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ABSTRACT
Representation learning on networks aims to derive a meaningful
vector representation for each node, thereby facilitating down-
stream tasks such as link prediction, node classification, and node
clustering. In heterogeneous text-rich networks, this task is more
challenging due to (1) presence or absence of text: Some nodes are
associated with rich textual information, while others are not; (2)
diversity of types: Nodes and edges of multiple types form a hetero-
geneous network structure. As pretrained language models (PLMs)
have demonstrated their effectiveness in obtaining widely gener-
alizable text representations, a substantial amount of effort has
been made to incorporate PLMs into representation learning on
text-rich networks. However, few of them can jointly consider
heterogeneous structure (network) information as well as rich
textual semantic information of each node effectively. In this pa-
per, we propose Heterformer, a Heterogeneous Network-Empowered
Transformer that performs contextualized text encoding and het-
erogeneous structure encoding in a unified model. Specifically,
we inject heterogeneous structure information into each Trans-
former layer when encoding node texts. Meanwhile, Heterformer
is capable of characterizing node/edge type heterogeneity and
encoding nodes with or without texts. We conduct comprehen-
sive experiments on three tasks (i.e., link prediction, node classi-
fication, and node clustering) on three large-scale datasets from
different domains, where Heterformer outperforms competitive
baselines significantly and consistently. The code can be found at
https://github.com/PeterGriffinJin/Heterformer.

CCS CONCEPTS
• Computing methodologiesÑ Learning latent representa-
tions; • Information systems Ñ Data mining.

KEYWORDS
Text-Rich Network, Pretrained Language Model, Transformer.
ACM Reference Format:
Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. 2023. Heterformer: Transformer-
based Deep Node Representation Learning on Heterogeneous Text-Rich Net-
works. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3580305.3599376

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599376

















 














































Figure 1: (a) Examples of heterogeneous text-rich networks:
an academic network and a social media network. (b) An il-
lustration of our heterogeneous network-empowered Trans-
former, Heterformer. One Heterformer layer is zoomed out.
AGG denotes neighbor aggregation on the network.

1 INTRODUCTION
Heterogeneous text-rich networks are ubiquitously utilized tomodel
real-world data such as academic networks [41], product networks
[7], and social media [9]. Such networks often have two charac-
teristics: (1) Text-rich: some types of nodes are associated with
textual information. For instance, papers in academic networks
[41] have their titles and abstracts; tweets in social media networks
[9] have their tweet contents. (2) Heterogeneous: nodes and edges in
the network are multi-typed. For example, academic networks [41]
have paper, author, and venue nodes; product networks [7] have
edges between users and products reflecting “purchase” and “view”
relations. In such text-rich networks (Figure 1(a)), to obtain satisfy-
ing node representations which can be generalized to various tasks
such as link prediction [40], node classification [46], and recom-
mendation [53], the model needs to consider both text semantics
and heterogeneous structure (network) information.

To capture the rich text semantic signals, Transformer [43] is
a powerful architecture featured by its fully connected attention
mechanism. Taking Transformer as the backbone, pretrained lan-
guage models (PLMs) [4, 6, 25] learned from web-scale corpora
can obtain contextualized semantic representations of words and
documents. These representations are demonstrated to be of high
quality in various text mining tasks [3, 24, 38]. To introduce the
advanced capability of PLMs into node representation learning on
text-rich networks, existing works mainly adopt a cascaded archi-
tecture [18, 23, 54, 59], where the textual information of each node
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is first encoded via PLMs and then aggregated via graph encoders
[12, 22, 44]. In such cases, the link connecting two nodes is not
utilized when generating their text representations. In fact, linked
nodes can benefit each other regarding text semantics understand-
ing. For example, the term “Transformer” in a paper cited by many
machine learning papers should refer to a deep learning model
rather than an electrical engineering component. GraphFormers
[50] further introduce a nested Transformer architecture for deep
information integration between text encoding modules and net-
work encoding modules. Patton [16] proposes two strategies to
pretrain GraphFormers on text-rich networks. Yet, they adopt a
strict homogeneous network assumption (i.e., all the nodes are asso-
ciated with semantically rich text and are of the same type), which
is hard to be satisfied in practice.

As a matter of fact, real-world text-rich networks are usually
heterogeneous with the heterogeneity coming from two sources:
the presence or absence of text and the diversity of types.
‚ Presence or Absence of Text. Not every node in text-rich net-
works exhibits rich textual information. Instead, some nodes
are not guaranteed to contain textual information (e.g., many
users are not associated with text information in social media
networks). Based on the presence or absence of text, nodes can be
categorized into text-rich nodes (associated with semantically
rich text, e.g., tweets and papers) and textless nodes (without
semantically rich text, e.g., users and authors). Text-rich nodes
can intuitively contribute to representation learning with the rich
texts, while textless nodes can also be strong semantic indicators
in the network. For example, given a paper node about “Byzan-
tine” which is linked to an author node (textless) with many
paper neighbors related to “distributed system”, we can infer
that “Byzantine” here refers to a computer network term rather
than an empire in history. Since both text-rich nodes and textless
nodes should be considered, how to leverage both kinds of nodes
in representation learning with PLMs is an open question that
needs to be answered.

‚ Diversity of Types. As previously stated, a large number of
real-world networks contain nodes and edges of different types.
For example, there are at least three types of nodes (“paper”,
“author”, and “venue” nodes) in academic networks [41]; there are
at least four types of edges (“click”, “view”, “cart”, and “purchase”
edges) between users and products in e-commerce networks [7].
Different types of nodes/edges have different traits and their
features may fall in different feature spaces. For instance, the
feature of a user may contain gender, age, and nationality while
the feature of an item may contain price and quality. How to
handle such complex structural information while preserving the
diverse type information simultaneously with PLMs is a crucial
issue that needs to be solved.

Present Work. To this end, we propose a network-empowered
Transformer (Figure 1(b)), i.e., Heterformer, for node representation
learning on heterogeneous text-rich networks, while capturing the
two sources of heterogeneity mentioned above. Specifically: (1) In
the whole model, we introduce virtual neighbor tokens inside each
Transformer layer (initialized by the corresponding layer in a PLM,
e.g., BERT [6]) for text encoding, to fuse representations of each
node’s text-rich neighbors, textless neighbors, and its own content
via the fully connected attention mechanism. The virtual neighbor
token hidden states are attention-based aggregations of neighbor

node embeddings. (2) To deal with the presence or absence of text,
two virtual neighbor tokens are utilized to capture the semantic
signals from text-rich neighbors and textless neighbors, respectively.
Furthermore, we propose an embedding warm-up stage for textless
nodes to obtain better initial embeddings before the whole model
training. (3) To capture the diversity of types, we use type-specific
transformation matrices to project different types of nodes into
the same latent space. When calculating virtual neighbor token
hidden states, the aggregation module collects information from its
neighbors by characterizing edge types in the attention mechanism.
The overall model is optimized via an unsupervised link prediction
objective [12, 32].

The main contributions of our paper are summarized as follows:
‚ We formalize the problem of node representation learning on
heterogeneous text-rich networks, which involves joint encoding
of heterogeneous network structures and textual semantics.

‚ We point out heterogeneity from two sources and propose a
heterogeneous network-empowered Transformer architecture
called Heterformer, which deeply couples text encoding and
heterogeneous structure (network) encoding.

‚ We conduct comprehensive experiments on three public text-
rich networks from different domains, where Heterformer out-
performs competitive baseline models (including GNN-cascaded
Transformers and nested Transformers) significantly and consis-
tently on various tasks, including link prediction, node classifica-
tion, and node clustering.

2 PRELIMINARIES
2.1 Heterogeneous Text-rich Networks
Definition 2.1. Heterogeneous Networks [39].A heterogeneous
network is defined as G “ pV, E,A,Rq, where V , E, A, R repre-
sent the sets of nodes, edges, node types, and edge types, respec-
tively. |A| ` |R| ą 2. A heterogeneous network is also associated
with a node type mapping function 𝜙 : V Ñ A and an edge type
mapping function𝜓 : E Ñ R.
Definition 2.2. Text-Rich Nodes and Textless Nodes. In a het-
erogeneous network G “ pV, E,A,Rq, 𝑣 P V is text-rich if it is
associated with semantically rich text information 𝑑𝑜𝑐 P D. D is
the document set. Otherwise, it is textless. We assume that nodes
of the same type are either all text-rich or all textless.
Definition 2.3. Heterogeneous Text-Rich Networks [37, 54].
A heterogeneous network G “ pV, E,A,R,Dq is a heterogeneous
text-rich network if D ‰ ∅, A “ ATR YATL, ATR XATL “ ∅
and ATR ‰ ∅, where ATR and ATL denote the sets of text-rich
node types and textless node types, respectively.

