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SUMMARY

Spatial variation in cellular phenotypes underlies heterogeneity in immune recognition and response to ther-
apy in cancer and many other diseases. Spatial transcriptomics holds the potential to quantify such variation,
but existing analysis methods are limited by their focus on individual tasks such as spot deconvolution. We
present BayesTME, an end-to-end Bayesian method for analyzing spatial transcriptomics data. BayesTME
unifies several previously distinct analysis goals under a single, holistic generative model. This unified
approach enables BayesTME to deconvolve spots into cell phenotypes without any need for paired sin-
gle-cell RNA-seq. BayesTME then goes beyond spot deconvolution to uncover spatial expression patterns
among coordinated subsets of genes within phenotypes, which we term spatial transcriptional programs.
BayesTME achieves state-of-the-art performance across myriad benchmarks. On human and zebrafish mel-
anoma tissues, BayesTME identifies spatial transcriptional programs that capture fundamental biological
phenomena such as bilateral symmetry and tumor-associated fibroblast and macrophage reprogramming.

BayesTME is open source.

INTRODUCTION

The tissue microenvironment (TME) comprises a heterogeneous
mixture of cell phenotypes, subtypes, and spatial structures. The
composition of the TME impacts disease progression and thera-
peutic response. For instance, the composition ofimmune cellsin
the tumor microenvironment is a determinant of response to
immunotherapy (10)." More recent work suggests that it is not
cellular composition but rather the spatial organization of the
microenvironment that determines 10 response.?™ Spatially un-
aware approaches, such as single-cell RNA and DNA sequencing
(scRNA-seq and scDNA-seq), are able to capture the presence
and abundance of different cell types and phenotypes (hereon
referred to as simply types)® but are unable to characterize their
spatial organization. Spatial measurements and spatial modeling
of the TME in situ present an opportunity to fully uncover and
understand the role that spatial structure plays in determining
disease progression and therapeutic response.

Spatial transcriptomics (STs) technologies, such as Visium,”
high-definition spatial transcriptomics (HDSTs),® and Slide-
seq,” enable biologists to measure spatially resolved gene

expression levels at thousands of spots in individual tissue.
Each tissue is divided into a grid or lattice of spots, with each
spot in the grid typically 50-100um wide, typically covering 10—
60 cells. The tissue is permeabilized to release mRNAs to cap-
ture probes with spot-specific barcodes. Bulk RNA-seq is then
run on the captured mRNAs tagged with spatial barcodes. The
result is a high-dimensional, spatially localized gene expression
count vector for each spot, representing an aggregate measure-
ment of the gene expression of the cells in the spot.

Modeling spot-wise aggregate measurements is challenging
because it requires disentangling at least four sources of spatial
variation present in the raw signal. First, technical error, also
known as spot bleeding, causes mRNAs to bleed to remote spots
and contaminates the raw spatial signal. Second, variation in cell
counts changes the absolute number of unique molecular identi-
fiers (UMIs) per spot. Because UMI counts scale with the number
of cells in each spot, conventional preprocessing methods, such
as log-normalization, break this linear relationship. Third, differ-
ences in the cell-type proportions in each spot conflate signal
strength with cell-type prevalence. This complicates analysis
because it necessitates performing a difficult deconvolution of
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each spot into its constituent cell-type composition. These three
sources of variation obscure the fourth, namely, the spatial vari-
ation in gene expression within each cell type in response to
the microenvironment. Teasing out these different sources of
spatial variation in ST data is necessary to obtain a full under-
standing of the spatial architecture of the TME.

Several methods have been developed that specialize in sub-
sets of these four sources of spatial variation. SpotClean'® cor-
rects spot bleeding by fitting an isotropic Gaussian model to
raw UMI counts in order to map them back to their most likely orig-
inal location. Spatial clustering methods' '~ fuse spots together
to effectively capture regions of constant cell-type proportion
with varying cell counts. Spot deconvolution methods'*'° sepa-
rate the aggregate signals into independent component signals
with each attributable to a different cell type. Spatial differential
expression methods'”'® assess the aggregate spot signal to
detect regions where individual genes or gene sets follow a spatial
pattern. Although each of these methods has moved the field of
ST analysis forward, they each have shortcomings, such as mak-
ing incorrect parametric assumptions, requiring perfect reference
scRNA-seq data, or only capturing aggregate signals rather than
phenotype-specific ones.

Notably, existing methods assume that cells of a given type
have a static distribution of gene expression. This assumption
is at conflict with the biological knowledge that cells change their
behavior in response to their local microenvironment under
mechanisms including proliferation, invasion, and drug resis-
tance.’® The microenvironment regulates cell behavior and
therefore alters gene expression profiles of specific cell pheno-
types.”® These microenvironmental influences are particularly
relevant in disease contexts. For example, the microenvironment
affects each phase of cancer progression and invasion-metas-
tasis cascade.”’ Chronic inflammation is able to induce tumor
initiation, malignant conversion, and invasion.?? Recent research
also shows that cancer cells in the interior of a tumor behave
differently than cancer cells at the interface with healthy cells.?
Existing methods are unable to accurately capture spatial
expression variation within cell types; thus, modeling ST data
to understand the spatial structure of transcriptomic diversity
in each cell type remains an important open problem.

In this paper, we present BayesTME, a holistic Bayesian
approach to end-to-end modeling of ST data that goes beyond ex-
isting techniques and captures spatial differential expression
within cell types. BayesTME uses a single generative model to
capture the multiscale and multifaceted spatial signals in ST
data. At the highest level, BayesTME models the global pattern
of spatial technical error present in raw ST data. As we demon-
strate, ST data contain anisotropic technical error, with UMIs
bleeding toward a specific direction in each sample. At the inter-
mediate level, BayesTME places spatial fusion priors between
spots, adaptively fusing tissue regions together to reveal cellular
community structure. This also enables BayesTME to pool
statistical strength across spots, enabling it to perform spot de-
convolution without scRNA-seq reference. Graph smoothing
priors are simultaneously used to capture the spatial heterogeneity
of within-phenotype gene expression. These priors enable
BayesTME to discover spatial transcriptional programs (STPs), co-
ordinated spatial gene expression patterns among groups of
genes within a phenotype. Through an efficient empirical Bayes

606 Cell Systems 74, 605-619, July 19, 2023

Cell Systems

inference procedure, BayesTME infers all of the latent variables
in the generative model with full quantification of uncertainty.
Thus, BayesTME provides statistical control of the false discovery
rate for marker genes, cell counts, expression profiles, and STPs.

