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ABSTRACT 
Massive and fast-evolving news articles keep emerging on the web. 
To efectively summarize and provide concise insights into real-
world events, we propose a new event knowledge extraction task 
Event Chain Mining in this paper. Given multiple documents about
a super event, it aims to mine a series of salient events in temporal 
order. For example, the event chain of super event Mexico Earth-
quake in 2017 is {earthquake hit Mexico, destroy houses, kill people,
block roads}. This task can help readers capture the gist of texts
quickly, thereby improving reading efciency and deepening text 
comprehension. To address this task, we regard an event as a clus-
ter of diferent mentions of similar meanings. In this way, we can 
identify the diferent expressions of events, enrich their semantic 
knowledge and replenish relation information among them. Taking 
events as the basic unit, we present a novel unsupervised frame-
work, EMiner. Specifcally, we extract event mentions from texts 
and merge them with similar meanings into a cluster as a single 
event. By jointly incorporating both content and commonsense, 
essential events are then selected and arranged chronologically to 
form an event chain. Meanwhile, we annotate a multi-document 
benchmark to build a comprehensive testbed for the proposed task. 
Extensive experiments are conducted to verify the efectiveness of 
EMiner in terms of both automatic and human evaluations. 

CCS CONCEPTS 
• Information systems → Data mining; • Computing method-

ologies → Natural language processing.
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1 INTRODUCTION 
In the information age, a plethora of information resources is at 
the fngertips of every user. Faced with a variety of complex and 
lengthy news on the web, how to quickly understand their core 
idea has become a critical problem with increasing concerns. Gen-
erally, massive unstructured news articles can be regarded as the 
chains of salient events arranged in order [1, 11]. Therefore, ex-
tracting event chain knowledge from them is a crucial step in text 
understanding. Recently, various event-centric tasks have gained 
signifcant interest, such as event relation extraction [2, 13, 37], 
salient event identifcation [25, 39], and event process understand-
ing [8, 43]. However, most of these studies highly rely on expert 
annotations, which are expensive and time-consuming. Subsequent 
research [20, 38] attempts to alleviate this issue under an unsuper-
vised setting. They extract event schema from large corpus as prior 
knowledge to assist downstream tasks, such as story generation 
[40], question answering [34], text summarization [49], and read-
ing comprehension [46]. However, explorations on how to mine 
event chains from large amounts of unstructured text remain lack-
ing. Such a task can provide a brief summary and help readers to 
capture the skeleton of texts quickly. 

To this end, we propose a new task of knowledge extraction, 
Event Chain Mining. It aims to mine a series of salient events in
a temporal order, which can serve as a concise highlight of texts. 
Specifcally, given a super event1, multiple documents usually re-
port it from diferent perspectives. Moreover, these reports usually 
share the most salient events among their texts. For example, Fig-
ure 1 shows three documents on a super event, Mexico Earthquake 
in 2017. Most of them mention four essential events in the earth-
quake, including earthquake hit Mexico, damage houses, kill people,
and block roads. These events can provide a sequential highlight
of how this disaster occurred. With such a chain of salient events, 
readers can efectively grasp the whole picture of the news, thus 
improving reading efciency and deepening reading comprehen-
sion. This observation leads to the Event Chain Mining problem,
which poses the following challenges: 

(1) variability of events. An event can be expressed in diferent
descriptions. For example, in Figure 1, earthquake rocked southern
Mexico and earthquake hit southern Mexico are two diferent men-
tions, but they describe similar meanings in Mexico Earthquake. 

1A super event (or a key event in recent studies [47]) is a more coarse-grained event 
by itself. We use this term to distinguish it from events. 
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Figure 1: Example of Event Chain Mining task. The under-
lined text indicates an event mention, while the same colored 
texts represent salient mentions with similar meanings. We 
extract salient events and arrange them in chronological or-
der to form an event chain. 

The desired event chain should not include both events, as this 
brings in information redundancy. 

(2) salience inequality of events. Not all events in the news are 
equally important. Some of the events could be too general and 
contain little information, such as say it. Others could be too specifc, 
not closely tied to the main points, such as The state has 3.44 million 
people. These events should be fltered to ensure that the fnal event 
chain includes only the central point of the news. 

(3) ambiguity of event relationship. Existing methods heavily rely 
on local contexts to determine the temporal relationships between 
diferent events. However, due to diferent narrative styles, clear 
clues are not always provided in the news. Especially when events 
scatter separately in a long text or multiple documents, it is more 
challenging to capture their long-distance relations. 

To address these challenges, we regard an event as a cluster 
of mentions with similar meanings. In this way, there are three 
signifcant benefts. First, it naturally helps to address the frst 
challenge – diferent expressions of the same event. Second, it 
enhances event semantics by including multiple related mentions, 
which makes it easier to deepen event understanding and recognize 
salient events. Third, it enriches the order of information between 
events. By introducing multiple mentions, more clues about event 
relations can be obtained from the contexts. As a result, event 
ordering can be more convincing with the support from the majority 
of mentions. 

On top of that, we propose a novel unsupervised event chain 
mining framework, EMiner, which contains four major steps. Con-
cretely, given a set of texts on the same super event, we frst decom-
pose them into multiple event mentions. We elaborate frequently-
occurring syntactic patterns and extract all possible event mentions. 

Then, event mentions of similar meanings are merged into clusters 
as distinct events. We formulate the event mention merging prob-
lem as an online text stream clustering task without requiring a 
fxed number of clusters. Next, we measure the salience of events 
to select important ones according to event frequency counting. 
Finally, we propose a language model empowered event ordering 
method, which jointly incorporates both of content and common-
sense to arrange the salient events in a sequential chain. It not only 
leverages explicit clues from the content description in multiple 
documents, but also exploits commonsense knowledge in the pre-
trained generation models by re-framing the ordering problem as a 
generation task. By combining two perspectives together, the fnal 
chronological chain of events can be produced. 

