
Header IPTraffic

Class Transport Layer

DSCPLayer 2
Header Transport Layer

MPLS

New IP

IPv6

Fig. 2: Possible protocols for Howdah’s packet header. Traffic

classification information is inserted directly into the packet

(in red), with little impact on the switch-forwarding process.

scalability and generability of the solution, which is unable

to accommodate a broader range of application requirements

and the switch’s actions specification.

MPLS. Multiprotocol Label Switching (MPLS) works by

prefixing packets with an MPLS header that contains one or

more labels, forming a label stack. Each entry in the label stack

contains four fields, including the 3-bit for Traffic Class field,

typically used for QoS. An MPLS-compatible version of How-

dah would use this field to carry the traffic flow information.

Possibly, paths per flow are reserved in advance by means

of the Label Distribution Protocol (LDP), and also profile

information can be easily carried. This approach provides

remarkable flexibility with more thorough traffic engineering

decisions, but at the cost of an additional packet header and an

additional protocol, such as LDP, for label distribution, or the

administrator effort to set up the paths on each network device.

Moreover, there are also new proposed variants of MPLS that

would allow for the encoding and processing of metadata as

part of a label stack [45].

New IP. Other possible protocol candidates that support

ancillary data, which can be used to carry classification infor-

mation (and more), include New IP [46], encoding ancillary

data in a so-called flexible packet contract, and its precursor

Big Packet Protocol (BPP) [47]. They provide an extendable

approach to adapting packet-based networking behavior based

on the introduction of the concept of a ºcontractº: a block of

data (metadata and forwarding instructions) carried with the

header and user payload that can be used to inject ancillary

information that provides guidance to intermediate switches on

how to process these packets. In the context of our solution,

traffic classification data and other data that may be useful to

determine the proper treatment of a flow (such as information

about service level guarantees) are included in the metadata

field. In addition, the ancillary data can further be augmented

to provide simultaneous support for additional functions, such

as telemetry collection that can be used to refine traffic

profiling further.

IPv6. IPv6, the most recent version of IP, includes an 8-

bit field in its header called Traffic Class. In turn, this field

is divided into two sub-fields used respectively for traffic

classification and congestion management: Differentiated Ser-

vices Code Point (DSCP) with 6 bits, and Explicit Congestion

Notification (ECN) with 2 bits. In the IPv6-compliant version

of Howdah, we consider adding the traffic information in the

DSCP field, given its designed scope similar to the ToS of

IPv4. The total IPv6 header occupies 320 bits, twice the size of

the IPv4 header, since IPv6 addresses are 128 bits each. While

the IPv6 adoption is increasing year by year and almost 50% of

connections to Google happen over IPv6 [48], only 29.2% of

all networks in the global BGP routing table support the IPv6

protocol [49]. Our idea of inserting traffic information in the

IPv6 header can be used in conjunction with Segment Routing

over IPv6 (SRv6), which allows routers to use parameters

encoded using IPv6 extension headers [50] to perform special

operations. Since Segment Routing Headers (SRH) [51], a

well-known example of such an extension header, allows in

principle also other parameters to be conveyed and processed,

it is conceivable that it is compatible with our architecture.

Howdah essentials. Given the building blocks of Howdah

presented earlier, we envisioned that our solution can work

with multiple protocols carrying the traffic information. In

this paper, we limit our attention to a few options that can

be used to inform the switches about the type of traffic,

as shown in Fig. 2. In detail, the figure shows, colored

in red, where Howdah can insert the classification label on

different protocols (IPv4, MPLS, New IP, IPv6), while all

the other protocols’ fields are intentionally not mentioned.

However, we argue that given the programmability of our

P4 switches, other possible protocols, such as VXLAN, can

also be used. The essential idea of our solution does not

change regardless of which protocol carries the classification

result, and our solution involves hosts-switches cooperation

towards optimized forwarding decisions: When the packet is

ready to be sent, the host adds a flow type bit that helps the

switches distinguish between an elephant flow and a mouse

flow and react accordingly. The switch uses the header of

Howdah in this binary differentiation of flows: ª0º if mouse,

ª1º if elephant. In summary, this header field is used to inject

meta-information directly into the packet to provide guidance

through the network, where our Howdah’s switches perform

load profiling at the granularity of flowlets based on this value.

V. HOWDAH TRAFFIC CLASSIFICATION

One important aspect at our system’s core is traffic clas-

sification, as it impacts how packets are forwarded. This

section describes the process that runs on the host machines

responsible for accomplishing such classification task.

A. Decision Tree Model

In Howdah, we classify each flow using a decision tree, a

predictive ML model that uses a tree-like structure to make

decisions based on various input variables [52]. The main

goal of a decision tree classifier is to predict the class of an

input by building a tree-like structure where each internal node

represents a feature and each leaf node represents a class, using

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



7

logical tests to identify relevant features and make accurate

predictions based on trained data. Decision trees can be used

for classification and regression tasks, especially when there

are many possible values for each variable.

One key parameter in decision trees, often shortened as D-

Tree, is the depth of the tree. A reasonable value of depth can

help prevent overfitting, which occurs when the decision tree

has too many branches and leaves [53]. Overfitting can result

in poor performance on new data, as the decision tree may not

generalize well to unseen data. By finding the optimal value

for tree growth, we can ensure that the decision tree is neither

too complex nor too simple and that it has the ability to predict

the outcome of new situations accurately. For this reason,

in Howdah we used a k-fold Cross-Validation procedure, an

evaluation technique useful to find the optimal maximum depth

for our trained dataset. In detail, this technique splits the

dataset into k equal-sized subsets and iterates over each fold

as the validation set while training the model on the remaining

k-1 folds. This process allows us to evaluate the performance

of the decision tree model on different subsets of the data,

which contributes on reducing the bias and variance of the

trained model.

B. Howdah Classifier Methodology

As mentioned, we used a decision tree to classify the traffic

type for three main reasons. First, the structure of a D-tree

resembles the decisions made by many networking systems,

such as flow scheduling [54] and ABR algorithms [55],

which make decisions based on rules. Second, they are

lightweight for networking systems, bringing further benefits

to resource consumption and decision latency. As detailed in

Section VI-H, our decision tree classifier enables an accurate

traffic classification while not incurring an excessive burden

for the host machine. Third, decision trees have properties

of expressiveness and high faithfulness because they are non-

parametric and can represent very complex policies. Model

interpretation is an important part of an ML process, as it can

help understand the inner workings of the chosen model and

ensure that it makes accurate and fair predictions. Therefore,

using such an interpretable model can facilitate the monitoring

and debugging of network operations (see Section VI-C for

further details).

