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A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all

members are �-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are �-close to the

property. In particular, no set in the collection has roughly half of its members �-close to the property and the others �-far

from it.

We show that the collection of aine spaces displays a proximity gap with respect to ReedśSolomon (RS) codes, even over

small ields, of size polynomial in the dimension of the code, and the gap applies to any � smaller than the Johnson/Guruswamiś

Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over ields of (at least) linear size in the RS

code dimension, for � smaller than the unique decoding radius. Concretely, if � is smaller than half the minimal distance of an

RS code � ⊂ F�� , every aine space is either entirely �-close to the code, or alternatively at most an (�/�)-fraction of it is

�-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party

cryptographic protocols, and concretely eicient proof systems.

We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for ReedśSolomon

codes (due to BerlekampśWelch and GuruswamiśSudan) on a formal element of an aine space. This involves working

with ReedśSolomon codes whose base ield is an (ininite) rational function ield. Our proofs are obtained by developing an

extension (to function ields) of a strategy of Arora and Sudan for analyzing low-degree tests.
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1 INTRODUCTION

A variety of protocols, arising in the contexts of interactive proofs, distributed storage and cryptography, give
rise to the following problem regarding proximity to a linear code � ⊂ F�� over a inite ield F� of minimal

relative distance �� . These myriad protocols assume oracle access to a batch of vectors u = {�0, . . . , �� } ⊂ F�� and
their soundness requires that each and every vector �� be close to � in relative Hamming distance. Furthermore,
soundness deteriorates as a function of the largest distance between some vector �� and the code � . Thus, we
seek protocols that minimize the number of queries to the entries of the vectors in u, while maximizing the
probability of recognizing when some vector �� is signiicantly far from � .

The linearity of� suggests a natural approach, irst explored by Rothblum, Vadhan andWigderson [35]: sample
a uniformly random vector�′ in the span of u (denoted span(u)) and view the distance between�′ and� , denoted
Δ(�′,� ), as a proxy for the maximal distance between some member of u and � . To argue soundness, we would
like to show that if even a single �� is �-far from (all members of)� , then a randomly chosen �′ is also far from� .
Indeed, the paper [35] that suggested this approach also showed for any � , that whenever a single �� is �-far
from � , then nearly all samples �′ are at least �/2-far from � . Here and henceforth, we use Δ to denote relative
Hamming distance and say ł� is �-close to � ž, denoted Δ(�,� ) ≤ � , when Δ(�, �) ≤ � for some � ∈ � ; otherwise
we say ł� is �-far from � ž (denoted Δ(�,� ) > �).

Note that the result above incurs a 2× degradation in the proximity parameter � : the worst-case assumption
Ð that some �� is �-far from � Ð implies an average-case distance that is only �/2. Eliminating the proximity
degradation is easy when the ield size is exponential in the code length. More concretely, if � ≫ 2�� (� ) , where
� is the binary entropy function, then a union bound over agreement sets shows that for � < �� , if �� is �-far
from� then so are nearly all �′ ∈ span(u). However, exponential ield size is prohibitively large in the context of
the motivating applications. Obtaining similar results over ields of sub-exponential size appears to be much
more challenging.

A number of works looked at this question and were able to remove the degradation in � with polynomial ield
size. Ames et al. [1] showed that for proximity parameters � that are smaller than half of the unique-decoding
radius of� (i.e., when � < �� /4), nearly all�′ ∈ span(u) are �-far from� . The proximity bound was subsequently
improved to � < �� /3 by Roth and Zémor [34]. Ben-Sasson et al. [12] showed similar results for � above the

unique decoding radius, holding for any � < 1 − 4
√
1 − �� , and the state of the art1 was given in [11], holding

for any � < 1 − 3
√
1 − �� . In fact, this latter result was shown to be tight for certain RS codes, in particular, of

maximal blocklength � = �.
Ames et al., who were the irst to show that in certain cases the average-case distance of �′ ∈ span(u) from �

is nearly-always equal to the worst-case distance of �� ∈ u from � , also raised the following intriguing question,
which is at the focus of our investigation here: For which codes and what range of � does the following statement
hold?

If some �∗ ∈ span(u) is �-far from � , then so are nearly all �′ ∈ span(u).
One implication of our main result is that when � is an RS code over a suiciently large ield Ð polynomially

large in the code’s blocklength Ð and when � is smaller than the Johnson/GuruswamiśSudan list decoding bound,
the above phenomenon holds. We refer to it as a proximity gap, as explained next.

1.1 Gaps and proximity gaps

When a łgapž is mentioned in theoretical computer science, it usually refers to a situation where all objects
under consideration must fall into one of two categories, and these categories display a large gap according to
some metric. Striking examples are given by PCP reductions whose outputs are constraint satisfaction problems

1We note that these improvements give a roughly 2× improvement to the protocol of [35] in which this question was originally studied,

when that protocol is instantiated with codes of suiciently large relative distance (see Theorem 3.4 there).
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that lie in one of two categories: satisiable instances in which some assignment satisies all constraints, and
unsatisiable instances in which all assignments fail to satisfy more than an � fraction of constraints. Another gap
example underlies randomized algorithms. For instance, the MillerśRabin primality test relies on a gap between
primes and composites: in the latter case (composites), at least three-quarters of the integers serve as composite
witnesses whereas for primes none do, leading to a łgapž of measure 3/4.

Our main result can be phrased as a proximity gap according to the following deinition.

Deinition 1.1 (Proximity gap). Let P ⊂ Σ
� be a property and C ⊂ 2Σ

�
be a collection of sets. Let Δ be a distance

measure on Σ
� . We say that C displays a (�, �)-proximity gap with respect to P under Δ if every S ∈ C satisies

exactly one of the following:

(1) Pr�∈S [Δ(�, P) ≤ �] = 1.
(2) Pr�∈S [Δ(�, P) ≤ �] ≤ � .

We call � the proximity parameter and � is the error parameter. By default, Δ denotes the relative Hamming distance
measure.

Using this deinition, our main result can be informally stated as follows: if � ⊂ F� is an RS code and � ⊂ F�
is an aine space, then either all elements of � are close to � , or otherwise, nearly all elements of � are far from
� . In other words, there is no aine � in which roughly half of the elements are close to � while the other half
are far from � .
Throughout this paper, F� denotes the ield of size �, and RS[F�,D, �] is the RS code of dimension � + 1 and

blocklength � = |D| containing as its codewords the polynomials of degree ≤ � , evaluated on D. Formally,

RS[F�,D, �] = {� : D → F� | deg(� ) ≤ �}, (1.1)

where deg(� ) denotes the degree of the interpolant of � ś the unique polynomial of degree stricly less than |D|
whose evaluation on D is � .

We use � to denote the rate � = �+1
�

of the code. The letter � will denote distance in a metric space, often
referring to the relative Hamming distance between a function and an ambient RS code, and � will denote an
error parameter, the probability that a łbad eventž occurs (with varying deinitions of the term łbad eventž).

The following result has two parts and each part has its own proof. The irst part holds only below the unique
decoding radius but has a smaller error parameter, denoted �U, which is in fact essentially tight; the second part
holds for proximity parameters up to the Johnson/GuruswamiśSudan bound (which is greater than the unique
decoding bound) but has a larger error bound �J (the proof of the second part is also signiicantly harder).

Theorem 1.2 (Proximity gap for RS codes). For all prime powers � and D ⊆ F� , the collection CAfine of aine

spaces in FD� displays a (�, �)-proximity gap with respect to the RS code � := RS[F�,D, �] of blocklength � and rate

� = �+1
�
, for any � ∈ (0, 1 − √

�), and � = � (�, �, �, �) deined as the following piecewise function:

• Unique decoding bound: For � ∈
(
0,

1−�
2

]
, the error parameter � is

� = �U = �U (�, �) :=
�

�
. (1.2)

• Johnson bound: For � ∈
(
1−�
2 , 1 − √

�
)
, setting � ≔ 1 − √

� − � , the error parameter � is

� = �J = �J (�, �, �, �) :=
(� + 1)2(

2min
(
�,

√
�

20

))7
�

= �

(
1

(��)� (1) ·
�2

�

)
(1.3)
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There are two striking aspects to this result. First, the proximity parameter � can take any value smaller than
the famous Johnson/GuruswamiśSudan bound, which is the largest distance for which we know of eicient
(list) decoding algorithms. (Looking ahead, the GuruswamiśSudan algorithm will play a crucial, though non-
algorithmic, role in our proofs.) Second, the size of the ield needed to achieve this result is relatively small Ð
linear in the blocklength when � is below the unique decoding radius � < (1 − �)/2 and, for ixed rate, quadratic
in blocklength for larger � up to the list decoding bound.

Remark 1.1 (On the tightness of our results). Wemake several comments on the margins for possible improvement.

• Proximity parameter � . The maximal proximity parameter � for which Theorem 1.2 applies happens
to coincide with the Johnson/GuruswamiśSudan list-decoding bound (1 − √

�). This evidently follows
from the techniques we use here, which rely on list-decoding algorithms that reach that bound. However,
we conjecture that Theorem 1.2 holds even for larger proximity parameters, up to capacity (1 − �). See
Conjecture 8.4 and the discussion there.

• Field size �. The bound in Eq. (1.3) which reaches the Johnson bound becomes nontrivial only for ields
of size � that are at least quadratically larger than the blocklength �. In contrast, the bound for smaller
proximity parameters, below the unique decoding radius, works for � = � (�) (see Eq. (1.2)). We point out
that for certain combinations of ields and rate parameters one cannot hope to reach the Johnson bound
with linear size ields, as this would contradict prior results from [12].

• Error parameter �. In the unique decoding regime, our bound on the error � is sharp in the sense that
aine spaces do not all display a proximity gap with � · � being sublinear in �, for ixed distance parameter
� . A simple example is of the aine line {�0 + ��1 : � ∈ F�}, where �0, �1 : D → F� are such that on a set
D′ ⊂ D of size |D′ | = �(1 − �) − 1 we have �0 |D′ = �1 |D′ = 0, and on the complement we have that
�1 |D\D′ = 1, and �0 takes �� + 1 distinct non-zero values. We then have Δ(�0 + ��1,� ) ≤ � for each of the

�� + 1 values of � ∈ F� for which −� is in the image of �0 |D\D′ , but that Δ(�0,� ) = � + 1
�
> � , thus this

line does not display a (�, ��
�
)-proximity gap with respect to the code.

1.2 Concentration bounds

Theorem 1.2 implies the following concentration bound, saying that for any aine space in which the element
farthest from the RS code is within the Johnson/GuruswamiśSudan radius, nearly all elements are at exactly the
same distance from the code(!).
For two sets� ,� ⊂ Σ

� deine the divergence2 of� from � as D(� ,� ) := max�∈� Δ(�,� ).

Corollary 1.3 (Concentration bounds). Let � ,�, �, �,D and � be as deined in Theorem 1.2. Let � ⊂ FD� be an

aine space over F� and denote �∗ := D(� ,� ). If �∗ is smaller than the Johnson/GuruswamiśSudan bound, then
nearly all elements of� have distance exactly �∗ from the code. In other words, if �∗ ∈ (0, 1 − √

�), then

Pr
�∈�

[Δ(�,� ) ≠ �∗] ≤ �,

where � = � (�, �, �, �∗) is as deined in Theorem 1.2.

Proof. Deine � = �∗ − 1
�
< �∗. Note that because the values of Δ are integer multiples of 1

�
, so are �∗ and � ,

and we have that for all � ∈ � , Δ(�,� ) < �∗ ⇐⇒ Δ(�,� ) ≤ � . On the other hand by the maximality of �∗, we
have Δ(�,� ) ≠ �∗ ⇐⇒ Δ(�,� ) < �∗, i.e.

Pr
�∈�

[Δ(�,� ) ≠ �∗] = Pr
�∈�

[Δ(�,� ) < �∗] = Pr
�∈�

[Δ(�,� ) ≤ �] .

2Note that divergence is not symmetric as can be seen, e.g., when� is a strict subset of� .
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This probability cannot equal 1, since some � ∈ � exists with Δ(�,� ) = �∗, by deinition. Thus the proximity gap
from Theorem 1.2 gives

Pr
�∈�

[Δ(�,� ) ≠ �∗] = Pr
�∈�

[Δ(�,� ) ≤ �] ≤ � (�, �, �, �) ≤ � (�, �, �, �∗) = �,

where the last inequality is due to � being monotone non-decreasing as a function of the � parameter. □

When the divergence of� from the RS code � is greater than the Johnson/GuruswamiśSudan bound (�∗ >
1 − √

�) we may still use Theorem 1.2 to conclude that nearly all elements of� are ≈ (1 − √
�)-far from � , but

what remains an interesting open problem is whether nearly all members of� are maximally far (�∗-far) from � .
An example from [11] shows that this need not be the case for RS codes where � = � (�).

1.3 Correlated agreement

Next, we state the main technical theorem proved in the paper. Consider two vectors �0, �1 ∈ FD . The result
says that if suiciently many elements in the 1-dimensional aine space � = {�0 + ��1 : � ∈ F} are suiciently
close (�-close) to the RS code � , then there must be a nontrivial subdomain D′ ⊂ D of density 1 − � in D,
such that restricting �0, �1 to D′ gives a valid RS codeword (evaluated over D′). We refer to the property that
such a D′ exists as correlated agreement, in the sense that �0, �1 and the elements of � do not only have large
agreement with the RS code individually, but also share a common large agreement set. The result has two ranges
of parameters, as in prior statements in this paper. For proximity parameters in the unique decoding regime this
is proved in Theorem 4.1, and for proximity parameters in the list decoding regime this is proved in Theorem 5.1.

Theorem 1.4 (Main Theorem Ð Correlated agreement over lines). Let � ,�, �, �,D and � be as deined in
Theorem 1.2. For �0, �1 ∈ FD� , if � ∈ (0, 1 − √

�) and
Pr

�∈F�
[Δ(�0 + � · �1,� ) ≤ �] > �,

where � is as deined in Theorem 1.2, then there exist D′ ⊂ D and �0, �1 ∈ � satisfying

• Density: |D′ |/|D| ≥ 1 − � , and
• Agreement: �0 agrees with �0 and �1 agrees with �1 on all of D′.

Furthermore, in the unique decoding regime � ∈
(
0,

1−�
2

]
, there exists a unique maximal D′ satisfying the above,

with unique �� .

Remark 1.2 (Sampling from extension ields). One may sample � from a inite extension ield F�′ of F� . In this
case, the statement above holds with �U and �J modiied by replacing � with �′ in the denominators of Eqs. (1.2)
and (1.3), respectively. Note that even in this setting, the vectors �0, �1 deduced to exist in Theorem 1.4 belong to
RS[F�,D, �], not just in RS[F�′ ,D, �], because �0, �1 have high agreement with �0, �1 ∈ FD� . The ability to sample

from a larger ield (and incur smaller error) applies to the other statements of this section but for simplicity we
state all of them using a single ield F� to both deine � and sample � from.

Motivated by applications (described later), we generalize the theorem above to two interesting cases: (i)
low-degree parameterized curves, and (ii) higher-dimensional aine spaces; details follow.

Correlated agreement over parameterized curves. The irst extension of Theorem 1.4 extends it from the case of
a łlinež passing through �0 and �1 (the line being {�0 + ��1 : � ∈ F}) to a łlow-degree curvež with coeicients
�0, �1, . . . , �� , as described below. This result is of particular importance for two reasons. First, it leads to deran-
domized testing of veriiable secret sharing and other multi-party protocols (cf. Section 8.1). Second, it improves
the soundness analysis of the Fast RS IOPP (FRI) protocol [5], which is used in concretely eicient and transparent
(public coin) proof systems [6ś9, 17]. We discuss this application in Sections 3.2 and 8.2.

J. ACM
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Let u = {�0, . . . , �� } ⊂ FD� . The parameterized curve of degree � that is generated by u is the following collection

of vectors in FD� :

curve(u) :=
{
�� :=

�︁

�=0

�� · ��

����� � ∈ F�

}
.

Theorem 1.5 (Correlated agreement for low-degree parameterized curves). Let � , �, �, � , D and � be
as deined in Theorem 1.2. Let u = {�0, . . . , �� } ⊂ FD� . If � ∈ (0, 1 − √

�) and
Pr

�∈curve(u)
[Δ(�,� ) ≤ �] > � · �,

where � is as deined in Theorem 1.2, then there exist D′ ⊂ D and �0, . . . , �� ∈ � satisfying

• Density: |D′ |/|D| ≥ 1 − � , and
• Agreement: for all � ∈ {0, . . . , �}, the functions �� and �� agree on all of D′.

Furthermore, in the unique decoding regime � ∈
(
0,

1−�
2

]
, there exists a unique maximal D′ satisfying the above,

with unique �� .

Correlated agreement for aine spaces. The second generalization of our Main Theorem 1.4, extends it from the
1-dimensional case (aine line) to an aine space of arbitrary dimension. Theorem 1.2 follows directly from the
following statement. Note that Main Theorem 1.4 is actually a case of the following result (for 1-dimensional
spaces). However, we stated that special case separately because we prove it irst, and from it deduce the more
general case (see Section 6.3).

Theorem 1.6 (Correlated agreement over affine spaces). Let� ,�, �, �,D and � be as deined in Theorem 1.2.
For �0, �1, . . . �� ∈ FD� let� = �0 + span{�1, . . . , �� } ⊂ FD� be an aine subspace. If � ∈ (0, 1 − √

�) and
Pr
�∈�

[Δ(�,� ) ≤ �] > �,

where � is as deined in Theorem 1.2, then there exist D′ ⊂ D and �0, . . . , �� ∈ � satisfying

• Density: |D′ |/|D| ≥ 1 − � , and
• Agreement: for all � ∈ {0, . . . , �}, the functions �� and �� agree on all of D′.

Furthermore, in the unique decoding regime � ∈
(
0,

1−�
2

]
, there exists a unique maximal D′ satisfying the above,

with unique �� .

Correlated agreement (Theorem 1.6) is a suicient condition for proximity gaps with the same error and
proximity parameters (Theorem 1.2). We leave as open problems (i) whether correlated agreement is also a
necessary condition for a proximity gap. And, if the answer to this question is negative, an intriguing possibility
arises: (ii) obtaining proximity gaps for � > 1 − √

� while bypassing the correlated agreement approach we took
here.

Organization of the rest of the paper: We start with an overview of the proof of Main Theorem 1.4 in Section 2. In
Section 3 we survey several applications of our results. Section 4 gives the (simpler) proof of the unique decoding
radius part of Main Theorem 1.4. Section 5 gives the proof of the (harder) list decoding radius part of that theorem,
by reducing it to a diferent, more parameterized format (Appendix A provides the preliminary algebraic setup
for the proof). In Section 6 we prove the generalizations of Main Theorem 1.4 to curves (Theorem 1.5) and higher
dimensional aine spaces (Theorem 1.6). In Section 7 we state and prove weighted versions of our theorems.
Section 8 concludes with more details on selected applications Ð veriiable secret sharing (VSS) and Fast RS IOPs
of Proximity (FRI).
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2 PROOF OVERVIEW

In this section, we give an overview of our proof strategy of our main result, Theorem 1.4.
Recall the setup. � = RS[F�,D, �] is the Reed-Solomon code of of degree ≤ � polynomials evaluated at the

points of D ⊆ F� , where |D| = �. We have functions �0, �1 : D → F� such that for many � ∈ F� , the function
�0 + ��1 is �-close to � . We want to deduce that �0 and �1 are themselves close to � .

The main conceptual idea of our analysis is to work with the function ield K = F� (� ) with a formal variable � ,
and to study the various received words �0 +��1 for the code� simultaneously by considering the formal received
word� = �0 + ��1 : D → K for the (big ield) ReedśSolomon code RS[K,D, �]. It turns out that showing that�
is close to a (well-structured) codeword of this ReedśSolomon code is suicient to show that �0 and �1 are both
close to the original ReedśSolomon code� . With this viewpoint, our proof strategy is to run a decoding algorithm
for ReedśSolomon codes on this received word� = �0 +��1. Our goal is to analyze the execution of this algorithm
to show that it succeeds in inding a nearby ReedśSolomon codeword. We do such an analysis by relating it to
the execution of that decoding algorithm on the various received words �0 + ��1 for the ReedśSolomon code �
over the small ield F� .

This strategy is instantiated with two diferent decoding algorithms for ReedśSolomon codes: the Berlekampś
Welch unique decoding algorithm, and the GuruswamiśSudan list decoding algorithm [22]. Both instantiations
give rise to intriguing algebraic questions about polynomials, which we resolve using nontrivial tools from
algebraic geometry and the theory of algebraic function ields.

Instantiation with the BerlekampśWelch Algorithm. Over a ield F and an evaluation domain D, given a received
word � : D → F, the BerlekampśWelch decoding algorithm for inding the (unique) nearby polynomial
� (� ) ∈ F[� ] close to � works as follows. First it searches for low-degree polynomials �(� ), �(� ) ∈ F[� ] such
that for each � ∈ D:

�(�)� (�) = �(�).
Then the nearby polynomial � (� ) is recovered as �(� )/�(� ) (which a priori may be a rational function).

In our setting, we irst run the BerlekampśWelch algorithm with received word � = �0 + ��1 : D → K

over the big ield K = F� (� ) (we will sometimes view this as a function � (�, �) with � : D × F� → F�). Our
goal is to ind a nearby ReedśSolomon codeword (low-degree polynomial) � (� ) ∈ K[� ] which has the special
form �0 (� ) + ��1 (� ), where each �� (� ) ∈ F� [� ]. The irst step of the BerlekampśWelch algorithm gives us
�(� ), �(� ) ∈ K[� ] = F� (� ) [� ]. Making the � dependence explicit, we write these as �(�,� ), �(�,� ). This
gives us a candidate, namely �(�,� )/�(�,� ), for being a ReedśSolomon codeword close to� . We will show
two things: that �(�,� )/�(�,� ) is a polynomial in F� (� ) [� ] (a priori it is only a rational function), and that it
is close to� .
The crucial step is to substitute � = � into �(�,� ) and �(�,� ) for various values of � ∈ F� . Letting �� =

�0 + ��1 : D → K (the result of substituting � = � into� ), it turns out that �(�, �), �(�, �) ∈ F� [� ] are what we
would get if we run the BerlekampśWelch algorithm (over the small ield F�) on received word�� . In particular,
for many � we get that �(�, �) is divisible by �(�, �) in F� [� ], and �(�, �)/�(�, �) equals the ReedśSolomon
codeword close to�� . This then allows us to use the PolishchukśSpielman lemma (a strengthening of the classical
Bezout theorem, which deduces divisibility of bivariate polynomials from divisibility of univariate restrictions)
to conclude that �(�,� )/�(�,� ) is in fact a polynomial � (�,� ) in K[� ] of low degree in � . The inal step is
to show that � (�,� ), when viewed as a function from D to K, is close to � , and that � (�,� ) is of the form
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�0 (� ) + ��1 (� ). This is again achieved by considering � substitutions. We know that for many �, � (�, �) is the
degree at most � polynomial �� (� ) that is close to�� . This means that the � -degree of � (�, �) is at most � , and
that for many � ∈ D and � there is agreement between � (�, �) and�� (�) = � (�, �). On the other hand, for any
� ∈ D,� (�, ·) is a linear function, and � (�, ·) is a low degree rational function, and so they cannot agree on too
many points unless the low degree rational function � (�, ·) formally equals the linear function� (�, ·). Therefore
this formal equality must happen for many � ∈ D, i.e., � (·, � ) is close to� . Finally, by simple linear algebra, if
� (�, � ) is linear in � for many � , we conclude that � (�,� ) is linear in � . This gives us our desired conclusion.