2.2 Transformer
A large number of PLMs (e.g., BERT [6]) utilize the multi-layer
Transformer architecture [43] to encode texts. Each Transformer
layer adopts amulti-head self-attentionmechanism to gain a contex-
tualized representation of each text token. Specifically, let 𝑯 p𝑙q “

r𝒉
p𝑙q

1 ,𝒉
p𝑙q

2 , ...,𝒉
p𝑙q
𝑛 s denote the output hidden states of the 𝑙-th Trans-

former layer, where 𝒉p𝑙q
𝑖

P R𝑑 is the representation of the text token
at position 𝑖 . Then, the multi-head self-attention (MHA) in the (𝑙+1)-
th Transformer layer is calculated as

MHAp𝑯 p𝑙qq “
𝑘

}
𝑡“1

head𝑡 p𝑯 p𝑙q
𝑡 q (1)
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Figure 2: The overall architecture of Heterformer. There are two layers in the figure, while in experiments we have 11 layers.
Different color denotes different types of nodes. The whole encoding procedure of Heterformer can be found in Appendix A.1.
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where 𝑾𝑄,𝑡 ,𝑾𝐾,𝑡 ,𝑾𝑉 ,𝑡 are query, key, and value matrices to be
learned by the model, 𝑘 is the number of attention head and } is
the concatenate operation.

2.3 Problem Formulation
Definition 2.4. Node Representation Learning on Heteroge-
neous Text-Rich Networks. Given a heterogeneous text-rich
network G “ pV, E,A,R,Dq, the task is to build a model 𝑓Θ :
V Ñ R𝑑 with parameters Θ to learn meaningful node represen-
tation vectors for both text-rich and textless nodes, taking hetero-
geneous network structures and text semantics into consideration.
The learned node embeddings should be able to generalize to vari-
ous downstream tasks, such as link prediction, node classification
and node clustering.

3 METHODOLOGY
In this section, we present the details of Heterformer, the archi-
tecture of which is shown in Figure 2. We first introduce how to
conduct text-rich node encoding by jointly considering text infor-
mation and heterogeneous structure information via a Transformer-
based architecture. Then, we illustrate how to perform effective
textless node learning with heterogeneous node type projection
and embedding warm-up. Finally, we discuss how to conduct unsu-
pervised model training.

3.1 Text-Rich Node Encoding
3.1.1 Network-aware Node Text Encoding with Virtual Neighbor
Tokens. Encoding text 𝑑𝑜𝑐𝑣𝑖 of node 𝑣𝑖 in a heterogeneous text-rich
network differs from encoding plain text, mainly because node

texts are associated with network structure information, which
can provide auxiliary signals [12]. For example, a paper cited by
many deep learning papers in an academic network can be highly
related to machine learning. Given that text semantics can be well
captured by a multi-layer Transformer architecture [6], we pro-
pose a simple but effective way to inject network signals into the
Transformer encoding process. The key idea is to introduce virtual
neighbor tokens. Given a node 𝑣𝑖 and its associated texts 𝑑𝑜𝑐𝑣𝑖 , let
𝑯

p𝑙q
𝑣𝑖 P R𝑑ˆ𝑛 denote the output hidden states of all text tokens in

𝑑𝑜𝑐𝑣𝑖 after the 𝑙-th model layer (𝑙 ě 1). In each layer, we introduce
two virtual neighbor tokens to represent 𝑣𝑖 ’s text-rich neighbors
p𝑁𝑣𝑖 and textless neighbors q𝑁𝑣𝑖 in the network respectively. Their
embeddings are denoted as p𝒛p𝑙q𝑣𝑖 and q𝒛p𝑙q𝑣𝑖 P R𝑑 , which are concate-
nated to the original text token sequence hidden states as follows
(We will discuss how to obtain p𝒛

p𝑙q
𝑣𝑖 and q𝒛p𝑙q𝑣𝑖 in Section 3.1.2.):

r𝑯
p𝑙q
𝑣𝑖 “ p𝒛

p𝑙q
𝑣𝑖 }𝑯

p𝑙q
𝑣𝑖 }q𝒛

p𝑙q
𝑣𝑖 . (4)

After the concatenation, r𝑯 p𝑙q
𝑣𝑖 contains information from both 𝑣𝑖 ’s

accompanied text 𝑑𝑜𝑐𝑣𝑖 and its neighbors in the network, i.e., p𝑁𝑣𝑖
and q𝑁𝑣𝑖 . (It is worth noting that we insert two virtual neighbor
tokens to take the presence or absence of text heterogeneity of nodes
into consideration.) To let the text token representations carry net-
work signals, we adopt a multi-head attention mechanism (MHA):

MHAp𝑯 p𝑙q
𝑣𝑖 ,

r𝑯
p𝑙q
𝑣𝑖 q “

𝑘

}
𝑡“1
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p𝑙q
𝑡 “𝑾

p𝑙q

𝑉 ,𝑡
r𝑯
p𝑙q
𝑣𝑖 ,𝑡
.

In the equation above, the multi-head attention is asymmetric (i.e.,
the keys 𝑲 and values 𝑽 are augmented with virtual neighbor
embeddings but queries 𝑸 are not) to avoid network information
being overwritten by text signals and utilize refreshed neighbor
representations from each Transformer layer. The output of MHA
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includes updated network-aware representations of text tokens.
Then, following the Transformer architecture [43], the updated
representations will go through a feed-forward network (FFN) to
finish our (𝑙+1)-th model layer encoding. Formally,

r𝑯
p𝑙q1

𝑣𝑖 “ LNp𝑯 p𝑙q
𝑣𝑖 `MHAp𝑯 p𝑙q

𝑣𝑖 ,
r𝑯
p𝑙q
𝑣𝑖 qq,

𝑯
p𝑙`1q
𝑣𝑖 “ LNp r𝑯 p𝑙q1

𝑣𝑖 `MLPp r𝑯 p𝑙q1

𝑣𝑖 qq.

(5)

where LNp¨q denotes the layer normalization function. After 𝐿
model layers, the final representation of the [CLS] token will be
used as the node representation of 𝑣𝑖 , i.e., ℎ𝑣𝑖 “ 𝑯

p𝐿`1q
𝑣𝑖 [CLS].

3.1.2 MHA-based Heterogeneous Neighbor Aggregation. The vir-
tual neighbor token embeddings p𝒛p𝑙q𝑣𝑖 ,q𝒛

p𝑙q
𝑣𝑖 in Eq.(4) should be the

information concentration of 𝑣𝑖 ’s text-rich neighbors and textless
neighbors respectively. Inspired by the MHA mechanism in Trans-
former architectures [43], we design a multi-head attention module
to aggregate the information from neighbors and capture the type
heterogeneity associated with the edges. The neighbor aggregation
vector 𝒛p𝑙q𝑣𝑖 (P tp𝒛

p𝑙q
𝑣𝑖 ,q𝒛

p𝑙q
𝑣𝑖 }) of the 𝑙-th layer for 𝑣𝑖 is calculated as

follows:

𝒛
p𝑙q
𝑣𝑖 “

𝑘

}
𝑡“1

head𝑡 p𝒉p𝑙q𝑣𝑖 ,𝑡 , t𝒉
p𝑙q
𝑣𝑗Ñ𝑣𝑖 ,𝑡

|𝑣 𝑗 P 𝑁𝑣𝑖 uq,

“
𝑘

}
𝑡“1

ÿ

𝑣𝑗P𝑁̄𝑣𝑖
Yt𝑣𝑖u

𝛼
p𝑙q
𝑣𝑖 𝑣𝑗 ,𝑡

𝑾̄
p𝑙q

𝑉 ,𝑡
𝒉
p𝑙q
𝑣𝑗Ñ𝑣𝑖 ,𝑡

.