BayesTME offers a robust, accurate, and unified one-stop-shop
for ST analysis that enables the discovery of STPs—undiscover-
able with other approaches—that are vitally important to fully
characterizing the TME. However, BayesTME can also be used
as a toolbox for ST analyses. To this end, we demonstrate that
each component of BayesTME outperforms existing methods on
benchmarks, including bleed correction (SpotClean'), refer-
ence-free cell-type identification (STdeconvolve '), spot deconvo-
lution (cell2location,'® DestVl,'® robust cell-type deconvolution
[RCTD],>* and conditional autoregressive-based deconvolution
[CARD]*®), tissue segmentation (BayesSpace,'' Giotto,"
STLearn,? and cell2location'®), and within-phenotype spatial
gene expression (SpatialDE'® and Spark'”). We further demon-
strate BayesTME’s singular ability to identify STPs with high po-
wer while maintaining tight control over the false discovery rate
on the reported spatially varying genes in each cell type. On
real tissues from human melanoma and zebrafish melanoma
models, BayesTME identifies STPs that capture core biological
concepts, such as bilateral symmetry and differential expression,
between the surface and interior tumor cells. The tumor STPs
reveal insight into how malignant cells interface with immune cells
at the tumor border, demonstrating the value gained by
BayesTME’s ability to reveal this type of spatial information.
BayesTME is open source, (https://github.com/tansey-lab/
bayestme) does not require reference scRNA-seq, and all hyper-
parameters are auto tuned without the need for any manual
user input.

RESULTS

A holistic generative model for spatial transcriptomics
BayesTME models spatial variation at multiple scales in ST data
using a single hierarchical probabilistic model (Figure 1). At the
top-level, spot bleeding is modeled via a semi-parametric spatial
contamination function. This bleeding model allows for any arbi-
trary spot bleeding process to be modeled, under the constraint
that UMIs are less likely to bleed to spots that are farther away.
By leveraging the non-tissue regions as negative controls (spots
where the UMI counts should be zero), BayesTME learns this
function and then inverts it to estimate the true UMI counts for
each in-tissue spot.

At the spot level, BayesTME models true UMI counts in each
spot using a carefully specified negative binomial distribution.
The spot convolution effects due to cell aggregation are captured
inthe rate parameter. This ensuresthat alinear increase inthe num-
ber of a particular cell type yields a linear increase in the UMIs from
that cell type. The success probability parameter in the negative
binomial likelihood is used to capture spatial variation within
each cell type. These latter spatial parameters allow cell types to
up- or downregulate genes in each spot, enabling BayesTME to
capture dynamic phenotypic behavior at spatially localized regions
in the TME. This careful separation enables BayesTME to capture
the within-phenotype spatial variation of gene expression, a more
nuanced signal than currently recoverable by existing methods.
Further, the uncertainty quantification provided by posterior
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BayesTME first corrects technical errors (spot bleeding) in the raw ST data by probabilistically mapping reads to their most likely original location in the tissue. The
reference-free spot deconvolution is run to simultaneously recover the cell phenotypes and their counts at each spot. Finally, the deconvolution model is
augmented with a spatially adaptive phenotype model to infer phenotype-specific spatial variations. The final output of the complete BayesTME pipeline is the
inferred cell phenotype expression signatures, the top marker genes that maximally distinguish phenotypes, the posterior distribution over the cell-type prob-
ability and discrete cell counts of each type in each spot, the segmented tissue partitioned into cellular communities, and the spatial transcriptional programs

discovered for each phenotype..

inference enables BayesTME to detect significantly varying genes
in each cell type with control of the false discovery rate.
Hierarchical priors in BayesTME encode heavy-tailed Bayesian
variants®®?” of the graph-fused group lasso prior®® and the graph
trend filtering prior.® The fused lasso prior enforces that the prior
probability distribution over cell types follows a piecewise constant

spatial function, encoding the biological knowledge that groups of
cell phenotypes form spatially contiguous communities. The graph
trend filtering prior allows gene expression to vary within cell types,
encoding the biological knowledge that cells execute gene sets in
a coordinated fashion, known as transcriptional programs. STPs
extend this concept by identifying and quantifying the activation
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Figure 2. BayesTME recovers UMI reads from bleeding contamination and preserves the spatial pattern of interest

(A—C) Bleed correction of selected marker genes in two zebrafish melanoma model samples (A and B) and a human dorsolateral prefrontal cortex sample®° (C),
with comparison to SpotClean. Bleeding patterns consistently show directional, anisotropic skew toward one corner. SpotClean UMI corrections are therefore
expected to be biased toward the tissue boundary, whereas BayesTME is more diffuse and better recapitulates the true signal.

(D) BayesTME performs similarly to SpotClean when the bleeding pattern is isotropic and not skewed (e.g., Gaussian or Student’s t test); BayesTME substantially
outperforms SpotClean when bleeding skews UMIs toward one direction as observed in real tissues. Boxplots show median (center line), upper and lower
quartiles (box limits), and 1.5 x interquartile range (whiskers). The difference between BayesTME and SpotClean is quantified by p value calculated using binomial
tests (n = 1000 for each bleeding scenario).

(E-G) Examples of simulated bleeding patterns show how BayesTME is able to learn and correct for the direction of the bleeding pattern.
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Figure 3. BayesTME outperforms existing methods in semi-synthetic benchmarks
(A) BayesTME outperforms the reference-free method STdeconvolve in expression profile inference for each cell type, measured by the coefficient of deter-
mination (r?), for semi-synthetic data with ground truth number of cell types K* = 3,4,5,6,7,8.

(legend continued on next page)
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level of different programs in space. Identification of the BayesTME
parameter values is achieved through an empirical Bayes infer-
ence algorithm that enables Bayesian quantification of uncertainty
over each parameter of interest in the decontaminated data. See
the STAR Methods for the detailed hierarchical specification of
the generative model and for details on parameter estimation.

BayesTME accurately corrects previously unreported
directional spot bleeding in ST data

Plots of raw UMI counts in real ST data (Figures 2A-2C) show
that the UMI signal bleeds to background spots with a gradient
of intensity. These plots also suggest, unlike the Gaussian
assumption in previous preprocessing methods'® or the uniform
background noise model in other models, '° bleeding error varies
in magnitude in different directions. Such phenomena may be
the result of cell-free DNA from dead cells, mRNA binding capac-
ity limitation of spatial barcodes, or technical artifacts of tissue
permeabilization.

BayesTME corrects bleeding while preserving the true signal.
To do this, BayesTME learns a semi-parametric anisotropic
bleeding model to correct directional ST bleed and map UMIs
to their most likely origin in the tissue. The BayesTME correction
only assumes that UMI bleeding decays monotonically as a func-
tion of distance. Non-tissue regions are leveraged by BayesTME
as a form of negative control, enabling the method to identify the
underlying spatial error function from the data via a maximum
likelihood estimation procedure.

To evaluate the performance of the BayesTME bleed correction,
we constructed synthetic datasets simulating three different
bleeding mechanisms: Gaussian, heavy-tailed multivariate-t, and
realistic (anisotropic) direction-biased bleeding (Figures 2E-2G).
The last simulation (Figure 2G) was constructed to resemble real
ST data, with bias toward a specific corner of the slide. We
compared BayesTME with SpotClean'® (Figure 2D), an existing
ST error correction technique that assumes Gaussian technical er-
ror. Although both methods perform comparably in Gaussian
(SpotClean uyse = 1170.08, BayesTME puyse = 1263.66, p —
value = 0.06) and multivariate-t (SpotClean uyse = 1210.06,
BayesTME puyse = 1305.31, uyse = 1210.06) bleeding sce-
narios, BayesTME significantly outperformed SpotClean in
the realistic bleeding scenario (SpotClean uyse = 10437.48,
BayesTME uyse = 3048.92,p — value = 1.87 x 10~3%"), where
the p values are calculated by a binomial test (7 = 1000 indepen-
dent trials for each bleeding scenario) to test the statistical signifi-
cance of deviations.