Howdah’s hosts classify the type of traffic before transmis-

sion and inject the classification label directly inside the packet

using a decision tree algorithm. Our supervised classifier acts

over an input space of 1×N , where 1 refers to the fact that

it just considers a single packet, and N is the cardinality of

features considered. In particular, our decision tree model is

trained on a features list composed of five elements: source and

destination IP address, source and destination port number, and

transport protocol (i.e., TCP or UDP). Our packet interceptor

can easily obtain this list and can work even with encrypted

data, which frequently happens in data center applications.

The output of this classification process is a binary label, 0

or 1, indicating whether it is a ªmouseº or an ªelephantº,

respectively.

Any host in our data center, as well as the gateway, should

run a modified instance of either kernel-level network services

or application-level socket instances. Since the literature has

shown profitable usage of a shim layer on the end hosts [18],

[25], in our prototype we considered the same option, and

our results validate the efficacy, as shown in Section VI. To

further simplify the operations over the host machines, we

apply the classification process only if necessary. In detail,

protocols known to contribute little to network congestion,

such as ICMP, are automatically labeled as mouse flows. On

the other hand, for unknown protocols and transport protocols

that may be heavy (i.e., TCP and UDP), Howdah’s classifier

runs before the sending, and the output label is set in the

packet header. It must be noted that even though forwarding

is flowlet-based, the classification is per flow, thus reducing the

number of times classification is executed. The traffic class is

thus included in each packet of the flow, but the classification

process is done only once.

Clarifying example. When a connection is established, before

sending the flow, the host classifies it using the pre-trained D-

Tree model. Assuming we are relying on the IPv4 version

of Howdah, we encapsulate this information inside the ToS

field of the header. It is important to notice that while the

classification is flow-based, the forwarding is flowlet-based,

reducing the amount of time the classifier has to be called.

The receiving switch then computes the hash of the flowlet,

taking into account the 5-tuple (protocol, IP source & desti-

nation address, TCP source & destination port), stores into

its registers a flowlet table with the hash and the current

timestamp, and chooses the output port according to the flow

type. If mice, just using the weighted version of the ECMP

algorithm for the flowlets; if elephants, via the least recently

used (LRU) strategy. When another flowlet arrives, which

belongs to a previously observed flow, the switch calculates

the time difference between the current timestamp and the

one stored in the table. If the difference is less than or equal

to a specified value, denoted as T , the switch forwards the

flowlet to the next hop indicated in the table. However, if

the difference exceeds T , the switch recalculates the hash

of the 5-tuple, updates the timestamp to the current value,

and selects a new output port based on the LRU strategy.

This concept is particularly important for latency-sensitive

applications, where being routed over the less congested path

is crucial. Short-lived applications, sometimes encapsulated in

protocols diverse from TCP/UDP, are thus used to balance the

overall network congestion.

VI. EVALUATION

In this section, we illustrate the evaluation results that

helped us develop our solution confirming Howdah’s benefits.

First, we summarize the experimental settings of our cam-

paign. Then, we discuss the performance of our classifier and

explain its behavior. We then evaluate the performance of our

solution and compare it to a centralized version. Finally, we

measure the resources consumed when running our proposed

ML model.

A. Evaluation Settings

To validate our solution over a data center-like network, we

deploy Howdah over Mininet, a network emulator that allows

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



8

Fig. 3: Network topology used throughout the experimental

evaluation. Blu links have 100 Mbps, and orange ones have

150 Mbps of bandwidth.

reproducing arbitrary virtual networks for fast simulations. De-

signed for SDN networks, Mininet can be used in combination

with the behavioral model version 2 (bmv2) to configure P4-

programmable switches in a simulated environment. To do so,

Mininet compiles a P4 program into packet-processing actions

of C++11 software switches, allowing network programmers

to test and debug their code before deploying it on actual

hardware. In Howdah, we focus on a load profiling problem.

To set up our simulation environment, we build a leaf-spine

topology composed of 10 server racks connected to their

related switches, and each of these connected to other four

switches, as shown in Fig. 3. In this load profiling scenario,

to the orange links (150 Mbps), we assign a weight of 2 and

to the blu links (100 Mbps) a weight of 1, to favor faster links.

We use the iperf3 tool to reproduce different traffic workloads

and to induce congestion in the network so that we can verify

how the network behaves at different network loads.

We then tested the traffic classifiers when the input is

composed of three realistic workloads, taken from publicly

available datasets [56]. We extracted three different datasets

and stored them in a .pcap file, corresponding to three captures

obtained during the same day in the same data center but

at diverse time instants. We mentioned them: ªUS-UNV-1º

with 887, 647 items, ªUS-UNV-2º with 913, 026 items, and

ªUS-UNV-3º with 887, 647 items. By scanning these files, we

extracted the necessary features for each flow, and the flow

label is assigned based on the total bytes exchanged by the

flow: if this number is greater than D or the connection lasts

more than L seconds, it is an elephant; otherwise, it is a mouse.

As in [6], the threshold D is set to 1700 bytes while L is 10

seconds since we experienced these values are realistic, and

the label assignment is not strongly imbalanced. Additionally,

as in [5], [6], we set the flowlet gap to 100µs since we realized

it is a reasonable value to identify flowlets belonging to the

same flow when evaluating the workload datasets. In this set

of experiments, hosts H1 and H4 sent background traffic using

the iperf3 tool and regularly adjusted the bandwidth to increase

the network load and, thus, generate congestion. At the same

time, H1 sends these trace-driven packets to all the other hosts

(H2 - H10) and modifies the packet size according to the flows

of interest (elephants or mice) while collecting and showing

all the relevant metrics, such as FCT and RTT.

Traffic classifier benchmarks. We compare our Howdah clas-

sifier against four well-known and widely used ML models.