(6)

In the equation, 𝑥 P tp𝑥, q𝑥u (𝑥 can be 𝒛𝑣 , 𝑁𝑣 , 𝛼 , 𝑊 ). p𝑥 denotes
text-rich instances and q𝑥 denotes textless instances. 𝒉p𝑙q𝑣𝑖 ,𝑡 P R

𝑑
𝑘

represents the 𝑡-th chunk of 𝒉p𝑙q𝑣𝑖 (For a text-rich node 𝑣𝑠 , 𝒉
p𝑙q
𝑣𝑠 “

𝑯
p𝑙q
𝑣𝑠 [CLS]; For a textless node 𝑣𝑝 , we will discuss how to obtain

𝒉
p𝑙q
𝑣𝑝 in Section 3.2.). 𝑑 is the dimension of vectors 𝒉p𝑙q𝑣𝑖 . 𝑾̄𝑉 is the

value projection matrix. 𝛼𝑣𝑖 𝑣𝑗 is the attention weight of 𝑣 𝑗 to 𝑣𝑖
which is calculated as follows,

𝛼
p𝑙q
𝑣𝑖 𝑣𝑗 ,𝑡

“ softmaxp𝑒p𝑙q𝑣𝑖 𝑣𝑗 ,𝑡 q

“ softmaxpNormpp𝑾̄
p𝑙q

𝑄,𝑡
𝒉
p𝑙q
𝑥,𝑡 q

Jp𝑾̄
p𝑙q

𝐾,𝑡
𝒉
p𝑙q
𝑣𝑗Ñ𝑣𝑖 ,𝑡

qqq.
(7)

𝑾̄𝑄 , 𝑾̄𝐾 are query and key projectionmatrices, respectively. Normp¨q

is the scale normalization function, i.e., Normp𝑥q “ 𝑥{
a

𝑑{𝑘 .𝒉p𝑙q𝑣𝑗Ñ𝑣𝑖

is the propagation vector from 𝑣 𝑗 to 𝑣𝑖 , which is calculated as fol-
lows depending on the edge type,

𝒉
p𝑙q
𝑣𝑗Ñ𝑣𝑖 “𝑾𝑟𝒉

p𝑙q
𝑣𝑗 , where𝜓p𝑒𝑣𝑗 𝑣𝑖 q “ 𝑟 . (8)

In the equation, 𝑒𝑣𝑗 𝑣𝑖 denotes the edge between 𝑣 𝑗 and 𝑣𝑖 ;𝑾𝑟 is the
edge type-aware projection matrix, which is designed for capturing
the edge semantic heterogeneity.

3.2 Textless Node Encoding
3.2.1 Node Type Heterogeneity-based Representation. In this sec-
tion, we will discuss how to obtain 𝒉𝑣𝑝 for a textless node 𝑣𝑝 . Al-
though they lack semantically rich text, textless nodes can be quite
important as they may contribute significant signals to their neigh-
bors in real-world heterogeneous networks. For example, in an
academic network, two papers published in the same venue (text-
less node) can be on similar topics. Moreover, textless nodes can also
be target nodes for downstream tasks such as author classification.

To align with how we encode text-rich nodes using Transformer-
based architectures [43] (which is introduced in Section 3.1), a
straightforward idea of textless node encoding is to represent each
textless node 𝑣𝑝 as a high-dimensional learnable embedding vector
𝒉𝑣𝑝 (e.g., 𝒉𝑣𝑝 P R768 to be compatible with BERT-base [6] used
in text-rich node encoding). Nevertheless, the large population of
textless nodes will then introduce a large number of parameters to
our framework, which may finally lead to model underfitting. In
addition, due to node type heterogeneity, different types of nodes can
naturally belong to different latent semantic spaces. In summary,
we design a simple function to calculate 𝒉p𝑙q𝑣𝑝 as follows,

𝒉
p𝑙q
𝑣𝑝 “𝑾

p𝑙q

𝜙𝑖
𝒉
p0q
𝑣𝑝 , where 𝜙p𝑣𝑝q “ 𝜙𝑖 , 𝜙𝑖 P ATL . (9)

We set 𝒉p0q𝑣𝑝 up as a low-dimensional embedding vector of 𝑣𝑝 (e.g.,

𝒉
p0q
𝑣𝑝 P R64) and project it into a more flexible high-dimensional

space with a projection matrix 𝑾
p𝑙q

𝜙𝑖
. For different textless node

type 𝜙𝑖 P ATL, we will have different type-specific projection
matrix𝑾p𝑙q

𝜙𝑖
for the transformation. By this design, the node type

heterogeneity is captured. It is worth noting that the column vectors
of𝑾p𝑙q

𝜙𝑖
can be viewed as “semantic topic embedding vectors” [5]

for nodes in type 𝜙𝑖 , and each entry of 𝒉p0q𝑣𝑝 represents 𝑣𝑝 ’s weight
towards one particular topic. In our experiment, we adopt a shared
𝑾

p𝑙q

𝜙𝑖
for each layer, since we find this design can contribute to the

best performance.

3.2.2 Textless Node Embedding Warm Up. In real-world hetero-
geneous networks, textless nodes are of a large population. For
example, in academic graphs (e.g., DBLP [41]), there are millions
of author nodes and thousands of venue nodes, which are not nat-
urally associated with semantically rich texts; in social networks
(e.g., Twitter [49]), there are millions of user nodes and hashtag
nodes which are textless. Learning textless node embeddings from
scratch in Eq. (9) seems to be a solution to capture node semantics.
However, the presence of a substantial amount of textless nodes
in the framework would add a considerable amount of parameters
and may result in the underfitting of the model. Therefore, the
parameter initialization of 𝒉p0q𝑣𝑝 and 𝑾

p𝑙q

𝜙𝑖
will be crucial towards

model optimization [11]. To this end, we design a warm-up step
to distill information from semantic-rich PLMs into textless node
embeddings, which gives textless node embeddings good initializa-
tions before Heterformer finetuning. The philosophy is to align the
initial textless node embeddings into the same latent space with
representations generated by the PLM (which we utilize to initialize
the Transformer layers). The warm-up step is shown below:

min
𝒉

p𝑙q
𝑣𝑝

L𝑤 “
ÿ

𝑣𝑝PV
𝜙p𝑣𝑝 qPATL

ÿ

𝑣𝑢Px𝑁𝑣𝑝

´ log
expps𝒉 J

𝑣𝑢
𝒉

p𝑙q
𝑣𝑝 q

expps𝒉 J
𝑣𝑢𝒉

p𝑙q
𝑣𝑝 q `

ř

𝑣1
𝑢
expps𝒉 J

𝑣1
𝑢
𝒉

p𝑙q
𝑣𝑝 q

,

(10)
where 𝑣 1𝑢 is a text-rich node as a negative sample; s𝒉𝑣𝑢 is the output
vector (corresponding to the [CLS] token) from the PLM after
encoding the text-rich node 𝑣𝑢 . Note that parameters in the PLM
are fixed here to make this warm-up process efficient. The PLM
utilized here should be the same as that loaded for Transformer
layers in Heterformer (Section 3.3.2). After the warm-up, semantic
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information from the PLM will be transferred to textless node
embeddings, which will benefit Heterformer training a lot. We will
demonstrate the effectiveness of this process in Section 4.6.