We found that cell typing and deconvolution were robust to
this spatial error. However, bleed correction was critical to pre-
venting genes from falsely registering as spatially varying in
real ST data. These results suggest that ST experimental work-
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flows should take care to allow ample non-tissue space in
each direction of the slide. If the tissue section exceeds the fidu-
cial markers substantially in a given direction, the technical error
function will be statistically unidentifiable. In such cases, it will be
impossible to distinguish technical error from true spatial varia-
tion, potentially leading to false conclusions when assessing
spatially varying gene expression within phenotypes.

BayesTME outperforms a suite of existing methods for pheno-
type inference, spot deconvolution, and tissue segmentation.

We benchmarked BayesTME against other methods:
BayesSpace,'' cell2location,’® DestVl,'®> CARD,?® RCTD,?*
STdeconvolve,'* stlLearn,’® and Giotto'® on simulated data
based on real scRNA-seq data. We randomly sampled K* cell
types from a previously clustered scRNA-seq dataset'®; we con-
ducted experiments for K* from 3 to 8. For each given K*, we
constructed spatial layouts consisting of 25 cellular commu-
nities, defined as spatially contiguous regions of homogeneous
mixtures of cell types. We randomly generated the total cell num-
ber for each spot with cellular-community-specific priors. After
dividing the total cell number into K* cell types, we randomly
sampled cells from the scRNA-seq data of the selected cell
types and mapped them on top of the spot pattern from a human
melanoma tissue sample®’; see the STAR Methods for details.
We compared the performance of BayesTME to the above exist-
ing methods on selecting the correct number of cell phenotypes,
deconvolving spots, segmenting tissues into spatial commu-
nities, and detecting groups of spatially varying genes within
phenotypes. As shown in Figure 3, BayesTME outperformed
existing methods across all benchmark tasks.

We conducted an additional segmentation benchmark on the
human dorsolateral prefrontal cortex dataset from Maynard
et al.*° We clustered the tissue layers and compared them against
the pathologist-annotated ground truth using the adjusted Rand in-
dex (ARI) metric following the procedure from Chidester et al.>> We
compared BayesTME’s performance with existing tissue segmen-
tation methods. The raw ARI of BayesTME’s segmentation is
0.542, which is comparable to the state-of-the-art tissue segmen-
tation methods (BayesSpace ARI = 0.5552, SpiceMix ARl =
0.5515),%? where SpiceMix’s result requires ad hoc refinement to
remove extra detail revealed by the hidden Markov random field
(HMRF) model. BayesTME similarly recovers finer-grained struc-
ture; merging the inferred fine structures in the same way as
SpiceMix, BayesTME achieves an ARI of 0.572; see Figure S6 for
details.

BayesTME accurately identifies the correct number of cell
phenotypes and each phenotype expression signature.

A core modeling task in ST analysis is the deconvolution of the
spots into their constituent cell phenotype proportions. Most ex-
isting methods require a scRNA-seq reference for deconvolution

(B) BayesTME outperforms all other methods when segmenting the tissue into cellular communities, measured by adjusted Rand index (ARI).

(C) BayesTME outperforms existing methods in robustness benchmarks. We measure the performances by the coefficient of determination (r2) of the inferred cell
type proportion. Reference-based methods are vulnerable to imperfect scRNA reference as demonstrated by the decline in spot deconvolution accuracy; x axis:
reference contains a subset (<0), exact match (=0), or superset (>0) of the true reference. The existing reference-free method is not reliable in picking the correct
number of cell types. BayesTME simultaneously detects the optimal number of cell types from the data and accurately deconvolves the spots.

(D) BayesTME'’s estimation of expression profile compared against the ground truth (n = 10584), featuring the expression profile of L4 excitatory neurons (red)

with a Pearson’s correlation coefficient of 0.98 (n = 882).

(E) Both BayesTME and its scRNA-seq guided version (BayesTME") outperform all other existing methods in the spot deconvolution task on the simulated mouse
cortex data, measured by AS (aggregated score from PCC, SSIM, RMSE, and JS).
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and cell-type mapping. As has been noted,'® these methods
may be brittle when a cell type is missing from the reference.
This vulnerability is particularly problematic in cancer where
many subclones may exist and non-overlapping sets of sub-
clones occur between different tissue samples. BayesTME
learns the cell phenotypes—both the number of types and
their signatures—directly from ST data without the need for
scRNA-seq. Thus, BayesTME is robust to the natural spatial het-
erogeneity of phenotypes in cancer and other disease tissues.
To evaluate the robustness and performance of BayesTME, we
compared it with both an existing reference-free method and
with existing reference-based methods with different degrees
of scRNA missingness. To focus purely on the deconvolution
and reference-free capabilities of BayesTME, our simulations
did not apply any spot bleeding.

There are two tunable hyperparameters in BayesTME: K,
the number of cell types, and A, the global degree of spatial
smoothness. BayesTME uses a spatial cross-validation
approach to automatically select both variables without the
need for user input. The cross-validation procedure creates m
non-overlapping folds each with k% of spots held out; we set
m=5 and k = 5%. For each fold, BayesTME enumerates
K=2,... Knax and A = 10", ..., 108; in all of our experiments,
we set Kmax = 15. For each (K, 1), we fit BayesTME on the in-
sample data. Graph smoothing priors enable BayesTME to fill
in missing spots during cross-validation. BayesTME uses these
imputed posterior estimates to evaluate the likelihood of the
held-out data. BayesTME integrates out A in order to select K
then chooses the A value closest to the mean held out the likeli-
hood for the chosen K; see the STAR Methods for details.

We first evaluated how well the BayesTME recovers the true
gene expression profiles of each cell type in each of our K*
(true number of cell types) settings. We compared the
BayesTME result with STdeconvolve, a reference-free alterna-
tive method based on latent Dirichlet allocation®® that provides
three different approaches to estimating the number of cell
types; we picked the closest estimation out of the three candi-
dates that STdeconvolve provided. Reference-based methods
assume access to ground truth cell type information from scRNA
annotation, making them unavailable for comparison. In each
simulation, BayesTME achieved a higher correlation with the
true gene expression levels as measured by the coefficient of
determination (r2) of the estimated expression profile (Figure 3A).
Further, STdeconvolve over- or underestimated the true number
of cell types, whereas BayesTME selected the correct number of
cell types in each setting (Figure 3C, left).