To build a testbed for the proposed task, we re-annotate an exist-
ing multi-document dataset [28] to develop a new benchmark for 
evaluating event chain mining systems. For multiple documents on 
a super event, we manually annotate salient events as a brief sum-
mary. In addition, we design a comprehensive evaluation system, 
which can evaluate the model from multiple aspects, such as event 
semantics and sequential orders. We conduct extensive experiments 
and the results verify that EMiner can produce a chain of salient 
events to guide people to understand texts. 

The major contributions of this paper are summarized as follows: 
(1) We propose a new task, Event Chain Mining, to summarize 

and provide concise insights to real-world events. It assists people 
in quickly capturing the central points of a large amount of unstruc-
tured textual data on the web, thus improving reading efciency 
and deepening comprehension. 

(2) We present a novel framework EMiner to automatically ex-
tract an event chain in an unsupervised setting. According to the 
cluster completeness, term occurrence, and semantic similarity, our 
model extracts and merges essential events from multiple docu-
ments. EMiner can also reorder salient events by incorporating 
contents and commonsense knowledge to form the fnal chain. 

(3) To facilitate research in this direction, we establish a compre-
hensive testbed with a human-annotated benchmark and evalua-
tion metrics. Experimentally, our proposed EMiner outperforms 
all baselines in terms of both automatic and human evaluation. 

2 PROBLEM FORMULATION 
In this section, we frst introduce some important concepts and then 
present our task defnition. An event mention, is a phrase that 
contains multiple words (�1, �2, . . . ,�� ), where � is the number 
of words, and �1, �2, . . . ,�� are all in the vocabulary. A pair of ( )
words �� , � � in an event mention � may follow a specifc syn-
tactic relation. An event is a cluster of event mentions in similar 
meanings {�1,�2, . . . ,�� }, where � is the number of mentions. A 
super event refers to a more coarse-grained event described by 
multiple documents. A salient event is one that provides suf-
cient and important information about the super event. An event 
chain stands for a series of salient events arranged in the order of 
occurrence. 
Task Defnition. Given a set of documents D on a super event, 
our task of event chain mining is to produce a sequence of salient 
events (�1, �2, . . . , �� ), which can give a brief summary of the texts. 
� is the number of events. 

1949



Unsupervised Event Chain Mining from Multiple Documents WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Intuitively, humans are accustomed to understanding texts in a 
sequential order instead of modeling a relation graph. Thus, our 
task aims to mine an event chain. However, notably, our proposed 
method can also extract the partial order relationship among events 
(introduced in the next section) to form a relation graph. As to 
complex event relation graph modeling, we leave it as future work. 

3 FRAMEWORK 
The proposed framework, EMiner, outlines the event chain mining 
task in four major steps: (1) event mention extraction, (2) event 
mention merging, (3) salient event selection, and (4) salient event 
ordering. The architecture is illustrated in Figure 2. 

3.1 Event Mention Extraction 
We adopt a lightweight method to extract event mentions in the 
texts without relying on manually-labeled training data. It aims 
to decompose texts into multiple event mentions. For example, 
there is a sentence about Mexico Earthquake in 2017: A strong 
earthquake shook Mexico on Monday, killing at least three people 
and damaging dozens of buildings. It mainly contains three event 
mentions, earthquake shook Mexico, killing people, and damaging 
buildings. To handle the complex structure of event mentions, we 
elaborate frequently-occurring syntactic patterns inspired by Zhang 
et al. [44]. By pattern matching, all possible event mentions are 
extracted from texts based on sentence dependency tree structures. 

Specifcally, given a sentence, we frst use a dependency parser2 

to obtain its dependency parse tree. As the centers of event men-
tions are verbs, we extract all verbs from each sentence. To ensure 
that all the extracted event mentions are semantically complete and 
frequently occurring without being too complicated, we elaborate 
76 syntactic patterns based on those in Zhang et al. [44] (some ex-
amples are in Table 5). For each verb, we check its dependent words 
and their dependency labels. If they match one of the syntactic 
patterns, we extract the corresponding words as an event mention. 
We give priority to more complex patterns to make event mention 
contain more details. That is, once a pattern is exactly matched, 
we will no longer consider the remaining simpler ones. By such a 
strategy, all possible event mentions can be extracted from texts. 
Notably, we treat the sentences with clauses equally, so this method 
can decompose long sentences completely into event mentions. 

3.2 Event Mention Merging 
In this step, we merge similar event mentions into the same cluster, 
which is indispensable for the framework. To improve generaliza-
tion capability for diferent topics or texts, the number of clusters 
should not be fxed. Thus, we formulate the event mention merging 
as a short text stream clustering task [7, 18, 41]. Specifcally, event 
mentions are regarded as a stream and each of them is processed 
incrementally. In each process, for a mention, we decide whether 
to add it to an existing cluster or create a new cluster. Then, we 
update the corresponding cluster to prepare for subsequent events. 

For example, there are three mentions, kill people, damage houses, 
and destroy homes. Initially, we create a new cluster for the frst 
mention kill people. Then, when damage houses comes, there is an 
existing cluster {kill people}. Since this mention is not related to the 
2https://nlp.stanford.edu/software/stanford-dependencies.html 

cluster, we still create a new cluster for it. Thus, there exist two 
clusters now, {kill people} and {damage houses}. Later, for the third 
mention, we compare the probability of it joining these two clusters 
and creating a new one. This mention was decided to be grouped 
into the second cluster. Finally, we obtain two clusters, {kill people} 
and {damage houses, destroy homes}. 