3.3 Model Training
3.3.1 Training Objective. To train our model, we define the follow-
ing likelihood objective with parameters Θ:

max
Θ

O “
ź

𝑣𝑖PV
𝜙p𝑣𝑖qPATR

ź

𝑣𝑗P𝑁𝑣𝑖

𝜙p𝑣𝑗 qPATR

𝑝p𝑣 𝑗 |𝑣𝑖 ;Θq, (11)

Here, the conditional probability 𝑝p𝑣 𝑗 |𝑣𝑖 ;Θq is calculated as follows:

𝑝p𝑣 𝑗 |𝑣𝑖 ;Θq “
expp𝒉J𝑣𝑗𝒉𝑣𝑖 q

ř

𝑣𝑢PV,𝜙p𝑣𝑢qPATR
expp𝒉J𝑣𝑢𝒉𝑣𝑖 q

, (12)

where 𝒉𝑣𝑖 “ 𝒉
p𝐿`1q
𝑣𝑖 is the output node embedding generated by

Heterformer with parameters Θ; 𝐿 is the number of layers in Het-
erformer. However, calculating Eq. (11) requires enumerating all
p𝑣 𝑗 , 𝑣𝑖q pairs, which is costly on big graphs. To make the calculation
more efficient, we leverage the negative sampling technique [15, 30]
to simplify the objective and obtain our loss function below.

min
Θ

L “
ÿ

𝑣𝑖PV
𝜙p𝑣𝑖 qPATR

ÿ

𝑣𝑗 P𝑁𝑣𝑖
𝜙p𝑣𝑗 qPATR

´ log
expp𝒉J

𝑣𝑗
𝒉𝑣𝑖 q

expp𝒉J
𝑣𝑗
𝒉𝑣𝑖 q `

ř

𝑣1
𝑢
expp𝒉J

𝑣1
𝑢
𝒉𝑣𝑖 q

.

(13)
In the equation above, 𝑣 1𝑢 stands for a random negative sample. In
our implementation, we use “in-batch negative samples” [20, 50] to
reduce the encoding cost.

3.3.2 Parameter Initialization for Token Embeddings & Transformer
Layers. It is shown in [10] that a good parameter initialization
before downstream task fine-tuning is essential for deep learn-
ing models. Recently, significant improvements achieved by PLMs
[4, 6, 25] in various NLP tasks have also demonstrated this find-
ing. In Heterformer, a large proportion of parameters in Heter-
former are token embeddings and parameters in transformer layers.
Fortunately, these parameters are well pre-trained in many PLMs
[1, 4, 6, 25, 34, 51]. As a result, Heterformer can directly load this
part of initial parameters from a PLM.

3.4 Discussions
3.4.1 Discussion on the connection between Heterformer and GNNs.
According to Figure 2, Heterformer adopts a Transformer-based
architecture. Meanwhile, it can also be viewed as a graph neural
network (GNN)model. In general, a GNN layer is consisted of neigh-
bor propagation and aggregation to obtain node representations
[12, 22, 44] as follows,

𝒂
p𝑙´1q
𝑣𝑖 𝑣𝑗

“ PROPp𝑙q
´

𝒉
p𝑙´1q
𝑣𝑖

,𝒉
p𝑙´1q
𝑣𝑗

¯

,
`

@𝑣𝑗 P 𝑁𝑣𝑖

˘

; (14)

𝒉
p𝑙q
𝑣𝑖

“ AGGp𝑙q
´

𝒉
p𝑙´1q
𝑣𝑖

, t𝒂
p𝑙´1q
𝑣𝑖 𝑣𝑗

|𝑣𝑗 P 𝑁𝑣𝑖 u

¯

. (15)

Analogously, in Heterformer, Eq. (8) can be treated as the propa-
gation function PROPp¨q, while the aggregation step AGGp¨q is the
combination of Eqs. (6), (4) and (5). Essentially, the propagation and
aggregation function in Heterformer are both heterogeneity-aware
mechanisms.

3.4.2 Discussion on Complexity. Time Complexity: Given a cen-
ter node with𝑚 text-rich neighbors (each of which has 𝑝 tokens)

and 𝑛 textless neighbors, the time complexity of each Heterformer
layer’s encoding step is Op𝑝2p𝑚`1q`𝑚`𝑛q, which is on par with
the complexity Op𝑝2p𝑚 ` 1qq of per GNN-cascaded Transformers
layer since 𝑚,𝑛 ! 𝑝2𝑚. Another straightforward idea of fusing
center node text information with its neighbor representations is to
directly concatenate token embeddings of the center node, its text-
rich neighbors, and its textless neighbors together and feed them
into a PLM. However, in this way, the time complexity of one such
layer becomes Opp𝑝p𝑚 ` 1q ` 𝑛q2q, which is significantly larger
than that of our method. Memory Complexity: Given a network
with 𝑁 textless nodes and 𝑇 parameters in the Transformer layers,
the parameter complexity of Heterformer is Op𝑇 ` 𝑁𝑑q, which is
the same with heterogeneous GNN-cascaded Transformers [35].

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three datasets (i.e.,
DBLP [41], Twitter [55], and Goodreads [45]) from three different
domains (i.e., academic papers, social media posts, and books). For
DBLP∗, we extract papers published from 1990 to 2020 with their
author and venue information. For Twitter†, we merge the original
LA and NY datasets to form a larger dataset. For Goodreads‡, we
remove books without any similar books, and the remaining books
with their meta-data fields form the dataset. The main statistics of
the three datasets are summarized in Table 1.

Table 1: Dataset statistics. *: text-rich node types.

Dataset Node Edge

DBLP
# paper*: 3,597,191 # paper-paper: 36,787,329
# venue: 28,638 # venue-paper: 3,633,613
# author: 2,717,797 # author-paper: 10,212,497

Twitter

# tweet*: 279,694 # tweet-POI: 279,694
# user-tweet: 195,785
# hashtag-tweet: 194,939
# mention-tweet: 50,901

# POI*: 36,895
# hashtag: 72,297
# user: 76,398
# mention: 24,089

Goodreads

# book*:1,097,438 # book-book: 11,745,415
# shelves: 6,632 # shelves-book: 27,599,160
# author: 205,891 # author-book: 1,089,145
# format: 768 # format-book: 588,677
# publisher: 62,934 # publisher-book: 591,456
# language code: 139 # language code-book: 485,733

4.1.2 Baselines. We compare Heterformer with two groups of base-
lines: GNN-cascaded Transformers and Nested Transformers.
The former group can be further classified into homogeneous GNN-
cascaded Transformers, including BERT+MeanSAGE [12], BERT+Max
SAGE [12] and BERT+GAT [44], and heterogeneous GNN-cascaded
Transformers, including BERT+RGCN [35], BERT+HAN [46], BERT+
HGT [13] and BERT+SHGN [27]. The latter group includes the re-
cent GraphFormers [50] model. However, GraphFormers can only
deal with homogeneous textual networks. To apply it to heteroge-
neous text-rich networks, we add heterogeneous graph propagation
∗https://originalstatic.aminer.cn/misc/dblp.v12.7z
†https://drive.google.com/file/d/0Byrzhr4bOatCRHdmRVZ1YVZqSzA/view?
resourcekey=0-3_R5EWrLYjaVuysxPTqe5A
‡https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

https://originalstatic.aminer.cn/misc/dblp.v12.7z
https://drive.google.com/file/d/0Byrzhr4bOatCRHdmRVZ1YVZqSzA/view?resourcekey=0-3_R5EWrLYjaVuysxPTqe5A
https://drive.google.com/file/d/0Byrzhr4bOatCRHdmRVZ1YVZqSzA/view?resourcekey=0-3_R5EWrLYjaVuysxPTqe5A
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Table 2: Experiment results on link prediction. *: Heterformer significantly outperforms the best baseline with p-value ă 0.05.

Method DBLP Twitter Goodreads
PREC MRR NDCG PREC MRR NDCG PREC MRR NDCG

MeanSAGE 0.7019 0.7964 0.8437 0.6489 0.7450 0.7991 0.6302 0.7409 0.8001
BERT 0.7569 0.8340 0.8726 0.7179 0.7833 0.8265 0.5571 0.6668 0.7395

H
om

o
G
N
N BERT+MeanSAGE 0.8131 0.8779 0.9070 0.7201 0.7845 0.8275 0.7301 0.8167 0.8594

BERT+MAXSAGE 0.8193 0.8825 0.9105 0.7198 0.7845 0.8276 0.7280 0.8164 0.8593
BERT+GAT 0.8119 0.8771 0.9063 0.7231 0.7873 0.8300 0.7333 0.8170 0.8593
GraphFormers 0.8324 0.8916 0.9175 0.7258 0.7891 0.8312 0.7444 0.8260 0.8665

H
et
er
o
G
N
N BERT+RGCN 0.7979 0.8633 0.8945 0.7111 0.7764 0.8209 0.7488 0.8303 0.8699

BERT+HAN 0.8136 0.8782 0.9072 0.7237 0.7880 0.8306 0.7329 0.8174 0.8597
BERT+HGT 0.8170 0.8814 0.9098 0.7153 0.7800 0.8237 0.7224 0.8112 0.8552
BERT+SHGN 0.8149 0.8785 0.9074 0.7218 0.7866 0.8295 0.7362 0.8195 0.8613
GraphFormers++ 0.8233 0.8856 0.9130 0.7159 0.7799 0.8236 0.7536 0.8328 0.8717

Heterformer 0.8474* 0.9019* 0.9255* 0.7272* 0.7908* 0.8328* 0.7633* 0.8400* 0.8773*

and aggregation in its final layer. This generalized model is named
GraphFormers++. To verify the importance of both text and net-
work information in text-rich networks, we also include vanilla
GraphSAGE [12] and vanilla BERT [6] in comparison. Detailed
information about the baselines can be found in Appendix A.2.