Instantiation with the GuruswamiśSudan Algorithm. Over a ield F and an evaluation domain D, given a received
word � : D → F, the Sudan and GuruswamiśSudan decoding algorithms for inding all nearby polynomials
� (� ) ∈ F[� ] close to � work as follows. First one searches for a low-degree polynomial � (�,� ) ∈ F[�,� ] such
that for each � ∈ D,

� (�, � (�)) = 0.

(This is the Sudan algorithm; for the GuruswamiśSudan algorithm we ask that � vanishes at each (�, � (�)) with
high multiplicity.) Then every nearby polynomial � (� ) turns out to have the property that � − � (� ) divides
� (�,� ) in the bivariate polynomial ring F� [�,� ]. This means that all such � (� ) can be found by factoring
� (�,� ).

In our setting, we run the GuruswamiśSudan algorithm with received word� = �0 + ��1 : D → K over the
big ield K = F� (� ). Our goal is to ind a nearby low-degree polynomial � (� ) ∈ K[� ] which has the special
form �0 (� ) + ��1 (� ), where each �� (� ) ∈ F� [� ]. The irst step of the GuruswamiśSudan algorithm gives us
a bivariate polynomial � (�,� ) ∈ K[�,� ] such that � (�,� (�)) = 0 for each � ∈ D. Again, we write � (�,� )
as � (�,�, � ) ∈ F� (� ) [�,� ] to make the � dependence explicit (and we can clear denominators in � without
afecting the vanishing property).

Substituting � = �, we get that � (�,�� (�), �) = 0 for each � ∈ D. This means that the polynomial �� (�,� ) ∈
F� [�,� ] given by �� (�,� ) = � (�,�, �) ∈ F� [�,� ] is the bivariate polynomial we would have found while
running the GuruswamiśSudan algorithm with received word �� : D → F� over the small ield F� . Since for
many � ∈ F� we have that �� is close to some codeword �� (� ) ∈ F� [� ] of the ReedśSolomon code � , we get
that � − �� (� ) divides � (�,�, �) for many � ∈ F� . We would like to deduce from this that over the big ield K
there is a low-degree polynomial � (� ) ∈ K[� ] such that � − � (� ) divides � (�,� ) in K[�,� ] (and furthermore,
this � (� ) is close to� and has a simple � dependence).

This is the most involved (and interesting) part of the analysis. We will factor� (�,�, � ) completely into linear
factors in � .

� (�,�, � ) = � (�,� ) (� − �1 (�,� )) (� − �2 (�,� )) · · · (� − �� (�,� )). (2.1)

This is natural to do, because we are searching for factors that are linear in � . Then we substitute � = � into this,
and we should see �� (� ) as one of the factors.
However, getting such a factorization for � (�,�, � ) may not be possible with polynomials �� (�,� ), and we

have to look (far) beyond. What kind of objects should we think of the �� as? After getting the �� (�,� ), we
would like to (a) argue about when �� (�,� ) is a polynomial in � , and (b) substitute � = � into it and inspect the

resulting object. To enable these, we will express �� (�,� ) in the ring � = K[[� ]], the ring of power series in � ,
whose coeicients are in the algebraic closure of K = F� (� ). The power series in � representation allows us to

see when �� is a polynomial in � , and the coeicients being simply algebraic functions in � (such as
√
� 3 + � + 1)

allows us to reason about substitutions � = �. Having decided on �, it is a simple application of Hensel lifting
(after possibly a random shift) to show that a factorization as in (2.1) is possible with the �� ∈ �.
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Rather than describe what happens in full generality, we just sketch what would happen in a special case with
most of the action. Suppose F� is not of characteristic 2, and we have:

� (�,�, � ) = � 2 − (� 3 + � + 1) (1 − �� ).
Going to the ring �, and letting � =

√
� 3 + � + 1 ∈ K, it turns out that � (�,�, � ) factors as:

� (�,�, � ) =
(
� −

√
� 3 + � + 1

√
1 − ��

)
·
(
� +

√
� 3 + � + 1

√
1 − ��

)

=

(
� −

(
� − � · �

2
� − � · � 2

16
� 2 + . . .

)) (
� +

(
� − � · �

2
� − � · � 2

16
� 2 + . . .

))

where we used the Taylor series expansion for
√
1 − �� . Now substitute � = � for � ∈ F� . Substituting values

into algebraic functions like � is a slightly delicate operation (which square root do you choose? how do you
make these choices consistent for diferent algebraic functions?), but it can be done using basic concepts from the
theory of algebraic function ields. Another tool that we need from the theory of algebraic function ields is an
analogue of the degree of a polynomial, to measure complexity of algebraic functions and bound the number of
their zeroes. In this sketch we avoid going into any such details.
Doing the substitution gives us:

�� (�,� ) = � (�,�, �)

=

(
� −

(
� (�) − � (�) · �

2
� + · · · + ��� (�)��� � + · · ·

))
×(

� +
(
� (�) − � (�) · �

2
� + · · · + ��� (�)��� � + · · ·

))
.

By properties of the GuruswamiśSudan decoding algorithm, we know for all łgoodž � ∈ F� where�� is close to
some low degree polynomial �� , we must have that � − �� (� ) divides �� (�,� ). Given the factorization above,
one of the following must occur:

(1) �� (� ) =
(
� (�) − � (� ) ·�

2
� − � (� ) ·�2

16
� 2 + · · · + ��� (�)��� � + · · ·

)
,

(2) �� (� ) = −
(
� (�) − � (� ) ·�

2
� − � (� ) ·�2

16
� 2 + · · · + ��� (�)��� � + · · ·

)
.

Whichever power series ends up equaling �� (� ), the coeicient of ��+1 in that power series must equal 0. In our
particular example, we deduce that ��+1� (�)��+1 = 0 for some constant ��+1. Assuming ��+1 is nonzero in F� , we

get that � (�)��+1 = 0 for every good �. Finally we use the fact that a nonzero algebraic functions of low łdegreež

like � (� )��+1 =
√
� 3 + � + 1 · ��+1 cannot vanish at too many points �. This means that there cannot be too

many good �, contradicting our hypothesis. We conclude that� (�,�, � ) cannot equal � 2 − (� 3 +� + 1) (1−�� )!
A very similar argument derives a contradiction unless � (�,�, � ) has a factor of the form � − � (� ) for some

� (� ) ∈ K[� ] of degree at most � . The only twist is that we may have to focus on the coeicient of some diferent
power ��+� in the power series than the coeicient of ��+1 (in case the coeicient of ��+1 in the power series
is identically 0). To make this argument work, we need to estimate the łdegreež of the algebraic functions that
appear as coeicients in these power series. This involves a careful study of the Hensel lifting process, especially
its efect on the complexity of its coeicients.
The inal part of the argument, showing that some � − � (� ) factor of � (�,�, � ) is such that � (� ) has high

agreement with� and all the coeicients of � (� ) are linear polynomials in � , is similar to what happened in the
unique decoding case. Instead of using the fact that a low degree rational function and a linear function cannot
have high agreement unless they are equal, we use the fact that a low degree algebraic function and a linear
function cannot have high agreement unless they are equal. This completes our sketch of the proof.
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Technical issues. When we actually implement the argument, there are some technical changes we make (both
for simplicity and for optimizing parameters). First, we do not do the proof by contradiction, but instead show
how to ind the factor of the form � − � (� ). Next, instead of directly doing Hensel lifting with � , we factor �
into irreducible factors over F� [�,�, � ] and focus on a single irreducible factor that is łresponsiblež for many
of the �� . This helps in that we do not need to factor arbitrarily messy �’s completely into linear factors, but
only those which have the property that � (�,�, �) has a linear factor of the form � − �� (� ). Finally, instead of

arguing over the algebraic closure K, we go to a small algebraic extension L of K which is rich enough to express
all the coeicients of the relevant power series. These changes lead to some simpliications and quantitative
improvements in our proofs.

Relationship with the Arora-Sudan low degree test [2]. A beautiful and fundamental paper of Arora and Sudan [2],
analyzed the łline vs. linež low degree test for multivariate polynomials in the high error regime. The heart of
their paper is a theorem that says that if a function � : F2� → F� is such that for most lines � given by � = �� + �
in F2� the univariate function obtained from restricting � to � (denoted � |�) is close to a low degree univariate

polynomial, then � is itself close to a low degree bivariate polynomial. This is closely related to our theorem which
deduces a similar conclusion about a received word� : D×F� → F� , also based on restrictions to lines. Our proof
is heavily inluenced by the proof in [2] (which in turn builds on fundamental results on polynomial factorization
and the Hilbert irreducibility theorem by Kaltofen [28, 29]). There is one crucial diference in our proof. Our
approach is spearheaded by the idea of running all arguments over the big ield K = F� (� ) (as opposed to treating
� as another variable over F� just like � and � , as is done in [2]). This diference afects our proofs in a tangible
sense: our proofs are based on bivariate interpolation over the big ield K rather than trivariate interpolation
over the small ield F� . Inside the analysis, our proofs use power series in one variable over function ields rather
than power series in two variables over inite extensions of F� . This leads to more involved algebraic tools being
needed for our proof (most seriously the use of algebraic function ields), but also yields three improvements.
First, our result is about axis parallel restrictions � = � (for � ∈ F�) instead of more general linear restrictions
� = �� + � (for �, � ∈ F�). This simpler form of restriction is important for our applications. Second, our result
deduces structure all the way up to the Johnson radius, while the result in Arora-Sudan is to a smaller radius
(polynomially worse in terms of agreement parameter). Third, our result works over ields that are quadratic in
the degree of the polynomials involved whereas the Arora-Sudan result requires ields that are quartic (at least)
in the degree.

3 APPLICATIONS

Our proximity gap results are motivated by the following general setting. There are several purported codewords
u = {�1, . . . , �� } ⊂ F�� of an RS code� . A veriier would like to be assured that they are all close to� . This is done
by taking a random linear combination of the �� and checking its proximity to � . The analysis of this simple test,
which is useful in a variety of application scenarios, turns out to be surprisingly challenging. Indeed, it is closely
related to the proximity gap problem we study in this work.

This batch veriication problem arises in two kinds of settings: a distributed setting, where entries of u are split
between multiple parties (łserversž) and may not be known to any single entity, and a centralized setting, where
u is entirely known to a prover and can be queried by a veriier. We briely explain the role of proximity gaps in
these two types of applications.
In the distributed setting, the coeicients of the random linear combination is either generated by a single

veriier or jointly via a distributed coin tossing protocol. Each server then responds with its own share of the
output. Veriication succeeds if the joint output is a codeword, or alternatively it is close to the code. Examples
for applications in the distributed setting include veriiable secret sharing (see Section 8.1) and secure multiparty
computation protocols, such as those from [19, 27]. These applications typically rely on unique decoding and can
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thus beneit from our near-optimal analysis for this regime. In this type of applications, the main challenge is
protecting against an adaptive adversary who may choose which servers to corrupt after seeing the coeicients
of the random linear combination. To defeat such an adversary, we need to ensure that if at least one of the �� is
far from the code, then (with high probability) so is their random linear combination. If this were not the case,
an adaptive adversary could eliminate all inconsistencies by corrupting a small set of servers whose identity is
determined by the linear combination. Proximity gaps rule out this kind of attack.
In the centralized setting, u is known to a prover and can be queried by the veriier. A typical realization is

using a tree-based succinct cryptographic commitment that binds the prover to a uniquely deined u and yet
enables eicient local opening of symbols queried by the veriier. In this case, the veriier challenges the prover by
choosing the coeicients �� of the random linear combination. The prover, who claims that all �� are codewords
in � , must respond with a valid codeword � ∈ � . The veriier checks that � agrees with �′ = �1�1 + . . . + ���� by
querying a random entry of � and the corresponding entries of u and checking their consistency. (To amplify
soundness, the veriier can query several random entries of �.) Here too, proximity gaps guarantee that if one of
the �� is far from � , then (with high probability) so is �′. This ensures that the veriier detects an inconsistency
with high probability. Examples for applications in the centralized setting include communication-eicient proof
systems [1, 5, 35], homomorphic commitment schemes [14], and secure two-party computation protocols [23, 26].
See more in Section 3.2 below.
An appealing feature of the simple łrandom linear combinationž test is that it can be implemented with low

communication and computation costs. In particular, in the distributed setting it suices for each server to send
a single ield element to the veriier. In both settings, communicating the � random coeicients �� is typically
not a bottleneck. This random challenge can be made shorter either by using a cryptographic pseudorandom
generator or unconditionally by using simple derandomization techniques. In particular, one can generate all
coeicients as distinct powers of a single random ield elements and appeal to the parameterized curves variant
of the proximity gap theorem (Theorem 1.5).
Our new proximity gaps imply a tighter analysis of applications that test proximity to RS codes. Generally

speaking, in the distributed setting the improved proximity gap bounds imply a constant-factor improvement in
the resilience threshold, namely the number of corrupted parties that can be tolerated. In the centralized setting,
one typically gets constant-factor savings in the overall communication and computation costs. While often
ignored in theory-oriented research, the latter kind of improvements can be very signiicant in the context of
practical succinct proof systems.

Why RS codes? ReedśSolomon codes are commonly used in distributed storage, eicient proof systems, and
cryptographic protocols. They are useful because of their MDS property, near-linear encoding, and eicient
(list)-decoding algorithms. A more qualitative feature of RS codes, which is commonly used in proof systems and
cryptography, is the following multiplication-friendliness property: when � = |D| > 2� , the pointwise products
of codewords in � = RS[F�,D, �] span a linear code that has nontrivial minimal distance, namely the code
RS[F�,D, 2�].

We now give more concrete examples of applying proximity gaps to analyze batch-veriication tasks that arise
in diferent application scenarios.

3.1 Distributed storage and cryptography

Distributed storage. Consider a scenario in which � users encode their inputs using a length-� RS code � =

RS[F�,D, �], where server � stores the �-th symbol of each of the � codewords. Suppose that some of the�� symbols
were corrupted, say by a transient malware that overwrites a subset of the symbols before being discovered and
eliminated. A veriier would like to get a quick estimate of the amount of damage caused by the malware. A
natural idea is to have the servers communicate a random linear combination �′ of the potentially corrupted
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codewords � � . Using the basic proximity gap result (Theorem 1.2), if at least one of � � is �-far from the code

(for � ≤ 1−�
2

or � < 1 − √
�), then �′ is �-far from the code except with small failure probability (at most �/�

for � ≤ 1−�
2
). Thus, for suiciently large F� , the distance of �

′ from � provides a reliable upper bound on the
maximal relative distance of a vector �� from � within the proximity bounds of Theorem 1.2. This estimate is not
too pessimistic in the sense that if only a �-fraction of the servers were afected, the upper bound obtained by the
test is no bigger than �.

Distributed proximity test for Interleaved RS codes. The above analysis leaves something to be desired: if �′

is within (suiciently small) distance � from � , the veriier is only assured that each � � is individually within
distance � from � . In some applications, we would like to get the stronger guarantee that in such an event there
is a �-fraction of the coordinates whose removal makes all � � consistent with � . Moreover, we would like to
identify this set of coordinates, which is uniquely deined in the unique decoding regime. This is useful even in
the above distributed storage scenario, but will be even more useful for the applications we discuss next. The
stronger feature can be conveniently captured using the notion of an Interleaved ReedśSolomon (IRS) code. In
an IRS(� , �) code, the codewords are � × � matrices in which each row is a codeword in � . The symbols of such
a codeword are the matrix columns. Namely, a codeword consists of � symbols in Fℓ� . The following theorem,
which follows easily from Theorem 1.6, phrases the stronger guarantee provided by the reined analysis in terms
of proximity testing for IRS codes. We state it for the unique decoding regime, which suices (and is sometimes
required) for the applications we discuss next. For � within the unique decoding radius of� , we denote by Γ(�,� )
the set of coordinates on which � disagrees with the closest codeword from � .

Theorem 3.1 (Distributed proximity test for Interleaved RS codes). Let � = RS[F�,D, �] for |D| = �

and V = IRS(� , �). We view codewords in � and V as vectors in F�� and matrices in F�×�� respectively. Let � = �+1
�

and � ≤ 1−�
2
. Let u ∈ F�×�� and let �′ = ��u where � ∈� F�� .

• Completeness: If Δ(u,V) ≤ � then Pr[Δ(�′,� ) ≤ �] = 1 and moreover Pr[Γ(�′,� ) ≠ Γ(u,V)] ≤ �/�.
• Soundness: If Δ(u,V) > � then Pr[Δ(�′,� ) ≤ �] ≤ �/�.

We refer to the above test as distributed because it can be implemented with low communication complexity in
the distributed setting, where each server holds a diferent column of u. One can similarly obtain an aine version
with the same guarantee, where u has an additional row �0 that is always added to �

′ (i.e., with coeicient �0 = 1),
and the code V is extended to IRS(� , � + 1). This aine version is useful for zero-knowledge variants of the test,
where a single random �0 ∈ � is used for blinding �1, . . . , �� . This is used in the cryptographic applications we
discuss next.

General cryptographic protocols. Theorem 3.1 serves as a useful tool for analyzing cryptographic protocols in
the presence of an adaptive adversary who can dynamically choose the set of corrupted parties. For instance, it
shows that secure multiparty computation protocols from [19, 27] are adaptively secure when the adversary can
corrupt roughly 1/3 of the parties. The best previous proximity gaps from [11, 12, 34] could only get up to 1/4
corruption threshold in the same setting. Adaptive security, in turn, is crucial for the general transformation
from [25, 26] of these honest-majority protocols to two-party protocols and protocols for dishonest majority.
Indeed, this is the context that gave rise to proximity gap in the analysis of the Ligero zero-knowledge proof
system [1], which applies a variant of the transformation from [25] to a variant of the protocol from [19]. We
give a detailed exposition of the application of proximity gaps to veriiable secret sharing, which serves as a basis
for the above results on secure multiparty computation, in Section 8.
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3.2 Soundness of the Fast RS IOPP (FRI) protocol

FRI is an Interactive Oracle Proof of Proximity (IOP of Proximity, or IOPP) as deined in [10, 33]. An IOP is an
interactive protocol in which the veriier has oracle access to messages sent by the prover, so she need not read
and store those messages but may query random entries of them. FRI is one of a family of protocols for testing
proximity to the RS code (an łRS proximity testingž (RPT) protocol). Its purpose is to check whether a received
word � : D → F� belongs to a pre-speciied RS code � := RS[F�,D, �] and to reject words that are �-far from
the code with high probability and low query complexity. Due to its eiciency it is used as a building block in
several recent succinct zero knowledge protocols including scalable and transparent (public coins) arguments
of knowledge (STARKs) [6, 7], Aurora [9] and its succinct version [8], and Fractal [17], to name a few. These
systems have been shown by Chiesa et al. to be sound in the quantum random oracle model (hence are łplausibly
post-quantum securež) [16]. Therefore, understanding the concrete soundness error of FRI, denoted �FRI, is of
signiicant practical value, in addition to being a theoretically interesting question.
Consider the case of � that is maximally far from � , i.e., Δ(� ,� ) ≈ 1 − � (this holds, e.g., for random � , with

high probability). Fix a target soundness error bound 2−� (in concrete settings, � is the łsecurity parameterž,
often ixed to � = 128). The communication complexity of FRI is dominated by the number � of iterations of the
QUERY phase, so the question at hand is:

How many iterations � of the QUERY phase are needed to obtain �FRI ≤ 2−�?

The initial analysis of [5] required a number � that is quite large, and does not tend to 0 even for tiny rates
� . This was improved by [12] to � ≈ 4�/log 1

�
, and then by [11] to � ≈ 3�/log 1

�
. Sadly, that paper also showed

that this bound is tight, at least when the ield size � equals the code’s blocklength �. Our main result regarding
FRI (Theorem 8.3) shows that for � ≫ �2 we can reduce the number � of iterations by 33% to � ≈ 2�/log 1

�
,

which leads to communication complexity that is at least 33% shorter, for provable soundness settings. The actual
savings in the provable soundness case are likely larger, due to smaller ield size and the ability of the improved
analysis to operate with any sequence of oracle sizes in the FRI COMMIT phase (as discussed after the statement
of Theorem 8.3).

4 CORRELATED AGREEMENT OVER LINES Ð UNIQUE DECODING RADIUS

In this section we prove the correlated agreement result for proximity parameters that are below the unique

decoding radius, corresponding to the � = �U part of Theorem 1.4. In this case, where � ∈
(
0,

1−�
2

]
, our result

holds even with ields that are merely linear in the blocklength of the code. More importantly, the proof will
present several ideas, in simpliied form, that will appear again in the proof of harder, list decoding regime, result
(Theorem 5.1).

As usual, let F� be the inite ield of size �, let D ⊆ F� be an evaluation domain of size |D| = �, let � ≤ �, and

let � = RS[F�,D, �] be the ReedśSolomon code of rate � = �+1
�
.

Theorem 4.1. Suppose � ≤ (1 − �)/2. Let �0, �1 : D → F� be functions. Let

� = {� ∈ F� : Δ(�0 + ��1,� ) ≤ �}
and suppose |� | > �. Then � = F� . Furthermore there are �0, �1 ∈ � such that for all � ∈ F� ,

Δ(�0 + ��1, �0 + ��1) ≤ �

and in fact

|{� ∈ D : (�0 (�), �1 (�)) ≠ (�0 (�), �1 (�))}| ≤ � |D|.

Remark 4.1. Since � ≤ 1−�
2 is within the unique decoding regime, the above �0, �1, which are simultaneously and

separately �-close to �0, �1, are also unique.
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4.1 The BerlekampśWelch decoder

Our proof will be based on the BerlekampśWelch decoding algorithm. Let F be a (general) ield and D ⊆ F. For
an integer � , consider the ReedśSolomon code � = RS[F,D, �]. We will be instantiating the BerlekampśWelch
decoder for RS codes over two diferent ields: the łstandardž ield F� and the ield of rational functionsK = F� (� )
in the formal variable � . We now give a quick description of the BerlekampśWelch decoding algorithm and some
useful aspects of it.

Given a received word� : D → F, where D ⊆ F, and an error parameter � = ⌊��⌋ ≤ �−�−1
2

, the Berlekampś
Welch decoder inds the unique (if any) polynomial � (� ) ∈ F[� ] such that Δ(�, �) ≤ � .

The irst step of the BerlekampśWelch decoder is to set up a homogeneous system of linear equations to ind
polynomials �(� ), �(� ) ∈ F[� ] with deg(�) ≤ � , deg(�) ≤ � + � such that:

�(�)� (�) = �(�)
for all � ∈ D.

Lemma 4.2. The homogeneous system of linear equations above has the following properties:

(1) Suppose Δ(�,� ) ≤ � . Then the system of equations has a nonzero solution.
(2) Suppose Δ(�,� ) ≤ � . Then for any nonzero solution �(� ), �(� ) to the system of equations, we have that

�(� ) divides �(� ) (in F[� ]), and the polynomial �(� )/�(� ) belongs to � and is at distance at most � from
� .

(3) If �(� ), �(� ) is a nonzero solution to the system of equations such that �(� ) divides �(� ) (in F[� ]), then
the polynomial � (� ) = �(� )/�(� ) has the property3 that Δ(�, �) ≤ � .

These properties are well known; see [21] for a proof.
Note that in our setting we have � + 2� < �. This may seem to be of if one is used to seeing the condition

� + 2� ≤ �. The diference is that we use � here to denote the degree of the polynomials rather than the dimension
of the code, and they are indeed of by 1 from each other.