Such an evolutionary clustering automatically increases the num-
ber of clusters with event mentions. Nonetheless, it comes to three 
questions: (1) how to represent and update a cluster; (2) how to es-
timate the probabilities of a mention belonging to existing clusters 
and a new cluster; and (3) how to avoid the mention order afecting 
the clustering process. We will solve these problems in turn. 

3.2.1 Cluster Feature. We frst represent an event with the cluster 
feature (CF) vector, which essentially is a cluster with its event { }
mentions. The CF vector of an event is defned as a tuple �®� , �� , �� , 
where �®� contains a list of mention frequencies in event � ; �� is the 
number of mentions in event �; and �� is the number of words in 
event � . The cluster feature vector presents desirable addition and 
deletion properties. 

• Addition Property. A mention � can be efciently added to 
cluster � by updating its CF vector as follows. 

� � = � � + � � ∀� ∈ �, � � � , 
�� = �� + 1, 
�� = �� + �� . 

• Deletion Property. A mention � can be efciently deleted 
from cluster � by updating its CF vector as follows. 

� � = � � − � � ∀� ∈ � � � � , 
�� = �� − 1, 
�� = �� − ��, 

where ��� and �� are the number of occurrences of word � in men-
tion � and the total number of words in mention �, respectively, Í
and �� = � ∈� ��

� . Besides, � � is the number of occurrences � 
of the word � in cluster � . With the addition and deletion proper-
ties, we can update the CF vectors when including or excluding a 
mention. 

3.2.2 Model Formulation. We assume the mentions are generated 
by the Dirichlet Process Multinational Mixture (DPMM) model [42]. 
Its generative process is as follows. 

� | � ∼��� (1, �), 
� | � ∼ Multi(� ), 

| � ∼ Dir(�) � = 1, . . . , ∞,N� 

� | �, {N� }∞ 
=1 ∼ � (� | N� ) .� 

Here, when generating mention �, the model frst selects a mix-
ture component (cluster �) according to the mixture weights. Then 
mention � is generated by the selected mixture component (cluster 
�) from distribution � (� | N� ). � is generated by a stick-breaking 
construction [36]. N� are also generated by a Dirichlet distribution 
[36]. � and � are two hyper-parameters. 

Following Kumar et al. [18], the probability of mention � gener-
ated by cluster � is: 
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Figure 2: Architecture of EMiner. Given multiple documents about a super event, we decompose texts into event mentions and 
merge those with similar meanings into the same clusters. Then essential events are then selected and arranged chronologically 
to form an event chain. For convenience, each event in the last two steps is represented by a representative mention. 

� (�� = � | �,�, �, �)
�� ∝ ( ) · 

� − 1 + �� Î Î��
� 

⎛ =1 � 
� + � + � − 1 ⎞� ∈� � � 

·⎜ Î�
�= 
� 
1 �� + � � + � − 1 ⎟

⎝ ⎠ 

(1) 

��∑ 
(1 + 

1 
��� 

(
�,�� )) . 

�� � 
�=1 

In the above equation, the frst term represents the completeness 
of the cluster. A new mention gives priority to clusters with more 
mentions. Thus, although the number of clusters can be unlimited, 
only a limited number of clusters will be created. Here, �� is the 
number of mentions contained by the cluster � , � is the number of 
current mentions in the existing clusters, and � is the concentration 
parameter of the model. 

The second term defnes the term occurrence between a cluster 
and a mention. It is based on multinomial distribution with pseudo 
weight of words � . �� and � � represent total number of words � 
and term frequency of word � in mention �, respectively. The 
symbol � � is the term frequency of the word � in the cluster � .� 
The current vocabulary size of the model is represented by � , and 
�� is the number of words in the cluster � . 

The third term refects the semantic similarity between a cluster 
and a mention. For a mention �, we calculate the average semantic 
similarity between each mention �� in the cluster � . Here, given 

� 
a pair of mentions, ���(·) is the function for their semantic simi-
larity scores. Following Zhang et al. [45], we frst use a pre-trained 
language model [9] to obtain contextual representations of the two 
mentions. Then, their similarity is computed as a sum of cosine 
similarities between their word embeddings. 

So far, we have defned the probability of a mention choosing 
an existing cluster. Then we have to consider the probability of 

a mention to create a new cluster. By following the DPMM, the 
probability of creating a new cluster is as follows. 

� (�� = � + 1 | �,® ®�, �, �)Î Î��
� 

�� � ∈� � =1 (� + � − 1) (2) 
∝ · ,
� − 1 + �� Î 

�
� 
= 
� 
1 (� � + � − 1)

where � is the number of the existing clusters; �� denotes the 
pseudo number of clusters related mentions, and � is the pseudo 
term frequency of each word (exist in mention) of the new cluster. 

3.2.3 Merging Process. The merging method allows the processing 
of each event mention incrementally and updating the model ac-
cordingly. Initially, it creates a new cluster for the frst mention. We 
initialize the cluster feature of this new cluster with the frst men-
tion. Later, for each event mention, it either belongs to an existing 
cluster or generates a new cluster. It depends on the corresponding 
probability computed with Eqs. (1) and (2). We choose the cluster 
with the highest probability. The CF vector is updated according to 
the addition property. In this way, we can detect new clusters more 
naturally without a fxed number of clusters. Based on this process, 
we can obtain the initial clustering result. 

Since all the mentions are processed one by one, their order may 
afect the clustering results. Therefore, to improve the robustness of 
the model, we then update the clustering results. For each mention, 
we delete it from its current cluster with the deletion property. 
Then, we reassign it to an existing cluster or create a new cluster 
for it. According to Eqs. (1) and (2), the choice with the highest 
probability will be made. 

3.3 Salient Event Selection 
In this step, we flter too general or too specifc events, thereby 
selecting salient ones. Since each event is involved with multiple 
event mentions, it helps to enhance event semantic understanding. 
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For example, Jessica said on conference is a general event mention 
with specifc arguments. Existing frequency-based methods [35, 46] 
might fail to handle it. However, with the help of typical general 
mentions in the same cluster, such as it says, the selection algorithm 
can flter it more easily. 