We next evaluated the robustness of reference-based
methods DestVI, CARD, cell2location, and RCTD to reference
mismatch. We found that, although all methods performed well

Cell Systems

when the reference was perfectly matched, reference mismatch
was problematic for all four reference-based methods (Figure 3C,
right). Specifically, DestVlI and RCTD were sensitive to the
reference being a superset of the true number of cell types (x
axis values 1 and 2) and all four were sensitive to missing cell
types (x axis values —1 and —2). By not relying on any reference
scRNA-seq, BayesTME retained high accuracy across all simu-
lations (Figure 3C, left).

Finally, we evaluated the ability of different methods to
segment the tissue into spatial regions representing cellular
communities. In community detection benchmarks, BayesTME
(ARI = 0.99) surpassed all other currently available alternatives
(Figures 3B and S1C), including both spatial clustering
(BayesSpace, STLearn, and Giotto) and spot deconvolution
(cell2location, DestVI, and STdeconvolve) methods. For cell2lo-
cation (ARl = 0.31), we used its built-in Leiden clustering;
when inserting the BayesTME spatial clustering, cell2location
improved to ARl = 0.93, suggesting that the BayesTME clus-
tering provides an independent benefit even for accurate decon-
volution methods.

Established benchmarks further validate BayesTME’s perfor-
mance on spot deconvolution and expression signature.

We evaluated BayesTME on recently published ST bench-
marks.>* The benchmark takes scRNA-seq data with known
spatial coordinates and partitions them into a grid. Each cell in
the grid simulates an ST spot. The ST gene count matrix is gener-
ated by taking the sum of the expression profile of all the cells in
each spot. Following Li et al.,** we measured the performance of
BayesTME using the accuracy score (AS), which is an aggre-
gated score of Pearson’s correlation coefficient (PCC), structural
similarity index measure (SSIM), root mean square error (RMSE),
and Jensen-Shannon (JS) divergence. The final score is the
normalized average rank of the 4 metrics (with the highest AS
score of 1). Li et al.>* provide two benchmark datasets, termed
“Dataset 4” and “Dataset 10.” The authors previously found
that no method dominates the performance metrics across
either task and within each task the top-ranked method for
each metric is variable among existing methods.

We tested both BayesTME and a scRNA-reference guided
version on this benchmark. We run the scRNA-reference guided
version by prespecifying the expression profile in BayesTME
and fixing it to the mean expression of the single-cell reference
of each cell type. Both BayesTME and its guided version
outperform the existing methods in the Dataset 10 spot decon-
volution task (Figure 3E); as anticipated, the scRNA-reference
based BayesTME variant slightly outperforms the reference-
free version. Additionally, we compared the reference-free
BayesTME’s estimation of the expression signatures with the
mean expression of single-cell reference of each cell type

Figure 4. BayesTME discovers spatial transcriptional programs with high power and tight control of the false discovery rate

(A) Accuracy of the closest spatial pattern discovered by each method to the ground truth.

(B) True positive rate (orange) and false discovery rate (gray) for each method when predicting which genes belong to each spatially varying pattern; intervals on
bars show 95% confidence intervals; the dashed line is the target (5%) false discovery rate.

(C) Ground truth spatial patterns used in the benchmark simulations; top: cell-type proportion probabilities; bottom: spatial pattern followed by the genes in each

spatial program.
(D) Spatial programs found by BayesTME at the 5% FDR level.

(E and F) Spatial patterns found by other methods; both SpatialDE and Spark are unable to disentangle phenotype proportions from spatial gene expression

within phenotypes.
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Figure 5. BayesTME discovers spatial programs of immune-tumor interaction in human melanoma
(A) Pathologist-annotated H&E slide; yellow: immune cells, red: stroma, black: tumor.
(B) BayesTME recovers 4 cell types, which map closely to the pathologist annotations.
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(Figure 3D). As an example, we show the estimated expression
signature of L4 excitatory neurons in comparison with the ground
truth. BayesTME’s estimation of expression profile has a PCC
r = 0.98 for L4 excitatory neurons. For better visualization, we
plotted the expressions in the log10 space. BayesTME’s relative
performance on Dataset 4 varied substantially across metrics
(Figure S7). BayesTME performed comparably to most methods,
with only two methods (SpatialDWLS and Tangram) dominating
the results. Overall, the results suggest that BayesTME has
dominant spot deconvolution performance on a subset of real
data scenarios but that no method is able to achieve superior
performance in all settings.

BayesTME identifies within-phenotype STPs with tight control
of the false discovery rate.

In addition to bleed correction, deconvolution, and cell typing,
BayesTME detects gene expression levels of each phenotype
that vary in space. To do this, the generative model for
BayesTME uses a negative binomial likelihood where spatially
invariant expression levels parameterize the rate and spatially
dependent expression levels parameterize the success rate. Hi-
erarchical spatial shrinkage and clustering priors on the success
rate parameters enable BayesTME to discover genes within
each phenotype that spatially vary in coordination with other
genes. We call these gene sets and spatial patterns STPs. The
STP construction in BayesTME is flexible: it allows for genes to
be negatively spatially correlated within the same program,
makes no assumption on the shape or pattern of spatial varia-
tion, and adaptively discovers how many genes are in each pro-
gram. After inference, we use the posterior uncertainty to select
STPs with control of the Bayesian false discovery rate (see STAR
Methods); we set the FDR target to 5% by default.

To benchmark BayesTME, we constructed a simulation dataset
with STPs by randomly sampling cells from the scRNA data
following the same fashion as in the previous experiments. We
used the spatial layout from a zebrafish melanoma sample as it
is a large tissue containing more than 2,000 spots, enabling a
rich set of spatial patterns to be imprinted. We chose K* = 3 cell
types and designed 2 spatial programs for each cell type, where
10 genes were randomly sampled and assigned to each of the
STPs (Figure 4C). After selecting these 60 spatial genes, we
reordered their sampled reads by the spot intensity of their
respective spatial programs to simulate the spatial differentiation
while preserving the mean expression. Thus, although the
gene expression patterns are spatially informative in these simula-
tions, clustering by scRNA-seq analysis would remain unchanged.

We benchmarked BayesTME against spatial differential expres-
sion methods'”"'® that enable control of the false discovery rate.
BayesTME identified all 6 STPs with on average 0.88 Pearson’s r
correlation to the ground truth (Figures 4A, 4C, and 4D). In contrast,
we found that SpatialDE and Spark could only detect phenotype
proportion patterns instead of meaningful within-phenotype varia-
tion in spatial gene expression (Figures 4E and 4F). We also evalu-
ated the DestVI spatial expression detection mechanism and
found the results to be uncorrelated with the ground truth (Fig-
ure S2). Quantitatively, BayesTME achieved an average false dis-
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covery proportion of 14% where the 95% confidence interval
covers the 5% target FDR, and TPR of 94% for selecting spatially
varying genes (Figure 4B).

BayesTME discovers spatial programs of immune
infiltration and response in human melanoma

We applied BayesTME to a published human melanoma data-
set®' generated using first-generation ST technology, with a
spot diameter of 100 um and center-to-center distance between
spots of 200 pm.*® The selected sample contained visible
tumor, stromal, and lymphoid tissues as annotated by a pathol-
ogist based on H&E staining (Figure 5A). Despite the relatively
low resolution of the data, the cell types identified by
BayesTME successfully recapitulated the histology of the tissue
(Figure 5B).