First, a Support Vector Machine (SVM ) model technique as

in our previous work [1], where we had it combined with a

stochastic gradient descent (SGD) technique to deal with large

datasets while also reducing the computation time. Second,

we considered a Neural Network (NN ) classifier, composed

of three fully connected layers where the first two hidden

ones were made of 12 and 8 nodes and used the rectified

linear unit activation function; the third layer, the output one,

was composed of one node and used the sigmoid activation

function. We tested different numbers of layers and nodes for

our NN classifier to finally find the optimal combination that

maximizes the performance metrics of our classification prob-

lem. Thirdly, a relevant study [31] investigates both supervised

and unsupervised ML methods to identify flow types based on

traffic characteristics. Its prediction proposes an unsupervised

ML solution that uses a clustering technique as k − means,

to predict classes, labeling each flow ªelephantº or ªmouseº.

Finally, a Random Forest (RF ) model-based technique as

in [30], where the solution of this study classifies flows

intending to optimize the incast completion time on different

buffered switches using elephant-based traffic.

Load profiler benchmarks. We compare our approach against

two of the most recent solutions: CONGA [5] and HULA [6].

Note that even a more recent solution, CONTRA [21],

employs HULA as its default approach. Differently from

them, we do not use out-of-band probes because it is overhead

traffic, but we inject network information directly inside the

packet. Finally, ECMP is used as a baseline.

B. Traffic Classification Accuracy

To estimate the performance of our model, we use the

standard notation TP for true positive, TN for true negative,

FP for false positive, and FN for false negative. In particular,

we pair TP and TN as the numbers of elephants correctly

predicted (TP) or mice correctly predicted (TN); and FP and

FN as the numbers of elephants erroneously predicted (FP)

or mice erroneously predicted (FN). As mentioned before, in

Howdah we have a binary classification ± elephants and mice ±

that simplifies the definition of positive and negative classes.

To compare different ML methods, we computed the most

relevant performance metrics for these algorithms: accuracy,

precision, recall, and f1-score, according to the definitions: (i)

Accuracy: the ratio on which the model provides a correct

prediction: accuracy = TP+TN

TP+TN+FP+FN
. (ii) Precision: the

fraction of true positives that are effectively and correctly

classified as positives on the total of positives: precision =
TP

TP+FP
. (iii) Recall: the fraction of positives on the total

of the real positives: recall = TP

TP+FN
. Finally, (iv) F1-score

combines both precisions and recall measures and it is defined

as their harmonic average: F1-score = 2∗TP

2∗TP+FP+FN
.

After having trained all the considered classifiers over the

80% of samples in US − UNV − 1, we computed the

performance metrics over the remaining 20% of it and over

the other two datasets. Table I shows the results of the

performance comparisons. To obtain these metrics even in the

case of unsupervised learning, i.e., k − means, we combine

it with SVM, to fall in the classification task and convert the

unsupervised results into classification performance metrics.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



9

TABLE I: Performance comparison of data center traffic classification for different ML models. Tests are performed over three

datasets

US-UNV-1 US-UNV-2 US-UNV-3

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 0.94 0.96 0.94 0.97 0.94 0.96 0.94 0.96 0.99 0.99 0.99 0.99
NN 0.93 0.92 0.99 0.96 0.93 0.93 0.99 0.95 0.99 0.99 0.99 0.99
k-means 0.83 0.99 0.83 0.91 0.84 0.99 0.84 0.91 0.97 0.99 0.98 0.99
RF 0.99 0.99 0.99 0.99 0.93 0.93 0.93 0.93 0.97 0.97 0.97 0.97
D-Tree 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98

srcPort <= 60
gini = 0.279

samples = 710117

Protocol <= 0.5
gini = 0.13

samples = 94836

dstPort <= 60
gini = 0.095

samples = 615281

. . . . . . . . . . . .

Fig. 4: First levels in the depth of our trained decision tree.

Source and destination ports, along with the protocol used, are

the principal features used during classification. More in detail,

ªginiº is a parameter assessing the quality of the decision tree

branch, and ªsamplesº is the number of items in the branch.

Despite providing high precision, we can observe how this

unsupervised approach performs poorly compared to other

supervised alternatives. Moreover, both RF and NN perform

well over the three datasets but provide lower accuracy and F1-

score than our D-Tree. Focusing on the RF classifier, we can

notice good accuracy when tested on the same dataset in which

it is trained. However, this model does not perform comparably

to the other datasets. On the other hand, our enhanced D-Tree

model provides more intriguing performance metrics and more

generability: its performance is satisfactory even when applied

to other data center workloads.

C. Interpreting classification with a decision tree

One reason behind our choice of D-Tree for traffic clas-

sification is the rich expressiveness of such models that al-

lows their interpretation [57]. Interpretation for classification

techniques refers to understanding and explaining how the

classification model makes predictions. Also, it can make the

user understand the factors that are most leading in making a

prediction, help identify biases in the model, and explain the

model’s predictions. There are different ways to interpret a

classification model, depending on the type of model and the

specific techniques used. Focusing on D-Tree models, they can

be interpreted by following the path that an input takes through

the tree to arrive at a prediction. We report our D-tree’s first

levels of depth after having trained it over the training set

(80%) of US−UNV −1 in Fig. 4. The figure shows that the

root node, i.e., the node that starts the tree, splits the tree into

two descending branches according to the transport protocol

source port. This first branch, along with the second level,

is an indicator of the principal features used in the decision.

This splitting criterion is done according to the Gini index, a

value used to evaluate the quality of a split along a particular

attribute. In detail, the Gini index is computed by subtracting

1 at the sum of the squares of the probability of each class

belonging to each node, and it is used to determine which

attribute to split on at each step in the learning process [58].

A low value of the Gini index means a relatively pure subset

of the data, whereas a high value indicates a mix of different

classes. The goal of a decision tree is to split the data according

to the lowest obtained Gini index, which will lead to a more

accurate and interpretable model. The figure also shows the

samples that are contained in each node. The root node, for

example, contains 710, 117 samples since we considered the

80% of US − UNV − 1 dataset, which comprises 887, 647
items in total. More in detail, all name fields were encoded

into numerical values, as seen in the first level of depth, where

the transport protocol (i.e., TCP, UDP) was converted into

numerical values (i.e., 0, 1) for being manipulated by the

machine learning algorithms. We can observe how the source

and destination ports, as well as the protocol, are the major

factors that dictate the decision process. This outcome is in

line with the rule-based decision as in [18]; however, data-

driven learning allows us to adapt and generalize over diverse

traffic patterns.