Based on this observation, we defne the salience score for an 
event cluster. All mentions of this event are taken into considera-
tion. An event has a high value if its mentions occur frequently in 
the texts and rarely exist in a general-domain background corpus. 
Computationally, given an event � , we defne its salience as follows: 

∑ 
Salience(�) = 

1 � 
Salience(�� )

� 
�=1 ∑ 

= 
1 � 

(1 + log(freq(�� ))2) log( 
��� ),

� �� � (�� )�=1 

where �� is a mention of event � . � is the number of mentions. 
Besides, � ���(�� ) denotes the frequency of mention �� , ��� is the 
number of background texts, and �� � (�) refers to the background 
text frequency of mention �� . For each event, its mention with 
the highest salience score is selected as the representative mention. 
Since the representative mention is salient and informative, we will 
use it to represent an event for ordering in the next step. 

3.4 Salient Event Ordering 
The typical strategy for event temporal ordering is to formulate it 
as a classifcation problem. Specifcally, given a short paragraph and 
two event mentions involved in it, these methods classify their rela-
tionship as “before” or “after” [14, 30, 50]. However, such paradigms 
hit bottlenecks in our task, as they rely heavily on the local context 
to make decisions. They cannot handle the events from diferent doc-
uments, which is likely to happen in the case of the multi-document 
scenario. Even if two events come from the same document, exist-
ing work fails to capture long-distance relationships in long texts. 
On top of that, recent studies only deal with event pairs and lack 
exploration of the overall sequence of multiple events. 

To address these aforementioned challenges, we propose a novel 
event ordering method that incorporates both contents and com-
monsense to jointly determine the order of an event sequence. On 
the one hand, the contents of multiple documents can provide 
explicit clues about the event relationships. We adopt a straight-
forward strategy to arrange the event pairs based on the content 
description. On the other hand, commonsense knowledge can also 
assist this task when context clues are insufcient, such as gener-
ally sentencing often occurs after a crime. In this case, we re-frame 
the event ordering problem as a generation task, which exploits 
commonsense knowledge in pre-trained language models to help 
arrange events into a chain. These two perspectives can lead to two 
diferent sorting results. By combining them, the fnal chronological 
chain of events can be produced. 

3.4.1 Content-Based Ordering. To leverage the content of source 
documents, we can compare the relative order in which these events 
are described in the text. However, this direct approach brings two 
obstacles. First, considering several documents may use fashbacks, 
their narratives cannot directly refect the temporal relationships of 

events. Second, notably, the basic unit of order is an event, which 
is a cluster of multiple mentions. Therefore, the relations of dif-
ferent mentions in the diferent documents might come into con-
fict. To handle these problems, we introduce a multi-document 
multi-mention voting mechanism, which makes the decision that is 
supported by the majority of mentions in most documents. In this 
way, multiple documents can reduce the distraction caused by the 
diferences in narrative styles, and multiple mentions can provide 
richer information for decision-making. Concretely, the ordering 
score of an event � is defned as: 

��∑ 1ContentScore(�) = min index(�� ,�),
�� �∈� 

�=1 

where �� is the number of documents, �� represents the �-th doc-
ument, � is a mention for event � , and index(�� ,�) refers to the 
index of mention � in the event sequences extracted from the text 
�� . By comparing the order of each event, we can rank them in the 
content-based order and produce an event sequence. 

3.4.2 Commonsense-Based Ordering. Pre-trained language models 
have demonstrated the ability to generate coherent passages and 
reason with commonsense [5, 33], thus we further integrate it 
to discover implicit event ordering. Specifcally, we re-frame the 
event ordering problem as a generation task, and let the pre-trained 
language model outputs an event chain according to the general 
order of event occurrence. 

Formally, given an event sequence (�1, �2, �3, ..., �� ) containing 
� events, the model is required to generate a new permutation of 
this sequence (�1 

′ , �2 
′ , �3 

′ , ..., �� 
′ ), which is more consistent with the 

sequence order that might occur in the real world. To simplify the 
format of the inputs and outputs, we use representative mentions 
of events, rather than entire clusters of events. For example, for 
a sequence of events: {criminal was caught} ⇒ {criminal robbed 
a bank} ⇒ {criminal was put into jail}, the pre-trained language 
model should realize that the arrest should not occur before the 
robbery, and consequently adjust the sequence of events with the 
following output: {criminal robbed a bank} ⇒ {criminal was caught} 
⇒ {criminal was put into jail}. 

We employ BART [19] as our generation model because it in-
cludes the task of restoring randomly ordered sentences to the 
normal order during pre-training, thereby gaining a better com-
monsense of the order of the events. To adapt BART to our defned 
generation task, we utilize a story dataset, ROCStory [29] for the 
training by extracting the event mentions as the distant supervision. 
After training on these synthetic data, BART can output an adjusted 
event sequence based on commonsense. 

3.4.3 Overall Ordering. For a salient event sequence, both content-
based and commonsense-based ordering methods can produce a 
well-ordered chain, which should be integrated together for the fnal 
decisions. Therefore, we propose to calculate the overall ordering 
score of an event based on its ranking in both chains. For an event 
�� , RankContent (�� ) and RankCommon (�� ) refer to its ranking in the 
above two chains, respectively. The fnal ordering score of �� is: 

Order(�� ) = � · RankContent (�� ) + (1 − �) · RankCommon (�� ), 
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Table 1: Dataset Statistics. 