After writing down the system of linear equations and establishing it has a solution, we will make use of the
following linear algebra lemma to obtain bounds on non-trivial solutions:

Lemma4.3. Consider a homogenous linear system of� equations in� variables, given by amatrix� = (�� � )�≤�,�≤� ∈
��,� (F), with rank � < �. Then there exists a non-trivial solution to the system (�1, . . . , ��) ∈ F� , where for each
1 ≤ � ≤ �, either � � = 0 or � � = ± det�� ,� , where �� ,� is the � , � minor of �, � ⊆ {1, . . . ,�}, � ⊂ {1, . . . , �} \ { �} and
|� | = |� | = � .

Proof. Without loss of generality, we may assume that� = � : otherwise, identify � linearly independent rows
of � and remove all the remaining rows. This does not afect the set of solutions.

Given the� ×� matrix � with rank � =� < �, identify � linearly independent columns of �. Let � be the � × �

submatrix of � corresponding to these � columns, and let� be any � × (� + 1) submatrix of � which contains � as
a submatrix. Cramer’s rule gives us a linear combination of the columns of � which equals 0, with coeicients
being the determinants of the � ×� minors of� . This yields the desired solution � . Note that � is indeed non-trivial,
since one of its elements is the determinant of the minor �, which is non-zero by construction.

□

4.2 The PolishchukśSpielman lemma

Another ingredient that will appear in our proof is a version of the PolishchukśSpielman lemma [31]. The version
we state below is a variation of [37, Lemma 4.2.18], with some diferences in the precise conditions, and we
include a derivation in Appendix D.

3Note that � (� ) may have degree larger than � . The best we can say about the degree of � (� ) is that it is at most � + � .
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Lemma 4.4. Let F be a ield, and let �� , �� , �� , �� , �� , �� , �� , �� be non-negative integers satisfying �� = �� −�� ,
�� = �� − �� . Let �(�,� ), �(�,� ) ∈ F[�,� ] be polynomials with degrees bounded by

deg� (�) ≤ �� , deg� (�) ≤ �� , deg� (�) ≤ �� , deg� (�) ≤ �� .

Suppose that for at least �� values of � ∈ F, there exist polynomials ��,� (� ) ∈ F[� ] with deg� (��,� ) ≤ �� such
that �(�, � ) = ��,� (� )�(�, � ), and similarly suppose that for at least �� values of � ∈ F, there exist polynomials
��,� (� ) ∈ F[� ] with deg� (��,�) ≤ �� such that �(�, �) = ��,� (� )�(�, �).

Finally, suppose
��

��
+ ��

��
< 1. (★)

If all conditions hold, then �(�,� ) | �(�,� ) as polynomials in F� [�,� ]. Furthermore, the quotient � (�,� ) =
� (�,� )
�(�,� ) satisies deg� (�) ≤ �� , deg� (�) ≤ �� , as well as � (�, �) = ��,� (� ) for at least �� − �� values of �, and

� (�, � ) = ��,� (� ) for at least �� − �� values of � .

4.3 Proof of Theorem 4.1

By deinition of � , for each � ∈ � , we have a polynomial �� (� ) ∈ F� [� ] with deg(��) ≤ � such that Δ(�0 +
��1, ��) ≤ � .

Our strategy is to run the BerlekampśWelch decoder over the ield K = F� (� ) of rational functions in the
formal variable � .

First deine a received word

� : D → K
given by:

� (�) = �0 (�) + ��1 (�).
We sometimes also use the notation� (�, � ) to denote �0 (�) + ��1 (�).

We will try to ind a polynomial � (�,� ) ∈ F� [�,� ] of the form � (�,� ) = �0 (� ) +��1 (� ), where deg� (�) ≤ � ,
such that

� (�, � ) = � (�)
for at least � − � choices of � ∈ D.

4.3.1 Step 1: Finding �(�,� ), �(�,� ). The irst step of the BerlekampśWelch algorithm is to ind nonzero
�(�,� ), �(�,� ) ∈ K[� ] of degrees ≤ � and ≤ � + � (in the variable � ) respectively such that

�(�, � )� (�) = �(�, � ) (4.1)

for all � ∈ D, where � = ⌊��⌋ as before. Setting this up as a homogeneous linear system over K, we get an
� × (� + 2� + 2) matrix � (� ) with entries being polynomials in � , of degree ≤ 1 for the � + 1 columns of the
�-variables, and degree 0 for the � +� +1 columns of the � variables. Explicitly, writing�(�,� ) = ∑

� �� (� )� � and
�(�,� ) = ∑

� �� (� )� � , in the row corresponding to � ∈ D, the entry of� (� ) corresponding to the coeicient of
�� (� ) is �0 (�)�� + �1 (�)��� , and the entry corresponding to the coeicient of �� (� ) is simply −�� .

We now show that � (� ) has rank < � + 2� + 2 over K. Fix any (� + 2� + 2) × (� + 2� + 2) minor of � (� ),
and consider its determinant �(� ) ∈ F� [� ]. We will show that �(� ) = 0. This then implies that� (� ) has rank
< � + 2� + 2 over K.
For any � ∈ � , consider� (�). This is the homogeneous linear system that arises when we run the Berlekampś

Welch decoder with receivedword�0+��1 ∈ F�� over the ield F� . By deinition of � we know thatΔ(�0+��1,� ) ≤ � ,

and so Item 1 of Lemma 4.2 tells us that this linear system has a nonzero solution. Therefore � (�) has rank
< � + 2� + 2. Thus for each � ∈ � , �(�) = 0. Now note that deg(�) ≤ � + 1, since the � + 1 columns of � (� )
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corresponding to coeicients of �� are linear in � , and the rest of the columns are degree 0. On the other hand
we have |� | > � ≥ � + 1, hence we conclude that �(� ) = 0 formally, as desired.

We now know that the system of equations� (� ) has a non-trivial solution, with �� (� ), �� (� ) ∈ F� (� ). We
wish to show that in particular there is a solution in which �� (� ), �� (� ) are not just rational functions, but
polynomials of bounded � -degree. Indeed, this follows easily from Lemma 4.3, which exactly states that there is
a non-trivial solution where each �� (� ) or �� (� ) is either 0 or some determinant of a submatrix of� (� ). These
determinants are clearly polynomials, as the entries of� (� ) are polynomials. Moreover, the � + 1 columns of
� (� ) corresponding to � variables are linear in � , and the columns corresponding to � variables are constant
in � . Thus each product in the determinants may use at most � + 1 degree 1 entries, and have degree at most
� + 1; and for the determinants yielding the � variables, Lemma 4.3 also tells us that the column corresponding to
the variable must be excluded, and so there will be at most � degree 1 terms in the product. Thus, our obtained
solution will satisfy deg�� (� ) ≤ � + 1, deg�� (� ) ≤ � .

Writing now �(�,� ) = ∑�
�=0�� (� )� � , �(�,� ) = ∑�+�

�=0 �� (� )� � , we ind that �(�,� ), �(�,� ) ∈ F� [�,� ] are
polynomials with deg� (�) ≤ � , deg� (�) ≤ � + 1, deg� (�) ≤ � , deg� (�) ≤ � + � and:

�(�, � )� (�) = �(�, � )
for all � ∈ D. Using our alternate notation for� , we get:

�(�, � )� (�, � ) = �(�, � )
for all � ∈ D.

4.3.2 Step 2: Dividing �(�,� ) by�(�,� ) in F� [�,� ]. Now if � ∈ � , we know that the function� (·, �) : D →
F� has distance ≤ � from � . Consider the BerlekampśWelch system of linear equations associated with this
received word: namely, we consider the space of all pairs of polynomials � (� ), � (� ) of degrees ≤ �, ≤ � + �

respectively, such that

� (�)� (�, �) = � (�)
for all � ∈ D. We see that any solution � (� ), � (� ) of this system falls into one of two cases:

• � (� ) = 0, in which case � (�) = 0 for all � ∈ D, and so � (� ) = 0 too.

• � (� ) is nonzero, in which case Item 2 of Lemma 4.2 tells us that � (� ) divides � (� ), and � (� )
� (� ) = �� (� ).

In both these cases, � (� ) divides � (� ), and � (� ) = �� (� )� (� ). For any � ∈ � , �(�, �), �(�, �) are polynomials
that satisfy the properties of �, � above, thus �(�, �) = �� (� )�(�, �).

Let �� = �� = � , �� = � + � , �� = � + 1, �� = � , �� = 1, �� = � and �� = |� | > 1. We have seen that �(�, � ) =
� (�, � )�(�, � ) with � (�, � ) of degree at most �� = 1 for |D| = �� values of � , and �(�, �) = �� (� )�(�, �)
with �� (� ) of degree at most �� = � for |� | = �� values of �. The � and � degrees of � and � are bounded by
�� , �� , �� , �� , and inally

��

��
+ ��

��
=
� + �

�
+ � + 1

|� | <
� + 2� + 1

�
≤ 1.

We may therefore apply the PolishchukśSpielman lemma (Lemma 4.4). We ind that �(�,� ) divides �(�,� ) in
F� [�,� ], and the quotient � (�,� ) = �(�,� )/�(�,� ) is of degree at most �� = 1 in � and �� = � in � , and so
can be written as �0 (� ) + ��1 (� ), where �0, �1 are of degree at most � . Furthermore the lemma implies that

�0 (�) + ��1 (�) = � (�, � ) = � (�, � ) = �0 (�) + ��1 (�)
for at least �� − �� = � − � = ⌈�(1 − �)⌉ values of � ∈ D. Thus

Δ(�0 + ��1, �0 + ��1) ≤ �

as claimed. This completes the proof of Theorem 4.1. □
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5 CORRELATED AGREEMENT OVER LINES Ð LIST DECODING RADIUS

In this section we prove the large distance part of the correlated agreement theorem (Theorem 1.4), corresponding

to larger proximity parameters � ∈
(
1−�
2
, 1 − √

�
)
. First, we state the theorem in a slightly diferent form that will

be easier to work with.

Theorem 5.1. Let �0, �1 : D → F� , let� ≥ 3, deine

�0 (�,�) ≔ 1 − √
� −

√
�

2�
, (5.1)

and let � ≤ �0 (�,�). Deine
� = {� ∈ F� : Δ(�0 + ��1,� ) ≤ �} (5.2)

and suppose

|� | >
(1 + 1

2�
)7�7

3�3/2
�2 . (5.3)

Then �0, �1 are simultaneously �-close to � , i.e. ∃�0, �1 ∈ � such that

|{� ∈ D : (�0 (�), �1 (�)) = (�0 (�), �1 (�))}| ≥ (1 − �) |D|.

The above version easily implies the large distance part of Theorem 1.4 with the coarser

�J = �

(
1

(��)� (1) ·
�2

�

)

bound by setting� = �
(√

�

�

)
. For the more precise bound on �J, we need to be a little careful, and we do this in

the following theorem.

Theorem 5.2 (Correlated agreement over lines Ð alternative formulation). Let �0, �1 : D → F� . Let
�, � > 0 satisfy � ≤

√
�

20
and � ≤ �0 (�, �) ≔ 1 − √

� − �, and suppose

P�∈F� (Δ(�0 + ��1,� ) ≤ �) > �2�2

(2�)7� =: �J. (5.4)

Then �0, �1 are simultaneously �-close to � , i.e. ∃�0, �1 ∈ � such that

|{� ∈ D : (�0 (�), �1 (�)) = (�0 (�), �1 (�))}| ≥ (1 − �) |D|.

Proof of Theorem 5.2 from Theorem 5.1. Set� =

⌈√
�

2�

⌉
≥ 10, and note that � ≤ �0 (�, �) < �0 (�,�). Deine

� as in Theorem 5.1, and observe that (5.3) is satisied:

|� | > �J� = (2�)−7�2�2 >
(
� − 1
√
�

)7
�2�2 =

(
1 − 1

�

)7 �7

�3/2
�2 >

(1 + 1
2�

)7�7

3�3/2
�2,

where in the last step we use 3
(
1 − 1

�

)7
>

(
1 + 1

2�

)7
, which holds for� ≥ 10. Thus we may apply Theorem 5.1,

and conclude (�0, �1) is �-close to (�0, �1), as claimed. □
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5.1 The GuruswamiśSudan decoder

Our proof will be based on the GuruswamiśSudan decoding algorithm. Let F be a (general) ield and D ⊆ F. Let
� be the ReedśSolomon code RS[F,D, �]. Let � = �+1

�
denote its rate. We will be instantiating the Guruswamiś

Sudan decoder for RS codes over two diferent ields: the łstandardž ield F� and the ield of rational functions
K = F� (� ) in the formal variable � . We now give a quick description of the GuruswamiśSudan decoding
algorithm and some useful aspects of it.
First, some deinitions related to bivariate polynomials: The (�, �)-weighted degree of a monomial � �� � is

�� + � � . The (�, �)-weighted degree of a polynomial � (�,� ) ∈ F[�,� ] is the maximal (�, �)-weighted degree of
all its non-zero monomials. The vanishing multiplicity of a polynomial � (�,� ) ∈ F[�,� ] at a point (�,�) ∈ F2
is the smallest� such that the shifted polynomial � (� + �,� + � ), written as:

� (� + �,� + � ) =
︁
�, �

�� ��
�� �

has �� � = 0 for all (�, �) with � + � < �. We denote the vanishing multiplicity of � at (�,�) by mult(�, (�,�)).
Given a received word� : D → F and a multiplicity parameter�, the GuruswamiśSudan decoder irst solves

a homogeneous system of linear equations to ind a nonzero polynomial � (�,� ) ∈ F[�,� ] with (1, �)-weighted
degree less than �� (�) (for a certain function �� (�), speciied later), such that:

mult(�, (�,� (�)) ≥ �

for all � ∈ D.
The key properties of this system of linear equations that enable decoding are given by the following lemma,

proved by [22].

Lemma 5.3. Let �0 (�,�) = 1 − √
� −

√
�

2�
. With �� (�) = (� + 1

2
)√��, the system of linear equations set up above

has the following properties:

(1) The system has a nonzero solution � (�,� ).
(2) For any nonzero solution� (�,� ) of the above system, and for any polynomial � (� ) ∈ � such that Δ(�, �) ≤

�0 (�,�), we have that � − � (� ) divides � (�,� ) in the polynomial ring F[�,� ].

Note that these choices of �0 and �� are not quite optimal. The optimal values are only slightly better, but
their formulas are longer and messier, and we opt for simplicity in favor of optimization.

5.2 Proof of Theorem 5.1

By deinition of � , for each � ∈ � , we have a polynomial �� (� ) ∈ F� [� ] with deg(��) ≤ � such that Δ(�0 +
��1, ��) ≤ � .

Our strategy is to run the GuruswamiśSudan decoder over the ield K = F� (� ) of rational functions in the
formal variable � .

First deine a received word

� : D → K
given by:

� (�) = �0 (�) + ��1 (�).
We sometimes also use the notation� (�, � ) to denote �0 (�) + ��1 (�).

We will try to ind a polynomial � (�,� ) ∈ F� [�,� ] of the form � (�,� ) = �0 (� ) +��1 (� ), where deg� (�) ≤ � ,
such that

� (�, � ) = � (�)
for at least than � − � choices of � ∈ D, where � = ⌊��⌋ is the decoder’s error parameter.

J. ACM



Proximity Gaps for ReedśSolomon Codes • 19

5.2.1 Step 1: Interpolating � (�,�, � ). Let �� = �� (�) = (� + 1
2
)√��. The irst step of the GuruswamiśSudan

decoding algorithm is to ind a nonzero polynomial � (�,� ) ∈ K[�,� ]:

� (�,� ) =
︁

�+� · �<��

� �� (� )� �� � ,

where each � �� (� ) lies in the big ield K, such that � (�,� ) has a zero of multiplicity� at (�,� (�)) for each
� ∈ D.

This is possible when the number of available monomials, which is at least �
2

((
��

�
+ 1

2

)2
− 1

4

)
(see Claim B.1

in Appendix B.2), exceeds the number of homogeneous linear equations
(�+1

2

)
�. Indeed, this happens for our

choice of �� .
Solving this system of equations for a nonzero solution using Cramer’s rule, and clearing � denominators,

we get such a � (�,� ) ∈ K[�,� ] where each coeicient � �� (� ) is in fact an element of F� [� ] (i.e., a polynomial
instead of just a rational function) with controlled degree.
Explicitly, we get:

Claim 5.4. There is a nonzero polynomial � (�,� ) ∈ K[�,� ] with (1, �)-weighted degree less than �� such that
for each � ∈ D, we have:

mult(�, (�,� (�))) ≥ �,

and furthermore:

•
deg� (�) < �� = (� + 1

2 )
√
��. (5.5)

• �� ≔ deg� (�) satisies:

�� <
��

�
=
� + 1

2√
�

. (5.6)

• Each coeicient � �� (� ) of � (�,� ) is in F� [� ].
• ��� ≔ deg�,� (�) (which is the total �, � degree of �) satisies:

��� ≤
(� + 1

2 )3

6
√
�

�. (5.7)

Only the bound on ��� needs to be discussed, and it is explained and proven in detail in Appendix B.1.
Claim 5.4 allows us to express the lower bound on |� | from (5.3) in terms of �� , �� , ��� , as

|� | >
(1 + 1

2� )7�7

3�3/2
�2 = 2

(
(� + 1

2 )√
�

)3 (
(� + 1

2 )
√
� �

) ( (� + 1
2 )3

6
√
�

�

)
≥ 2�3

������ . (5.8)

Over the next subsections, we will prove the following proposition, which is the core of our proof:

Proposition 5.5. There exist a subset � ′ ⊂ � and a polynomial � (�,� ) ∈ F� [�,� ] with the following properties:

|� ′ | > |� |
2��

, (5.9)

∀� ∈ � ′, �� (� ) = � (�, �), (5.10)

deg� (�) ≤ �, deg� (�) ≤ 1. (5.11)
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5.2.2 Step 2: � (�,�, �) is divisible by � − �� (� ) for many �. Recall that for every � ∈ � there exists a polynomial
�� (� ) ∈ F� [� ] of degree at most� with distance at most � from�0+��1, i.e. (�, �� (�)) equals (�,�� (�)) for at least
�(1−�) values of � ∈ D. In each such point of agreement, the univariate polynomial� (�, �� (� ), �) ∈ F� [� ] must
then have a zero of order�, thus it has at least��(1−�) roots counted with multiplicity. On the other hand, since
� is chosen to have (1, �)-weighted degree less than�� , and deg �� (� ) ≤ � , we have deg� (� (�, �� (� ), �)) < �� .
Thus the polynomial must be identically zero if �� ≤ ��(1 − �). Indeed this holds, because

1 − � ≥ 1 − �0 =

(
1 + 1

2�

)
√
� =

��

��
.

Thus � (�,�, �) is divisible by � − �� (� ) for each � ∈ � .

5.2.3 Step 3: Finding a good �0 to start Hensel liting. We now begin the process of inding a power series solution

� = � (� ) ∈ K[[� ]] to � (�,�, � ) = 0 (thought of as a bivariate equation � (�,� ) = 0 with coeicients in K). To
ind the power series solution, we will start at a suitable solution (�0, �0) of � (�,� ) = 0, and then use Hensel
lifting. In this section, our goal is to ind such a łsuitablež (�0, �0).

Denote by disc� (·) the � -discriminant of a given polynomial (which may itself be a polynomial, if the original
polynomial was multivariate). Similarly, denote by res� (·, ·) the � -resultant of two polynomials.

Considering � (�,�, � ) as a polynomial in � over F� [�,� ], it can be uniquely factored as

� (�,�, � ) = � (�,� )
∏
�

�� (�,�� ��
, � )�� , (5.12)

where � is the characteristic of F� , �� ≥ 0, �� ≥ 1, and each �� (�,�, � ) is irreducible and separable4. This
factorization is a combination of two well-known facts: Unique factorization in the polynomial ring F� [�,� ] [� ],
which gives a factorization of the form � (�,� )∏� �̃� (�,�, � ), with �̃� (�,�, � ) irreducible in F� [�,� ] [� ] but
not necessarily separable in � ; and the fact that every such irreducible �̃� is of the form �� (�,�� ��

, � ) for an
appropriate �� and separable irreducible �� , which follows inductively from the fact that every � -inseparable
irreducible polynomial must in fact be in F� [�,� ] [�� ], since its � -derivative must vanish. For more details on
the two facts, see [30, Chapter IV, Theorem 2.3] and [30, Chapter V, Proposition 6.1].
In this section we prove the following claim:

Claim 5.6. There exists �0 ∈ F� such that for all � ,

disc� (�� (�,�, � )) (�0) ≠ 0 ∈ F� [� ] .

Before we prove the claim, let us explain its use and motivation. The Hensel lift (described in more detail

in Appendix A.4) shows that any simple root5 � = �0 ∈ K of � (�0, � , � ) can be uniquely lifted to a power

series solution � (� ) ∈ K[[� − �0]] with free coeicient �0, by iteratively inding solutions to � (�,�, � ) ≡ 0
(mod (� − �0)� ) with increasing � .
However, it may be that � (�,� ) has no simple roots. This could happen, for example, if the factors of � (�,� )

appear with multiplicity. To resolve this, we instead focus on an irreducible factor �� of � . Even after focusing on
�� , it might still be the case that the particular root �0 of �� (�0, � , � ) which we wish to lift is non-simple. We
avoid this issue by requiring that �� (�0, � , � ) is separable in � (i.e., all of its roots in � are simple). This happens
if disc� �� (�0, � , � ) ≠ 0. Claim 5.6 exactly guarantees the existence of an element �0 such that this occurs for all
possible �� . For all future sections, we will ix any such �0 arbitrarily.

4� (�,�,� ) being separable in � means it does not have repeated roots in the variable � , in any extension ield. This is equivalent to

disc� (� (�,�,� ) ) ≠ 0. For an irreducible polynomial in� , it is also equivalent to the� -derivative being not identically 0, or to the polynomial

not being representable as a polynomial in �� .
5A root is simple when it has multiplicity 1.
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Henceforth, we will assume for simplicity that� does not have inseparable irreducible factors, i.e. that �� = 0 for
all � . Note that since any inseparable factor has � -degree at least � , this is necessarily the case if the characteristic
is larger than �� , for example in the case where F� is a prime ield with � = �: (5.8) together with the trivial

bound |� | ≤ � immediately yield �� < �1/3. The general case, including the possibility of inseparable factors, is
very similar, but has more technicalities, which are discussed in detail in Appendix C.

Proof of Claim 5.6. Since all of the polynomials�� (�,�, � ) are separable in� , the discriminants disc� (�� (�,�, � )) ∈
F� [�,� ] are non-zero polynomials. We need to ind an �0 ∈ F� which makes all these discriminants evaluate to
nonzero polynomials in F� [� ]. This will simply follow from a bound on the sum of degrees of all the �� , which
we would like to show is less than �. A crude bound on the sum of degrees (which would require a stronger
bound on |� |) is easy to give. The rest of the proof is just a more careful bound.

Deine

disc∗� (�) ≔
∏
�

disc� (�� (�,�, � )) ∈ F� [� ] [� ] .