D. Packet Header Impact

As explained in Section III, Howdah can work when com-

bined with multiple protocols responsible for adding extra

information directly in the packet header. Among them, in

this paper, we specifically focus on IP, New IP, MPLS, and

IPv6, although more options are available. In Fig. 5a, we study

the diverse header format’s impact on flow completion time

(FCT) for different network loads. FCT is defined as the time

when the first packet is sent until the last one is received

and represents a key performance metric when speaking about

network congestion [59]. The error bars in the graph refer to

the 95% confidence intervals.

The first noticeable advantage of a load profiling technique

can be observed when the network load is at 20%. While

at 10%, the link congestion is not detected and considered

not relevant, for an increment in the traffic, our strategy can

effectively split the multiple flows over the available paths.

Later, when the congestion is reduced and the traffic load is

less than 50%, we can see that the advantages of having no

overhead as in IPv4 are minimal and all options show similar

FCTs. This suggests that the burden introduced by additional

bytes in the packet header is minimal. However, it can be seen

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



10

10 20 30 40 50 60 70 80 90

Load (%)

0

2

4

F
C

T
[s

]

New IP

IPv4

MPLS

IPv6

(a)

10 20 30 40 50 60 70 80 90

Network Load (%)

0.0

0.5

1.0

1.5

F
C

T
(n

o
rm

.
to

E
C

M
P

)

Howdah

ECMP

Conga

Hula

(b)

0.00 0.05 0.10 0.15 0.20

RTT (s)

0.0

0.5

1.0

C
D

F

Howdah

HULA

CONGA

ECMP

(c)

Fig. 5: (a) Flow Completion Time (FCT) performance for different packet headers, measuring their impact. (b) FCT comparison

for benchmark load profiling solutions. (c) CDF for RTT of benchmark solution when the network load is at 70%.

10 20 30 40 50 60 70 80 90

Network Load (%)

0.0

0.5

1.0

1.5

R
T

T
(n

o
rm

.
to

E
C

M
P

)

Howdah

ECMP

Conga

Hula

(a) Elephants

10 20 30 40 50 60 70 80 90

Network Load (%)

0.0

0.5

1.0

1.5

R
T

T
(n

o
rm

.
to

E
C

M
P

)
Howdah

ECMP

Conga

Hula

(b) Mice

10 20 30 40 50 60 70 80 90

Network Load (%)

0.0

0.5

1.0

1.5

R
T

T
(n

o
rm

.
to

E
C

M
P

)

Howdah

ECMP

Conga

Hula

(c) Average

Fig. 6: RTT evolution at varying network load, for (a) elephant flows, (b) mouse flows, and (c) on average. Differentiating

action per traffic type leads Howdah to attain the lowest RTT overall.

that when the traffic load is high, more than 70%, the benefits

of no additional bytes as in IPv4 are evident and result in

the lowest FCT. Although all of these alternatives are valid

and provide even more flexibility, we use the IP header as

the default option in the following tests, given the minimal

intervention required on the host side.

E. Load Profiling Effectiveness

After evaluating our predictive model and the impact of

different packet header formats, we studied the load-profiling

effectiveness in a data center scenario by comparing Howdah

against the other benchmark solutions. The 10 servers in Fig. 3

are used to send packets so that traffic replicates the data

center workload described in [12]. This allows us to consider

an increasing network load by varying the number of receiving

servers (from 1 to 9). First, we compare the FCT obtained by

Howdah and the other benchmark solutions for load-profiling,

normalizing all values obtained to a baseline algorithm as

ECMP. As shown in Fig. 5b, Howdah can stably minimize the

FCT for all network loads considered. While HULA performs

well at high network load, CONGA provides the best results

at low load. Our solution, instead, attains the lowest FCT

for any type of traffic in the data center, assuring a less

congested network configuration. We then focus on another

key metric, the RTT, and consider a specific network load,

70%, to evaluate the RTT’s cumulative distribution function

(CDF) for sending traffic. By plotting the CDF, we can study

the distribution of RTT values with a particular focus on tails.

As visible in Fig. 5c, our solution not only diminishes the

RTT on average compared to state-of-the-art but also lowers

the RTT of the transmission of the most long-lived packets.

In particular, all responses are received by 0.12 seconds after

the request is sent, representing the minimum among all the

alternatives considered.

Moreover, to generalize our findings and study the behavior

at different network loads, we also report the RTT evolution

in Fig. 6. Our comparison differentiates the ªelephantº from

the ªmouseº flows to better analyze the behavior. Starting

from elephant traffic, Fig. 6a shows the RTT normalized

to ECMP and demonstrates that the more network loads,

the more notable improvements are brought by our solution.

Although for a load ranging from 50% to 60%, we can notice

CONGA slightly outperforming Howdah, we can also observe

how CONGA cannot react to higher loads. If we compare

the RTT when sending mice traffic (Fig. 6b), this CONGA’s

behavior is even more visible and occasionally performs worse

than ECMP. On the other hand, Howdah achieves better

performance, and the advantages for mouse flows are the most

prominent. Averaging the results for the two types of traffic

in Fig. 6c, we observe that when the load is low (10% to

40%), the network is not considerably congested, and Howdah,

CONGA, and HULA achieve almost the same RTTs. However,

when the load increases, Howdah increases its advantage.

This enforces what was already shown in FCT behavior and

demonstrates how our traffic classification, combined with

differentiated actions from switches, enables achieving better

results overall.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



11

10 20 30 40 50 60 70 80 90

Load (%)

0

5

10

F
C

T
[s

]

Distributed version

Centralized version

(a) Elephants

10 20 30 40 50 60 70 80 90

Load (%)

0.04

0.06

0.08

F
C

T
[s

]

Distributed version

Centralized version

(b) Mice

10 20 30 40 50 60 70 80 90

Load (%)

0

2

4

6

F
C

T
[s

]

Distributed version

Centralized version

(c) Average

Fig. 7: FCT evolution at varying network load when compared to a centralized version in OpenFlow, for (a) elephant flows,

(b) mouse flows, and (c) on average.

10 20 30 40 50 60 70 80 90

Load (%)

2

4

F
C

T
[s

]

Howdah

Howdah+DCTCP

(a) Elephants

10 20 30 40 50 60 70 80 90

Load (%)

0.02

0.03

0.04
F

C
T

[s
]

Howdah

Howdah+DCTCP

(b) Mice

10 20 30 40 50 60 70 80 90

Load (%)

1

2

F
C

T
[s

]

Howdah

Howdah+DCTCP

(c) Average

Fig. 8: FCT evolution at different network loads when the DCTCP control congestion algorithm coexists compared to a Howdah

only implementation, for (a) elephant flows, (b) mouse flows, and (c) on average.