4.1.3 Reproducibility. For all compared models (baselines and Het-
erformer), we adopt the same training objective and the 12-layer
BERT-base-uncased [6] as the backbone PLM for a fair comparison.
The Adam optimizer [21] with a learning rate 1e-5 and in-batch
negative samples with training batch size 30 are used to fine-tune
the model. In-batch testing is used for efficiency and the test batch
size is 100, 300, and 100 for DBLP, Twitter, and Goodreads, respec-
tively. The maximum length of the PLM is set to be 32, 12, and 64
on the three datasets according to their average document length.
For heterogeneous GNN approaches, the embedding size of textless
nodes is 64. We run experiments on one NVIDIA RTX A6000 GPU.

Following previous studies on network representation learning,
we consider three fundamental tasks for quantitative evaluation:
link prediction, node classification, and node clustering.

4.2 Link Prediction
Settings. Link prediction aims to predict missing edges in a net-
work. In order to evaluate the models’ ability to encode both text se-
mantics and network structure, we focus on link prediction between
two text-rich nodes. Specifically, on DBLP, Twitter, and Goodreads,
the prediction is between paper-paper, tweet-POI, and book-book,
respectively. The model is trained and tested with in-batch negative
sampling and we adopt a 7:1:2 train-dev-test split. Precision@1
(PREC), Mean Reciprocal Rank (MRR), and Normalized Discounted
Cumulative Gain (NDCG) are used as evaluation metrics. Given a
query node 𝑢, PREC measures whether the key node 𝑣 linked with
𝑢 is ranked the highest in the batch; MRR calculates the average
of the reciprocal ranks of 𝑣 ; NDCG further takes the order and
relative importance of 𝑣 into account and here we calculate on the
full candidate list, the length of which equals to test batch size.
Results. Table 2 shows the performance of all compared methods.
From Table 2, we can observe that: (a) Heterformer outperforms all
the baseline methods consistently; (b) Transformer+GNN models
perform better than both vanilla GNN and vanilla BERT, which
demonstrates the importance of encoding both text and network

signals in text-rich networks; (c) Network-empowered Transform-
ers including Heterformer, GraphFormers, and GraphFormers++
are more powerful than GNN-cascaded Transformers; (d) By con-
sidering network heterogeneity, Heterformer can have better per-
formance than GraphFormers in heterogeneous text-rich networks.
(e) Heterformer yields a larger performance improvement when the
network is more dense and heterogeneous (i.e., DBLP, Goodreads
vs. Twitter).

4.3 Node Classification
Settings. In node classification, we train a 2-layer MLP classifier
to classify nodes with the generated node embeddings from each
model as input. The node embeddings are fixed in order to test
their representation quality. The experiments are conducted on
DBLP and Goodreads (because node labels are available in these
two datasets) for both text-rich and textless nodes. For text-rich
node classification, we focus on paper nodes and book nodes in
DBLP and Goodreads, respectively. We select the most frequent
30 classes in DBLP and keep the original 10 classes in Goodreads.
Also, we study both transductive and inductive node classification
to understand the capability of our model comprehensively. For
transductive node classification, the model has seen the classified
nodes during representation learning (using the link prediction
objective), while for inductive node classification, the model needs
to predict the label of nodes not seen before. For textless node clas-
sification, we focus on author nodes in both DBLP and Goodreads.
The label of each author is obtained by aggregating the labels of
his/her publications. We separate the whole dataset into train set,
validation set, and test set in 7:1:2 in all cases and each experiment
is repeated 5 times in this section with the average performance
reported. Further information can be found in Appendix A.3.3.
Results. Tables 3 and 4 demonstrate the results of different meth-
ods in transductive and inductive text-rich node classification. We
observe that: (a) our Heterformer outperforms all the baseline meth-
ods significantly on both tasks, showing that Heterformer can learn
more effective node representations for these tasks; (b) Hetero-
geneous network-based Transformer methods generally achieve
better results than homogeneous network-based Transformer meth-
ods, which demonstrates the necessity of encoding heterogeneity
in heterogeneous text-rich networks; (c) Heterformer generalizes
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Table 3: Transductive text-rich node classification.

Method DBLP Goodreads
Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT 0.6119 0.5476 0.8364 0.7713

BERT+MaxSAGE 0.6179 0.5511 0.8447 0.7866
BERT+MeanSAGE 0.6198 0.5522 0.8420 0.7826

BERT+GAT 0.5943 0.5175 0.8328 0.7713
GraphFormers 0.6256 0.5616 0.8388 0.7786

BERT+HAN 0.5965 0.5211 0.8351 0.7747
BERT+HGT 0.6575 0.5951 0.8474 0.7928
BERT+SHGN 0.5982 0.5214 0.8345 0.7737

GraphFormers++ 0.6474 0.5790 0.8516 0.7993

Heterformer 0.6695* 0.6062* 0.8578* 0.8076*

Table 4: Inductive text-rich node classification.

Method DBLP Goodreads
Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT 0.5996 0.5318 0.8122 0.7371

BERT+MaxSAGE 0.6117 0.5435 0.8368 0.7749
BERT+MeanSAGE 0.6129 0.5431 0.8350 0.7721

BERT+GAT 0.5879 0.5150 0.8249 0.7590
GraphFormers 0.6197 0.5548 0.8330 0.7683

BERT+HAN 0.5948 0.5165 0.8279 0.7626
BERT+HGT 0.6467 0.5835 0.8390 0.7798
BERT+SHGN 0.5955 0.5202 0.8280 0.7626

GraphFormers++ 0.6386 0.5696 0.8427 0.7848

Heterformer 0.6600* 0.5976* 0.8507* 0.7977*

Table 5: Textless node classification.

Method DBLP Goodreads
Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT+HAN 0.0604 0.0270 0.4726 0.2464
BERT+HGT 0.0883 0.0539 0.4758 0.1963
BERT+SHGN 0.0619 0.0286 0.4733 0.2457
BERT+RGCN 0.2201 0.1687 0.5768 0.3948

GraphFormers++ 0.1072 0.0698 0.5007 0.2772

Heterformer 0.3817* 0.3305* 0.6292* 0.4835*

quite well on unseen nodes as its performance on inductive node
classification is quite close to that on transductive node classifica-
tion. Moreover, Heterformer even achieves higher performance in
inductive settings than the baselines do in transductive settings.
Table 5 reports the result on textless node classification, where
we have the following findings: (a) Heterformer outperforms all
heterogeneous network-based Transformer methods significantly.
(b) Compared with text-rich node classification, the improvement
of Heterformer on textless node classification over baselines is more
significant, indicating that Heterformer better captures neighbors’
text semantics in textless node representations.

4.4 Node Clustering
Settings. For node clustering, we utilize KMeans [19] to cluster
the nodes based on their representations generated by the mod-
els. The data and categories used in Section 4.3 for text-rich node

Table 6: Node clustering.