Domain #SuperEvent #Event #Doc #Word/Doc 
Sport 
Politics 

19 
22 

101 
129 

483 
539 

458.3 
569.1 

Economics 32 171 711 365.5 
Social Issues 37 190 784 511.6 
Overall 100 591 2517 472.4 

where � is a hyperparameter. The smaller the ordering score Order(�� ), 
the earlier the event �� occurred. By rearranging the set of events 
by Order(�� ), we can acquire the fnal salient event chain. 

4 EXPERIMENTS 
In this section, we conduct both automatic and human evaluations 
to show EMiner can mine meaningful event chains from unstruc-
tured texts, which can assist people to acquire information quickly. 

4.1 Dataset 
We re-annotate an existing multi-document dataset [28] to develop 
a new benchmark. This benchmark involves 100 super events and 
2517 articles. These super events cover four popular domains in 
news reports, including sport, politics, economics, and social issues, 
to broaden the domain coverage For each super event, there are 
25 articles describing it on average. The average number of words 
in an article is 472. We manually annotate 5-10 salient events as a 
brief summary. For the sake of convenience, each event is described 
with one mention. Each mention includes less than 10 words to 
ensure brevity. More dataset statistics are shown in Table 1. 

Our annotation team consists of 3 graduate students majoring in 
data mining. For each super event, the annotators are required to 
read all the related articles and write a chain of events. Annotated 
events should be mentioned in most of the related articles. In addi-
tion, the whole event chain should make readers understand the 
main plot of this super event without original texts. Each annotated 
chain is required to be reviewed by another annotator, after which 
they discuss and revise until reaching an agreement. 

4.2 Baselines 
Considering the novelty of the event chain mining task, there is 
no existing approach to directly solve this task. Therefore, we ap-
ply several related studies to our scenario, including ASER [44], 
ODEE [23], CEE-IEA [16], SalienceAwareModel [46]. In addition, 
we present a randomly produced event chain as the lower bound 
for this task. We also introduce LEAD as a strong baseline, which 
extracts all events from the frst three sentences of the texts as a 
chain. For the ablation study, we remove each component or replace 
it with related methods as the baselines, including ASER [44] for 
mention extraction, HDBSCAN [27] and OSDM [18] for mention 
merging, ETDisc for event selection, and SYMTIME [50] for event 
ordering (More details in Appendix A.1). 

4.3 Evaluation Metrics 
We build a comprehensive evaluation system, which evaluates the 
quality of the produced event chains from multiple perspectives. Mo-
tivated by Lin [22], we propose three kinds of event-based ROUGE 
F1 scores, including ERouge-1, ERouge-2, and ERouge-L. Specif-
ically, similar to ROUGE, we evaluate how much percentage of 
events, event pairs, and the longest common event subsequence 
in the induced chains are covered by human-provided references. 
Since each event contains multiple mentions, we measure the over-
lap of all mention pairs in two mentions, and then take the average 
as the similarity of two events. More details can be found in Ap-
pendix A.2. 

Following Zhang et al. [43], we provide two overlap standards of 
two event mentions to better understand the mining quality, “String 
Match” and “Hypernym Allowed”. The frst standard requires all 
words in the produced mention to be the same as the referent 
mention. This setting is rather strict. The second standard allows 
the hypernyms of words in mentions to relax the restrictions on 
the comparison. For example, two event mentions, damage houses 
and damage buildings, are counted as a match. This setting helps 
check if our framework selects relevant events. 

4.4 Implementation details 
Details about our implementation are introduced in Appendix A.3. 

4.5 Automatic Evaluation 
Following Glavas et al. [12] and Zhang et al. [43], we provide two 
settings to make the evaluation comprehensive: (1) Basic: evaluate 
events based on only verbs; (2) Advanced: evaluate events based 
on all words. From Table 2, in these two settings, we can see the 
improvement of ERouge scores when adopting our proposed frame-
work to mine event chains compared with the baselines. Compared 
with ASER and ODEE, our method can work on multi-documents 
and the extracted results are not limited by pre-defned event on-
tologies. Thus, our method can greatly outperform them. CEE-
IEA is trained for limited event types, thereby failing to handle 
open-domain documents. On top of that, its extracted events are 
disordered, which shows obvious weakness on the ERouge2 and 
ERougeL scores. Although the graph from SalienceAwareModel can 
refect the orders among event mentions to some extent, its output 
has redundant mentions and can’t ensure including all important 
ones. Overall, EMiner surpasses the baselines by a large margin. 

4.6 Ablation Study 
To verify the efectiveness of each component in our framework, 
we conduct an ablation study including component removal and 
replacement. The experiment results are shown in Table 3. We frst 
remove each component from the full framework. Without event 
mention merging, we regard each mention as an event, and then 
perform event selection and ordering. If event selection is detached, 
the merged events are ordered according to their occurrences. After 
removing event ordering, we directly compare the selected salient 
events with human references. Our framework can already obtain 
a relatively high performance compared to the variant without 
merging. It reveals the signifcance of identifying similar event 
mentions, which can reduce information redundancy. In addition, 
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Table 2: Experimental results. Basic Setting refers to only evaluating the verb for each event while Advanced Setting refers to 
evaluating all the words. String Match and Hypernym Allowed are two overlap standards of two event mentions. The frst 
requires all words to be the same and the second allows the hypernyms to relax the restrictions. 