F. Centralized Approach

To validate our distributed schema, we compare it against a

centralized approach in which forwarding decisions are taken

by an SDN controller. Although a centralized solution comes

with a slow control loop due to the controller interaction, it

can perform more sophisticated decisions. We developed a

centralized version of Howdah where switches are instructed

with OpenFlow [60], one of the most known and deployed

protocols in the SDN area. In this setting, all the packets that

do not have a predefined route will automatically be forwarded

to the controller, which handles them according to the rules

added in the controller. These rules might depend on many

factors, such as source/destination addresses, transport proto-

col source, flags inside the packet, or even network conditions.

Since we compared against different parameters to consider in

packet forwarding in previous sections, herein, we study how

a centralized version of Howdah would perform. We deployed

such a version, simply called Howdah-centralized, in which

the SDN controller is implemented in Ryu framework [61]

and, just as the distributed one described throughout the paper,

runs in the Mininet simulation environment. Since OpenFlow

switches cannot support hash-based routing [62], [63], the hash

is computed and stored on a controller table. In particular, the

controller, running the ML model, classifies the incoming flow.

When elephant flows are recognized, it checks on the flowlet

hash table if the hash is present. If so, it simply installs the

rule on the switch using as matching the IP destination and

port destination. If not, it computes the hash, adds a new entry

in the table, and then installs the rule on the switch. When the

prefixed timeout expires, it removes installed flow routes.

Fig. 7 shows the comparison results between the two How-

dah versions: the distributed version, written with P4, and the

centralized one, written with OpenFlow. We focus in particular

on the type of flows sent (elephants, mice), but also on the

average between these two classifications in the same network

conditions as before. In particular, we computed the FCT for

all flows in terms of seconds at a varying network load and

level of network congestion induced with the iperf3 tool. We

can observe how our distributed version performs better than

the distributed one in all flow types. If we look at the elephant

flows in Fig. 7a, where even when the network is not much

congested (from 10% to 50% of network load), the controller

interaction in OpenFlow leads to a bigger FCT. When the

network starts to get congested, and the load is greater than

50%, we can see that both versions start to perform similarly,

and with a congested network (90%), even a distributed

solution achieves almost the same FCT as the centralized one.

This behavior is even more visible in the mice flows (Fig. 7b)

where just as for the elephant flows, when the network is

not congested, the interaction with the controller leads to

a slower forwarding time and, consequently, a greater FCT.

Meanwhile, both versions achieve almost the same FCT when

the network becomes more congested. However, if we consider

the average FCT of all flows in Fig. 7c, we can conclude that

the distributed setting can drastically reduce the FCT and the

overhead. This outcome finally validates our approach and the

importance of having host-based classification and a data-plane

forwarding process.

G. Howdah in Conjunction with CC algorithms

In evaluating Howdah, we also considered how it behaves

when an in-network congestion control (CC) algorithm is

present, taking for this experiment the well-known data-center

TCP (DCTCP) [12]. With DCTCP, switches mark packets’

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



12

TABLE II: Overhead of the considered ML models both during training (T) and classification (C) in terms of time spent, RAM

and CPU consumption, and CO2 emission. The D-Tree model appears as a lightweight model.

Tr. time [s] Class. time [µs] CO2 (T) [mg] CO2 (C) [mg] RAM (T) [%] RAM (C) [%] CPU (T) [%] CPU (C) [%]

SVM 0.927 0.0264 1.933 0.0417 2.013 2.022 15.554 14.523
NN 170.869 4.081 416.6 1.8391 2.766 2.758 18.328 18.207
k-means 0.647 0.07974 2.013 0.0728 1.959 1.954 16.621 15.583
RF 83.439 10.562 192.4 3.1312 1.872 1.851 16.58 16.983
D-Tree 1.0202 0.107 1.733 0.0481 2.969 2.93 16.619 16.506

0 50 100 150 200

Time (s)

1.75

2.00

2.25

2.50

2.75

3.00

R
A

M
(%

)

K-means

SVM

NN

RF

D-Tree

(a)

0 50 100 150 200

Time (s)

15.0

17.5

20.0

22.5

25.0
C

P
U

(%
)

K-means

SVM

NN

RF

D-Tree

(b)

Fig. 9: (a) RAM and (b) CPU consumption of the considered

classifiers during the execution at the host side.

Explicit Congestion Notification (ECN) field to notify the

sender that there is congestion in the network, i.e., the buffer

occupancy of the switch exceeds a fixed small threshold. The

sending host reacts by reducing the sending rate, using the

fraction of marked packets as a factor: the larger the fraction,

the bigger the decrease factor. Fig. 8 compares the FCT

evolution of two implementations: one using only Howdah and

the other using both Howdah and the DCTCP algorithm under

different network loads. In Fig. 8a, we observe that despite the

large size of the elephant flows, both implementations achieve

the same performance at all network loads. This suggests that

the load profiling mechanism that Howdah adopts is effec-

tive enough and able to collaborate with other mechanisms.

Similarly, in Fig. 8b, both implementations achieve the same

FCT for the mouse flows. Although there is a slight difference

between 50% and 80% of network load where the solution

Howdah + DCTCP performs better than Howdah alone, the

difference is only 2.106ms. Overall, as shown in Fig. 8c, both

implementations perform similarly on average, demonstrating

that Howdah performs as a good profiler both alone and in

combination with other mechanisms.

H. Resource Consumption

Finally, we consider the impact of the traffic classifier

on the host machines. One of the challenges faced by the

design and implementation of Howdah is the efficiency in

terms of processing time, especially onboard host machines,

which are typically running resource-consuming processes. A

lightweight yet accurate classifier is thus essential. To this end,

we study the memory and CPU consumption of different ML

models during the training learning phase and execution phase,

reporting results in Fig. 9. The considered machine consists of

a 2.6 GHz 6-core CPU and 16GB RAM. We can observe how,

although our D-tree classifier consumes the highest amount

of RAM (Fig. 9a), this quantity is negligible and can be

found in any device, even on the resource-constrained ones.

The CPU consumption (Fig. 9b), however, is similar to other

algorithms and less than the Neural Network model. Even

when no specific hardware is utilized, the reduced computing

resources required by D-Tree validate our design and motivate

our assumption to run the learning process on host machines.