Five STPs were identified by BayesTME (Figure 5C). Two pro-
grams were tumor specific and displayed somewhat distinct
expression patterns, suggesting a spatially segregated pattern
of tumor heterogeneity (Figure 5C). As expected, melanoma
marker genes, such as PMEL and SOX10, were highly upregu-
lated within the tumor programs (Figure 5D). Similar to the
pathologist annotations, the model also detected spatial pro-
grams corresponding to stromal (fibroblast) and lymphoid tis-
sues (Figure 5C) that had marker genes, including COL1A7
(fibroblast specific, Figures 5C and 5D) and CXCL13 (lymphoid
specific, Figure 5D). Notably, MYL9 was one of the most highly
expressed genes within the fibroblast expression signature (Fig-
ure 5D), which is a marker of tumor-associated myofibroblasts,36
indicating that the fibroblast program identified by BayesTME
represents a subpopulation of fibroblasts reprogrammed by their
proximity to the tumor. In the fibroblast-related spatial program,
immune-related hub genes such as IGLL5 and IGJ displayed an
enrichment at the tumor boundary (Figure 5C). The model also
identified a macrophage-related spatial program (Figure 5C),
which had not been detected by the pathologist. One of the
top macrophage marker genes, CXCL9 (Figures 5C and 5D), is
a marker of tumor-associated macrophages,®” which have an
important role in anti-tumor immunity.*® Taken together, our re-
sults show that BayesTME can successfully not only recapitulate
but also improve the detection of tumor and tumor-associated
cell types that are difficult to identify purely by histology.

BayesTME discovers spatial programs capturing muscular
bilateral symmetry and tumor-immune interaction in a zebrafish
melanoma model.

We expanded upon our human melanoma results by applying
BayesTME to our recently published dataset of zebrafish
BRAF V80%E _driven melanoma,® generated using the 10X Geno-
mics Visium technology with an approximate spot resolution of
55 um. Both samples contained tumor and TME tissues (muscle,
skin) (Figures 6 and 7).

Within sample A, BayesTME identified cell types corresponding
to tumor, skin, and muscle (Figures 6B and 6C). Each cell type
upregulated expected marker genes, such as myosins and parval-
bumins in muscle (myhc4, myl10, pvalb1, pvalb2, pvalb3, and
pvalb4), BRAF Y8%F in tumor, and keratins in skin (krt5, krt91,

(C) BayesTME recovers 5 spatial programs representing fibroblasts, immune cells, and two programs covering tumor subtypes related to transcription (left) and

stress responses (right).
(D) Top marker genes selected by BayesTME to describe each cell type.
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Figure 6. BayesTME identifies sharp boundaries and tumor interface programs in a zebrafish melanoma model
(A) Histology of zebrafish sample A; cutout: zoom in on the tumor interface region; bottom: zoom in on the recovered tumor/not-tumor proportions show
BayesTME captures the sharp tissue change point.
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and krt15) (Figure 6C). Two cell types (“tumor” and “interface”)
were detected within the tumor, both expressing BRAF V6008
(Figures 6A-6C). Although the tumor region of sample A bordered
adjacent muscle with little mixing of the two tissue types visible on
the H&E-stained section, the interface cell type appeared to infil-
trate into the neighboring TME, reminiscent of the interface cell
we identified in our recent work?® (Figure 6A). Many of the interface
marker genes were the same as interface marker genes we previ-
ously identified, including stmn1a, tubb2b, and hmgala®® (Fig-
ure 6C). Both spatial programs corresponding to the interface
type were enriched at the tumor boundary (Figure 6D). In addition
to the interface marker genes we previously identified, BayesTME
uncovered a number of genes related to remodeling of the extra-
cellular matrix (ECM) that displayed a spatial enrichment at the tu-
mor boundary, including several collagen-related genes (col1ala,
col1a2, and collalb; Figure 6D), consistent with a role for the
interface cell state in melanoma invasion. Immune genes were
also enriched at the tumor-muscle interface, including ilf2 and
gm1 (Figures 6C and 6D).

Sample B contains a wider variety of tissue types, including
heart, brain, gills, tumor, and muscle (Figures 7A-7C). Mixing of
tumor and muscle tissues at the tumor boundary was visible by
histology (Figure 7A). Notably, BayesTME again uncovered an
interface cell state specifically enriched at the tumor boundary
(Figures 7A and 7B). Similar to sample A, a number of immune-
related genes were spatially patterned and/or enriched in the
interface region, including lygl1, g1, cd74a/b, and b2m
(Figures 7C and 7D). Melanoma is a highly immunogenic cancer
whose interaction with immune cells in the TME significantly influ-
ences tumor progression.®® Whether the enrichment of
immune genes at the tumor-TME interface represents pro-inflam-
matory tumor cells at the tumor boundary or a type of tumor-asso-
ciated immune cell type will be an exciting topic of future
investigation.

In both samples, we uncovered a significant degree of
spatially patterned tumor heterogeneity. BayesTME identified
spatial programs characterized by up-regulation of classical
melanoma markers, such as pmela and tyrp1b (sample A tumor,
Figure 6D) and BRAF Y89°F and sox10 (sample B “tumor 3,” Fig-
ure 7D). Other spatial programs identified in the tumor likely
represent other facets of tumor biology. Hypoxia-related genes
(hsp70, hiflan, and egin3; Figure 6D) were spatially enriched
within the tumor region of sample A, which may indicate hypoxic
regions of the tumor due to lack of oxygen supply. Hypoxia has
been linked to melanoma progression.’® We also identified
spatially patterned signatures of metabolism, which could repre-
sent different metabolic pathways active within the tumor. One of
the spatial programs identified within the tumor region of sample
B upregulated several genes corresponding to ATP synthase
subunits (atp5al, atp5e, and atp5b) and other metabolic genes
(gpia and tpi1b) (Figure 7D). Determining how different metabolic
pathways are spatially organized and regulated within the tumor
will be an interesting area of further study. Taken together, our
results indicate that BayesTME identifies complex spatial pat-
terns of transcriptional heterogeneity within melanoma and the
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melanoma microenvironment and uncovers a potentially pro-in-
flammatory cell state present at the tumor boundary.

DISCUSSION

This paper has presented BayesTME, a reference-free Bayesian
method for end-to-end analysis of STs data. Compared with ex-
isting scRNA-seq referenced methods, BayesTME applies to a
wider variety of tissues for which scRNA-seq may not be
obtainable due to economic, technical, or biological limitations.
Even when references are available, highly heterogeneous and
diseased tissues may contain different subsets of cell types be-
tween consecutive samples. However, BayesTME is adaptable
to scRNA-seq reference if a reliable one is available. With
reference data, one can obtain the empirical estimation of the
expression signature ¢, which is invariant to sequencing depth
batch effects. Computationally, access to pre-clustered
scRNA-seq significantly accelerates the inference by removing
the need to perform cross-validation to select the cell pheno-
types. Similarly, BayesTME also supports using scRNA-seq
reference data from atlases to form informed priors for samples.
Our software documentation provides walkthroughs for both
use cases.