Basic Setting 

Models 
ER-1 

String Match 
ER-2 ER-L ER-1 

Hypernym Allowed 
ER-2 ER-L 

RANDOM 4.2500 0.0759 2.7500 12.1428 3.5298 7.9702 
LEAD 10.8095 1.9076 9.4345 16.3273 4.3404 15.3630 
ASER 4.3915 0.2356 3.1245 14.4910 3.4934 5.0103 
ODEE 6.1304 1.5395 5.7498 15.5597 4.6941 7.1258 
CEE-IEA 12.1395 2.2945 6.4198 19.3922 4.9875 7.1871 
SalienceAwareModel 13.6948 3.1566 10.1307 20.2479 6.4299 12.3195 
EMiner 17.7195 4.1674 15.5333 25.0217 7.4400 19.7000 

Advanced Setting 

Models 
ER-1 

String Match 
ER-2 ER-L ER-1 

Hypernym Allowed 
ER-2 ER-L 

RANDOM 1.6250 0.3489 1.1250 4.5833 1.2721 3.5833 
LEAD 9.6369 1.6723 8.8869 13.5654 2.9875 11.8154 
ASER 1.7594 0.3957 1.2592 4.6140 1.3015 3.1357 
ODEE 4.5105 0.7816 1.6893 5.1076 2.5361 4.1629 
CEE-IEA 8.3976 1.5791 3.5420 12.1467 3.0968 6.0687 
SalienceAwareModel 9.6240 2.1881 9.0317 14.0746 3.0817 10.0985 
EMiner 13.9196 3.0671 12.2307 16.9015 4.0622 14.6999 

Table 3: Ablation Study (Hypernym Allowed in Advanced 
Setting). ‘w/o’ means removing the component from the full 
framework. ‘A → B’ means replacing component A in the 
full framework with method B. 

Model ER-1 ER-2 ER-L 
Component Removal 

EMiner 16.9015 4.0622 14.6999 
w/o Merging 
w/o Selection 
w/o Ordering 
w/o Ordering������� 
w/o Ordering������ 

7.6785 
12.1011 
16.8654 
16.8621 
16.7916 

0.8554 
2.5872 
3.0450 
3.9781 
4.0134 

7.4743 
10.7619 
14.2261 
14.2678 
14.4740 

Component Replacement 
EMiner 16.9015 4.0622 14.6999 

Extraction → ASER 13.4234 2.5079 10.3810 
Merging → HDBSCAN 
Merging → OSDM 
Selection → ETDisc 

15.4940 
15.5654 
15.2083 

3.7529 
3.0450 
2.7651 

13.5714 
14.2261 
12.5654 

Ordering → SYMTIME 16.7440 3.9113 12.9446 

removing the selection component afects the results sightly. It is 
supposed that, due to the lead bias problem, most salient events are 
arranged at the front of the chain after ordering. In addition, the 
obvious drop of the ERouge-L score in the fourth row refects the 
important role that event ordering plays in this task. 

In addition, we replace each component with other related meth-
ods. Compared with ASER, our extractor is better at processing 
long sentences. Based on this, EMiner show a clear advantage in 
the subsequent steps. In addition, our method is superior although 
the two comparative clustering methods also work. Moreover, fl-
tering events instead of mentions can introduce more semantic 
information, which plays an important role in selecting salient 
events. Finally, although SYMTIME is a powerful pre-trained tem-
poral model, it fails to utilize rich relation information between 
multiple mentions. Thus, EMiner can achieve better results. 

4.7 Case Study 
Figure 3 shows an interesting example on the super event of the 
Mexico Earthquake in 2017. It presents the outputs of each compo-
nent in our framework to provide a straightforward view of our 
work. This case includes the extracted event mentions from the 
frst step, one event cluster from the second step, the representative 
mentions of salient events from the third step, and the fnal event 
chain. For better comparison, we also show the human-annotated 
reference. Notably, here we show a representative event mention 
rather than all mentions for the salient events and the event chain. 
Through the case study, we want to verify the efectiveness and 
analyze the limitations of our framework. We can see that our 
method can successfully discover most of the salient events for a 
super event. For example, the occurrence and consequences of this 
earthquake have been saved in the event chain. Although some 
relationships between events are diferent from the reference, it 
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Super Event: Mexico Earthquake in 2017

Extracted Event Mentions Event Cluster RepresentativeMention in
Salient Events Event Chain Reference

earthquake strike state near coast
earthquake felt in city
trigger landslide
area be fill with vacationer
section closed by rockslide
they separate to temblor
kill people
home suffer damage in town
…

{earthquake strike state near coast,
mexico locate at point,
earthquake strike border on 
monday,
evacuate in region,
area strike by quake,
hit by earthquake,
quake strike off coast,
quake occur on coast }

trigger landslide
kill people                                           
family feel scared because 
experience                                             
house destroy                          
block road                                      
quake felt in salvador
report quake at magnitude                                
suffer disruption to communication 

1. hit by earthquake 
2. house destroy      
3. trigger landslides
4. people died
5. block roads
6. crack open in 
building

1.earthquake rock 
Mexico
2.damage houses
3.kill people
4.trigger landslides
5.block roads

Figure 3: Case study about Mexico Earthquake in 2017. It shows the outputs of each component in our framework including 
the extracted event mentions from the frst step, one event cluster from the second step, the representative mentions of salient 
events from the third step, and the fnal event chain. The human-annotated reference is also shown here. 

Table 4: Results of human evaluation by ranking. Relev., 
Infor., and Cohen. represent relevance, informativeness, and 
coherence to original texts, respectively. Reference refers to 
the human-annotated event chains. 