In addition to memory footprint and computation resources,

we also evaluated the overhead of training and running the

ML models (Table II). We report the time, CO2, RAM, and

CPU for both training and classification processes, where the

training occurs over 80% of the US−UNV −1 dataset and the

classification over the remaining 20% of it. The classification

time is the time to classify an unknown flow when it must

be sent. As shown in Table II, the Decision Tree, similarly

to k-means and SVM, requires a limited training time, while

neural networks and RF demands more time to converge.

The classification time of the D-Tree is also minimal and

negligible. This result is extremely important as it validates our

hypothesis to run the classification before sending any packet.

On the contrary, despite being very accurate, RF is slower in

its operations. Concerning the energy efficiency of the models,

different studies [64], [65] have proven that training ML

models are highly polluting, especially when there are many

parameters and massive datasets. For this reason, we estimated

the environmental footprint that our code left, in terms of mg

of CO2 emissions, measured with the CodeCarbon python

library [66]. This library uses two main factors to compute

the CO2 emission: the carbon intensity per kWh of electricity

needed for the computation (in gCO2/kWh), and the power

consumed by the infrastructure where the code is running (in

kWh). The multiplication of these two factors gives the overall

carbon emission of the running code. It is important to notice

that the computation is made by the library itself, considering

values such as different carbon intensities of electricity per

country. We can observe from the table how the training time

also impacts the carbon emission with supervised models such

as NN and RF that, by needing more time to train, also have

a more considerable energy impact, emitting more CO2. On

the contrary, our D-tree model is shown to be one of the

greenest options for the classification, with similar emissions

to SVM. Quite surprisingly, the CO2 emissions of RF during

classification are the highest, even more than deep learning

models. This result is possibly due to the complexity raised by

the presence of multiple trees and will be analyzed in depth in

the future. Lastly, averaging the RAM and CPU consumptions

of the models, we have confirmation of results in Fig. 9, where

the RAM usage of D-tree is the highest among alternatives but

still limited, and the CPU is comparable to benchmarks.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



13

VII. CONCLUSION

This paper presented Howdah, an in-band load profiling

solution, whose pillar is the cooperation host-switch: the host

classifies sending traffic using a specifically trained ML model,

i.e., Decision Tree, and inserts it directly into the packet; the

switch, programmed using P4 language, takes packet forward-

ing decisions based on the information of the flow type and on

the status of the network itself. By letting each switch locally

decide the best next-hop per packet, our solution assures link

failure resistance and the ability to adapt to topology changes.

Throughout the paper, we also explored possible protocols that

can be used to include in-band information about the ongoing

traffic type. Results demonstrate that overall, and especially

at high network loads, our solution reduces RTT and FCT

more than the state-of-the-art techniques. Moreover, the model

chosen introduces little overhead to the system, validating our

design of delegating the classification task to the host process.

In the future, in order to improve load profiling, traffic classi-

fication, and forwarding decisions further, we plan to explore

new strategies that use a more fine-grained classification for

a multi-class classification that identifies more applications

(e.g., video streaming, interactive call) or insert additional data

beyond the classification itself.

REFERENCES

[1] A. Angi, A. Sacco, F. Esposito, G. Marchetto, and A. Clemm, ªHowdah:
Load profiling via in-band flow classification and p4,º in 2022 18th

International Conference on Network and Service Management (CNSM).
IEEE, 2022, pp. 46±54.

[2] I. Matta and A. Bestavros, ªA load profiling approach to routing
guaranteed bandwidth flows,º in Proceedings. IEEE INFOCOM ’98, the

Conference on Computer Communications, vol. 3, 1998, pp. 1014±1021.
[3] A. V. Ventrella, F. Esposito, and L. A. Grieco, ªLoad profiling and mi-

gration for effective cyber foraging in disaster scenarios with formica,º
in 4th IEEE Conference on Network Softwarization and Workshops

(NetSoft), 2018, pp. 80±87.
[4] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, ªScalable, optimal

flow routing in datacenters via local link balancing,º in Proceedings

of the ninth ACM conference on Emerging networking experiments and

technologies, 2013, pp. 151±162.
[5] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan et al.,

ªCONGA: Distributed Congestion-Aware Load Balancing for Datacen-
ters,º in Proceedings of the Annual conference of the ACM Special

Interest Group on Data Communication (SIGCOMM ’14). New York,
NY, USA: ACM, 2014, p. 503±514.

[6] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, ªHula: Scal-
able load balancing using programmable data planes,º in Proceedings

of the Symposium on SDN Research (SOSR ’16). Association for
Computing Machinery, 2016, pp. 1±12.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., ªHedera: dynamic flow scheduling for data center networks,º
in Proceedings of the 7th USENIX Conference on Networked Systems

Design and Implementation (NSDI ’10), vol. 10, no. 8. USENIX
Association, 2010, pp. 89±92.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., ªB4: Experience with
a globally-deployed software defined wan,º ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 3±14, 2013.
[9] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, ªFast-

pass: A centralizedº zero-queueº datacenter network,º in Proceedings

of the Annual conference of the ACM Special Interest Group on Data

Communication (SIGCOMM ’14). ACM New York, NY, USA, 2014,
pp. 307±318.

[10] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, ªAchieving high utilization with software-driven wan,º
in Proceedings of the Annual conference of the ACM Special Interest

Group on Data Communication (SIGCOMM ’13). ACM New York,
NY, USA, 2013, pp. 15±26.

[11] S. Kandula, D. Katabi, S. Sinha, and A. Berger, ªDynamic Load
Balancing without Packet Reordering,º ACM SIGCOMM Computer

Communication Review, vol. 37, no. 2, p. 51±62, Mar. 2007.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, ªData Center TCP (DCTCP),º
in Proceedings of the Annual conference of the ACM Special Interest

Group on Data Communication (SIGCOMM ’10). ACM New York,
NY, USA, 2010, pp. 63±74.

[13] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, ªPer-packet load-balanced, low-latency routing
for clos-based data center networks,º in Proceedings of the ninth

ACM conference on Emerging networking experiments and technologies

(CoNEXT ’13), 2013, pp. 49±60.

[14] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
ªDRILL: Micro Load Balancing for Low-Latency Data Center Net-
works,º in Proceedings of the Conference of the ACM Special Interest

Group on Data Communication (SIGCOMM ’17). New York, NY,
USA: Association for Computing Machinery, 2017, p. 225±238.