It suices to show that deg� disc∗� (�) < �.
In order to bound the � -degree of disc∗� (�), we will instead bound the � -degree of disc� (�), and see that it

serves as an upper bound. There is a subtle issue here, as disc� (�) may very well be the zero polynomial, for
example if any �� > 1. However, note that by expressing � as polynomial in � , i.e. � =

∑
�≤��

� � (�,� )� � with

� � (�,� ) =
∑

�<�� −� · � � �� (� )� � , there is a generic formula for the discriminant disc� (�), which is a polynomial

in the � � (�,� ) coeicients, given (up to sign) by the determinant of the Sylvester matrix of � and
��
��

, divided
by the leading coeicient ���

. The generic polynomial is non-zero, and though it might vanish for the particular
substitution of � � , we can still compute its formal � -degree as the maximal degree that would appear when
expanding all algebraic expressions in the � � (�,� ), before cancellations. Furthermore, this polynomial will be
formally divisible by disc∗� (�), in the sense that the quotient can be expressed as a generic polynomial in �,�

(which again might vanish for the particular substitution). This is due to the �� dividing � , so that we may write
� (�,�, � ) = � (�,�, � ) ·∏� �� (�,�, � ) where� is the quotient. We then use the fact that the discriminant of a
product of polynomials is given by a product of their discriminants and resultants, in this case yielding

disc� (�) = disc� (� ) ·
∏
�

disc� (�� ) ·
∏
�

res� (�� ,� )2
∏
�<�′

res� (�� , ��′ )2

where the right hand side contains disc∗� (�) =
∏

� disc� �� as well as other terms, and all discriminants
and resultants can be expressed as polynomials in the � -coeicients of �,� and the �� . Thus we deduce
deg� (disc∗� (�)) ≤ deg� (disc� (�)).
Finally, we wish to evaluate the formal � -degree of disc� (�) from the Sylvester matrix and the bounds

deg� � � < �� −� · � . The crux is to observe that every term in the determinant expansion of the Sylvester matrix
has the same degree bound, and then to evaluate the degree bound for a convenient term (which is the principal
diagonal in a natural ordering).
For each row in this matrix, the non-zero coeicients are simply ���

, . . . �0 (or multiplied by constants, for

rows of
��
��

). Thus we see that shifting a column to the right always increases the degree bound by the same
constant � , so that in general the entry degree bound is given by the sum of a function of the row index and a
linear function of the column index. Since the determinant always uses products with one item from each row
and from each column, every non-zero product in the expression will have the exact same degree bound, and we
may compute this bound łby examplež, considering any one such expansion, as claimed above. It is particularly

pleasant to take the leading coeicient ���
from each of the �� copies of

��
��

, and the free coeicient of �0 from
the �� − 1 copies of � , and of course dividing once by ���

, as is part of the discriminant formula, giving the

term ��� −1
��

��� −1
0 . We thus get
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deg� (disc∗� (�)) ≤ deg� (disc� (�)) = (�� − 1) (deg� (���
) + deg� (�0))

< (�� − 1) (2�� − ��� ) <
(��� ) (2�� − ��� )

�

<

�2
�

�
=

(� + 1
2 )2� �2

� �
= (� + 1

2 )
2�.

Note that from (5.3), we in particular have � ≥ |� | > (1+ 1
2� )7�7

3�3/2 �2 > (� + 1
2 )2�,

and we have our desired inequality. □

5.2.4 Step 4: Focusing on a useful factor �� (�,�, � ). Our main goal in the following sections is to show that
at least one of the factors �� (�,�, � ) is of the form � − � (�,� ), with � ∈ F� [�,� ] a polynomial of � -degree
at most � and � -degree at most 1. Note that for such a factor, we will have in particular that for any � ∈ F� ,
� − � (�, �) is a factor of �� (�,�, �), and � (�0, �) is a rational root of �� (�0, � , �). We will see that a converse is
also true: if such factors and roots of �� exist for suiciently many �’s, then �� must be divisible by (and thus of
the form) � − � (�,� ). In this section we will make use of this fact in order to focus on a useful �� . More precisely,
we prove the following claim:

Claim 5.7. There exists a factor � = �� of � , and an irreducible factor � (�, � ) of �(�0, � , � ), such that the set
��0,�,� of � values for which both � and � vanish at �� , i.e.

��0,�,� = {� ∈ � : �(�0, �� (�0), �) ≡ 0 and � (�� (�0), �) = 0},

is suiciently large; more precisely, such that

|��0,�,� | ≥
|� |
��

> 2�2
������ . (5.13)

Proof. After substituting � ↦→ �0, each of the irreducible �� (�,�, � ) can be factored as

�� (�0, � , � ) = �� (� )
∏
�

�� � (�, � ),

where �� � ∈ F� [� ] [� ] are irreducible, separable in � , and with positive � -degree. For � , this yields the factoriza-
tion

� (�0, � , � ) =
(
� (�0, � )

∏
�

�� (� )
)∏

�, �

�� � (�, � ).

In particular, the number of �� � is at most �� .
For any � ∈ � , the polynomial �� (� ) satisies � (�, �� (� ), �) = 0, i.e. � − �� (� ) | � (�,�, �), thus there is

some � such that � − �� (� ) | �� (�,�, �), or equivalently �� (�, �� (� ), �) = 0. Substituting � ↦→ �0 yields also
� − �� (�0) | �� (�0, � , �), thus there is some � such that � − �� (�0) | �� � (�, �) and equivalently �� � (�� (�0), �) = 0.
Therefore we have � ∈ ��0,�� ,�� �

, by deinition. Let (�, �) be the most common pair appearing in this process
and set � = �� , � = �� � . Since the total number of pairs (�, �) is at most �� , and using (5.8), by the pigeonhole
principle we ind that

|��0,�,� | ≥
|� |
��

> 2�2
������ ,

as claimed. □
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As mentioned above, our proof will eventually show that both � and � must in fact be linear in � , with
�(�,�, � ) = � − � (�,� ), where � is linear in � and of degree � in � and � = �(�0, � , � ) = � − � (�0, � ). We
will also see that � (�0, �) = �� (�0) for almost all � ∈ ��0,�,� . We will reach this point only later Ð for now we
assume �,� have � -degrees �,�� ≤ �� correspondingly, that their total �, � degrees at most � = ��� , and are
not necessarily monic.

5.2.5 Step 5: Interlude Ð the algebraic function field L and the power series � (� ). Our next step is to ind a root of
� (if needed, by artiicially adding it to the ield F� (� )), and then to lift it to a power series solution � = � (� ) to
�(�,�, � ) = 0. This process is carried out in Appendix A, which also provides the required setup and deinitions
from the theory of algebraic extensions of function ields.

We strongly encourage reading Appendix A at this point, as the analysis of the aforementioned � in the next
sections will make use of many objects introduced and discussed there in length. We list here only the notations
and basic properties of each object:

• � (� ) Ð the leading coeicient of � (�, � ) as a polynomial in � .

• �̃ (�, � ) =� (� )�� −1� (� /� (� ), � ) Ð a monicized version of � (monic in � ).

• L = F� (� ) [� ]/(�̃ (�, � )) Ð an algebraic extension of F� (� ), containing a root �0 = �
� (� ) of � (�, � ).

• O = F� [� ] [� ]/(�̃ (�, � )) Ð the ring of łregularž elements in L, which is a subring of its ring of integers.
• Λ(·) Ð a weight function from O to non-negative integers, which satisies Λ(� ) = 1, Λ(� ) = � − �� + 1,
and Λ(��) ≤ Λ(�) + Λ(�) for any �, � ∈ O.

• � = ��
��

(�0, �0, � ) ∈ L Ð the � derivative of ��0 at the root �0, which is non-zero by the separability of ��0 .

• � =� (� )�� −2� ∈ O Ð the łregular partž (or numerator) of � .
• � =

∑∞
�=0 �� (� −�0)� ∈ L[[� −�0]] Ð a power series which is the Hensel lift of �0, satisfying �(�,�, � ) = 0.

The coeicients can be written as �� =
��

� �+1��� , with �� = max(0, 2� − 1) and �� ∈ O (see Claim A.2).

• �� : O → F2� Ð substitution maps, which are ring homomorphisms mapping the generators�, � to ��, � ∈ F�
satisfying �̃ (��, �) = 0.

• We will also make use of Lemma A.1, which states that if � ∈ O satisies �� (�) = 0 for more than ��Λ(�)
diferent substitutions �� , then � = 0.

At the end of the day, the power series � (� ) will be shown to be of the form � (�,� ) ∈ F� [�,� ] with � - and
� -degrees at most � and 1, respectively. However, to reach that point, we will analyze � (� ) as having coeicients
in the algebraic extension L of F� (� ), and unbounded � -degree.

5.2.6 Step 6: Bounding the � -degree of � . In this section we show that the power series solution � =
∑∞

�=0 �� (� −
�0)� to �(�,�, � ) = 0 is in fact a inite polynomial in � of degree � . In other words, we prove:

Claim 5.8. For all � > � , �� = 0. Equivalently,

� = �� =

�︁

�=0

�� (� − �0)� .

The claim is proved in two steps: irst for all � < � < �� , by showing that �� (�� ) is well-deined and vanishes
for suiciently many substitutions; then for all � ≥ �� as well, by observing that �� is already a root of �(�,�, � ).

In the course of the proof we will also deine the set � ′ appearing in Proposition 5.5, and show that it satisies
(5.9).

Proof. For each � ∈ ��0,�,� , from � (�� (�0), �) = 0 we also get �̃ (� (�)�� (�0), �) = 0, and thus we have a
substitution map �� : O → F� with �� =� (�)�� (�0). The denominators appearing in the �� are all powers of�
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and � , so we can evaluate �� at any � which is not a root of� or � , i.e. in the set

� ′ = ��0,�,� \ {� :� (�) = 0 or �� (�) = 0}.

Using Lemma A.1 and the bounds on deg�,Λ(�) from Claim A.2, as well as (5.13), we ind

|� ′ | ≥ |��0,�,� | − (deg� + ��Λ(�))
≥ |��0,�,� | − ((� − 1)�� + 1) (� − �� + 1) + 1

> |��0,�,� | − ���� ≥ |� |
��

− �2
����

> 2�2
������ − �2

���� = �2
���� (2�� − 1). (5.14)

Note that to apply the lemma we also used � ≠ 0 in L. Since furthermore �2
�
��� <

|� |
2��

, we also get the bound

|� ′ | > |� |
��

− �2
���� >

|� |
2��

as we claimed in (5.9).
Now for each � ∈ � ′, we may apply �� to � , since we removed all poles of � from � ′. We wish to show that

�� (�) = �� (� ). Note that �� (�) ∈ F� [[� − �0]], and the polynomial �� (� ) can also be considered as a (inite)
power series in F� [[� − �0]]. We have that � = �� (� ), �� (�) both are roots of �(�,�, �) = 0: For �� (� ) this
follows by deinition from � ∈ ��0,�,� , and for �� (� ) we have �(�, �� (�), �) = �� (�(�,�, � )) = �� (0) = 0.
Additionally, modulo � − �0 we have �� (�0) = �� (� /� ) = ��/� (�) = �� (�0). Furthermore, �� (� ) is well-deined
and non-zero (since �� (�) ≠ 0), and equal to

�� (� ) = ��

(
��

��

(
�0,

�

�
,�

))
=

��

��

(
�0,

��

� (�) , �
)
=

��

��
(�0, �� (�0), �) .

In particular, ��
��

(�0, �� (�0), �),≠ 0, i.e. �� (�0) = �� (�0) is a simple root of �(�0, � , �).
Putting all of the above together, we see that both �� (�), �� (� ) ∈ F� [[� − �0]] are power series solutions to

�(�,�, �) = 0, with the same free coeicient �� (�0) = �� (�0) modulo � − �0, which is a simple root of �(�0, � , �).
Thus, they must be identically equal, by the uniqueness of the Hensel lift with a given starting simple root. In
other words, we have

F� [[� − �0]] ∋
∞︁

�=0

�� (�� ) (� − �0)� = �� (�) = �� (� ) ∈ F� [� − �0]

and in particular, �� (�� ) = 0 for all � ∈ � ′ and all � > � , since deg(��) ≤ � . Thus we also ind �� (�� ) = 0 for all
� > � . Restricting to � < � < �� , we additionally have by Claim A.2

Λ(�� ) < (2� + 1)�� ≤ �� (2�� − 1),

and from (5.14) it follows that

|� ′ | > �2
���� (2�� − 1) ≥ ���� (2�� − 1) > ��Λ(�� ).

We can therefore apply Lemma A.1 to ind that indeed �� = 0 and �� = 0 in L.
We thus have that the degree � polynomial

�� =

�︁

�=0

�� (� − �0)� =
�� −1︁
�=0

�� (� − �0)� = ��� −1 ∈ L[� ]
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satisies � ≡ �� (mod (� − �0)�� ), and therefore

�(�,�� , � ) ≡ 0 (mod (� − �0)�� );
but, �(�,�� , � ) ∈ L[� ] is a polynomial of degree < �� , since by construction � has (1, �)-weighted degree less
than �� and so do its factors, and therefore �(�,�� , � ) = 0 identically. By the uniqueness of the lifting, we thus
ind � = �� ∈ L[� ], as claimed. □

5.2.7 Step 7: Bounding the � -degree of � . In the previous section we have seen that � = �� ∈ L[� ] is a polynomial
of degree at most � in � , whose coeicients lie in L, an extension ield of F� (� ). We have also seen that
�� (�) = �� (� ) for all � ∈ � ′. In this section we will show that the coeicients of � are all in fact simply linear
polynomials in � , and thus obtain that � = � (�,� ) ∈ F� [�,� ] with � -degree at most � and � -degree at most 1:

Claim 5.9. The exists degree ≤ � polynomials �0, �1 ∈ F� [� ], such that

� = �0 (� ) + � · �1 (� ) =: � (�,� ).

Proving Claim 5.9 will also complete the proof of Proposition 5.5, as � = � satisies (5.11), the set � ′ satisies
(5.9), and together they satisfy (5.10), since for each � ∈ � ′,

� (�, �) = �� (� (�,� )) = �� (�) = �� (� ).
We prove Claim 5.9 by showing that � (�) agrees with the linear function� (�, � ) on at least � + 1 values of � ,

using suiciently many � -substitutions at each � , and then use the fact � can be interpolated from such values of
� (�), and this interpolation is also linear in � . Details follow.

We consider good pairs of � ∈ D, � ∈ � ′ satisfying� (�, �) = �� (�). We deine the sets of � ’s which are good
for each � ∈ � ′ and vice versa, that is,

D� = {� ∈ D : � (�, �) = �� (�)},
� ′� = {� ∈ � ′ : � (�, �) = �� (�)} = {� ∈ � ′ : � ∈ D�}.

By the deinitions of � and �� , we have |D� | ≥ � − � for each � ∈ � ′, where � = ⌊��⌋. We make the following
claims regarding the sizes of the sets � ′� :

Claim 5.10. Suppose |� ′� | > (2� + 1)���� . Then � (�) = � (�, � ), and in particular, � (�) is a linear polynomial in
F� [� ].

Claim 5.11. There exists a set Dtop = {�1, . . . , ��+1} ⊂ D of � + 1 points of D, satisfying |� ′� �
| > (2� + 1)���� for

all 1 ≤ � ≤ � + 1.

Before proving the two claims, let us irst deduce Claim 5.9 from them:

Proof Claim 5.9. Observe that fromClaim 5.10 and Claim 5.11 it follows that� (�) = � (�, � ) = �0 (�)+� ·�1 (� )
is linear in � for every � = � � ∈ Dtop. But, since � (� ) is a polynomial of degree at most � , it can be interpolated
from its values in any � + 1 points, and this interpolation only involves operations over F� . Thus the interpolated
polynomial will also have coeicients which are linear in � .
More concretely, let �0 (� ), �1 (� ) ∈ F� [� ] be the unique polynomials of degree at most � interpolating

�0 (�), �1 (�) at the points of Dtop. Then � (� ) and �0 (� ) + � · �1 (� ) are two polynomials in L[� ] of degree at
most � which agree on at least � + 1 evaluations, since

� (� � ) = � (� � , � ) = �0 (� � ) + � · �1 (� � ) = (�0 (� ) + � · �1 (� )) (� � )
for each � � ∈ Dtop. It follows that � and �0 + � · �1 are identically equal as polynomials in L[� ], as claimed. □

We now proceed to prove the claims:
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Proof of Claim 5.10. Since �� (�) = �� (� ) for each � ∈ � ′, by deinition of � ′� we have

�� (� (�)) = �� (�) = � (�, �) = �0 (�) + � · �1 (�)

for each � ∈ � ′� , or equivalently

��
(
� (�) − (�0 (�) + � · �1 (�))

)
= 0. (5.15)

On the other hand, we can write

� (�) − (�0 (�) + � · �1 (�)) =
(

1

� �+1���

�︁

�=0

�� (� − �0)�� �−����−��

)
− (�0 (�) + � · �1 (�))

=
1

� �+1���

(
� (�) − (�0 (�) + �1 (�) · � )� �+1���

)
, (5.16)

where � (�) ≔ ∑�
�=0 �� (� − �0)�� �−����−�� ∈ O, which by Claim A.2 has weight

Λ(� (�)) ≤ max
�=0,...,�

(Λ(�� ) + (� − �)Λ(� ) + (�� − �� )Λ(�))

≤ max
�=0,...,�

((1 + (� + 1)Λ(� ) + ��Λ(�)) + (� − �)Λ(� ) + (�� − �� )Λ(�))

= 1 + (� + 1)Λ(� ) + ��Λ(�) ≤ (2� + 1)��,

and so does �̃ (�) ≔ � (�) − (�0 (�) + �1 (�) · � ) � �+1��� . From (5.15) and (5.16) we have �� (�̃ (�)) = 0 for all

� ∈ � ′� , with |� ′� | > (2� + 1)���� ≥ ��Λ(�̃ (�)), by assumption. By Lemma A.1 it follows that �̃ (�) = 0, and thus
� (�) = �0 (�) + � · �1 (�) = � (�, � ) identically in L, as claimed. □

Proof of Claim 5.11. Let Dtop = {�1, . . . , ��+1} ⊂ D be the set of the � � ∈ D with the � + 1 largest sizes of
|� ′� �

|, breaking ties arbitrarily. We irst claim that for each 1 ≤ � ≤ � + 1,

|� ′� �
| ≥ � − � − 1 − �

� − � − 1
|� ′ | ≥ 1 − � − �

1 − �
|� ′ |.

This follows by way of contradiction, which we get by double counting the set of bad pairs (�, �) ∈ D × � ′ with
� (�, �) ≠ �� (�). The contrary assumption implies that |� ′� | < �−�−1−�

�−�−1 |� ′ | for all � ∉ Dtop, giving many bad
�-s for each such � , but on the other hand each � is only paired with a few bad �-s. More precisely, we get the
following contradiction:

� |� ′ | ≥
︁
�∈� ′

|D \ D� | =
︁
�∈D

|� ′ \ � ′� | ≥
︁

�∈D\Dtop

( |� ′ | − |� ′� |) (5.17)

> (� − � − 1)
(
1 − � − � − 1 − �

� − � − 1

)
|� ′ | = � |� ′ |.

From (5.14) we have

|� ′� �
| ≥ 1 − � − �

1 − �
|� ′ | > 1 − � − �

1 − �
�2
���� (2�� − 1) ≥ 1 − � − �

1 − �
(2�� − 1)����,
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so to conclude |� ′� �
| > (2� + 1)���� it suices to show that 2�� − 1 >

1−�
1−�−� (2� + 1). And indeed for� ≥ 3, we

have

2�� − 1 = (2� + 1)√� � − 1 > 2 · 3√� � − 1 >

1 + √
�

√
�

(3� �) − 1

>
1 − �

√
� (1 − √

�) (2� + 1) > 1 − �
√
� +

√
�

2�
− �

(2� + 1)

=
1 − �

1 − �0 (�,�) − �
(2� + 1) ≥ 1 − �

1 − � − �
(2� + 1)

as needed. □

5.2.8 Step 8: Proving the correlated agreement between�� and �� . We have found a polynomial� = �0 (� )+� ·�1 (� )
of the required degrees satisfying � (�,�, � ) = 0. To inish the proof of Theorem 5.1, it now remains only to be
seen that � (�, � ) and� (�, � ) agree identically on all but � |D| values of � ∈ D.
Deine D′ = {� ∈ D : |� ′� | ≥ 2}. Note that for each � ∈ D′, we must have �0 (�) = �0 (�), �1 (�) = �1 (�) (and

thus � (�, � ) = � (�, � )), since

�0 (�) + � · �1 (�) = �� (� (�)) = �� (�) (�) = �� (�) = � (�, �)
= �0 (�) + � · �1 (�)

for at least 2 diferent values of � ∈ � ′� . Since |� ′� | ≤ 1 for every � ∈ D \ D′, double counting the number of bad
pairs (�, �) ∈ D × � ′ with� (�, �) ≠ �� (�), as in (5.17), gives

� |� ′ | ≥
︁
�∈� ′

|D \ D� | =
︁
�∈D

|� ′ \ � ′� | ≥
︁

�∈D\D′
( |� ′ | − 1) = ( |� ′ | − 1) |D \ D′ |

and therefore |D \ D′ | ≤ � |� ′ |
|� ′ |−1 . On the other hand, from (5.3), (5.6), (5.9), as well as� ≥ 2 and � < 1 we have

|� ′ | > |� |
2��

>

(� + 1
2
)6

6�
�2 > 2�2, (5.18)

thus

|D \ D′ | ≤ � |� ′ |
|� ′ | − 1

<

(
1 + 2

|� ′ |

)
� <

(
1 + 1

�2

)
� < � + 1

�
< � + 1,

i.e. |D \ D′ | ≤ � ≤ ��, which we inally rewrite as

|{� ∈ D : (�0 (�), �1 (�)) = (�0 (�), �1 (�))}| ≥ |D′ | ≥ (1 − �) |D|

as we wanted to show. □

Remark 5.1. Note that from � = �0 (� ) + � · �1 (� ) = � (�,� ) solving �(�,�, � ) = 0 we ind that � − � (�,� ) |
�(�,�, � ). But since � is irreducible, it indeed follows that � = � − � (�,� ) is monic and linear in � , and so is � ,
as was mentioned earlier; and, as mentioned, we only reach this conclusion near the end of the proof. It is an
interesting open problem whether this conclusion can be reached without passing through the various extension
ields as our proof required.
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6 CORRELATED AGREEMENT IN GENERALIZED SETTINGS

Both Theorems 4.1 and 5.1 considered two functions �0, �1 : D → F and the corresponding aine line {�0 + ��1 :
� ∈ F�} inside the linear plane span{�0, �1}. A generalization of these theorems that is particularly important to the
soundness analysis of the FRI protocol in Theorem 8.3 is obtained by considering �+1 functions�0, . . . , �� : D → F,
and the 1-dimensional, degree � parameterized curve

{�0 + ��1 + �2�2 + · · · + ���� : � ∈ F�}
inside the linear space span{�0, . . . , �� }. This curve can also be viewed as a function� (·, � ) : D → K given by

� (�, � ) = �0 (�) + �1 (�)� + �2 (�)� 2 + · · · + �� (�)� � .

The two theorems can then be generalized as follows:

Theorem 6.1. Suppose � ≤ (1 − �)/2. Let �0, �1, . . . , �� : D → F� be functions. Let

� = {� ∈ F� : Δ(�0 + ��1 + · · · + ���� ,� ) ≤ �}
and suppose |� | > � · �. Then for all � ∈ F� we have

Δ(�0 + ��1 + · · · + ���� ,� ) ≤ �,

and furthermore there are �0, . . . , �� ∈ � such that for all � ∈ F� ,

Δ(�0 + ��1 + · · · + ���� , �0 + ��1 + · · · + ���� ) ≤ �

and in fact

|{� ∈ D : (�0 (�), . . . , �� (�)) ≠ (�0 (�), . . . , �� (�))}| ≤ � |D|.