Model Relev. Infor. Cohen. 
Merging → HDBSCAN 
Selection → ETDISC 

4.14 
4.66 

4.54 
3.28 

3.21 
3.52 

Ordering → SYMTIME 
EMiner 

2.84 
2.13 

3.53 
2.56 

4.37 
2.85 

Reference 1.23 1.09 1.05 

doesn’t afect our understanding of the entire super event. Please 
fnd more case studies in Appendix A.4 

4.8 Human Evaluation 
To better understand the model performance, we also conduct the 
human evaluation. Specifcally, we ask 10 graduate students to 
rank fve diferent event chains (produced by our framework, its 
variants, and groundtruth) according to three metrics: relevance, 
informativeness, and coherence to the texts. Ranking frst means 
the best performance on this metric. We randomly select 20 samples 
from our dataset for evaluation. The results are provided in Table 4. 
From the perspective of relevance, our framework can output more 
relevant event chains to the super events. Compared with Selec-
tion → ETDISC, other methods can mine more relevant and salient 
events thanks to event-based selection introducing more semantic 
information. In terms of the informativeness metrics, our frame-
work substantially extracts distinct events and reduces information 
redundancy when compared to other baselines. The capacity to 
grasp diferent events in similar meanings is largely responsible 
for this improvement. However, Merging → HDBSCAN performs 
poorly on the informativeness because it lacks semantic knowl-
edge to identify synonyms in the mentions. Coherence depends on 
whether event chains can refect the plot of texts smoothly. Beneft-
ing from rich event relationships, event-based ordering can obtain 
high scores. However, the performance of all automatic models is 
still far from the human-annotated answers. 

5 RELATED WORK 
Considering the importance of events in understanding unstruc-
tured texts, many eforts have been devoted to representing and 
understanding events. FrameNet [3] proposes to represent events 
with schema, which has one predicate and several arguments. Event 
detection and extraction attract lots of research interests in this 
feld [10, 15, 21, 24, 26, 31]. Ahmad et al. [2], Han et al. [13], Wang 
et al. [37] pay attention on event relation extraction and predict-
ing. Salient event identifcation is also a popular research topic 
[16, 25, 39]. Apart from these, there have been recent interests in 
event process understanding [8, 43]. However, these studies cost 
expensive expert annotations. Some studies [20, 38] alleviate this 
problem under an unsupervised setting. The pioneering work [6] in-
duces event chains as a new representation of structured knowledge. 
Chambers and Jurafsky [6] and Radinsky and Horvitz [32] extended 
such event chain modeling for news prediction and timeline con-
struction. Berant et al. [4] extracted events and their relationships 
in biological processes for biological reading comprehension. More 
recently, Zhang et al. [46] walks on the event graph built based on 
a large corpus to obtain event chains for narrative understanding. 
These studies extract event schemas from a large number of texts 
as prior knowledge to assist downstream tasks [34, 40]. 

However, most of the existing works rely on human-curated 
event ontologies. They are limited to pre-defned event types and 
fail to extract events from open-domain texts. Also, they mainly 
focus on sentence-level or document-level extraction. Multiple doc-
uments would be a more complex and informative scenario. On 
top of that, although a few studies work on the event ordering 
task, they focus on the relationship between a pair of events. Yet, 
automatic mining of event chains is still under-explored. 

6 CONCLUSION 
In this paper, we propose a new task, Event Chain Mining, to sum-
marize the skeleton of texts by extracting event chains. To address 
it automatically, a novel unsupervised framework EMiner is sug-
gested. Besides, we develop a benchmark dataset and a comprehen-
sive evaluation system for this task. Extensive experiments verify 
the efectiveness of the proposed framework and the quality of the 
produced event chains. 
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Table 5: Several event mention patterns and the correspond-
ing examples. “v” stands for verbs, “n” stands for nouns, and 
“a” stands for adjectives. “nsubj”, “dobj”, “xcomp”, and “nsub-
jpass” are syntactic relations. 

Pattern Example 
�1-���� �-�1 people die 
�1-���� �-�1-��� �-�2 earthquake hit Mexico 
�1-���� �-�1-�����-� residents felt scared 
�1-���� �-�1-�����-�2-��� �-�2 he wants to drink water 
�1-���� �����-�1 people was injured 

A APPENDIX 
A.1 Baselines 
Considering the novelty of the event chain mining task, there is no 
existing approach to directly solve this task. Therefore, we apply 
several related works to our scenario: 

• ASER [44] proposes a lightweight open-domain event ex-
tractor based on syntactic pattern matching. 

• ODEE [23] adopts a neural latent variable model for event 
mention extraction. 

• CEE-IEA [16] uses a contextual model to detect salient event 
mentions from single documents; 

• SalienceAwareModel [46] builds an event mention graph 
from the corpus, and starts a walk along the directed edge to 
obtain maximum event mention chains. In our experiment, 
the graph is built based on multi-documents. 

In addition, we present a randomly produced event chain as the 
lower bound for this task. Moreover, due to the lead bias problem 
in the news domain [48], we introduce LEAD as a strong baseline. 
It refers to extracting all events from the frst three sentences of 
the texts as a chain. Since these baselines target event mentions, 
each mention is used as an event cluster for evaluation. Except 
for SalienceAwareModel, other methods target single documents. 
Therefore, in our multi-documents scenario, we use them to process 
each document and report the highest evaluation scores. Also, con-
sidering these methods cannot handle event orders, the extracted 
event mentions are sorted by the order in which the text describes 
them. 

To verify the efectiveness of each component in EMiner, we 
also conduct the ablation study. We remove each component or 
replace it with related methods as the baselines. 

• For mention extraction: ASER [44] has been introduced 
above. 

• For mention merging: HDBSCAN [27] is a hierarchical density-
based spatial clustering method; OSDM [18] is an online 
semantic-enhanced dirichlet model for short text stream 
clustering. These two methods don’t require fxing the num-
ber of clusters. 

• For event selection: ETDisc [35] provides a frequency-based 
salient word selector and we expand it to flter event men-
tions. 

• For event ordering: SYMTIME [50] is a neuro-symbolic tem-
poral reasoning pretrained model, which can determine the 
order between events. 