On the other hand, unlike most reference-free methods,
BayesTME does not rely on dimension reduction similar to
PCA. This advantage enables BayesTME to draw individual
gene-level inferences, including expression signatures, pheno-
type markers, and STPs, which current methods miss. Our com-
parison to 11 other ST data analysis methods highlighted
BayesTME'’s advance in bleed correction, spot deconvolution,
tissue segmentation, and within-cell-type spatial variation in
gene expression.

Advances in ST technology promise to soon enhance the res-
olution to near-single-cell levels, dramatically increasing the
number of spots. We have carefully designed the computational
inference routines in BayesTME to meet this challenge.
BayesTME scales sub-linearly with the number of spots, with a
100x increase in the number of spots leading to only a 10X in-
crease in computational runtime (Figure S3A). To further speed
up inference, one can place an informative prior on the cell count
in a given spot using the H&E slide as the reference.

Understanding how cells alter their expression levels as a
function of their spatial location in tissue is necessary for a
complete characterization of the cellular architecture of the
TME. BayesTME captures these expression level changes in
the form of STPs. Our results showed that BayesTME is able to
capture biologically meaningful spatial programs, which hint at
cell-cell interaction in TMEs. To further facilitate our understand-
ing of cell-cell interaction mechanisms, future versions of
BayesTME will introduce an additional cell-type interaction
term in the success rate formulation in our negative binomial
model. This interaction term will model the total influence of
cell type k in spot i as the sum of the interactions between cell
type k and all possible cell types k'. We also plan to explore ex-
tending this formulation to all spots within a reasonable

(B and C) BayesTME discovers 5 cell types with their proportions and biologically plausible marker genes.
(D) 9 spatial transcriptional programs discovered at a 5% FDR; muscle programs illustrate BayesTME captures bilateral symmetry without prior knowledge;
interface and tumor programs capture differences between interior and exterior tumor behavior.
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neighboring of spot i for global interactions triggered by para-
crine, synaptic, or endocrine signaling. This process is computa-
tionally expensive under the current ST technology. However,
with single-cell resolution, such inference becomes tractable
because we only need to look at the individual cells of different
cell types within the reasonable neighborhood of celli. Increased
ST resolution will significantly drop the computation cost by a
factor of K, which can also be vectorized to further speed up
this process. Thus, BayesTME is well positioned to make future
computational advances in ST modeling, in step with the coming
technological advances in ST methods.
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Data and code availability

o All data used in this manuscript is publicly available through their associated original publications. The human melanoma sam-
ple is available at https://www.spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/. The
zebrafish melanoma data is available at https://doi.org/10.5281/zenodo.5512629. The human dorsolateral prefrontal cortex
data is available from the Globus endpoint ‘jhpce#HumanPilot10x’, also listed at http://research.libd.org/globus. Raw data
used in each simulation is available for download through the BayesTME repository page (see code availability).

® All original code has been deposited at Github (https://github.com/tansey-lab/bayestme) and is publicly available as of the date
of publication. DOIs are listed in the key resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data generation

Semi-syntheic data for spot deconvolution

We took the mouse brain scRNA-seq data from cell2location'® as the single-cell reference and picked K = 3,4, 5,6,7,8 cell types at
random. We used the spatial layout of the zebrafish A1 sample®® as the template and partitioned the tissue template into 14 blocks in
order to simulate the cellular communities. We drew the cell type proportions for each cellular community (i.e. block) from a Dirichlet
distribution with concentration parameter « equal to 1/K, where K is the number of cell types. This concentration induces sparsity in
the subset of cell types in each spot, which replicates real tissues where cell types are often present only in a subset of the tissue. We
then sampled the blockwise mean total cell count per spot 4 from Pois(30), and drew the total cell number for each spot from
Pois(2;). With the total cell count and the cell type proportion, we sampled the cell count for each cell type from a multinomial dis-
tribution. Given the cell number for each cell type, we randomly sampled the cells from the single-cell reference and assigned them to
the corresponding spots. We can obtain the simulated UMI count matrix by taking the sum of expression profiles of all cells in
each spot.
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Semi-synthetic data for robustness benchmark

After generating the semi-synthetic datasets for spot deconvolution following the aforementioned process, we used them for both the
spot deconvolution benchmark and the test of robustness benchmark. In the robustness benchmark, we pass imperfect single-cell
references to the reference-based methods in order to test their performance in scenarios where we don’t know what the exact cell
types in the biological system are. Specifically, for each dataset with K = 3,4,5,6,7, 8 cell types. We generated five single-cell ref-
erences with the adjusted number of cell types K’ = {K — 2,K — 1,K,K +1,K +3}. For the two single-cell references with missing
cell types, we subsampled K — 2 and K — 1 cell types from the K selected cell types, where the first K — 2 cell types in these two
single-cell references are the same. For the two single-cell references with extra cell types, despite the selected K cell types, we
sampled 2 unselected cell types and appended the corresponding single-cell expressions to the perfect single-cell reference. For
each K, we passed five copies of the semi-synthetic datasets, each coupled with one of the five adjusted single-cell references,
to the reference-based methods to test their performances.

Mouse cortex semi-synthetic data

We adopted Data 10 and Data 4 mouse cortex data from Li et al.”™ The data contains single-cell expression with the spatial coordi-
nate of each cell. The ST slide is partitioned into grids with 750-pixel distance, resulting in squares with sides of 750 pixels. Each
square simulates an ST spot. By taking the sum of all single-cell expressions in each square, we can obtain the simulated UMI count
matrix. Detail refers to the method for constructing simulated datasets used in Li et al.>* We also generated two copies of Data 10 with
an increased resolution by changing the grid. Instead of the original 750-pixel window, we used 500-pixel and 250-pixel windows to
generate the simulated ST data with 2x and 9x resolution

|.34

Semi-syntheic data with STP

To generate the semi-synthetic data for the spatial transcriptional program test, we first use the procedure described in ”Semi-syn-
thetic data for spot deconvolution” to generate the base dataset with K = 3. In the base dataset, we have all the single-cell
expressions in each spot, but did not take the sum. We also generated 6 simulated spatial transcriptional programs (STPs) as shown
in Figure 4. For each cell type, we randomly assigned 2 spatial patterns and randomly selected 5 genes for each spatial pattern. In
order to ensure the spatial differential expression is realistic, for each gene-celltype pair, we take the sampled single-cell expression
of the selected gene in the selected cell type and permute the expression of the selected gene based on the intensity of the simulated
STP, while holding the expression of all the other genes fixed. In this way, we can enforce the spatial differential expression pattern
without making any artificial expression signal. Repeat the permutation process for each selected gene-celltype pair and each STP.
We generated the simulated dataset with STP. We obtain the corresponding UMI count matrix by taking the sum of all single-cell
expressions in each spot.