Method DBLP Goodreads
NMI ARI NMI ARI

BERT 0.2570 0.3349 0.2325 0.4013

BERT+MaxSAGE 0.2615 0.3490 0.2205 0.4173
BERT+MeanSAGE 0.2628 0.3488 0.2449 0.4329

BERT+GAT 0.2598 0.3419 0.2408 0.4185
GraphFormers 0.2633 0.3455 0.2362 0.4139

BERT+HAN 0.2568 0.3401 0.2391 0.4266
BERT+HGT 0.2469 0.3392 0.2427 0.4296
BERT+SHGN 0.2589 0.3431 0.2373 0.4171

GraphFormers++ 0.2566 0.3432 0.2372 0.4211

Heterformer 0.2707* 0.3639* 0.2429 0.4199
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Figure 3: Embedding visualization.

classification are used here again, but nodes with more than one
ground-truth label are filtered. The number of clusters 𝐾 is set
as the number of categories. For DBLP, since the dataset is quite
large, we pick the 10 most frequent categories and randomly select
20,000 nodes for efficient evaluation. NMI and ARI [14] are used
as evaluation metrics. Since the performance of KMeans can be
affected by the initial centroids, we run each experiment 10 times
and report the average performance. In addition to quantitative
evaluation, we conduct visualization to depict the distribution of
Heterformer embeddings, where t-SNE [42] is utilized to project
node embeddings into a 2-dimensional space and the nodes are
colored based on their ground-truth label. Further information can
be found in Appendix A.3.4 and A.3.5.
Results. The quantitative result can be found in Table 6, where
Heterformer is the best on DBLP and outperforms most baselines
on Goodreads. The embedding visualization of Heterformer is pre-
sented in Figure 3. In both datasets, the clustering structure is
quite evident, indicating that node representations learned by Het-
erformer are category-discriminative, even though the training
process is based on link prediction only.

4.5 Ablation and Parameter Studies
4.5.1 Ablation Study on Virtual Neighbor Tokens. In Section 3.1.1,
signals from both text-rich and textless neighbors are incorporated
and finally contribute to center node encoding serving as two virtual
neighbor tokens. To study the effectiveness of information from
both text-rich and textless neighbors, we conduct a model study of
several Heterformer variants: (a)No-VNT adds noVirtualNeighbor
Tokens and only encodes textual information for each node; (b)No-
TR (Text-Rich) only adds one virtual neighbor token corresponding
to textless neighbors in Eq. (4); (c) No-TL (TextLess) only adds one
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Figure 4: Ablation study on neighbor aggregation.
Table 7: Ablation study on heterogeneous projection.

Method DBLP Goodreads
PREC MRR PREC MRR

Heterformer 0.8474 0.9019 0.7633 0.8400

Heterformer w/o hp 0.8415 0.8983 0.7493 0.8325

(a) DBLP (b) Goodreads

Figure 5: Effect of textless node embedding dimension.

virtual neighbor token corresponding to text-rich neighbors in Eq.
(4); (d)Heterformer is our full model. The results of link prediction
for these variants are shown in Figure 4. We can find that: (a)
Heterformer outperforms all model variants, which demonstrates
that signals from both text-rich and textless neighbors are essential
for center node encoding; (b) No-TL performs better than No-TR,
implying that text-rich neighbors are more important than textless
neighbors since they contain rich text semantics.

4.5.2 Ablation Study on Type Heterogeneous Projection Matrices. In
Eq. (8) and Eq. (9), we propose to utilize different projection matri-
ces (so-called heterogeneous projection, hp for short) for different
types of nodes and edges. In this section, we conduct an ablation
study to verify the effectiveness of this design. The model with the
same projection matrices for different types of nodes and edges is
denoted as Heterformer w/o hp, while our full model is denoted
asHeterformer. The results are shown in Table 7. From the result,
Heterformer consistently outperforms Heterformer w/o hp on both
DBLP and Goodreads, which demonstrates the importance of this
design and the necessity of modeling node/edge type heterogeneity.

4.5.3 Dimension of Textless Node Embedding. To understand the ef-
fect of textless node embedding dimension, we test the performance
of Heterformer in link prediction with the embedding dimension
varying in 4, 8, 16, 32, and 64. The result is shown in Figure 5. It can
be seen that the performance of Heterformer generally increases as
the embedding dimension becomes larger. This is intuitive since the
more parameters 𝑧𝑢 has (before overfitting), the more information
it can represent.

4.6 Textless Node Embedding Warm-Up
4.6.1 Training Curve Study. In Section 3.2.2, we propose a method
to warm up textless node embeddings. Now, we empirically demon-
strate the effectiveness of such a warm-up process. The training
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Figure 6: Performance of Heterformer during the training
process with and without textless node warm-up.
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Figure 7: Self-attention probabilitymap study ofHeterformer
with and without textless node warm-up for a random sam-
ple. The x-axis corresponds to different key/value tokens and
the y-axis corresponds to different Heterformer layers.

processes (Section 4.2) of Heterformer without textless node warm-
up (w/o textless.warm-up) and the full Heterformer model are
shown in Figure 6. We also show Heterformer without the uti-
lization of textless node neighbor information (w/o textless) as
reference. The 𝑥-axis denotes the number of training epochs, while
the 𝑦-axis represents PREC on the validation set. Training is ter-
minated if PREC on the validation set does not increase for three
consecutive epochs. It is shown that: (a) On both datasets, Het-
erformer with textless node embedding warm-up can have better
performance than that without textless nodewarm-up; (b) OnDBLP,
Heterformer without textless node embedding warm-up cannot
even outperform Heterformer without the utilization of textless
neighbor information. This finding implies the necessity of good
initialization for textless node embeddings. Since modeling textless
nodes can improve the representation capacity (see Section 4.5.1)
in text-rich networks, our warm-up strategy is, therefore, verified
to be effective towards model convergence.

4.6.2 Attention Map Study. In order to understand how the warm-
up step proposed in Section 3.2.2 benefits Heterformer training,
we further conduct a self-attention probability map study for a
random sample from DBLP in Figure 7. We random pick up a token
from this sample and plot the self-attention probability of how
different tokens (x-axis), including virtual neighbor tokens ([tk_tr]
and [tk_tl] are the text-rich and the textless neighbor virtual tokens
respectively) and the first eight original text tokens ([tk_x], xP
t1..8u), will contribute to the encoding of this random token in
different layers (y-axis). From the figure, we can find that the virtual
neighbor tokens (first two columns from left) are more deactivated
for the model without warm-up, which means that the information
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Table 8: Scalability Study for BERT+MeanSAGE, Graphform-
ers and Heterformer on Goodreads.

Model Time Memory

BERT+MeanSAGE 440.18ms 19,637MB

GraphFormers 490.27ms 20,385MB

Heterformer 508.27ms 20,803MB

from neighbors is not well utilized during encoding. However, the
neighbor virtual tokens (first two columns from left) become more
activated after warm-up, bringing more useful information from
neighbors to enhance center node text encoding.

4.7 Scalability Study
We conduct theoretical analysis on time complexity and memory
complexity for Heterformer in Section 3.4.2. In this section, we per-
form an empirical time and memory efficiency comparison among
BERT+MeanSAGE, GraphFormers, and Heterformer. The evalua-
tion is performed on one NVIDIA RTX A6000 GPU. The result is
shown in Table 8. For time complexity, we run each model for one
mini-batch (each mini-batch contains 30 samples) and report the
average running time. For memory complexity, we report the GPU
memory needed to train the correspondingmodels. From the results,
we can find that the time and memory cost of training Heterformer
is quite close to that of BERT+MeanSAGE and GraphFormers.

5 RELATEDWORK
5.1 Pretrained Language Models
Pretrained language models (PLMs) aim to learn general language
representations from large-scale corpora, which can be general-
ized to various downstream tasks. Early studies on PLMs mainly
focus on context-free text embeddings such as word2vec [30] and
GloVe [31]. Recently, motivated by the fact that the same word can
have different meanings conditioned on different contexts, deep
language models such as ELMo [33], BERT [6], RoBERTa [25], XL-
Net [51], ELECTRA [4], and GPT [1, 34] are proposed to capture
the contextualized token representations. These models employ
the Transformer architecture [43] to capture long-range and high-
order semantic dependency and achieve significant improvement
on many downstream NLP tasks [24, 29, 47]. However, these models
mainly focus on text encoding. In contrast, Heterformer leverages
both text and heterogeneous structure (network) information when
the latter is available.