A.2 Evaluation Metrics 
Given the groundtruth � = [�1, �2, . . . �� ] and the model output 
� = [�1, �2, . . . �� ] (� and � are the lengths of the event chains), the 
ERouge-1 scores (including precision and recall) can be calculated 
as followed: ∑ 1 � 

ERouge-1��� = max ������� (�� , � � )
� � ∈ (1,...,�)

�=1 ∑ 1 � 
ERouge-1��� = max ������� (� � , �� )

� � ∈ (1,...,�)
�=1Here, ������� is a function to measure the overlap of two events. 

we provide two overlap standards of two event mentions to better 
understand the mining quality, "String Match" and "Hypernym 
Allowed", following Zhang et al. [43]. The frst standard requires 
the words in the produced mention to be the same as the referent 
mention. This setting is rather strict. The second standard allows 
the hypernyms of words in mentions to relax the restrictions on 
the comparison. Diferent from Rouge-1 evaluating single events, 
Rouge-2 focuses on adjacent event pairs: 

�∑−11ERouge-2��� = max ������� ( [�� , ��+1], [� � , � �+1]) 
� − 1 � ∈ (1,...,�−1)

�=1 

�∑−11ERouge-2��� = max ������� ( [� � , � � +1], [�� , ��+1]) 
� − 1 � ∈ (1,...,�−1)

�=1 

Here, given two equal-length event chains, their ������� score 
is the average of the overlap scores of the corresponding events to 
the two sequences. As to ERouge-L, it evaluates the longest com-
mon event subsequence in the model output and the groundtruth. 
Specifcally, � ′ and � ′ are the subsequences of � and � respectively. 
They are of equal length, � . Then ERouge-L can be denoted as: 

1 1ERouge-L��� = max ������� (� ′ , � ′)
� � ′⊆�,� ′⊆� � 
1 1ERouge-L��� = max ������� (� ′ , � ′)
� � ′⊆�,� ′⊆� � 

Based on the precision and recall of three ERouge scores, we can 
obtain the corresponding F1 score: 

2 ∗ ERouge-k��� ∗ ERouge-k��� ERouge-k�1 = , � ∈ {1, 2, �}ERouge-k��� + ERouge-k��� 

A.3 Implementation Details 
We implement EMiner using PyTorch [17]. All the experiments are 
conducted on 1 NVIDIA TITAN Xp GPU. 

For event mention extraction, we give priority to more complex 
patterns to make event mentions contain more details. That is, once 
a complex pattern is exactly matched, we will no longer consider 
the remaining simpler ones. By such a strategy, all possible event 
mentions can be extracted from texts. Also, the extracted events will 
not overlap. (the selected syntactic patterns are shown in Table 5) 

For event mention merging, to decide the parameters, we frst 
decide the parameter scopes following related studies on news 
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Super Event: Mexico Earthquake in 2017

Extracted Event Mentions Event Cluster RepresentativeMention in
Salient Events Event Chain Reference

peterson accused of fires,
fire led investigation,
he arrested on allegations,
peterson entered plea at court,
peterson hails from community,
scenario rounded with 
megawatts,
organization preserved parcels,
transaction culminated years,
peterson suspected of fires,

{firefighter arrested,
peterson arrested on charges,
firefighter arrested on suspicion,
peterson arrested,
peterson arrested on Tuesday,
peterson arrested after capt.,
he arrested on allegations, }

{destroy structures,
destroyed by fire,
destroying structures,
damaging by flames,
destroyed by fire,
structures claimed by fire,
burn homes}

arrest came after months
turn into fire          
body found inside home
destroy dozen homes 
left person injured                 
peterson face years for charge                                                                                                        
suffer losses                                                                                   
fire burn throughout area 

1. arrest came after months
2. turn into fire          
3. body found inside home
4. destroy dozen homes 
5. leave person injured                 
6. peterson faces years for 
charge                                                                                                                       
7. suffer losses                                                                                   
8. fire burn throughout area 

1. man started fires
2. fire destroyed dozen 
homes
3. fire left person dead
4. officers arrestedman 
on suspicion 
5. man entered plea at 
court
6. fire burned miles over 
week
7. fire fanned by winds

Figure 4: Case study about A Former Firefghter Arrested for Starting Fires. It shows the outputs of each component in our 
framework including the extracted event mentions from the frst step, two event clusters from the second step, the representative 
mentions of salient events from the third step, and the fnal event chain. The human-annotated reference is also shown here. 

clustering [41], and then slightly change the values and choose the 
best parameters according to the experiment results. Finally, we set 
� = 0.3, � = 0.03, and the number of iterations to 10. For diferent 
super events, we use the same set of parameters. All the extracted 
events are grouped and we do not manually de-duplicate events in 
the same group. For salient event selection, we select the events 
with the top 20 salience scores as they can cover the main content 
of the texts. 

Regarding salient event ordering, we use BART-large as the back-
bone generation model for commonsense-based ordering. To adapt 
BART to our defned generation task, we utilize a story dataset, 
ROCStory [29] as the distant supervision for the training. Each 
story in this dataset consists of 5 narrative sentences. Typically, 
each sentence describes an event, and the narrative description 
is in line with the order of event occurrences. For each story, we 
extract all the event mentions (as introduced in Section 3.1) and 
arrange them in the order they occur in the story to form the target 
sequence in the training data. Also, we randomly shufe the event 

mentions of each story to produce the input sequence. BART is 
trained on these synthetic data for 5 epochs with a batch size of 32 
and a learning rate of 2e-5. Then it can become familiar with the 
given task format and output an adjusted the sequence of events 
based on commonsense. During the inference, we take the represen-
tative mentions of salient events as input and obtain a new ranking 
of each event using BART. � used in the overall ordering score is 
0.1 in all the experiments. 

A.4 Case Study 
Figure 4 presents the case study. The super event is A Former Fire-
fghter Arrested for Starting Fires. It shows the outputs of each com-
ponent in our framework including the extracted event mentions 
from the frst step, two event clusters from the second step, the 
representative mentions of salient events from the third step, and
the fnal event chain. The human-annotated reference is also shown 
here. 
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