Theorem 6.2. Let �0, �1, . . . , �� : D → F� , let� ≥ 3, deine �0 (�,�) ≔ 1 − √
� −

√
�

2� , and let � ≤ �0 (�,�).
Deine

� = {� ∈ F� : Δ(�0 + ��1 + · · · + ���� ,� ) ≤ �}
and suppose

|� | >
(1 + 1

2� )7�7

3�3/2
�2 � . (6.1)

Then �0, . . . , �� are simultaneously �-close to � , i.e. ∃�0, . . . , �� ∈ � such that

|{� ∈ D : ∀0 ≤ � ≤ �, �� (�) = �� (�)}| ≥ (1 − �) |D|.

These generalizations do not greatly afect the proofs, which were presented in the previous sections in the
special case � = 1 only for the purposes of simplicity. We will thus not repeat the arguments in full, but only
detail the required changes in subsections 6.1 and 6.2.

Another generalization of interest is to correlated agreement in the entire aine space, stated as Theorem 1.6,
restated here for completeness:

Theorem 1.6 (Correlated agreement over affine spaces). Let� ,�, �, �,D and � be as deined in Theorem 1.2.
For �0, �1, . . . �� ∈ FD� let� = �0 + span{�1, . . . , �� } ⊂ FD� be an aine subspace. If � ∈ (0, 1 − √

�) and
Pr
�∈�

[Δ(�,� ) ≤ �] > �,

where � is as deined in Theorem 1.2, then there exist D′ ⊂ D and �0, . . . , �� ∈ � satisfying

• Density: |D′ |/|D| ≥ 1 − � , and
• Agreement: for all � ∈ {0, . . . , �}, the functions �� and �� agree on all of D′.
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Furthermore, in the unique decoding regime � ∈
(
0,

1−�
2

]
, there exists a unique maximal D′ satisfying the above,

with unique �� .

To prove this theorem we will make use of the following lemma:

Lemma 6.3. Let� ,�, �, � and � be as deined in Theorem 1.2. For �0, �1, . . . �� ∈ FD� let� = �0 + span{�1, . . . , �� } ⊂
FD� be an aine subspace, and let� ′ = span{�1, . . . , �� } be the corresponding linear subspace (so that� = �0 +� ′

and� ′ = � −� ). If � ∈ (0, 1 − √
�) and

Pr
�∈�

[Δ(�,� ) ≤ �] > �,

where � is as deined in Theorem 1.2, then we have Δ(�′,� ) ≤ � for every �′ ∈ � ′.

Note that Lemma 6.3 is very similar to Theorem 1.2, the diference being only that the consequent Δ(�′,� ) ≤ �

is stated for elements of the linear space � ′ instead of elements of the aine space � . In particular, when � itself
is linear and � ′ = � , they are equivalent. Moreover, Theorem 1.2 can be proven from Lemma 6.3, and in fact
we will pass through such a proof in the course of proving Theorem 1.6. Both Lemma 6.3 and Theorem 1.6 are
proven in Section 6.3.

6.1 Proof of Theorem 6.1

Following the proof in Section 4, the irst change is in the analysis of the matrix � , where the entries in the
columns corresponding to the coeicients of� are of degree ≤ � in � instead of 1 (and the columns corresponding
to the coeicients of � remain of degree 0). The determinants of minors �(� ) are then of degree at most � (� + 1),
which is less than |� |, so are still identically 0, and the matrix has rank < � + 2� + 2.

Similarly, the solution �, � of the equation system will have � -degrees deg� (�) ≤ � ·� , deg� (�) ≤ � (� + 1), so
�� , �� grow by a factor of � , as does �� = � (which remains the degree of the� (�, � )), and similarly �� = |� | > � ·�.
We again have

��

��
+ ��

��
<

� + �

�
+ � (� + 1)

� · � <
� + 2� + 1

�
≤ 1

and the PolishchukśSpielman lemma remains applicable, and the rest of the conclusions are derived as before
with no further changes, save that � (�,� ) is now of degree � in � , and thus written as �0 (� ) + ��1 (� ) + · · ·� ��� .

6.2 Proof of Theorem 6.2

As in the � = 1 case, we apply the GuruswamiśSudan decoder to the KD word� (�, � ) = ∑�
�=0 �� (�)� � . We use

exactly the same parameters, and the degrees �� , �� are unafected. In the entries of the equation system, every
appearance of (a power of) the previously linear� (�, � ) is replaced by (a power of) a polynomial of degree � ,

thus the bounds on �� , ��, �, ��� are all multiplied by � , and speciically ��� <
(�+1/2)3

6
√
�

� � .

Also note that instead of the �, � degrees being graded in � such that the coeicient � �� (� ) of � �� � is of
degree at most � − � in � , it is of degree at most � − � · � , i.e. when � and � are assigned weights � and 1 (instead
of 1 and 1), the total weight of � , and thus also of � and � , is at most � . Thus all bounds on � -degrees and
weights are henceforth simply multiplied by � . The leading coeicient� of � has degree at most � − � ·� , and the
variable � =� (� )� is assigned the � times larger weight � − � (� − 1), which makes the weight of the monic

polynomial �̃ dominated by its leading monomial �� , thus the weight never increases on reductions modulo

�̃ . The bounds on weights of �, �� are multiplied by � . Since for F� [� ] polynomials the weight corresponds to
degree, Lemma A.1 remains valid; in all its applications, the upper bounds on weights of the regular elements are
multiplied by � ; and so are the lower bounds on the sizes of the sets of vanishing substitutions, i.e. the sets � ,
��0,�,� , �

′, � ′� �
. Thus we can still deduce that � is of degree � , and then by interpolating �0, . . . , �� by polynomials

�0, . . . , �� at � + 1 appropriately chosen points, to deduce that � =
∑�

�=0 �� (� )� � identically.
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For the inal argument we again note that
∑�

�=0 �� (�)�� =
∑�

�=0 �� (�)�� for all � ∈ D and � ∈ � ′� . Since for a
ixed � both sides of the equation are degree � polynomials in �, if |� ′� | > � then we must have �� (�) = �� (�) for
all 0 ≤ � ≤ � . We have |� ′ | > 2� ·�2, or equivalently �

|� ′ | <
2
�2 , and thus the number of � ∈ D for which |� ′� | ≤ � is

at most � |� ′ |
|� ′ |−� < � + 1, and again we ind that �� and �� all agree on the set D′ = {� ∈ D : |� ′� | > �} which is of

size at least (1 − �)�, as claimed. □

6.3 Proofs of Lemma 6.3 and Theorem 1.6

Proof of Lemma 6.3. Let �′ ∈ � ′ be an arbitrary element. If �′ = 0, then clearly Δ(�′,� ) = 0 ≤ � . Otherwise,

consider the partition of � into aine lines parallel to �′; formally, write � = �̃ ⊕ span{�′}, where �̃ ⊂ � is
some direct complement of span{�′} in� ′ shifted by �0. Then

E�̃∈�̃ Pr
�∈F�

[Δ(�̃ + � · �′,� ) ≤ �] = Pr
�∈�

[Δ(�,� ) ≤ �] > �,

and in particular there exists some �̃ ∈ �̃ for which Pr�∈F� [Δ(�̃ + � · �′,� ) ≤ �] > � . We can thus apply
Theorem 1.4 to the line {�̃ + � · �′ : � ∈ F�}, which in particular implies Δ(�′,� ) ≤ � , as claimed. □

Proof of Theorem 1.6. Let �∗ = D(� ,� ), where D is the divergence as deined in subsection 1.2, and let
�∗ ∈ � be an element with Δ(�∗,� ) = �∗.
We irst show that �∗ ≤ � . Let � = span(� ) be the linear space spanned by � , which either equals � when

0 ∈ � , or otherwise is the disjoint union of � ′ = � − � and {� · � : � ∈ F� \ {0}}. By Lemma 6.3 we have
Δ(�′,� ) ≤ � for all �′ ∈ � ′, and we also have Δ(� · �,� ) = Δ(�,� ) for all � ≠ 0 and � ∈ � . Thus in both cases,

whether� = � or� = � ′ ·∪Ï
�≠0 (� ·� ), we have

Pr
�̄∈�

[Δ(�̄,� ) ≤ �] ≥ Pr
�∈�

[Δ(�,� ) ≤ �] > �.

We can therefore apply Lemma 6.3 to� , and in particular for �∗ ∈ � ⊂ � we get �∗ = Δ(�∗,� ) ≤ � , as claimed.
As previously noted, this is in fact the content of Theorem 1.2, which is now proved.

Let {�∗1, . . . , �∗�} ⊂ � be all possible codewords at distance at most �∗ from �∗. Note that they are all in fact
at distance exactly �∗, not less, since otherwise we would have Δ(�∗,� ) < �∗. For each 1 ≤ � ≤ � deine the
agreement setD′

� = {� ∈ D : �∗ (�) = �∗� (�)} which has size exactly (1−�∗) |D|. Note that in the unique decoding

regime �∗ ≤ 1−�
2 we must have � = 1, and in the general Johnson/GuruswamiśSudan regime �∗ < 1 − √

� − � we

have � < �: indeed, from � = �J < 1 and � <

√
�

16 we must have � > (2�)−7 > 217

�
, 2

21
√
�
, and from the analysis of the

GuruswamiśSudan algorithm, using (5.6) and� =

⌈√
�

2�

⌉
<

√
�

2� + 1 we ind

� ≤ �� <
2� + 1

2
√
�

<
1

2�
+ 3

2
√
�
< 2−17� < �.

For each � ≤ �, let�� = {� ∈ � : � |D′
�
∈ � |D′

�
} be the set of all functions in� which agree with some codeword

in � on all of D′
� . Note that this condition is linear, therefore each�� is an aine subspace of� . We claim that

� ⊂ ⋃�
�=0�� , i.e. every element of � belongs to at least one �� . This is obvious for �

∗, which belongs to all �� .
Consider any � ∈ � \ {�∗}, and the aine line {�∗ + � · (� − �∗) : � ∈ F�} ⊂ � containing �∗ and �. By deinition
of �∗, we have

Pr
�∈F�

[Δ(�∗ + � · (� − �∗),� ) ≤ �∗] = 1 > �.

Since �∗ ≤ � , by Theorem 1.4 we have correlated agreement in the line, i.e. there exists D′ ⊂ D with |D′ | ≥
(1 − �∗) |D|, and codewords �∗, � ∈ � which respectively agree with �∗, � on D′. In particular Δ(�∗, �∗) ≤ �∗,
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thus �∗ must be one of the � decodings {�∗1, . . . , �∗�}, as the list was exhaustive, and D′ = D′
� . This exactly implies

� ∈ �� ⊂
⋃�

�=0�� , as claimed.

Comparing sizes, we ind that the largest�� must then satisfy |�� | ≥ |� |
�

>
|� |
�
. But�� is a subspace of� , and

it thus follows that�� = � . Now setting D′ = D′
� , we have in particular that the restrictions of �0, �1, . . . , �� to

D′ are codewords, since they are elements or diferences of elements in�� . Then setting �0, �1, . . . , �� ∈ � to be
the unique extensions of these codewords from D′ to D, we ind that D′, �0, . . . , �� satisfy both conditions. Again
note that in the unique decoding regime, � = 1 and this D′ is therefore uniquely deined. □

7 CORRELATED WEIGHTED AGREEMENT

For certain applications, like analyzing the soundness of the FRI protocol (Section 8.2), a weighted version of
Theorem 1.5 is necessary, and we provide it in this section.

For a given weight vector � : D → [0, 1], the (relative) �-agreement between words �, � is deined as

agree� (�, �) ≔
1

|D|
︁

� :� (� )=� (� )
� (�).

Note that for � ≡ 1 the notion of �-agreement is equivalent to the standard notion of relative agreement, which
is deined as agree(�, �) = 1 − Δ(�, �). The agreement between a word � and a linear code � is the maximal
agreement between � and a codeword of � ,

agree� (�,� ) ≔ max
�∈�

agree� (�, �).

We also deine the weighted size of a subdomain D′ ⊂ D as

� (D′) ≔ 1

|D|
︁
�∈D′

� (�).

Thus the agreement satisies agree� (�, �) = � ({� ∈ D : � (�) = � (�)}). Finally, for u = {�0, . . . , �� }, �� ∈ FD a

set of words, the �-weighted correlated agreement of u and � is the maximal �-weighted size of a subdomain
D′ ⊂ D such that the restriction of u to D′ belongs to � |D′ , i.e., for each � = 0, . . . , � there exist �� ∈ � such that
�� |D′ = �� |D′ . When � is unspeciied, it is set to the constant weight function 1, which recovers the notion of
correlated agreement measure discussed in Section 1.3.
In what follows we shall assume the weight function � has some structure, speciically, all weights � (�) are

the form � (�) =
��
�

for varying integers �� and common denominator � . This assumption indeed holds for
the special case of FRI soundness (where� equals the blocklength of the RS code to which the FRI protocol is
applied). The following is the weighted generalization of Theorem 1.5.

Theorem 7.1 (Weighted correlated agreement over curves ś Version I). Let� ,�, �, � and � be as deined
in Theorem 1.2. Let u = {�0, . . . , �� } ⊂ FD� . Let � ∈ (√�, 1) and let � : D → [0, 1] be a vector of weights, whose

values all have denominator� . Suppose

Pr
�∈curve(u)

[
agree� (�,� ) ≥ �

]
> � · �,

where � is as deined in Theorem 1.2 (with � = min(� − √
�,

√
�

20 )), and additionally suppose

Pr
�∈curve(u)

[
agree� (�,� ) ≥ �

]
≥ � (� |D| + 1)

�

(
1

�
+ 3
√
�

)
.

Then there exist D′ ⊂ D and �0, . . . , �� ∈ � satisfying

• �-Density: � (D′) ≥ � , and
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• Agreement: for all � ∈ {0, . . . , �}, the functions �� and �� agree on all of D′.

A slightly more precise form, only for the Johnson bound regime, is the following:

Theorem 7.2 (Weighted correlated agreement over curves ś Version II). Let� ,�, �, � and � be as deined
in Theorem 1.2. Let u = {�0, . . . , �� } ⊂ FD� . Let � : D → [0, 1] be a vector of weights, whose values all have

denominator� . Let� ≥ 3 and let

� ≥ �0 (�,�) ≔ √
� +

√
�

2�
.

Let

� = {� ∈ F� : agree� (�0 + ��1 + · · · + ���� ,� ) ≥ �}
and suppose

|� | > max

(
(1 + 1

2� )7�7

3�3/2
�2�,

2� + 1
√
�

(� · � + 1)�
)
. (7.1)

Then �0, . . . , �� have at least � correlated �-agreement with � , i.e. ∃�0, . . . , �� ∈ � such that

� ({� ∈ D : ∀0 ≤ � ≤ �, �� (�) = �� (�)}) ≥ �.

Similarly, we can also prove a weighted version of the theorem for aine spaces. As was the case in the
unweighted version, here the lower bounds on the probability or size of � are the same as they are for aine lines,
which can be considered as curves with degree � = 1. Again we give two versions, with � and with�:

Theorem 7.3 (Weighted correlated agreement over affine spaces). Let � ,�, �, � and � be as deined
in Theorem 1.2. Let u = {�0, . . . , �� } ⊂ FD� and let � = �0 + span{�1, . . . , �� } ⊂ FD� be an aine subspace. Let

� ∈ (√�, 1) and let � : D → [0, 1] be a vector of weights, whose values all have denominator� . Suppose

Pr
�∈�

[
agree� (�,� ) ≥ �

]
> �,

where � is as deined in Theorem 1.2 (with � = min(� − √
�,

√
�

20 )), and additionally suppose

Pr
�∈�

[
agree� (�,� ) ≥ �

]
≥ � |D| + 1

�

(
1

�
+ 3
√
�

)
.

Then there exist D′ ⊂ D and �0, . . . , �� ∈ � satisfying

• �-Density: � (D′) ≥ � , and
• Agreement: for all � ∈ {0, . . . , �}, the functions �� and �� agree on all of D′.

Theorem 7.4 (Weighted correlated agreement over affine spaces ś Version II). Let � , �, �, � and � be
as deined in Theorem 1.2. Let u = {�0, . . . , �� } ⊂ FD� and let� = �0 + span{�1, . . . , �� } ⊂ FD� be an aine subspace.

Let � : D → [0, 1] be a vector of weights, whose values all have denominator� . Let� ≥ 3 and let

� ≥ �0 (�,�) ≔ √
� +

√
�

2�
.

Suppose

Pr
�∈�

[
agree� (�,� ) ≥ �

]
> max

(
(1 + 1

2� )7�7

3�3/2
· �

2

�
,
2� + 1
√
�

· � · � + 1

�

)
. (7.2)

Then �0, . . . , �� have at least � correlated �-agreement with � , i.e. ∃�0, . . . , �� ∈ � such that

� ({� ∈ D : ∀0 ≤ � ≤ �, �� (�) = �� (�)}) ≥ �.
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7.1 Proof of Theorems 7.1 and 7.2

The proofs of the theorems rely on the proofs of Theorems 6.1 and 6.2, which in turn were generalizations of
the proofs of Theorems 4.1 and 5.1. Let � be as in Theorem 7.2, so that for each � ∈ � there is �� ∈ � with

agree� (
∑�

�=0 �
�� � , ��) ≥ � . By deinition, the unweighted agreement is at least the weighted agreement, thus

Δ(∑�
�=0 �

�� � , ��) ≤ 1 − � . It follows that we can immediately apply Theorems 6.1 and 6.2 to the set � , as all other
assumptions hold, and deduce that �0, . . . , �� have at least � correlated agreement with codewords �0, . . . , �� . This
is not suicient, however, as our goal is to show �-agreement, which is stronger.
To continue, we observe that in the course of our proofs, the codewords �0, . . . , �� that we found had the

property that the identity �0 + ��1 + · · · + ���� = �� was satisied for every � ∈ � ′, where � ′ ⊂ � was a fairly large

set. In the unique decoding regime this is even true for � ′ = � , because �� and
∑�

�=0 �
�� � are both decodings of∑�

�=0 �
�� � , and the decoding is unique. In the Johnson bound regime, this is exactly the content of Proposition 5.5,

with � (�,� ) (of degree � in � ) written explicitly as � (�,� ) = ∑�
�=0 �

�� � , and a set � ′ of size greater than |� |
2��

by

(5.9). By (5.6) we have 2�� ≤ 2�+1√
�
, and in the setting of Theorem 7.1 we use the deinition� =

⌈√
�

2�

⌉
to get

2�� <
2� + 1
√
�

<

√
�

�
+ 3

√
�

=
1

�
+ 3
√
�
.

We thus ind that in all cases the additional assumptions give us |� ′ | ≥ (� · � + 1)� . The crucial aspect here is
that these �� which for � ∈ � ′ are linear combinations of the � � , are the same ��-s with which we startedÐwhich
in this setting were assumed to also have high �-agreement with linear combinations of the words � � , and not

just regular agreement. In other words, we know that
∑�

�=0 �
�� � (�) and

∑�
�=0 �

�� � (�) have high �-agreement for
every � ∈ � ′. We can now use this fact to deduce that the � � also must have correlated �-agreement with � � . The
necessary argument is very similar to that of Section 5.2.8, but in higher generality. We apply it through the
following two lemmas, irst getting the correlated agreement with a small loss, then showing this loss must be 0,
if |� ′ | is large enough in comparison to the denominator� of the weights ś as we had assumed.

Lemma 7.5. Let � ,�, �, � and � be as deined in Theorem 1.2. Let �0, . . . , �� ∈ FD� , �0, . . . , �� ∈ � , let � be a weight

vector, and let � ≥ 0. Denote

� (�, �) =
�︁

�=0

� �� � (�), �̃ (�, �) =
�︁

�=0

� �� � (�)

for all � ∈ D, � ∈ F� , and suppose that there exists a set � ′ ⊂ F� with |� ′ | > � and such that

∀� ∈ � ′, agree� (� (·, �), �̃ (·, �)) ≥ �. (7.3)

Then the correlated agreement domain of the (� � ) and (� � )

D′
= {� ∈ D : (�0 (�), . . . , �� (�)) = (�0 (�), . . . , �� (�))}

satisies

� (D′) > � − �

|� ′ | − �
.

Lemma 7.6. Let � ,�, �, �, �, �, �,� � , � � , �
′,D′ be as in Lemma 7.5 and with the same assumptions. Assume addi-

tionally that � only takes rational values with denominator (dividing)� , and that |� ′ | ≥ � |D|� + � . Then

� (D′) ≥ �.
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As we have seen that � ′ satisies the assumptions of Lemma 7.5 and |� ′ | ≥ (� · � + 1)� = � |D|� + � holds, our
claimed correlated �-agreement follows immediately from Lemma 7.6. It remains to prove the lemmas, which we
do in the next subsection.

7.2 Proofs of Lemmas 7.5 and 7.6

Proof of Lemma 7.5. Denote

� ′� = {� ∈ � ′ : � (�, �) = �̃ (�, �)}, ∀� ∈ D,

D� = {� ∈ D : � (�, �) = �̃ (�, �)}, ∀� ∈ � ′ .

Note that for any given � ∈ D,� (�, �), �̃ (�, �) are both polynomials in � of degree at most � . It follows that if they
agree on more than � values of �, then they must be identical as polynomials and agree for every �. Thus, either
|� ′� | ≤ � or |� ′� | = |� ′ |. Moreover, since |� ′ | > � , the set D′ is precisely the set of � ∈ D for which |� ′� | = |� ′ |, and
D \D′ is the set on which |� ′� | ≤ � . On the other hand, for each � ∈ � ′, D� is the agreement set of� (·, �), �̃ (·, �),
so by (7.3), it has �-weighted size at least � . Thus by double counting we get

� |� ′ | ≤
︁
�∈� ′

agree� (� (·, �), �̃ (·, �)) =
︁
�∈� ′

1

|D|
︁
�∈D�

� (�)

=
1

|D|
︁
�∈D

� (�) |� ′� | ≤ � (D′) |� ′ | + � (D \ D′) · � = � (D′) ( |� ′ | − �) + � (D) · � .

Here, the irst inequality is from the lower bound on the �-agreement of� (·, �), �̃ (·, �), the next equality is by
deinition of �-agreement, the next equality is double counting (changing the order of summation), and the inal
inequality is from bounding the size of |� ′� | inside and outside D′. Rearranging, we get

� (D′) ≥ � |� ′ | − � (D) · �
|� ′ | − �

= � − (� (D) − �) · �
|� ′ | − �

> � − �

|� ′ | − �

as claimed. Here the inal step uses the simple bound � (D) − � < 1. □

Proof of Lemma 7.6. By the assumption on the values of �, it follows that agree� only takes rational values

with denominator � |D|, and similarly so does � (D′). We may therefore round � up to the nearest multiple
of 1

� |D | without afecting the validity of the assumption (7.3), nor of the wanted consequent � (� ′) ≥ � . The

assumption |� ′ | ≥ � |D|� + � is equivalent to �
|� ′ |−� ≤

1
� |D | , and thus from Lemma 7.5 we get

� (D′) > � − �

|� ′ | − �
≥ � − 1

� |D| .