Bleed correction benchmark simulations

The benchmark bleeding simulations use a 70x 70 simulated ST tissue block, roughly the size of a common real ST tissue. We ensure
that the tissue region has a 10-spot margin on all sides, capturing the idea that tissue segments should be inscribed well inside of the
fiducial markers. To further mimic real tissue, we randomly insert a tissue gap inside the tissue region, since most tissues are not
perfectly contiguous.

We set the baseline expression of each gene to be a constant drawn from a gamma distribution with shape 2 and rate 100. We then
sample reads for each in-tissue spot from a Poisson distribution with the corresponding rate. We then apply a stochastic bleeding
process to corrupt the true UMIs.

We benchmark the decontaminating ability of BayesTME and SpotClean under three different bleeding patterns:

1. Gaussian bleeding. Original UMI locations are corrupted by adding noise drawn from a 2d Gaussian with covariance matrix

5 1
EGauss = |: 1 5:| .
This induces thin-tailed, symmetric bleeding.
2. Student’s-t bleeding. Original UMI locations are corrupted by adding noise drawn from a 2d Student’s-t distribution with scale
matrix,

20 3
ZGosset = |:3 30:|

and 10 degrees of freedom. This induces heavy-tailed, symmetric bleeding.

3. Anisotropic bleeding. Original UMI locations are corrupted by adding anisotropic noise that mimics bleeding seen in real tis-
sues. A force 2d vector of (105,52.5) (150% and 75% of the dimensions of the slide, respectively) is added to each UMI location. A
tissue friction coefficient of 5 is used to slow down bleeding within the tissue. The bleeding likelihood is proportional to this skewed
distance via a Laplace kernel with bandwidth 40. See the code function distance_weights (available on Github) in the bleeding simu-
lation script for exact computational details. This creates heavy-tailed, asymmetric bleeding that more closely resembles bleeding
seen in ST data than the other two methods.
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Scalability

BayesTME scales efficiently to ultra-high resolution ST data. Next-generation ST technologies promise to deliver 2um resolution,
resulting in an increase of up to two orders of magnitude over the current number of spots. We have carefully designed BayesTME
so that it scales to meet these challenges. Specifically, the main computational step in posterior inference in BayesTME is the
discrete spot deconvolution which scales quadratically with the number of possible cells in a given spot. However, as the reso-
lution increases, this number actually decreases. The result is that the quadratic increase in spots is offset by the decrease in the
deconvolution burden. Figure S3 shows the relative runtime of BayesTME as we increase the spatial resolution from the current
resolution (1x) with a few thousand nodes to high-resolution (121x) with hundreds of thousands of nodes. Despite increasing by
two orders of magnitude, BayesTME only requires a 10x increase in computation time, which is tractable for modern compute
clusters.

QUANTIFICATION AND STATISTICAL ANALYSIS

Notation and setup

We assume we are given an NXG matrix R where Rjy is the UMI counts for gene g at spot i. The spot / is associated with some
known location /(i) € R? on the tissue. These locations define a graph G = (V, £) where each vertex is a spot. There is an edge be-
tween two vertices if they are within some ¢ distance. We set ¢ = v/2 such that each non-boundary spot has 4 neighbors for lattice
layouts (e.g., Slide-seq) and 6 neighbors for hexagonal layouts (e.g., Visium). We assume that there are K cell phenotypes (hereon
simply called cell types) in the sample, each with its own expression profile. We do not assume that K is known nor do we assume
that there is side information about different cell types and their expression profiles (i.e., we do not assume access to paired single-
cell RNA). We refer to UMI counts and read counts interchangeably, where read counts are understood to mean UMI-filtered reads
and not raw, possibly-duplicated reads.

Generative model
BayesTME models several sources of spatial variation in ST data using a single hierarchical probabilistic model,

(Raw, corrupted reads in spot i for gene g) R, Ry ~ £(Ry)
(Reads in spot i for geneg) Rig _ :: Rk
(Reads specific to cell type k) Rigi  NegBinom (ﬂkdikq’kgv . (W,E,hkg)vkg . Ckg))
(Expression signature for cell type k) Ok ~ Dir(a)
(mRNA content for cell type k) B ~ Gamma(a,b)
(Total # cells in spoti out of npma possible) D; ~ Binom (Nax, 1 — (W)
(# cells of type k in spot /) di ~ Binom(nu, o(yi)), V1 <k <K (Equation 1)
(Diff in cell type dist between neighbors) (AW), ~ GroupHorseshoe(2)
(Spatial transcriptional program membership) hyg ~ Cat(6)
(STP membership prior odds for cell type k) O ~ Dir(10,1,1,....1)
(Spatially — invariant dispersion factor) Crg ~ N(0,1)
(STP loading for geneg in cell type k) Vig ~ Horseshoe +
(Null STP program) w® _o

(Spatial pattern of STP h for cell type k) (A(”Wf(bo))

j ~ Horseshoe +,

where ¢ is the logistic function, and 1 is the hyperparameter that controls the degree of spatial smoothing. The function £( ) is a
nonparametric function defining the spot bleeding process that probabilistically maps from the true read counts R, for each gene g to
the observed counts ﬁg. We specify no functional form for this function and only constrain it to be decreasing in the distance from the
true to the observed spot location. We estimate the cell numbers of each cell type by a graph-fused binomial tree model (GFBT) in a
cascade fashion (see Figure S5 for details). For an arbitrary spot i, we first sample the total number of cells D;, and then sample the cell
numbers dy one cell type at a time from a Binomial distribution with the trial number ny, where

. D, k=0
T Mk — die k=1

e3 Cell Systems 14, 605-619.e1-e7, July 19, 2023



Cell Systems ¢ CellP’ress

OPEN ACCESS

and the success rate is controlled by the spatially smoothed cell type probability term ¥ enforcing the spatial information in ST data.
The matrix A is the edge-oriented adjacency matrix encoding the spot graph g, also equivalent to the root of the graph Laplacian;
A = ATA is the first-order graph trend filtering matrix,*"*> equivalent to the graph Laplacian.

Since full Bayesian inference in the above model is computationally intractable, we develop an efficient empirical Bayes approach
that splits posterior inference into stages. While it is true that any Bayesian model could conceptually be fit through MCMC (e.g.
running a naive Metropolis), doing so in practice is often intractable. Metropolis methods based on random walks are unlikely to
mix in any reasonable amount of time for the thousands of parameters in BayesTME. Automated methods, such as HMC, require
gradient calculations. The horseshoe priors we employ are asymptotic at zero and not differentiable and the BayesTME model in-
cludes discrete variables which cannot be estimated with HMC. Automated Gibbs sampling methods like JAGS require models
to either use a conjugate prior or default to inefficient routines like Metropolis sampling. Many of the priors in our model are non-con-
jugate and thus we had to develop efficient latent variable data augmentation schemes for our Gibbs samplers. Similarly, the spatial
priors we use require inverting large covariance matrices at each sample, requiring efficient sparse linear algebra routines. The
discrete cell counts in each spot are also all dependent, leading to a challenging problem of sampling over a discrete multivariate
posterior; this is one of the key computational challenges in estimating the BayesTME model and it required a filter forward-backward
sampling (FFBS) algorithm that we derived. Finally, the non-parametric bleeding prior would effectively require a large constrained
Gaussian process-esque likelihood; our group has developed the state-of-the-art sampler for such constrained GPs*® and even then
it would be much too compute-intensive to try to integrate such a sampler into the BayesTME posterior sampler. Our empirical Bayes
approach makes what we consider to be minimal approximations necessary to achieve computational feasibility. This piecewise
approach to fitting is distinguished from the ad hoc pipeline approach of existing workflows in that a single, coherent generative
model is driving the estimation. The empirical Bayes approach merely plugs in point estimates for nuisance parameters while
providing full Bayesian inference with uncertainty quantification for the latent variables of interest.