[15] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, ªClove: Congestion-aware load balancing at the virtual
edge,º in Proceedings of the 13th International Conference on emerging

Networking EXperiments and Technologies (CoNEXT ’17), 2017, pp.
323±335.

[16] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
ªPresto: Edge-based load balancing for fast datacenter networks,º ACM

SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465±
478, 2015.

[17] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, ªF10: A fault-
tolerant engineered network,º in 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’13), 2013, pp. 399±412.

[18] A. R. Curtis, W. Kim, and P. Yalagandula, ªMahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,º
in Proceedings of the IEEE International Conference on Computer

Communications (INFOCOM ’11). IEEE, 2011, pp. 1629±1637.

[19] T. Benson, A. Anand, A. Akella, and M. Zhang, ªMicrote: Fine grained
traffic engineering for data centers,º in Proceedings of the seventh con-

ference on emerging networking experiments and technologies (CoNEXT

’11), 2011, pp. 1±12.

[20] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding et al., ªTiara: A scalable and efficient hardware
acceleration architecture for stateful layer-4 load balancing,º in 19th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), 2022, pp. 1345±1358.

[21] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, ªContra: A
programmable system for performance-aware routing,º in 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

’20). USENIX Association, 2020, pp. 701±721.

[22] Z. Li, S. Peng, D. Voyer, C. Li, P. Liu, C. Cao, and
G. Mishra, ªApplication-aware Networking (APN) Framework,º
Internet Engineering Task Force, Internet-Draft draft-li-apn-
framework-06, Sep. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-li-apn-framework/06/

[23] A. Sacco, F. Esposito, G. Marchetto, G. Kolar, and K. Schwetye, ªOn
Edge Computing for Remote Pathology Consultations and Computa-
tions,º IEEE Journal of Biomedical and Health Informatics, vol. 24,
no. 9, pp. 2523±2534, 2020.

[24] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, ªLearning in situ: a randomized experiment in video
streaming,º in 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), 2020, pp. 495±511.

[25] M. Noormohammadpour and C. S. Raghavendra, ªDatacenter traffic
control: Understanding techniques and tradeoffs,º IEEE Communications

Surveys & Tutorials, vol. 20, no. 2, pp. 1492±1525, 2017.

[26] J. Dean and S. Ghemawat, ªMapreduce: simplified data processing on
large clusters,º Communications of the ACM, vol. 51, no. 1, pp. 107±113,
2008.

[27] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim et al.,
ªVL2: A Scalable and Flexible Data Center Network,º in Proceedings

of the ACM Conference on Data communication (SIGCOMM ’09).
Association for Computing Machinery, 2009, pp. 51±62.

[28] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, ªThe
nature of data center traffic: measurements & analysis,º in Proceedings

of the 9th ACM SIGCOMM conference on Internet measurement (IMC

’09), 2009, pp. 202±208.

[29] Y. Li, H. Liu, W. Yang, D. Hu, X. Wang, and W. Xu, ªPredicting inter-
data-center network traffic using elephant flow and sublink information,º

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



14

IEEE Transactions on Network and Service Management, vol. 13, no. 4,
pp. 782±792, 2016.

[30] K. B. Nougnanke, Y. Labit, and M. Bruyere, ªML-based Incast Perfor-
mance Optimization in Software-Defined Data Centers,º in 2021 IEEE

22nd International Conference on High Performance Switching and

Routing (HPSR). IEEE, 2021, pp. 1±6.
[31] A. Chhabra and M. Kiran, ªClassifying elephant and mice flows in

high-speed scientific networks,º Proc. of the International Workshop on

Innovating the Network for Data Intensive Science (INDIS ’17), pp. 1±8,
2017.

[32] C. S. Inc., ªCisco global cloud index: Forecast
and methodology, 2016±2021,º 2021. [Online]. Avail-
able: https://virtualization.network/Resources/Whitepapers/0b75cf2e-
0c53-4891-918e-b542a5d364c5 white-paper-c11-738085.pdf

[33] A. Sacco, F. Esposito, and G. Marchetto, ªRoPE: An Architecture for
Adaptive Data-Driven Routing Prediction at the Edge,º IEEE Transac-

tions on Network and Service Management, vol. 17, no. 2, pp. 986±999,
2020.

[34] N. Farrington, G. Porter, S. Radhakrishnan et al., ªHelios: a hybrid
electrical/optical switch architecture for modular data centers,º in Pro-

ceedings of the ACM Conference on Data communication (SIGCOMM

’10). Association for Computing Machinery, 2010, pp. 339±350.
[35] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, ªSupporting Sus-

tainable Virtual Network Mutations with Mystique,º IEEE Transactions

on Network and Service Management, vol. 18, no. 3, pp. 2714±2727,
2021.

[36] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, ªIdentifying
elephant flows through periodically sampled packets,º in Proceedings

of the 4th ACM SIGCOMM conference on Internet measurement (IMC

’04). Association for Computing Machinery, 2004, pp. 115±120.
[37] S. Gebert, S. Geissler, T. Zinner, A. Nguyen-Ngoc, S. Lange, and

P. Tran-Gia, ªZoom: Lightweight sdn-based elephant detection,º in 28th

International Teletraffic Congress (ITC 28), vol. 2. IEEE, 2016, pp.
1±6.

[38] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., ªP4: Pro-
gramming protocol-independent packet processors,º ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87±95, 2014.
[39] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, ªThe

P4− >NetFPGA Workflow for Line-Rate Packet Processing,º in Pro-

ceedings of the 2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2019, pp. 1±9.
[40] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,

L. E. Li, and M. Thottan, ªMeasuring control plane latency in sdn-
enabled switches,º in Proceedings of the 1st ACM SIGCOMM sympo-

sium on software defined networking research, 2015, pp. 1±6.
[41] I. Matta, A. Bestavros, and M. Krunz, ªLoad profiling based routing for

guaranteed bandwidth flows,º European Transactions on Telecommuni-

cations, vol. 10, no. 2, pp. 165±181, 1999.
[42] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-

macher, ªPint: Probabilistic In-Band Network Telemetry,º in Proceed-

ings of the Annual conference of the ACM Special Interest Group on

Data Communication (SIGCOMM ’20). ACM New York, NY, USA,
2020, pp. 662±680.