But, since both � and � (D′) are integer multiples of 1
� |D | , it follows that � (D′) ≥ � , as claimed. □

7.3 Proof of Theorems 7.3 and 7.4

As was the case in the unweighted version, these theorems are obtained by reduction to the respective theorems
on aine lines (which are special cases of Theorems 7.1 and 7.2 with � = 1). The reduction is exactly as done
in Section 6.3, with the distance Δ replaced by the weighted agreement agree� ; the parameters �, �∗ replaced
by �, �∗; all inequalities on agreement being in the opposite direction to those on distances, thus �∗ ≥ � is the
smallest �-agreement with the code of any � ∈ � ; and the sizes of the agreement sets D� ,D′ are replaced by
their �-sizes, which are now equal to �∗ instead of (1 − �∗) |D|.
For this reduction, there are no new nuances introduced by the move to �-weights, and the proof can be

reapplied verbatim, with the above mentioned replacements. We thus omit duplicating it here.
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8 APPLICATIONS TO VERIFIABLE SECRET SHARING AND FRI SOUNDNESS

In this section we give some more details on applications that were briely described in Section 3.

8.1 Verifiable Secret Sharing

We start with an application of distributed proximity testing of Interleaved ReedśSolomon Codes (Theorem 3.1)
to veriiable secret sharing (VSS) [18]. VSS serves as a building block both for useful special tasks, such as
simultaneous broadcast and fair coin-lipping, and for general protocols for secure multiparty computation with
an honest majority [4, 15, 32].

A VSS protocol with security threshold � is a two-phase protocol involving a dealer, � servers, and an honest
output client. The sharing phase starts with the dealer distributing the secret � among the servers by sending a
share � ⟨� ⟩ to server � and is followed by a veriication protocol. In the reconstruction phase, each server sends its
share � ⟨� ⟩ to the output client, who reconstructs � from the shares. Both phases of the protocol are attacked by a
malicious adversary who may corrupt at most � servers and possibly also the dealer. Communication proceeds in
synchronous rounds and may use secure point-to-point channels. We also assume the availability of a common
broadcast medium and a source of unpredictable public coins. These assumptions, which can be eliminated at a
small amortized cost, make the protocol simpler. Finally, while the communication is synchronous, the adversary
has a rushing capability, in the sense that it can wait to receive messages from uncorrupted parties before sending
its own messages.
Here we consider a simpliied variant of VSS that allows a denial-of-service attack only in the sharing phase,

but not in the reconstruction phase. The latter łguaranteed output deliveryž requirement makes the protocol
suitable for applications that rely on independence, such as simultaneous broadcast and fair coin-tossing, as they
prevent the adversary from making the protocol selectively fail based on information obtained in the inal round
via rushing.

A VSS protocol as above should satisfy the following properties:

• Completeness: if the dealer is honest and the sharing phase succeeds, the output client outputs � . Moreover,
the sharing phase succeeds if the adversary does not attack it.

• Secrecy: if the dealer is honest, the adversary learns nothing about � .
• Unique reconstruction: even if the dealer is dishonest, if the sharing phase succeeds then the messages sent
in the sharing phase deine a unique �∗ such that (except with small failure probability) the output client
will output �∗ in the end of the reconstruction phase.

Implementing VSS eiciently is a challenging task. Here we consider the following simple approach for
simultaneously sharing � secrets �1, . . . , �� . This approach underlies the eicient MPC protocols from [19, 24, 27].
A centralized variant of this protocol (in a relaxed setting that allows reconstruction to fail) is a building block in
eicient two-party protocols for zero knowledge [1, 25] and secure computation [23, 26].
We will assume here that each secret � � is a single ield element and all secrets originate from the same

dealer. However, the protocol is even more attractive when the secrets originate from diferent dealers and when
each secret � � is a vector of ℓ < � ield elements that are simultaneously shared via so-called łpacked secret
sharingž [20]. Moreover, while the communication complexity of the protocol beats all competing approaches we
are aware of in the amortized case when � is large, it is potentially useful (and nontrivial to analyze) even with
� = 1. In fact, if we count public coins and broadcast as normal communication, the communication complexity of
the protocol is nontrivial to match even in this case.

The two phases of the protocol proceed as follows.

Sharing. In the sharing phase, the dealer uses Shamir’s secret sharing scheme [36] for sharing each secret, with
secrecy threshold � . Viewed abstractly, each � � is randomly mapped to a codeword � � of an [�, � + 1, �] RS code
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� over F� , with � = � − � . The dealer distributes � � between the servers, together with an additional random

codeword �0 ∈� � that is used for blinding. Following a public random challenge � ∈ F�� , each server � broadcasts

its view of �′ = ��u, namely �′ (�) = �0 (�) +
∑�

�=1 � (�)� � (�). (As discussed in Section 3, this challenge can be
compressed using either cryptography or simple derandomization techniques.) The sharing phase succeeds if
�′ ∈ � .

Reconstruction. In the reconstruction phase, each server sends its shares to an output client, who recovers the
secrets � � by error-correcting the (potentially) corrupted codewords �∗

� .

We assume in the following that � > 3� , implying that the minimal distance of the underlying RS code satisies
� = � − � > 2� . We start by considering the case of a static adversary, who decides in advance which � servers
to corrupt. Completeness follows from the fact that � < �/2 and each �∗

� is �-close to � . Secrecy follows from

the secrecy property of Shamir’s scheme and from the fact that �0 blinds the information exchanged during the
veriication process. For the unique reconstruction property, consider the shares of the � − � > 2� uncorrupted
servers. If they are not consistent with � , then (by a simple analysis) the sharing phase will fail except with 1/�
probability. If they are consistent with� , then (as before) �∗

� is within the unique decoding radius and the outputs

will be correct.
What goes wrong when the adversary can be adaptive? In this case, the dealer could potentially distribute

badly formed vectors u that have the following devious property: there is � � which is very far from the code,
and yet �′ is with high probability (say, 1/2) �-close to the code. Now, the adaptive adversary can corrupt only
those servers in � = Γ(�′,� ) and send on their behalf ield elements that make �′ consistent with � . This in turn
makes the sharing phase succeed. But since � � is not within the unique decoding distance from � , we lose the
unique decoding guarantee. Theorem 1.2 rules out the existence of such a devious u. But this is not enough. We
actually need to ensure that u is consistent with � when restricted to the � − � servers that are not corrupted
during reconstruction phase.

This is ensured by the stronger guarantee of Theorem 3.1. The analysis proceeds as follows. If u is �-far from
the interleaved code V, then �′ will be �-far from � except with ≤ �/� probability. In this event, even an adaptive
corruption cannot make �′ look consistent with � , and the sharing phase fails. If u is within distance � ′ ≤ � from
V, then except with ≤ �/� probability we have that Γ(�′,� ) = Γ(u,V). Denoting this set by� ′, the adversary must
corrupt the entire set � ′ for the sharing phase to succeed, and may additional corrupt � − � ′ more servers. In this
case, u restricted to the � − � uncorrupted servers is fully consistent with � , guaranteeing unique reconstruction.

We inally note that security against an adaptive adversary can be reduced to security against a static adversary
via a generic union bound argument, taking the union over all

(�
�

)
sets of servers that can be eventually be

corrupted [13]. (Alternatively, this follows from the simple derivation of proximity gaps over exponentially large
ields discussed in the Introduction.) However, this would require the ield size � to satisfy � = 2Ω (�) , which would
make communication grow quadratically (rather than linearly) with the number of servers �. In this parameter
regime the proximity gap approach does not seem useful, as there are VSS protocols that meet the quadratic
communication bound with perfect (rather than statistical) security against an adaptive adversary [4].

8.2 Soundness of the Fast RS IOP of Proximity (FRI) protocol for batched instances

In this section we use Theorems 7.2 and 7.4, the weighted and sharper versions of Theorems 1.5 and 1.6, to
improve the soundness of the FRI protocol [5], when applied to a batch of functions. We start by briely recalling
the essential components of the protocol needed to state our theorem, assuming familiarity with the protocol
(see [5] for a more thorough explanation of it). We also explain below the meaning of łbatchingž of FRI instances.

The FRI protocol. As explained in Section 3.2, the purpose of FRI is to verify, in the IOP model, the proximity of
a received word � (0) : D (0) → F to an RS code � (0) := RS[F,D (0) , � (0) ]. FRI works for any evaluation domain
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D (0) that is a coset of 2-smooth group, i.e., for any D (0) that is a coset of a group (additive or multiplicative)
of size 2� , for integer � . Henceforth we assume the group D (0) is multiplicative6. The FRI protocol has two
phases, called COMMIT and QUERY. During the COMMIT phase, a sequence of functions � (1) : D (1) → F, � (2) :
D (2) → F, . . . , � (r) : D (r) → F is generated over a inite number r of interactive rounds. With each iteration the
domain size |D (� ) | shrinks. Assuming an honest prover and � (0) being low-degree, the low-degreeness property
is maintained for each � (� ) (see Claim 8.1). At the beginning of the �-th round, the prover message � (� ) : D (� ) → F
has already been created (and the veriier has oracle access to it). The veriier now sends a uniformly random
� (� ) ∈ F and the prover replies with a new function � (�+1) : D (�+1) → F where D (�+1) is a (2-smooth) strict
subgroup of D (� ) .

D (�+1) partitions D (� ) into cosets of size � (� ) := |D (� ) |/|D (�+1) |. Let � (� )
� denote the coset corresponding to

� ∈ � (�+1) , namely

�
(� )
� ≔ {�′ ∈ D (� ) | (�′)�

(� )
= �}. (8.1)

For each coset �
(� )
� , the interpolation map �

(� )
� is the invertible linear map �

(� )
� : F�

(� )
� → F�

(� )
over F

that maps � (� ) ��
�

(� )
�

: �
(� )
� → F Ð the restriction of � (� ) to domain �

(� )
� ⊂ D (� ) Ð to the vector u(� ) (�) =(

�
(� )
0 (�), . . . , � (� )

� (� )−1 (�)
)
of coeicients of the polynomial �u(� ) (�) (� ) =

∑
�<� (� ) �

� ·
(
�
(� )
� (�)

)
that interpolates

� (� ) ��
�

(� )
�
. In other words,�

(� )
� is the inverse of the Vandermonde matrix generated by �

(� )
� , which implies that(

�
(� )
�

)−1
· (�0, . . . , �� (� )−1) is the evaluation of the polynomial �u (� ) = ∑

�< (� ) ���
� on the coset �

(� )
� .

The following claim is a restatement of [5, Section 4.1], using our notation (and working over a multiplicative
rather than additive group). For the sake of completeness a proof appears in Appendix E.

Claim 8.1. Suppose that � (� ) ∈ RS[F,D (� ) , � (� ) ] where � (� ) + 1 is an integral power of 2. Then, for any � (� ) ∈ F,
letting z(� ) =

( (
� (� )

)0
,
(
� (� )

)1
, . . . ,

(
� (� )

)� (� )−1)
, the function �

(�+1)
� (� ) ,� (� )

: D (�+1) → F deined on � ∈ D (�+1) by

�
(�+1)
� (� ) ,� (� )

(�) :=
(
z
(� )
)⊤

· u(� ) (�) =
(
z
(� )
)⊤

·� (� )
� · � (� )

���
�

(� )
�

(8.2)

is a valid codeword of � (�+1) := RS[F,D (�+1) , � (�+1) ] where � (�+1) := � (� )+1
� (� )

− 1.

Batching. In certain cases the irst prover oracle � (0) is sampled from an aine space � ⊂ FD (0)
of functions,

which serves as our input,

� =

{
�
(0)
0 +

�︁

�=1

�� · � (0)
� |�� ∈ F, � (0)� : D (0) → F

}
. (8.3)

This is the case when the FRI protocol is used to łbatchž several diferent instances of the low degree testing
problem, combining them all using a random linear combination. In this batching setting we assume the prover

has committed to �
(0)
1 , . . . , �

(0)
� (notice we set �

(0)
0 = 0 in this case), and the batched FRI veriier samples uniformly

random �1, . . . , �� ∈ F, the prover replies with � (0) which supposedly equals � (0)
0 +∑� �� · �

(0)
� , and the FRI protocol

is now applied to � (0) . Accordingly, the batched FRI QUERY phase is extended so that each time a query to � (0) (�)
is requested, the veriier also queries �

(0)
0 (�), . . . , � (0)

� (�) and veriies that indeed � (0) (�) = �
(0)
0 (�)+∑� �� · �

(0)
� (�).

6The FRI protocol in [5] is stated for cosets of additive 2-smooth groups; Remark 3.1 in the online version of [5] translates the results to

multiplicative groups (cf. Remark 1.4 and Section 2.1 there). Generalizing the results here to (i) additive groups, (ii) � -smooth groups for larger

constant � and (iii) cosets of groups, is straightforward, using [5]; we omit these generalizations to simplify the exposition.
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The (batched) FRI QUERY phase. Claim 8.1 implies that an honest prover may construct from a codeword

� (� ) ∈ � (� ) a new codeword � (�+1) ∈ � (�+1) (for any value � (� ) picked by the veriier), doing so by computing
Eq. (8.2) for each � ∈ D (�+1) . Henceforth we shall always assume � (r) ∈ � (r) , say, by assuming the veriier always
queries the irst � (r) elements of � (r) (according to some canonical order) and identiies � (r) with the interpolating
polynomial of this function.

Claim 8.1 suggests a natural test for consistency between � (� ) and � (�+1) , and the QUERY phase of FRI follows
this natural test by applying it iteratively from łtopž (� (r) ) to łbottomž (� (0) ), according to the following process

A single invocation of the batched QUERY phase:

(1) Pick uniformly random � (r) ∈ D (r) . For � = r, . . . , 1, sample � (�−1) uniformly at random from the coset

�
(�−1)
� (� )

.

(2) If � (0) (� (0) ) ≠ �
(0)
0 (� (0) ) +∑�

�=1 �� · �
(0)
� (� (0) ), then reject.

(3) If, for any � ∈ {0, . . . , r − 1}, we have � (�+1) (� (�+1) ) ≠
(
z
(� ) )⊤ ·� (� )

� (�+1)
· � (� ) ��

�
(� )
� (�+1)

, then reject.

(4) Otherwise Ð when equality holds in all cases mentioned in the bullets above, then accept.

Summary of the batched FRI protocol: Let us summarize the essential properties recounted thus far, as they will
be used in our soundness analysis below.

(1) At the end of the protocol’s COMMIT phase the veriier has oracle access to a sequence of functions
� (0) : D (0) → F, . . . , � (r) : D (r) → F where D (0) ⊋ . . . , ⊋ D (r) is a sequence of 2-smooth groups and � (� )

depends arbitrarily on � (0) , . . . , � (� ) (and � (0) , . . . , � (�−1) ). We assume that � (r) ∈ � (r) .

(2) There exists a set of � (� ) × � (� ) invertible matrices {� (� )
� (�+1)

: � (�+1) ∈ D (�+1) }, so that applying �
(� )
� (�+1)

to

� (� ) ��
�

(� )
� (�+1)

maps � (� ) to a sequence of vectors u = u
(� ) = {� (� )

0 , . . . , �
(� )
� (� )

} ⊂ FD (�+1)
, where

u
(� )

(
� (�+1)

)
=

(
�
(� )
0

(
� (�+1)

)
, . . . , �

(� )
� (� )−1

(
� (�+1)

))
= �

(� )
� (�+1)

· � (� )
���
�

(� )
� (�+1)

. (8.4)

Furthermore, if � (� ) is a valid RS codeword over D (� ) of rate � , then each vector on the parameterized
curve passing through u

(� ) is a valid RS codeword over D (�+1) of the same rate � .
(3) Each iteration of the QUERY phase checks whether � (�+1) was constructed from � (� ) via Eq. (8.2) and (in

the batched case) whether � (0) was computed correctly via Eq. (8.3).

Soundness. We now bound the soundness error of the batched FRI protocol, using Theorems 7.1 and 7.2. Recall
the notion of correlated agreement from Section 1.3 and its generalization to �-weighted correlated agreement
deined at the beginning of Section 7.

Lemma 8.2 (batched FRI error bound). Let � (0) = RS[F,D (0) , � (0) ] where D (0) is a coset of a 2-smooth multi-

plicative group, and � (0) + 1 is a power of 2; set � = (� (0) + 1)/|D (0) |.
Let � ⊆ FD (0)

be a space of functions as deined in Eq. (8.3) whose correlated agreement density with � (0) is at
most � . For integer� ≥ 3, let

� (0) (�,�) = max{�,√� (1 + 1/2�)}.
Assume the FRI protocol is used with r rounds, and let � (� ) = |D (� ) |/|D (�+1) | denote the ratio between prover messages
(oracles) � and � + 1. Let �Q denote the probability that the veriier accepts a single FRI QUERY invocation. Then,

Pr
�1,...,�� ,� (0) ,...,� (r−1)

[
�Q > � (0) (�,�)

]
≤ �C, (8.5)
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where

�C =

(
� + 1

2

)7 · |D (0) |2

2�3/2 |F|
+ (2� + 1) · ( |D (0) | + 1)

√
�

·
∑r−1

�=0 �
(� )

|F| .

In words: For any interactive FRI prover �∗, the probability that the oracles � (0) , . . . , � (r) sent by �∗ will pass
a single invocation of the batched FRI QUERY test with probability greater than � (0) (�,�), is smaller than �C.

The probability is over the random variables �1, . . . , �� used to sample � (0) from � and over the random messages

� (0) , . . . , � (r−1) sent by the veriier during the COMMIT phase.

This lemma is proved in Section 8.2.1. At the high level there are two ingredients: one is the reduction of a
batched FRI claim (about a tuple of functions) to a single FRI claim (about a single function), and the other is a better
analysis of FRI for a single function. The irst ingredient is a direct application of the proximity gaps phenomenon.
The second ingredient, in principle, comes from the previously observed [11, 12] connection that proximity gaps
give FRI soundness. However, there is an error in the proof of this connection in [12], and the proof of this
connection in [11] is in a slightly more complicated setting. Finally, the proof from [11] of the connection becomes
signiicantly cleaner and quantitatively stronger because of the exact distance preservation (not approximate
distance preservation) that our proximity gaps have, and which was not present in previous works. Thus we
take the opportunity to present a complete analysis of the FRI protocol (following and simplifying [11]) in the
quantitatively strongest form that we know, which involves our weighted proximity gaps theorems.
Lemma 8.2 gives us the following result.

Theorem 8.3 (Batched FRI Soundness). Let �
(0)
0 , . . . , �

(0)
� : D (0) → F be a sequence of functions and let

� (0) = RS[F,D (0) , � (0) ] where D (0) is a coset of a 2-smooth group of size � (0) = |D (0) |, and � = � (0)+1
� (0) satisies

� = 2−R for positive integer R. Let � =
√
� (1 + 1/2�) for integer� ≥ 3 and �C be as deined in Lemma 8.2.

Assume the FRI protocol is used with r rounds. Let � (� ) = |D (� ) |/|D (�+1) | denote the ratio between prover messages
(oracles) � and � + 1. Assume furthermore that � is the number of invocations of the FRI QUERY step.

Suppose there exists a batched FRI prover �∗ that interacts with the batched FRI veriier and causes it to output
łacceptž with probability greater than

�FRI := �C + �� =

(
� + 1

2

)7 · |D (0) |2

2�3/2 |F|
+ (2� + 1) · ( |D (0) | + 1)

√
�

·
∑r−1

�=0 �
(� )

|F| +
(
√
� ·

(
1 + 1

2�

))�
.

Then �
(0)
0 , . . . , �

(0)
� have correlated agreement with � (0) on a domain D′ ⊂ D (0) of density at least � .

Numerical Example: Suppose � ≥ 2256, � = |D (0) | = 220, � = 2−4, so � + 1 = 216, an entirely reasonable choice
for practical applications (In STARKs, � corresponds to the length of a computation for which a STARK proof is
being generated). Set� = 211 − 1 and notice

∑(� (� ) − 1) ≤ �, so

�C <
(211)7 · 240
2 · 2−6 · 2256 + 211 · 221

2−2
· 220

2256
< 2−133.

Assume the maximal correlated agreement density of �
(0)
0 , . . . , �

(0)
� with RS[F,D (0) , � + 1] is at most

� =
√
� (1 + 1/2�) ≈ 0.25006 . . . . . . ≈ 1

4
.

Invoking the QUERY protocol for � = 65 invocations gives

�� ≈ 0.2500665 < 2−129.97

So the total FRI error is bounded by
�FRI ≤ �C + �� < 2−128.
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In words, if the FRI protocol accepts with probability greater than 2−128 then �
(0)
0 , . . . , �

(0)
� have correlated

agreement with � (0) of density greater than � . Thus we get 128-bits of provable soundness for the FRI protocol
for this setting of parameters and 65 invocations of the QUERY phase.

Proof of Theorem 8.3. The proof follows directly from Lemma 8.2 by way of contradiction. Suppose the

maximal correlated agreement of �
(0)
0 , . . . , �

(0)
� with� (0) is less than� (0) (�,�) = √

� (1+1/2�), yet the probability
of acceptance is greater than �C + (� (0) (�,�))� .

Let � be the event that each FRI QUERY accepts with probability greater than � (0) (�,�). This event depends on
�1, . . . , �� , �

(0) , � (0) , � (1) , . . . , � (r−1) , � (r) , where each � (� ) is generated by �∗ in response to prior veriier messages.
By Lemma 8.2, for any prover �∗, the probability of the event � is bounded by �C. When � does not hold, then
the probability of the event that � independent invocations of the FRI QUERY all return łacceptž, is bounded by
(�0 (�,�))� .
We conclude the probability of acceptance of the FRI veriier is bounded by �C + (� (0) (�,�))� , contradicting

our assumption. □

Discussion and Two Open Questions. Theorem 8.3 improves on the previous state of the art, due to [11, 12], in
several ways. First, as explained in Section 3.2, the prior state of the art required a proximity parameter that is
smaller than the łone-and-a-half Johnson boundž: � < 1 − 3

√
� ; the current result pushes the proximity parameter

(for large ields) up to the Johnson/GuruswamiśSudan bound. Second, the error parameter during the COMMIT
phase was worse, and the analysis incurred an additional loss in the proximity parameter during the QUERY
phase, which led to worse concrete soundness bounds across all proximity parameter settings. Last, but not
least, the prior bounds on � (above the unique decoding radius) were only valid for the case where the łfolding
parametersž � (0) , . . . , � (r−1) were all equal to the ixed value �★ = 2, and deteriorated swiftly for larger � (� ) (they
only work up to radius 1 − (� (� ) +1)√�). The current bounds deteriorate much more slowly with � (� ) , and this is

important because large values of � (� ) are often preferable in practice.
Ben-Sasson et al. showed in [5] that for the FRI protocol to achieve security parameter � (i.e., �FRI ≤ 2−�),

we need to use at least � ≥ �/log 1
�
invocations of the QUERY phase, and conjectured that this lower bound

on � is also suicient (for suiciently large ields). As noted earlier in Section 3.2 our results imply that taking
� ≈ 2�/log 1

�
suices to get security parameter � for quadratically large ields. Closing the gap between the

provable upper and lower bounds on � is left as an interesting open problem. Concretely, the following conjectured
improvement to our main correlated agreement theorem (Theorem 1.4) will imply the conjecture of [5]. To the
best of our knowledge, nothing contradicts setting �1 = �2 = 2 in the conjecture below. When limiting the scope
to ields of characteristic greater than � (degree of the RS code), we are not aware of anything contradicting
�1 = �2 = 1; note that [11, Appendix B] shows these smaller exponents cannot hold for ields of characteristic two.

Conjecture 8.4. There exist constants �1, �2 such that the following statements hold for all � > 0.

• Theorems 1.2, 1.4 and 1.6 hold for proximity parameter � ≤ 1 − � − � with error

� ≤ 1

(��)�1 · �
�2

�
.

• Theorem 1.5 holds for proximity parameter � ≤ 1 − � − � and parameterized curves of degree � with error

� ≤ 1

(��)�1 · (� · �)
�2

�
.