5.2 Heterogeneous Graph Neural Networks
Graph neural networks (GNNs) such as GCN [22], GraphSAGE [12],
and GAT [44] have been widely adopted in representation learn-
ing on graphs. Since real-world objects and interactions are often
multi-typed, recent studies have considered extending GNNs to
heterogeneous graphs [39]. The basic idea of heterogeneous graph
neural networks (HGNNs) [2, 13, 35, 46, 52, 53] is to leverage node
types, edge types, and meta-path semantics [40] in projection and
aggregation. For example, HAN [46] proposes a hierarchical atten-
tion mechanism to capture both node and meta-path importance;
HGT [13] proposes an architecture similar to Transformer [43] to
carry out attention on edge types. For more HGNN models, one
can refer to recent surveys [8, 48]. Lv et al. [27] further perform
a benchmark study of 12 HGNNs and propose a simple HGNN

model based on GAT. Despite the success of these models, when
some types of nodes carry text information, they lack the power of
handling textual signals in a contextualized way. In contrast, Heter-
former jointly models text semantics and heterogeneous structure
(network) signal in each Transformer layer.

5.3 Text-Rich Networks
Most previous studies on homogeneous text-rich networks adopt a
“cascaded architecture” [18, 23, 26, 58, 59]. One drawback of such
models is that text and network signals are processed consecu-
tively, so the network information cannot benefit text encoding.
To overcome this drawback, GraphFormers [50] introduce nested
Transformers so that text and node features can be encoded jointly.
Edgeformers [17] introduce graph-empowered Transformers for
representation learning on textual-edge networks. However, they
assume that the network is homogeneous and all nodes have text
information. These assumptions do not usually hold in real-world
text-rich networks. Most previous studies on heterogeneous text-
rich networks focus on specific text-related tasks. For example,
HyperMine [37] and NetTaxo [36] study how network structures
can benefit taxonomy construction from text corpora; LTRN [56]
and MATCH [57] leverage document metadata as complementary
signals for text classification. In comparison, Heterformer focuses
on the generic representation learning task. As far as we know,
SHNE [54] is the major previous work also studying representation
learning on heterogeneous text-rich networks. However, it still
adopts the “cascaded architecture” mentioned above and does not
explore the power of Transformer encoders (as it was proposed
before BERT [6]). In comparison, Heterformer proposes a heteroge-
neous network-empowered Transformer which can jointly capture
textual signals and structure signals.

6 CONCLUSIONS
In this paper, we introduce the problem of node representation learn-
ing on heterogeneous text-rich networks and propose Heterformer,
a heterogeneous network-empowered Transformer architecture to
address the problem. Heterformer can jointly capture the heteroge-
neous structure (network) information and the rich contextualized
textual information hidden inside the networks. Experimental re-
sults on various graph mining tasks, including link prediction, node
classification, and node clustering, demonstrate the superiority of
Heterformer. Moreover, the proposed framework can serve as a
building block with different task-specific inductive biases. It would
be interesting to see its future applications on real-world text-rich
networks such as recommendation, abuse detection, tweet-based
network analysis, and text-rich social network analysis.
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A SUPPLEMENTARY MATERIAL
A.1 Summary of Heterformer’s Encoding

Procedure

Algorithm 1: Encoding Procedure of Heterformer

Input :The center node 𝑣𝑖 , its text-rich neighbors p𝑁𝑣𝑖 and
textless neighbors q𝑁𝑣𝑖 . Initial token sequence
embedding 𝑯

p0q
𝑣𝑗 for 𝑣 𝑗 P p𝑁𝑣𝑖 Y t𝑣𝑖u.

Output :The embedding 𝒉𝑣𝑖 for the center node 𝑣𝑖 .
begin

// obtain text-rich nodes’ first layer
encoded token embeddings

for 𝑣 𝑗 P p𝑁𝑣𝑖 Y t𝑣𝑖u do
𝑯

p0q1

𝑣𝑗 Ð Normalizep𝑯 p0q
𝑣𝑗 `MHAp0qp𝑯

p0q
𝑣𝑗 qq ;

𝑯
p1q
𝑣𝑗 Ð Normalizep𝑯 p0q1

𝑣𝑗 `MLPp0qp𝑯 p0q1

𝑣𝑗 qq ;
end
// obtain textless nodes’ initial embedding

after warm-up

for 𝑣𝑠 P q𝑁𝑣𝑖 do
𝒉
p0q
𝑣𝑠 Ð WarmUpp𝑣𝑠q ;

end
for 𝑙 “ 1, ..., 𝐿 do

// text-rich neighbor aggregation

for 𝑣 𝑗 P p𝑁𝑣𝑖 Y t𝑣𝑖u do
𝒉
p𝑙q
𝑣𝑗 Ð 𝑯

p𝑙q
𝑣𝑗 [CLS] ;

end
p𝒛
p𝑙q
𝑣𝑖 Ð AGGpt𝒉p𝑙q𝑣𝑗 |𝑣 𝑗 P p𝑁𝑣𝑖 Y t𝑣𝑖uuq ;

// textless neighbor aggregation

for 𝑣𝑠 P q𝑁𝑣𝑖 do
𝒉
p𝑙q
𝑣𝑠 Ð𝑾

p𝑙q

𝜙𝑖
𝒉
p0q
𝑣𝑠 , where 𝜙p𝑣𝑠q “ 𝜙𝑖 ;

end
q𝒛
p𝑙q
𝑣𝑖 Ð AGGpt𝒉p𝑙q𝑣𝑠 |𝑣𝑠 P q𝑁𝑣𝑖 Y t𝑣𝑖uuq ;

// obtain the center node’s token
embedding for next layer

r𝑯
p𝑙q
𝑣𝑖 Ð p𝒛

p𝑙q
𝑣𝑖 }𝑯

p𝑙q
𝑣𝑖 }q𝒛

p𝑙q
𝑣𝑖 ;

r𝑯
p𝑙q1

𝑣𝑖 Ð Normalizep𝑯 p𝑙q
𝑣𝑖 `MHAp𝑙qp𝑯

p𝑙q
𝑣𝑖 ,

r𝑯
p𝑙q
𝑣𝑖 qq ;

𝑯
p𝑙`1q
𝑣𝑖 Ð Normalizep r𝑯 p𝑙q1

𝑣𝑖 `MLPp𝑙qp r𝑯 p𝑙q1

𝑣𝑖 qq ;
// update text-rich neighbors’ token

embeddings

for 𝑣 𝑗 P p𝑁𝑣𝑖 do
𝑯

p𝑙q1

𝑣𝑗 Ð Normalizep𝑯 p𝑙q
𝑣𝑗 `MHAp𝑙qp𝑯

p𝑙q
𝑣𝑗 qq ;

𝑯
p𝑙`1q
𝑣𝑗 Ð Normalizep𝑯 p𝑙q1

𝑣𝑗 `MLPp𝑙qp𝑯 p𝑙q1

𝑣𝑗 qq ;
end

end
return 𝒉𝑣𝑖 Ð 𝑯

p𝐿`1q
𝑣𝑖 [CLS] ;

end

A.2 Details of Baselines
We have 11 baselines including vanilla text/graph encoding models,
GNN-cascaded Transformers, and nested Transformers.
Vanilla text/graph models:

‚ MeanSAGE [12]: This is a GNN method utilizing the mean func-
tion to aggregate information from neighbors for center node
representation learning. The initial node feature vector is bag-
of-words weighted by TF-IDF. The number of entries in each at-
tribute vector is the vocabulary size of the corresponding dataset,
where we keep the most representative 10000, 2000, and 5000
words for DBLP, Twitter, and Goodreads, respectively, according
to the corpora size.

‚ BERT [6]: This is a benchmark PLM pretrained on two tasks:
next sentence prediction and mask token prediction. For each
text-rich node, we use BERT to encode its text and take the output
hidden state of the [CLS] token as the node representation.

Homogeneous GNN-cascaded Transformers:
‚ BERT+MeanSAGE [12]: We stack BERT with MeanSAGE (i.e.,
using the output text representation of BERT as the input node
attribute vector of MeanSAGE). The BERT+MeanSAGE model
is trained in an end-to-end way. (Both parameters in BERT and
GNN are finetuned.) Other BERT+GNN baselines below have the
same cascaded architecture.