[43] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, ªPartially Oblivious
Congestion Control for the Internet via Reinforcement Learning,º IEEE

Transactions on Network and Service Management, vol. 20, no. 2, pp.
1644±1659, 2022.

[44] M. Baldi, G. Marchetto, and Y. Ofek, ªA Scalable Solution for Engi-
neering Streaming Traffic in the Future Internet,º Computer Networks,
vol. 51, no. 14, pp. 4092 ±4111, 2007.

[45] S. Bryant and A. Clemm, ªToken cell routing: A new sub-ip layer
protocol,º in 2021 17th International Conference on Network and

Service Management (CNSM). IEEE, 2021, pp. 153±159.
[46] R. Li, K. Makhijani, and L. Dong, ªNew IP: A Data Packet Framework

to Evolve the Internet,º in 2020 IEEE 21st International Conference on

High Performance Switching and Routing (HPSR). IEEE, 2020, pp.
1±8.

[47] R. Li, A. Clemm, U. Chunduri, L. Dong, and K. Makhijani, ªA
New Framework and Protocol for Future Networking Applications,º
in Proceedings of the 2018 Workshop on Networking for Emerging

Applications and Technologies, ser. NEAT ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 21±26.

[48] Ipv6 statistics. Accessed: 2023-1-7. [Online]. Available:
https://www.google.com/intl/it/ipv6/statistics.html

[49] Ipv6 usage. Accessed: 2023-1-7. [Online]. Available:
http://v6asns.ripe.net/v/6?s=+ALL

[50] S. Deering and R. Hinden, ªRFC8200: Internet protocol, version 6 (IPv6)
specification,º 2017.

[51] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer,
ªIPv6 segment routing header (SRH): RFC8754,º 2020.

[52] S. B. Kotsiantis, ªDecision trees: a recent overview,º Artificial Intelli-

gence Review, vol. 39, no. 4, pp. 261±283, 2013.
[53] M. Bramer, ªAvoiding overfitting of decision trees,º Principles of data

mining, pp. 119±134, 2007.
[54] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, ªInformation-

Agnostic flow scheduling for commodity data centers,º in 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

’15). USENIX Association, 2015, pp. 455±468.
[55] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, ªBola: Near-optimal

bitrate adaptation for online videos,º IEEE/ACM Transactions on Net-

working, vol. 28, no. 4, pp. 1698±1711, 2020.
[56] T. Benson, A. Akella, and D. A. Maltz, ªNetwork traffic characteristics

of data centers in the wild,º in Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement (IMC ’10), 2010, pp. 267±280.
[57] H. Blockeel and L. De Raedt, ªTop-down induction of first-order logical

decision trees,º Artificial intelligence, vol. 101, no. 1-2, pp. 285±297,
1998.

[58] S. Tangirala, ªEvaluating the impact of gini index and information gain
on classification using decision tree classifier algorithm,º International

Journal of Advanced Computer Science and Applications, vol. 11, no. 2,
pp. 612±619, 2020.

[59] N. Dukkipati and N. McKeown, ªWhy flow-completion time is the right
metric for congestion control,º ACM SIGCOMM Computer Communi-

cation Review, vol. 36, no. 1, pp. 59±62, 2006.
[60] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, ªOpenflow: enabling innovation in
campus networks,º ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69±74, 2008.

[61] Ryu controller. Accessed: 2022-12-7. [Online]. Available: https://ryu-
sdn.org/

[62] R. Wang, D. Butnariu, and J. Rexford, ªOpenFlow-Based server load
balancing gone wild,º in Workshop on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 11),
2011.

[63] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, ªEnsemble routing
for datacenter networks,º in 2010 ACM/IEEE Symposium on Architec-

tures for Networking and Communications Systems (ANCS). IEEE,
2010, pp. 1±12.

[64] J. Cowls, A. Tsamados, M. Taddeo, and L. Floridi, ªThe ai gambit: lever-
aging artificial intelligence to combat climate changeÐopportunities,
challenges, and recommendations,º Ai & Society, pp. 1±25, 2021.

[65] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
ªTowards the systematic reporting of the energy and carbon footprints
of machine learning,º Journal of Machine Learning Research, vol. 21,
no. 248, pp. 1±43, 2020.

[66] V. Schmidt, K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris,
D. Blank, J. Wilson, S. Friedler, and S. Luccioni, ªCodecarbon: estimate
and track carbon emissions from machine learning computing,º 2021.

Antonino Angi received his M.Sc. degree in Com-
puter Engineering (major in Data Science) from Po-
litecnico di Torino, Italy in 2020, and he is currently
enrolled in a Ph.D. program at the same university.
His research interests include protocols for network
architecture and management; applying Natural Lan-
guage Processing (NLP) and Machine Learning al-
gorithms to Software Defined Networks (SDN) and
Intent-based Networks (IBN), used in conjunction
with data-plane programming languages.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 



15

Alessio Sacco is an Assistant Professor at Po-
litecnico di Torino. He received the M.Sc. degree
(summa cum laude) and the Ph.D. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Torino, Italy, in 2018 and 2022,
respectively. His research interests include architec-
ture and protocols for network management; im-
plementation and design of cloud computing appli-
cations; algorithms and protocols for service-based
architecture, such as Software Defined Networks
(SDN), used in conjunction with Machine Learning

algorithms.

Flavio Esposito is an Associate Professor with the
Department of Computer Science at Saint Louis
University (SLU). He received a M.Sc. degree in
Telecommunication Engineering from the University
of Florence, Italy, and a Ph.D. in computer science
from Boston University in 2013. Flavio’s main re-
search interests include network management, net-
work virtualization, and distributed systems. Flavio
is the recipient of several awards, including several
National Science Foundation awards and the Com-
cast Innovation Award in 2021.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

Alexander Clemm is a Distinguished Engineer in
Futurewei’s Future Networks and Innovation Group
in Santa Clara, California. He has been involved
in networking software and management technology
throughout his career, most recently in the areas of
high-precision networks and future networking ser-
vices. He has served on the Organizing Committees
of many management and network softwarization
conferences. He has around 50 publications, 50
issued patents, and several books and RFCs. He
holds an M.S. in computer science from Stanford

University and a Ph.D. from the University of Munich, Germany.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 02,2023 at 21:09:23 UTC from IEEE Xplore.  Restrictions apply. 