DEEP FRI is another Reed-Solomon Proximity Testing (RPT) protocol that is closely related to FRI (as its name
suggests). Introduced in [11], it is slightly less eicient (in terms of prover and veriier complexity) than FRI
because it requires more from the prover, making it harder for a malicious prover to cheat. Prior to this work, the
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extra complexity of DEEP FRI led to improved soundness, which reaches the Johnson/GuruswamiśSudan bound.
But Theorem 8.3 shows that FRI has soundness which also reaches the same bound. Moreover, when approaching
the Johnson bound, DEEP FRI requires cubic size ields for the arguments to work, whereas FRI is shown here to
require only quadratic size ields. Thus, according to our new understanding, in terms of both complexity and
ield size, FRI dominates DEEP FRI, even though DEEP FRI demands strictly more from the prover side.7 This
raises an interesting second question: understanding how the techniques developed here may be combined with
the techniques of the DEEP FRI protocol to derive better soundness bounds for DEEP FRI and new, improved
RPT protocols.

8.2.1 Proof of Lemma 8.2. Recall that the prover sends a function � (�+1) in response to the random choice of � (� ) .
In the FRI QUERY phase, the function � (�+1) will be checked for consistency with � (� ) . We now introduce a way
to keep track of the consistencies and inconsistencies.

Deine a sequence of weight functions � (� ) : D (� ) → [0, 1] and � (� ) : D (� ) → [0, 1] inductively for � = 0, . . . , r.
For � = 0, we assign {0, 1} weights indicating whether � (0) (�) is computed correctly:

� (0) (�) =
{
1 if � (0) (�) = �

(0)
0 (�) +∑�

�=1 �� �
(0)
� (�),

0 otherwise.

Now, we inductively deine an auxiliary weight � (�+1) : D (�+1) → [0, 1]. Recall the coset �
(� )
� ⊂ D (� ) from

Eq. (8.1). Then

� (�+1) (�) = E
�′∈� (� )

�
[� (� ) (�′)] . (8.6)

In words, � (�+1) (�) is the expected � (� ) weight of a member of the coset�
(� )
� . Finally, we deine the weight function

� (�+1) thus for each � ∈ D (�+1) :

� (�+1) (�) =
{

� (�+1) (�) if � (�+1) (�) = �
(�+1)
� (� ) ,� (� )

(�),
0 otherwise.

The key property of the above deinition of the � (� ) is that � (� ) (�) is a measure of the success probability of the
FRI QUERY phase conditioned on � being queried from � (� ) . This is the underlying reason behind the following
claim.

Claim 8.5. The probability �Q that a single invocation of the batched FRI QUERY accepts � (0) , . . . , � (r) , where
� (r) ∈ RS[F,D (r) , � (r) ], satisies

�Q = E� (r) ∈D (r)

[
� (r)

(
� (r)

)]
.

Proof. Recall that the FRI QUERY invocation picks a random sequence � (r) , . . . , � (0) as described above, where

� (�−1) is sampled uniformly at random from �
(�−1)
� (� )

. We prove by induction on � = 0, . . . , r that

E� (� ) ∈D (� )

[
� (� )

(
� (� )

)]
equals the probability that, when sampling a uniformly random � (� ) and generating from it the random sequence

� (�−1) ∈ �
(�−1)
� (� )

, . . . , � (0) ∈ �
(0)
� (1)

, all tests associated with � (� ) and its induced sequence accept.

The base case follows from the deinition of � (0) . For the inductive case, notice � (� ) (� (� ) ) equals 0 when
� (� ) (� (� ) ) is not computed correctly as per Eq. (8.2), and otherwise it is the average of the values of � (�−1) on

7The one remaining virtue of DEEP FRI is that its soundness is closely connected to a classically studied problem (the list-decodability of

ReedśSolomon codes), and under a simple, plausible conjecture about that problem, it achieves the optimal bound on the required repetition

parameter � = (1 + � (1) )� log 1
� .
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the coset �
(�−1)
� (� )

⊆ D (�−1) , which, by the inductive assumption, is the expectation that the tests associated with

� (�−1) , . . . , � (0) are all accepted. □

Proof of Lemma 8.2. In light of Claim 8.5 it suices to prove that with probability 1 − �C over the random
choices of the veriier,

E�∈D (r)

[
� (r) (�)

]
≤ � (0) (�,�). (8.7)

We deine a sequence of bad events � (0) , . . . , � (r) and bound the sum of their probabilities by �C. Assuming
none of the bad events occurred, we shall show that Eq. (8.7) holds.
Let � (0) be the event

agree� (0)

(
� (0) ,� (0)

)
> � (0) (�,�).

The deinition of � (0) implies that the event � (0) is

agree

(
�
(0)
0 +

�︁

�=1

�� �
(0)
� ,� (0)

)
> � (0) (�,�) = max(�,√� (1 + 1/2�)).

This event depends on �1, . . . , �� . By assumption the maximal correlated agreement density of (� (0)
0 , . . . �

(0)
� )

with � (0) is at most � . So Theorem 7.4 (with � = � (0) (�,�) and � ≡ 1,� = 1) implies:

Pr
�1,...,��

[
� (0)

]
≤ �, where � =

(
� + 1

2

)7
3�3/2

· �
2

�
. (8.8)

Now ix � ∈ {0, . . . , r − 1}. We deine � (�+1) to be the event that:

agree� (�+1)

(
�
(�+1)
� (� ) ,� (� )

,� (�+1)
)
> max

(
agree� (� )

(
� (� ) ,� (� )

)
,
√
� (1 + 1/2�)

)
. (8.9)

Having ixed � (� ) and � (� ) , the event � (�+1) depends on � (� ) . By deinition, we have

agree� (�+1)

(
� (�+1) ,� (�+1)

)
≤ agree� (�+1)

(
�
(�+1)
� (� ) ,� (� )

,� (�+1)
)

so when � (�+1) does not hold we conclude from Eq. (8.9) that

agree� (�+1)

(
� (�+1) ,� (�+1)

)
≤ max

(
agree� (� )

(
� (� ) ,� (� )

)
,
√
� (1 + 1/2�)

)
. (8.10)

Let � = max
(
agree� (� )

(
� (� ) ,� (� ) ) ,√� (1 + 1/2�)

)
. Opening up the deinition of �

(�+1)
� (� ) ,� (� )

, we get that � (�+1) is

the event that:

agree� (�+1)

(
�0 + � (� )�1 + . . . + (� (� ) )� (� )−1�� (� )−1,� (�+1)

)
> �,

where �0, . . . , �� (� )−1 : �
(�+1) → F are the functions obtained from � (� ) in the deinition of the FRI protocol (cf.

Claim 8.1). This is precisely the situation addressed by Theorem 7.2. Moreover, � (�+1) has a common denominator
� = |D (0) |/|D (�+1) |, so, using the notation there� · � = |D (0) |. So Theorem 7.2 tells us that if

Pr
� (� )

[
� (�+1)

]
≥ (� (� ) − 1) ·

(
� (� ) + 2� + 1

√
�

· |D
(0) | + 1

|F|

)

then there is an � ⊆ D (�+1) and codewords �0, . . . , �� (� )−1 ∈ � (�+1) such that the �� and �� agree on � , and

� (�+1) (�) > � . Here � (� ) = |D (�+1) |2
|D (0) |2 � = �

(� (0) · · ·� (� ) )2 where � is given in Eq. (8.8), since the required probability is

quadratic in the size of the target domainD (�+1) . Recall from Eq. (8.4) that the mapping of � (� ) ��
�

(� )
� (�+1)

to u(� ) (� (�+1) )
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is the invertible interpolation map. Apply the inverse map, i.e., the evaluation map, to �0 (� (�+1) ), . . . , �� (� )−1 (� (�+1) )
for each � (�+1) ∈ D (�+1) , to get a function ℎ (� ) : D (� ) → F that, on � (� ) ∈ �� (�+1) , satisies:

ℎ (� ) (� (� ) ) =
� (� )−1︁

�=0

(
� (� )

) �
· � �

(
� (�+1)

)
=

� (� )−1︁

�=0

(
� (� )

) �
· � �

((
� (� )

)� (� ) )
.

Therefore, since � � ∈ � (�+1) , we conclude that ℎ (� ) ∈ � (� ) . Moreover, by deinition we have

agree� (� )

(
� (� ) ,� (� )

)
≥ agree� (� )

(
� (� ) , ℎ (� )

)
= � (�+1) (�) > �,

contradicting our deinition of � . The equality above arises from the deinition of � (� ) , � (�+1) and ℎ (� ) , noticing
� (�+1) (� (�+1) ) ≠ 0 implies that ℎ (� ) ��

�
(� )
� (�+1)

= � (� ) ��
�

(� )
� (�+1)

.

Thus, if none of the events � (�+1) happen, we deduce via Eq. (8.10) that for all � ∈ 0, 1, . . . , r − 1:

agree� (�+1) (� (�+1) ,� (�+1) ) ≤ max
(
agree� (� )

(
� (� ) ,� (� )

)
,
√
� (1 + 1/2�)

)
.

Recalling the deinition of � from Eq. (8.8), the probability that � (0) or some � (�+1) happens is bounded by

Pr
�1,...,��

[
� (0)

]
+

r−1︁

�=0

Pr
� (� )

[
� (�+1)

]
≤ � +

r−1︁

�=0

(� (� ) − 1)
(
� (� ) + 2� + 1

√
�

· |D
(0) | + 1

|F|

)

=

(
1 +

r−1︁

�=0

� (� ) − 1

(� (0) · · · � (� ) )2

)
� + 2� + 1

√
�

· |D
(0) | + 1

|F| ·
r−1︁

�=0

(� (� ) − 1)

<
3�

2
+ 2� + 1

√
�

· |D
(0) | + 1

|F| ·
r−1︁

�=0

� (� ) .

Here we bounded
r−1︁

�=0

� (� ) − 1

(� (0) · · · � (� ) )2
=

r−1︁

�=0

(
1

(� (0) · · · � (�−1) )2� (� )
− 1

(� (0) · · · � (� ) )2

)
<

1

2
,

which is immediate from � (� ) ≥ 2.
Putting everything together, we get that except on a set with probability strictly less than

3�

2
+ 2� + 1

√
�

· |D
(0) | + 1

|F| ·
r−1︁

�=0

� (� ) = �C,

it holds that

agree� (r) (� (r) ,� (r) ) = E� (r) ∈D (r)

[
� (r) (� (r) )

]
≤ max

(
�,
√
� (1 + 1/2�)

)
= � (0) (�,�).

The irst equality above holds by the assumption that � (r) ∈ � (r) . This completes our proof. □
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A ALGEBRAIC EXTENSIONS OF F� (� )
In this section we develop preliminaries that will be necessary for the proof of Theorem 5.1. In the proof, we
will have a trivariate polynomial � (�,�, � ), with an irreducible factor �(�,�, � ). When evaluated at a certain
� = �0 ∈ F� , �(�0, � , � ) will have an irreducible factor � (�, � ). For both � and � , irreducible means irreducible
in the respective ring of polynomials over F� . Our goal will be to show that� has a factor of the form � −� (�,� ),
where � has low � and � degree, and in fact � is this factor. Considering � and � as polynomials in � over
F� [�,� ], this is equivalent to inding a rational root � (�,� ) of � , which is also a root of �, and � (�0, � ) is thus
a root of � . To do so, we will instead start by understanding roots of � , not necessarily of the required form or
even lying in F� (� ), lifting them to roots of � (and �), and then investigating these lifts to prove that they are
indeed of the required form � (�,� ).

We will therefore need to understand the roots of � (�, � ). Such roots can be realized in F� (� ) [� ]/(� (�, � )),
which is a inite algebraic extension of F� (� ). The ield will perhaps contain only one root of� , which is suicient,
since � ’s irreducibility implies all of its roots are equivalent. We will construct this ield, in a slightly diferent
way, and also introduce its ring of regular elements, in Appendix A.1. In this ield, we will need a concept of
weight, which is an extension of the concept of łdegreež from F� (� ), and is introduced in Appendix A.2. A major
tool that we will use in several ways is of substitution maps from this ield to F� , extending the concept of
substituting � = � in a rational function in F� (� ). These substitutions and a useful lemma regarding them are
introduced in Appendix A.3. The inal tool we need is the lifting of roots of � (�, � ) to roots of �(�,�, � ), which
is known as Hensel lifting. We describe this process and state an important lemma on the weights of the ield
elements appearing in this lift in Appendix A.4.

A.1 The algebraic extension and its regular elements

Let � ≥ 1 be an integer, and let

� (�, � ) = ℎ0 (� )�� + ℎ1 (� )��−1 + · · · + ℎ� (� ) ∈ F� [�, � ]

be an irreducible bivariate polynomial, expressed as a polynomial in � over F� [� ]. The leading coeicient of
� will feature prominently throughout the section, and so we introduce the additional notation� = ℎ0, to
emphasize its role, and slightly simplify notations.

We wish to understand the ield F� (� ) [� ]/(� (�, � )), of polynomials in� over F� (� ) modulo � . The presence
of the leading coeicient� means that � is not an integer in this ield, and makes the arithmetic modulo �

unpleasant to keep track of, with possible emergence of high powers of� in denominators whenever a reduction

modulo � is performed. To avoid this, we irst deine a łmonicizedž version of � , denoted �̃ , which is a monic,
irreducible polynomial in F� [� ] [� ] generating the same ield as � :

�̃ (�, � ) =� (� )�−1� (� /� (� ), � )
= �� + ℎ1 (� )��−1 + ℎ2 (� )� (� )��−2 + · · · + ℎ� (� )� (� )�−1 .

We now denote L = F� (� ) [� ]/(�̃ (�, � )), and observe that � = �
� (� ) is a root of � (�, � ) in L; this also

establishes that � ↦→� (� ) · � and � ↦→ �
� (� ) are isomorphisms between L and F� (� ) [� ]/(� (�, � )). We say

that an element of L is regular if it can be expressed as a polynomial in� with coeicients only in the ring F� [� ]
instead of the ield F� (� ); equivalently, if this is true for its canonical form as a polynomial in � of degree less

than � . We denote the set of regular elements by O = F� [� ] [� ]/(�̃ (�, � )). The regular elements are in fact a ring,
and a subring of the ring of integers of L (we will not be interested in non-regular integers, for our purposes).
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A.2 Algebraic weights

Let � ≥ � be an upper bound on the total �, � degree of � , so that deg� ℎ� ≤ � + � − � for all � . We deine a
weight function Λ on F� [�, � ] by assigning Λ(� ) = 1 and Λ(� ) = � + 1 − � , extended additively to monomials,

i.e. Λ(����) = �Λ(� ) +�Λ(� ), and the weight of a polynomial is the maximal weight of all monomials appearing
in it with non-zero coeicients (with the weight of the 0 polynomial being −∞). Note that Λ is fully additive on
F� [�, � ], i.e. for any �, � ∈ F� [�, � ], Λ(��) = Λ(�) + Λ(�). Also note that when restricted to F� [� ], Λ = deg� .

Observe that �̃ (�, � ) has weight Λ(�̃ ) = � (� + 1 − �) = �� − � (� − 1), with the leading monomial being of

this exact weight and every other monomial bounded by it. It follows that any simple modulo Λ(�̃ ) operation of
the form

��+� → −
�︁

�=1

ℎ� (� )� (� )�−1��+�−�

never increases the weight Λ, and so does complete reduction modulo �̃ .
We now deine the weight Λ(�) of a regular element � ∈ O as the weight of the canonical representative

of � with degree less than � , which by the above is also the minimal value of Λ over all representatives of
� . It also follows that for any �, � ∈ O, if �(�, � ), �(�, � ) are their canonical representatives, and � (�, � ) =

�(�, � )�(�, � ) mod �̃ (�, � ) is the canonical representative of � = �� , then

Λ(�) = Λ(�) ≤ Λ(��) = Λ(�) + Λ(�) = Λ(�) + Λ(�).

In other words, Λ is sub-additive in O.

A.3 Rational substitutions

Let � ∈ F� be such that �̃ (�, �) has a rational root � = �� . In other words, (��, �) ∈ F2� is a root of �̃ , with ��
considered as depending on � (in our applications, it will in fact be given as a function of �). For any such root-pair,
we deine the substitution �� , which is the homomorphism �� : O → F� given by �� (� ) = �, �� (� ) = �� . The

homomorphism is well-deined since O = F� [�, � ]/(�̃ (�, � )) and �� (�̃ (�, � )) = �̃ (��, �) = 0. The substitution

�� can be extended naturally to any element of L for which � is not a pole, i.e. elements of the form
�

� (� ) with

� ∈ O and � not a root of � , by ��

(
�

� (� )

)
=

�� (� )
� (� ) .

The following lemma gives an upper bound on the number of substitutions in which an element � ∈ O can
vanish in terms of its weight. It is analogous to the statement that a polynomial of degree at most � which
vanishes for more than � evaluations must be the 0 polynomial.

Lemma A.1. Let � ∈ O be regular with weight Λ(�). Let

�� = {� ∈ F� : ∃�� ∈ F�, �̃ (��, �) = 0 and �� (�) = 0}

and suppose |�� | > � · Λ(�). Then � = 0 ∈ L.

Proof. Let � =
∑�−1

�=0 �� (� )� � ∈ F� [� ] [� ] be the canonical representative, with

deg� (�� ) = Λ� (�� ) ≤ Λ(�) − �Λ(� ) = Λ(�) − � (� + 1 − �).

Consider the resultant �(� ) = res� (�, �̃ ). From the Sylvester matrix, or considering weights of roots, we

ind deg� � ≤ � · Λ(�) < |�� |. On the other hand, every � ∈ �� is a root of �, since �̃ (�, �) and � (�, �) have a
common root �� . It follows that � is identically 0, i.e. � and �̃ are not coprime, but since �̃ is irreducible and

deg� (�) < deg� (�̃ ), we have � = 0, as claimed. □
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A.4 Hensel lits

Suppose � (�, � ) as above is a factor of ��0 (�, � ) = �(�0, � , � ), where �0 ∈ F� , and �(�,�, � ) is irreducible in
F� [�,�, � ]. Additionally assume that � and ��0 are both separable in � , which means that they do not have
double roots when considered as polynomials in � , or equivalently, that they are coprime to their � -derivatives.
Note that this applies not only to roots in the ields over which they are deined, but over any extension ield as
well. Denoting �0 =

�
�

∈ L, we ind �(�0, �0, � ) = 0 ∈ L, or equivalently in L[� ],

�(�, �0, � ) ≡ 0 (mod � − �0).

Since �0 is a root of the separable polynomial ��0 , it must be a simple root, or equivalently must satisfy � =
��
��

(�0, �0, � ) ≠ 0. In other words � ∈ L is invertible. This fact allows us to iteratively lift the root �0 of �(�,�, � )
(mod � − �0) to a root

�0 + �1 (� − �0) of �(�,�, � ) (mod (� − �0)2)
by solving the equation �(�, �0 + �1 (� − �0), � ) ≡ 0 (mod (� − �0)2), in which �1 appears with coeicient � ,
after expansion. We then lift again to a root

�0 + �1 (� − �0) + �2 (� − �0)2 of �(�,�, � ) (mod (� − �0)3),

and so on. At each step the lifting is unique, and determined by an algebraic equation in which the new �� appears
linearly with the same coeicient � .

We obtain an ininite sequence (�� )∞�=0, such that at each step � the truncated series�� =
∑�

�=0 �� (�−�0)� ∈ L[� ]
satisies

�(�,�� , � ) ≡ 0 (mod (� − �0)�+1).
Equivalently, for the ininite formal power series � =

∑∞
�=0 �� (� − �0)� ∈ L[[� − �0]], we have �(�,�, � ) = 0 ∈

L[[� − �0]]. Here L[[� − �0]] is the ring of formal power series in � − �0 with coeicients in L. This power
series � is the Hensel lift of �0, and the process by which it is computed is the Hensel lifting. Its existence and
uniqueness both follow solely from �0 being a simple root modulo � − �0.

We make a slight change to the notation, and henceforth � will be the � -degree of �, and �� ≤ � will denote
the � -degree of � (previously denoted by �). We will also assume that � is an upper bound not only on the total
degree of � but also of �. Note that� , the leading coeicient of � , divides the leading coeicient of ��0 , and has
weight Λ(� ) ≤ � − �� .

The following claim describes the coeicients �� appearing in the Hensel lift, and bounds their denominators
and the weights of their numerators:

Claim A.2. �� is of the form
��

� �+1��� , where

• � =� (� )�−2� ∈ O with � = ��
��

(�0, �
�
, � ) ∈ L, and

Λ(�) ≤ (� − 1) + (� − 2)Λ(� ) ≤ (� − 1) (� − �� + 1),

• �� = max(0, 2� − 1), i.e. �0 = 0 and �� = 2� − 1 for � ≥ 1,
• �� ∈ O with

Λ(�� ) ≤ 1 + (� + 1)Λ(� ) + ��Λ(�)
≤ 1 + (� + 1) (� − �� ) + �� (� − 1) (� − �� + 1)
= ((� − 1) · �� + � + 1) (� − �� + 1) − �

≤ ((2� (� − 1) + � + 1) (� − �� + 1) − � < (2� + 1)��.
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The claim is proven by straight-forwardly expanding �(�,�, � ) as a series in� −�0, comparing each coeicient
to 0, and using induction on � . The existence and uniqueness of the Hensel lift � , and how each new coeicient ��
is computed from the previous ones, will also follow from the proof.

Proof. We prove the statement by induction on � . For � = 0, we have simply �0 =
�
�

mod �̃ , i.e. �0 = � mod �̃
and indeed Λ(� ) = Λ(� ) + 1.

Let� �� (� ) be the coeicient of� �� � in�(�,�, � ), i.e.�(�,�, � ) = ∑
�, � � �� (� )� �� � . Wewish to write�(�,�, � )

as a power series in� −�0. A partition of � is a sequence of non-negative integers � = (�� )�≥1 with
∑

� � ·�� = � . Such
sequences are non-zero only initely many times, and we trim any trailing 0s in writing, e.g. (1) = (1, 0, 0, 0, . . . ).
We also denote |� | = ∑

�≥1 �� . Let P(�) be the set of partitions of � . For any �, �1 ≤ � , and � ∈ P(� − �1), denote

��1,� =

︁
�0

� = �0 + |� |

(
�

�0, �1, . . . , �� , . . .

)
�
�0
0

︁
�0

� = �0 + �1

(
�

�0, �1

)
� �� (� )��00

=

︁
�0, �0

� = �0 + �1
� = �0 + |� |

(
�

�0, �1

) (
�

�0, �1, . . . , �� , . . .

)
� �� (� )��00 �

�0
0

=

(
|� |

�1, . . . , �� , . . .

)︁
�, �

(
�

�1

) (
�

|� |

)
� �� (� )��−�10 �

�−|� |
0

=

(
|� |

�1, . . . , �� , . . .

) (
Δ
�1
�
Δ
|� |
�
�(�,�, � )

)���
(�0,�0,� )

where the sums are taken only over non-zero terms, i.e. with � + � � < �� , and Δ
�
�
is the �-th Hasse derivative

with respect to the variable � . In particular, whenever � is such that |� | = 1, we have

�0,� = (Δ��) (�0, �0, � ) =
��

��
(�0, �0, � ) = � .