‚ BERT+MaxSAGE [12]: MaxSAGE is a GNN method utilizing
the max function for neighbor aggregation to generate center
node representation.

‚ BERT+GAT [44]: GAT is a GNNmethod with an attention-based
neighbor importance calculation, and the importance scores are
utilized as weights to aggregate neighbors.

Homogeneous Nested Transformers:
‚ GraphFormers [50]: This is the state-of-the-art nested Trans-
former model, which has graph-based propagation and aggrega-
tion in each Transformer layer.

Since homogeneous baselines assume all nodes are associated with
text information, when applying them to our datasets, we remove
all textless nodes. Therefore, homogeneous baselines cannot be
used for textless node classification (i.e., Table 5).
Heterogeneous GNN-cascaded Transformers:
‚ BERT+RGCN [35]: RGCN is a heterogeneous GNN model. It
projects neighbor representations into the same latent space
according to the edge types. The initial embeddings for textless
nodes are learnable vectors for baselines in this section which is
the same to Heterformer.

‚ BERT+HAN [46]: HAN is a heterogeneous GNN model. It pro-
poses a heterogeneous attention-based method to aggregate
neighbor information.

‚ BERT+HGT [13]: HGT is a heterogeneous GNN model. Inspired
by the Transformer architecture, it utilizes multi-head attention
to aggregate neighbor information obtained by heterogeneous
message passing.

‚ BERT+SHGN [27]: SHGN is a heterogeneous GNN model. Moti-
vated by the observation that GAT is more powerful than many
heterogeneous GNNs [27], it adopts GAT as the backbone with
enhancements from learnable edge-type embeddings, residual
connections, and normalization on the output embeddings.

Heterogeneous Nested Transformers:
‚ GraphFormers++ [50]: To apply GraphFormers to heteroge-
neous text-rich networks, we add heterogeneous graph propaga-
tion and aggregation in its final layer. The generalized model is
named GraphFormers++.
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A.3 Dataset Description
A.3.1 Training. We train our model in an unsupervised way via
link prediction. For each paper in DBLP, we select one neighbor
paper for it and construct a positive node pair. For each POI in Twit-
ter, we select one neighbor tweet for it to make up a positive node
pair. For each book in Goodreads, one neighbor book is selected to
build a positive node pair. All these node pairs are used as positive
training samples. The model is then trained via in-batch negative
sampling.

A.3.2 Link Prediction. The training, validation, and testing sets in
this section are the same as those in Section A.3.1.

A.3.3 Node classification. The 30 categories for DBLP papers are:
“Artificial intelligence”, “Mathematics”, “Machine learning”, “Com-
puter vision”, “Computer network”, “Mathematical optimization”,
“Pattern recognition”, “Distributed computing”, “Datamining”, “Real-
time computing”, “Algorithm”, “Control theory”, “Discrete mathe-
matics”, “Engineering”, “Electronic engineering”, “Theoretical com-
puter science”, “Combinatorics”, “Knowledge management”, “Multi-
media”, “Computer security”, “WorldWideWeb”, “Human-computer
interaction”, “Control engineering”, “Parallel computing”, “Informa-
tion retrieval”, “Software”, “Artificial neural network”, “Communi-
cation channel”, “Simulation”, and “Natural language processing”.

The 10 categories for Goodreads books are: “children”, “fiction”,
“poetry”, “young-adult”, “history, historical fiction, biography”, “fan-
tasy, paranormal”, “non-fiction”, “mystery, thriller, crime”, “comics,
graphic”, and “romance”.

A.3.4 Node Clustering. For DBLP, since the dataset is quite large,
we pick the most frequent 10 categories and randomly select 20,000
nodes for efficient evaluation. The 10 selected categories are: “Arti-
ficial intelligence”, “Mathematics”, “Machine learning”, “Computer
vision”, “Computer network”, “Mathematical optimization”, “Pat-
tern recognition”, “Distributed computing”, “Data mining”, and
“Real-time computing”. For Goodreads, we use all 10 categories in
the original dataset for clustering.

A.3.5 Embedding Visualization. In this section, we use t-SNE [42]
to project node embeddings into low-dimensional spaces. Nodes
are colored based on their ground-truth labels. To make the vi-
sualization clearer, we select 4 naturally separated categories for
DBLP and 5 for Goodreads. The 4 selected categories for DBLP are
“Mathematics”, “Computer networks”, “Information retrieval”, and
“Electronic engineering”. The 5 selected categories for Goodreads
are “fiction”, “romance”, “mystery, thriller, crime”, “non-fiction”,
and “children”.

A.4 Reproducibility Settings
A.4.1 Hyper-parameters. For a fair comparison, the training objec-
tive for all compared methods including Heterformer and baselines
are the same. The hyper-parameter configuration for the node repre-
sentation learning process can be found in Table 9, where “neighbor
sampling” means the number of each type of neighbor sampled for
the center node during learning.

In Section 4.3, we adopt a multi-layer perceptron (MLP) with 3
layers and hidden dimension 200 to be our classifier. We employ
Adam optimizer [21] and early stop 10 to train the classifier. For
text-rich node classification, the learning rate is set as 0.001. While
for textless node classification, the learning rate is 0.01.

Table 9: Hyper-parameter configuration.
Parameter DBLP Twitter Goodreads

learning rate 1e-5

weight decay 1e-3

adam epsilon 1e-8

early stop 3

textless embedding 64

chunk 𝑘 12

train batch size 30

test batch size 100 300 100

PLM backbone BERT-base-uncased

token sequence length 32 12 64

neighbor sampling
paper:5 tweet:6 book:5, shelves:5
authors:3 mention:2 author:2, language code:1
venue:1 tag:3,user:1 publisher:1, format:1

Table 10: Case study of query-based retrieval on DBLP. Top-7
retrieved papers are shown for each method.

Query: news recommendation with personalization

Retrieved Paper Title

BE
RT

(✗) News Recommenders: Real-Time, Real-Life Experiences
(✗) News recommender systems – Survey and roads ahead
(✗) A Survey on Challenges and Methods in News Recommendation
(✓) Personalized news recommendation: a review and an experimental investigation
(✓) Interweaving Trend and User Modeling for Personalized News Recommendation
(✗) A multi-perspective transparent approach to news recommendation
(✗) Workshop and challenge on news recommender systems

G
ra
ph

Fo
rm

er
s

(✓) Personalized news recommendation based on links of web
(✗) Interpreting News Recommendation Models
(✗) Do recommendations matter?: news recommendation in real life
(✓) Personalized News Recommendation Based on Collaborative Filtering
(✓) LOGO: a long-short user interest integration in personalized news recommendation
(✗) The Intricacies of Time in News Recommendation
(✗) Workshop and challenge on news recommender systems

H
et
er
fo
rm

er

(✓) User attitudes towards news content personalization
(✓) A system for generating personalized virtual news
(✓) Personalized News Recommendation Based on Collaborative Filtering
(✗) Automatic news recommendations via aggregated profiling
(✓) Design and Deployment of a Personalized News Service
(✓) The design and implementation of personalized news recommendation system
(✓) Personalizing news content: An experimental study

A.5 Case Study: Paper Retrieval
To further demonstrate the capability of Heterformer in encod-
ing text semantics, we present a case study of query-based paper
retrieval on DBLP.
Settings. The models are asked to retrieve relevant papers for a
user-given query based on the inner product of the encoded query
embedding and the paper embedding, where the query embedding
is obtained by encoding query text only with each model.
Results. Table 10 lists the top-7 papers for the query “news recom-
mendation with personalization” retrieved by BERT, GraphFormers,
and Heterformer. It is shown that our model can have more ac-
curate retrieved results than both baselines. In fact, according to
network homophily [28], papers on the same topics (e.g., personal-
ization/news recommendation) are likely to have connections (i.e.,
become text-rich neighbors) or share similar meta-data (i.e., share
similar textless neighbors). While BERT can consider text infor-
mation only and GraphFormers enriches text information with
text-rich neighbors only, our Heterformer is capable of utilizing
both text-rich neighbors and textless neighbors to complement text
signals via network-empowered Transformer encoding (Section
3.1), which finally contributes to higher retrieval accuracy.
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