Since the maximal degree of �0 =
�
�

appearing in ��1,� is � − |� |, we can generally write ��1,� =
��1,�

� �−|� | , where

��1,� ∈ O has weight Λ(��1,�) = (� − |� |) + (� − |� |)Λ(� ). In the special case �1 = 0, the coeicient of �
�−|� |
0 is a

multiple of
∑

� ��� (� )��0, which is the leading coeicient of ��0 , hence divisible by� , and thus we can save a

little and write �0,� =
�0,�

� �−1−|� | , where �0,� ∈ O has weight (� − |� |) + (� − 1 − |� |)Λ(� ). When |� | = 1 we then

get � = �0,� =
�0,�

� �−2 =
�

� �−2 where � ∈ O has weight (� − 1) + (� − 2)Λ(� ) as stated. To generalize the two

cases, we may write ��1,� =
��1,�

�
�−��1,0−|� |

, where ��1,0 = 1 if �1 = 0 and ��1,0 = 0 otherwise.

Now, expanding �(�,�, � ), we get

0 = �(�,�, � ) =�
(
�0 + (� − �0),

︁
�

�� (� − �0)� , �
)

=

︁
� �

� �� (� ) (�0 + (� − �0))�
(︁

�

�� (� − �0)�
) �

=

︁
� �

� �� (� )
( ︁
�0+�1=�

(
�

�0, �1

)
�
�0
0 (� − �0)�1
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×
︁

�0+|� |=�

(
�

�0, �

) (
�
�0
0

∏
�

�
��
�

)
(� − �0)

∑
� � ·��

)

=

∞︁

�=0

(� − �0)�
︁
�1

� ∈ P(� − �1 )

��1,�

∏
�≥1

�
��
�

Note that �� appears for the irst time in the term corresponding to (� −�0)� , and only with �1 = 0 and � = � (� )

deined by �
(� )
� = 1, �

(� )
�

= 0 for � ≠ � , with the coeicient �0,� (� ) = � . All other summands in the coeicient of

(� − �0)� involve only �� with � < � , so we may apply the induction. Comparing the coeicient to 0, we get

�� = − 1

�

︁
�1;� ∈ P(� − �1 )

� ≠ � (� )

��1,�

∏
�≥1

�
��
�

= −�
�−2

�

︁
�1;� ∈ P(� − �1 )

� ≠ � (� )

��1,�

� �−��1,0−|� |

∏
�≥1

(
��

� �+1���

)��

=

︁
�1;� ∈ P(� − �1 )

� ≠ � (� )

��1,�
∏

� �
��
�

� 2−��1,0−|� |+
∑

� (�+1)�� �1+
∑

� (2�−1)��

=

︁
�1;� ∈ P(� − �1 )

� ≠ � (� )

��1,�
∏

� �
��
�

� �−�1−��1,0+2�2�−2�1−|� |+1
,

=
1

� �+1�2�−1

︁
�1;� ∈ P(� − �1 )

� ≠ � (� )

� �1+��1,0−1�2�1+|� |−2��1,�
∏
�

�
��
�
,

thus we have

�� =
︁

�1;� ∈ P(� − �1 )
� ≠ � (� )

� �1+��1,0−1�2�1+|� |−2��1,�
∏
�

�
��
�

(A.1)

which is indeed regular, as the� , � , the �’s and the �’s are all regular and the exponents are non-negative: for
the exponent of� , it is always the case that �1 + ��1,0 ≥ 1. For the exponent of � , for �1 = 0, every � ∈ P(�) with
� ≠ � (� ) indeed has |� | ≥ 2, and for �1 ≥ 1 we even have 2�1 + |� | − 2 ≥ 1, since |� | ≥ 1.

The upper bound on the weight of � can be shown by induction using the recursion (A.1), but an easier way to
understand it is by considering the weight of �� : Since � =

∑∞
�=0 �� (� − �0)� is a solution to �(�,�, � ) = 0, � has

the same weight as � ; since �, �0 have weight 0, each �� also has weight Λ(�� ) = Λ(� ) = 1. Thus

Λ(�� ) = Λ(��� �+1��� ) ≤ 1 + (� + 1)Λ(� ) + ��Λ(�)

as claimed.
□
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B MISCELLANEOUS COMPUTATIONS

B.1 The �, � -degree of �

In this section we prove inequality (5.7) of Claim 5.4, which claims that the total �, � -degree of � (�,�, � ) is
bounded by (�+1/2)3

6
√
�

�.

The bound on ��� = deg�,� (�) comes from minors of the matrix � representing the system of equations

deining� . These equations are all of the form łthe (�� ,�� )-th derivative of� vanishes at (�,� (�))ž, for � ∈ D
and non-negative integers�� ,�� with�� +�� < �. Computing the derivative8 and substituting (�,� (�)), we
see that the (�,�� ,�� )-th equation is

Δ
��

�
Δ
��

�
� (�,� (�, � ), � ) =

︁
�+� · �<��

� �� (� )
(
�

��

) (
�

��

)
��−�� (�0 (�) + ��1 (�)) �−�� = 0.

The coeicient of � �� (� ) in this equation is therefore(
�

��

) (
�

��

)
��−�� (�0 (�) + ��1 (�)) �−�� ,

and this coeicient appears in the matrix� at row (�,�� ,�� ) and column �� . Note that as a polynomial in � , it
has degree at most � −�� , which is the sum of � , which is determined by the column, and −�� , determined by
the row. We thus call � and −�� the contributions of the column and the row, respectively, to the � -degree of the
matrix’s entry.

Let � be the rank of � , which is bounded from above by the number of rows
(�+1

2

)
�. As in Section 4.3.1,

we apply Lemma 4.3 to obtain a non-trivial solution to the system, which assigns to each � �� either 0 or a
determinant of some � × � submatrix, obtained from ixed � × (� + 1) submatrix by removing the ��-th column.
Such a determinant is a sum over products corresponding to permutations, each containing a single entry from
each row and each column of the � × � submatrix. The degree of each such product is thus bounded by the sum
of the degree contributions from all columns and rows of the � × � submatrix, regardless of the permutation, or of
all columns and rows of the � × (� + 1) matrix, minus that of the ��-th column. In other words, it is at most � − � ,
where � = �� − �� is the sum of the contributions of all columns and (negative) contributions of all rows from
the � × (� + 1) matrix. Thus the total �, � degree of the monomial � ���

�� � is at most (� − �) + � ≤ � , and hence
the total �, � degree of � is at most � , i.e. ��� ≤ � .
It remains to bound � = �� − �� from above. We do this by simply using �� ≥ 0 and bounding �� by the

sum of column contributions of the entire matrix. 9

Write � =
⌊
��

�

⌋
, � =

{
��

�

}
∈ [0, 1) with �� = � (� + �). Then

��� = deg�,� (�) ≤ � = �� − �� ≤ �� ≤
︁

�+� �<��

�

=

︁
�<

��
�

� (�� − � · �) = ��

�︁

�=0

� − �

�︁

�=0

�2 = � (� + �) � (� + 1)
2

− �
� (� + 1) (2� + 1)

6

8We use the Hasse derivatives Δ�
�
(� � ) ≔

( �
�

)
� �−� instead of the regular derivatives to avoid complications due to the characteristic of the

ield.
9It is possible to improve this bound by inding the worst � for which the sum of the largest � + 1 column contributions minus the sum of

the smallest � row contributions is maximal, and computing these sums. We opt for the simpler bound, since the optimal bound requires a

more technical and involved computation, and only ends up improving on the simple bound by a small constant factor, with an unpleasant

dependence on � .
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=
�� (� + 1) (� + 3� − 1)

6
=
�

6
(�3 + 3��2 + (3� − 1)�) = �

6
((� + �)3 − (1 − 3� + 3�2)� − �3)

=
�

6
((� + �)3 − (1 − �)3� − (� + 1)�3) < �

6
(� + �)3 =

�3
�

6�2
≤

(� + 1
2
)3

6
√
�

�,

as claimed in (5.7). □

B.2 The number of variables in the GuruswamiśSudan decoder

Recall that the GuruswamiśSudan decoder searched for a polynomial � (�,� ) =
∑

�, � � ���
�� � , with variable

coeicients � �� coming from the set {(�, �) : �, � ≥ 0, � + � · � < �� }.

Claim B.1. The number of variables in the GuruswamiśSudan decoder above is at least

�

2

((
��

�
+ 1

2

)2
− 1

4

)
=
�� (�� + �)

2�
.

Proof. For this computation, we may assume �� is an integer: if is not, then replacing it by ⌈�� ⌉ does not
change the deinition of the set of indices (since the inequality is strict), and only increases the lower bound we

wish to prove. Dividing �� by � with remainder, we write �� = � · � + � , with � =

⌊
��

�

⌋
, 0 ≤ � < � . The size of

the index set is ︁
�+� · �<��

1 =

�︁

�=0

|{0 ≤ � < �� − � �}| =
�︁

�=0

(�� − � �) = (� + 1)�� − �
�(� + 1)

2

= (� + 1)
(
�� + � − ��

2

)
=

(�� + �) (�� + 2� )
2�

≥ (�� + � ) (�� + � + �)
2�

=
�� (�� + �)

2�
,

where the inequality (��+�) (��+2� ) > (��+� ) (��+�+�), is equivalent after expansion to 2�� > � (�+�) ≥ � 2+�� ,
or simply � (� − � ) ≥ 0, which follows from 0 ≤ � < � .

□

C THE INSEPARABLE FACTOR CASE IN THE LIST DECODING REGIME

Recall that in Section 5.2.3, we had assumed that in the decomposition

� (�,�, � ) = � (�,� )
∏
�

�� (�,�� ��
, � )�� ,

the factors �� (�,�� ��
, � ) were all separable, i.e. �� = 0. This assumption was in fact necessary only for the factor

� on which we focused in Section 5.2.4. We now consider the case where � = �� > 0, and our relevant factor is of

the form �(�,��, � ), where � = � � and �(�, �̃ , � ) is separable and irreducible in �̃ . Note that we still have that

�(�0, �̃ , � ) is separable. The elements of ��0,�,� now satisfy � −�� (� ) | �(�,��, � ), and equivalently �̃ = �� (� )�
is a root of �(�, �̃ , � ) and �� − �� (� )� | �(�,��, � ). Similarly, �̃ = �� (�0)� is a root of the irreducible factor

� (�̃ , � ) of �(�0, �̃ , � ) Ð and a simple root of both, since they are separable.
Note that � ≤ deg� (�(�,��, � )) ≤ deg� (� (�,�, � )) = �� and therefore

deg� (�� (� )�) ≤ � � � ≤ ��� < �� .
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We construct the ield L for the polynomial � (�̃ , � ) exactly as before, but noting that �̃ = �� will have weight

�, which correspondingly afects the weight of � =� (� )�̃ =� (� )��, now deined as � − (�� − 1)�. Note that
the upper bound on �� , � (the �̃ degrees of �,� ) is also changed, and is now ��

�
instead of simply �� . With these

adaptations in mind, we perform the Hensel lift, lifting the root �0 =
�
�

∈ L of �(�0, �̃ , � ) to the power series

root � ∈ L[[� − �0]] of �(�, �̃ , � ). Claim A.2 still holds and gives us

Λ(�) ≤ (� − �) + (� − 2)Λ(� ) ≤ (� − 1) (� − (�� − 1)�),
Λ(�� ) ≤ � + (� + 1)Λ(� ) + ��Λ(�)

≤ ((� − 1) · �� + � + 1) (� − (�� − 1)�) − �� < (2� + 1)��.

As in Section 5.2.6, the substitution �� (�) for � ∈ � ′ is a root of �(�, �̃ , �) which is the lift of the simple root

�̃ = �� (�0)� of �(�0, �̃ , � ). Since �� (� )� is also of this form, by the uniqueness of the lifting we get �� (�) = �� (� )�,
and in particular �� (�� ) = 0 and �� (�� ) = 0 for all � except for 0 ≤ � ≤ �� < �� which are divisible by �. As

before, we have |� ′ | ≥ ��Λ(�� ) for all � < �� : the right hand side is bounded from above by
�2
�
��� (2�� −1)

�2
,

which only decreases as � increases. It thus follows that �� = 0 and �� = 0 for all � < �� except for those which
are at most �� and divisible by �. In other words we have

��� −1 =
�︁

�=0

��� (� − �0)�� .

Out next goal is to show that ��� −1 is a �-th power of a polynomial of degree � (and later that � = ��� −1,
and that this polynomial is in fact in F� [� ] [� − �0], with coeicients linear in � ). This part did not appear in
Section 5, as it is trivial for � = 1. This polynomial should naturally be the �-th root of ��� −1 Ð but in order to
construct such roots, we will need some more preliminaries about the ield in which they live.

Let � : F� → F� be the automorphism mapping each element � to its unique �-th root � (�) = �1/�. Let L̂ be

the inseparable algebraic ield extension of L with elements �̂ , �̂ satisfying �̂� −� = �̂� − � = 0; equivalently,

�̂ = � 1/� and �̂ = � 1/�. Note that L̂ can also be deined directly as the ield F�
(
�̂
) [
�̂
]
/
(
�̂
(
�̂ , �̂

) )
, where �̂ = � (�̃ )

is the (irreducible) polynomial obtained by applying � to the coeicients of �̃ , which satisies

�̂
(
�̂ , �̂

)�
= �̃

(
�̂�, �̂�

)
= �̃ (�, � ).

Since the monomials of �̂ have the same �̂ - and �̂ -degrees as the � - and � -degrees of �̃ , a weight Λ̂ can be

deined for regular elements in L̂ in exactly the same way as in L. Additionally, � can be extended to a map

�̂ : L→ L̂ satisfying �̂ (�)� = � for all � ∈ L by deining �̂ (� ) = �̂ and �̂ (� ) = �̂ . Note that Λ(�) = Λ̂(�̂ (�)) for
any � ∈ O, since �̂ preserves degrees. The substitution maps �� for � ∈ � ′ can also be extended to L̂ by setting

�� (�̂ ) = � (�) = �1/� and �� (�̂ ) = � (��) = �
1/�
� = �̂

(
�1/�

)
�� (�0), where �̂ = � (� ).

Deine

�̂ =

�︁

�=0

�̂ (��� ) (� − �0)� ∈ L̂[� − �0]

which indeed satisies ��� −1 = �̂�, and therefore �(�, �̂�, � ) ≡ 0 (mod (� −�0)�� ). Since �(�,��, � ) is a divisor
of � (�,�, � ), it follows as before that deg� �(�, �̂�, � ) < �� , and therefore �(�, �̂�, � ) = 0 identically, and
� = ��� −1 = �̂� by the uniqueness of the lifting. Furthermore, for every � ∈ � ′, since �� (�̂)� = �� (�̂�) = �� (�) =
�� (� )�, we also have �� (�̂) = �� (� ).

As in Section 5.2.7, our next goal is now to show that the coeicients �̂� = �̂ (��� ) of �̂ are linear polynomials

in F� [� ], rather than general elements of L̂. This is done in exactly the same way, by comparing the values of
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�� (�̂ (�)) and� (�, �) at every � = � � ∈ Dtop and � ∈ � ′� , deducing that �̂ (�) and� (�, � ) must be equal in L̂ since

�� Λ̂(�̂� ) = �� Λ̂(�̂ (��� )) = ��Λ(��� ) ≤ �� (2�� + 1)�� <

(2� + 1)�2
�
���

�

< (2� + 1)�2
���� < |� ′� |,

Finally, having shown that �̂ ∈ F� [�,� ], the arguments of Section 5.2.8 can be applied without any further
changes, only with �̂ in the role � , concluding the proof.

D PROOF OF LEMMA 4.4

It has been recently discovered that there is a subtle law in the proof of [37, Lemma 4.2.18], and indeed, there are
counter examples to the Lemma as originally stated (cf. [3]). We thank Ronald Cramer and Jade Nardi for pointing
out the precise law and suggesting possible ixes; the ix chosen and described in this paper was independently
discovered by Ronald Cramer.
The main diference between the version of the lemma used in this paper and the original version is the

condition that the quotients ��,� and ��,� have bounded degrees, with the bound matching the diference in the
degrees of � and �. This extra assumption suices to make the original proof valid, and is fortunately satisied in
our application.
For completeness, we provide here a proof of the lemma, essentially following [37, Lemma 4.2.18]. During

the proof, we will make several reductions to smaller and simpler cases by changing the �, �, � variables and the

polynomials �, �, but note that none of the reductions will change �� , �� or � (�,� )
�(�,� ) .

Clearly, we may assume � is not the zero polynomial (otherwise, the results are trivial). It then follows that �
is also not the zero polynomial (otherwise, �(�, � ) = 0 for �� > �� ≥ deg� (�) values of � , so � is identically 0).
We may also assume that either deg� (�) = �� or deg� (�) = �� . If not, then we may decrease �� and �� by 1
without changing �� = �� − �� or any other assumption (in particular, the LHS of (★) strictly decreases), and
repeat until at least one equality holds.

In fact, once we are done subtracting, we will necessarily have deg� (�) = �� . This fact follows from the bound
on deg� (��,�) as well as the inequality �� < �� (which follows from (★)). We omit the full details, as this fact
will not be used in the proof.

Similarly, by reducing �� and �� if necessary, we may assume deg� (�) = �� (or deg� (�) = �� ).
Next, let � (�,� ) ∈ F[�,� ] be the greatest common divisor of � and �; we aim to prove that � = �. Let

�� = deg� (�), �� = deg� (�), and replace both � and � with the quotients �/� and �/� . The degrees deg� (�),
deg� (�) and their bounds �� , �� decrease by exactly �� , and deg� (�), deg� (�), �� , �� decrease by �� ; it follows

that �� , �� are unchanged, and neither is the quotient �
�

=
�/�
�/� . The number of good substitutions �� also

decreases by (at most) �� , and similarly �� decreases by at most �� : indeed, at most �� of the � ∈ F can satisfy
� (�, � ) = 0, and in any of at least �� − �� good substitution with � (�, � ) ≠ 0, we can divide both sides of
�(�, � ) = ��,� (� )�(�, � ) by � (�, � ) to obtain �

�
(�, � ) = ��,� (� ) �� (�, � ), and the assumption deg� (��,� ) ≤ ��

isn’t afected. Since ��
��

< 1 and �� ≥ 0, we will have
�� −��
�� −�� ≤ ��

��
(with equality only if �� = 0), and thus

�� − ��

�� − ��
+ �� − ��

�� − ��
≤ ��

��
+ ��

��
< 1,

and it follows that assumption (★) still holds.
We have seen that after dividing by the GCD, the polynomials still satisfy all of the Lemma’s assumptions.

Additionally, they are now coprime. We will prove that in this case we must have �� = �� = 0, i.e. � is a constant
function.
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Write�(�,� ) = �0 (� ) +�1 (� )� + · · ·��� (� )��� , and similarly �(�,� ) = �0 (� ) +�1 (� )� + · · ·��� (� )��� .
Note that at least one of ��� , ��� is non-zero by the early assumption on equality of degrees. Let

�� (� ) = Syl� (�, �) =

©­­­­­­­­­­­
«

��� (� ) · · · · · · �1 (� ) �0 (� )
. . . · · · · · · . . .

. . .

��� (� ) · · · · · · �1 (� ) �0 (� )
��� (� ) · · · �1 (� ) �0 (� )

��� (� ) · · · �1 (� ) �0 (� )
. . . · · · . . .

. . .

��� (� ) · · · �1 (� ) �0 (� )

ª®®®®®®®®®®®¬
be the Sylvester matrix of � and �, considered as polynomials of degrees �� and �� in � over F[� ]. It is a square
matrix of order �� + �� , with the irst �� rows being shifts of the coeicient vector of �, and the last �� rows
being shifts of the coeicients of �.
Let �� (� ) = det�� (� ) be the determinant of the Sylvester matrix, which is not identically 0, since the

polynomials are coprime10. By the bounds on the � -degrees of �� , � � , it is immediate to see that deg� (�� ) ≤
���� + ���� . We will denote � ≔ ���� + ���� , and note that the expression is symmetric in � and � .

For any of the �� good values of � ∈ F, the fact that �(�, �) = ��,� (� )�(�, �) with deg� (�) ≤ �� = �� − ��
implies that each of the irst �� rows of�� (�), corresponding to the coeicients of �(�, �), is a linear combination
of (at most) �� +1 of the �� rows corresponding to coeicients of�(�, �). It follows that the last �� rows span the

whole row space, i.e. rk�� (�) ≤ �� , from which it follows that �� , �
′
� , . . . , �

(�� −1)
�

all vanish at � = �, i.e. ��
has a zero of multiplicity at least �� at every such � (see also [37, Proposition 4.2.17]). Note that the assumption
deg� (��,�) ≤ �� is critical: if the degree were larger, than the irst deg� (��,�) − �� of the � rows would not
have been spanned by the � rows.
We have obtained that �� is a non-vanishing polynomial of degree at most � , with at least �� roots of

multiplicity �� each, thus ���� ≤ � . Repeating the argument with the roles of � and � switched, we ind
���� ≤ � as well. Thus

� = ���� + ���� =
��

��
���� + ��

��
���� ≤ ��

��
� + ��

��
� =

(
��

��
+ ��

��

)
�.

However, (★) yields ��
��

+ ��
��

< 1, and thus the obtained inequality is only possible for � = 0. Since �� , �� > 0,

and ���� , ���� ≤ � = 0, we must have �� = �� = 0, as claimed.
From here the rest of the claim is immediate: �� = �� = 0 imply that � is a constant polynomial, so clearly

� | �, and furthermore the quotient � = �/� is proportional to �, thus deg� (�) = deg� (�) ≤ �� = �� −�� = �� ,
and similarly deg� (�) ≤ �� . Since �� , �� and � = �/� did not change during our reduction steps, the same
results hold for the original polynomials and quotient.

For all �� substitutions � ∈ F, we have � (�, �)�(�, �) = �(�, �) = ��,� (� )�(�, �), and if �(�, �) ≠ 0 then we
can cancel it to obtain � (�, �) = ��,� (� ). At most deg� (�) ≤ �� values of � satisfy �(�, �) = 0, hence for at
least �� − �� values we have � (�, �) = ��,� (� ), and similarly for values of � , as claimed.

□

10This polynomial is almost, but not quite, the resultant of� and �, which is non-zero if they are coprime; the diference comes from the possi-

bility that�, � are not exactly of� -degrees�� , �� , and in fact�� (� ) is equal to the resultant times��� (� )�� −deg� (�)��� (� )�� −deg� (�) .
The fact that at least one of deg� (�) = �� or deg� (�) = �� holds is equivalent to this extra factor being non-vanishing. In case one of the

inequalities is not exact, it is important for the proof not to modify the degrees and to keep the extra factor, to get the right order of vanishing.
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E PROOF OF CLAIM 8.1

Proof of Claim 8.1. By assumption � (� ) is the evaluation of a polynomial � (� ) of degree strictly less than

� (� ) and � (� ) is an integral power of 2. Recall � (�+1) = � (� )+1
2

− 1 noticing � (�+1) + 1 is an integral power of 2. Let

� (�,� ) = � (� ) mod � − � � (� ) .

By deinition deg� (�) < � (� ) and deg� (�) < � (�+1) . We claim �
(�+1)
� (� ) ,� (� )

is the evaluation of the polynomial

� (� (� ) , � ) ∈ F[� ] on D (�+1) . To see this recall that�
(� )
� is the interpolation map over � (� ) ��

�
(� )
�

and so

�
(� )
� · � (� )

���
�

(� )
�

= � (�,�).

Hence, using Eq. (8.2), we have

�
(�+1)
� (� ) ,� (� )

(�) =
(
z
(� )
)⊤

·� (� )
� · � (� )

���
�

(� )
�

= � (� (� ) , �).

So �
(�+1)
� (� ) ,� (� )

is the evaluation of the polynomial� (� (� ) , � ), which has degree less than � (�+1) , on the domain D (�+1) .

This completes the proof. □
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