Gene selection

BayesTME scales linearly with the size of the gene library. To keep posterior inference computationally tractable, we select the top
G = 2000 genes ordered by spatial variation in log space. Specifically, we transform the reads as log(1 + R) and rank each column by
the variance, keeping the top 2000. The logarithmic transform separates spatial variation from natural variation that arises due to sim-
ply having a higher overall expression rate. We then drop all ribosomal genes (i.e., those matching an ‘rp’ regular expression). After
selecting and filtering the top genes, we work directly with the UMI read counts.

Anisotropic bleed correction

Technical error causes UMls to bleed out from barcoded spots. BayesTME models this bleed as a combination of unknown global
and local effects. Global effects form a baseline bleed count for any spot, corresponding to a homogeneous diffusion process. Local
effects imply that the UMI count at a given spot is a function of how far it is from the original location of each of the UMIs. BayesTME
employs a semi-parametric, anisotropic model for global and local effects,

ﬁg ~ Mult (ZF;’,-Q, pg/Zp,g>
i i

Pig = Pog +ZW,‘,‘r,ll.I-/g (Equation 2)
7
B sp(if)
Wi = Z Z log(1 +€%),
b=1j=0

where ﬁg are the raw, observed counts and pyg are the global effects. The local effects in Equation 2 are modeled using a set of B
monotone nonparametric basis functions ¢ that decay as a function of the basis-specific pseudo-distance s,.°” BayesTME uses the
four cardinal directions (North, South, East, and West) for the basis functions. This choice is based on the observation that UMIs tend
to bleed toward one corner. We also observed that bleeding appears to be less extreme in tissue regions than non-tissue regions.
Thus, BayesTME distinguishes between in- and out-of-tissue distance by learning four separate basis functions for each region. The
distance from an original spot /' to its observed spot i is then a summation of the in- and out-of-tissue components of a straight line
between the two spots.

The bleeding model is fit by alternating minimization. At each iteration, BayesTME alternates between estimating the basis func-
tions Z and global rates o4, and estimating the latent true UMl rates fi;,. After the model is fit, BayesTME replaces the raw reads with
the approximate maximum likelihood estimate of read counts,

Ry = arg max Mult (Rg; Zﬁig,ﬁg/Zﬁ,g> ~round <F~i’,-g x ﬁg/zﬁfg) ) (Equation 3)

The cleaned reads R are then treated as correct in subsequent inference steps. This can be seen as an empirical Bayes approach,
where the model in Equation 2 is optimized and uncertainty over R is replaced with a point estimate that maximizes the marginal likeli-
hood of possible true read configurations. See Figure S4 for examples.
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Discrete deconvolution model

The spot-wise gene counts Rj; can be decomposed into the sum of cell type-specific gene reads in any given spot, i.e. Ry =
Zf _ 1Rigx. BayesTME models the cell type-specific reads with a Poisson distribution controlled by three parameters g, di and
pxg- Specifically, 8 denotes the expected total UMI count of individual cells of type k; dix denotes the number of cells of type k located
in spoti; and ¢ = (¢x1, ..., ka) denotes the gene expression profile of cell type k, where each element ¢, is the normalized expres-
sion of gene g in cell type k; equivalently, ¢, is the proportion of UMIs that cell type k allocates to gene g. The generative model for
BayesTME follows,

K
Rig = ZRigk
k=1

Rigk ~ Pois (5kdik(ﬂkg)

@y ~ Dir(e)

B« ~ Gamma(a,b)

D; ~ Binom(nmax, 1 — (V1))

di ~ Binom(ny,o(yy)), V1<k<K
(AW), ~ GroupHorseshoe(2)

(Equation 4)

where D; is the total number of cells in spot i, and A is the hyperparameter that controls the degree of spatial smoothing. The matrix
A is the edge-oriented adjacency matrix encoding the spot graph G, also equivalent to the square root of the graph Laplacian. The
hierarchical prior encoded by the last three lines of Equation 4 is a heavy-tailed Bayesian variant of the graph-fused group lasso
prior”®?° that uses the Horseshoe+ distribution.?” This prior encourages the probability distribution over cell type proportions to
follow a piecewise constant spatial function, encoding the prior belief that cells form spatially contiguous communities. The model
is data-adaptive, however, and able to handle deviations from this prior where warranted in the data; see for example, the smooth
gradient of cell type proportions recovered in Figure 7.

Posterior inference

Posterior inference in BayesTME is performed through Gibbs sampling. The key computational innovations in BayesTME come in the
form of a fast approach to update dj, the number of cells of type k in spot . Block joint sampling over all d; and D; can be done via an
efficient forward-backward algorithm (Figure S5). This algorithm effectively converts the cell count prior to a hidden Markov model
prior. The Poisson likelihood in Equation 4 acts as the emissions step and the emission log-likelihood can be collapsed into a series of
fast updates. This inference step enables us to sample over the entire combinatorial space of possible cell counts in O(ND2,, K?) time
for N spots, K cell types, and 0 < D; < Dnyax possible total cells in each spot. BayesTME performs Gibbs sampling using these fast
updates with a burn-in and Markov chain thinning; we use 2000 burn-in steps, 5 thinning steps between each sample, and gather a
total of T = 100 post-burn-in posterior samples.

Selecting the number of cell types and smoothness hyperparameters

BayesTME automatically chooses the number of cell types K via M-fold cross-validation. For each fold, a random non-overlapping
subset of the spots is held out; we use M = 5 folds with 5% of spots held out in each fold. The spatial priors in BayesTME enable the
imputation of the cell type probabilities at each held-out spot in the training data. For each fold, we fit over a discrete grid of A smooth-
ness values; weuse A = (10°,107,...,108). For a given fold m, cell type count K, and smoothness level 1, we calculate an approximate
bound on the marginal log-likelihood of the held-out spots using T posterior samples:

T 5 80400
rlest _ Z Zlog Mult RHZR@M ) (Equation 5)

) (t
i€ foldm t = 1 g Zngﬂff ) ‘9:(;() 40;((9)

Results are averaged over all A values for each fold and then averaged across each fold. The 1 averaging is an empirical Bayes
estimate with a discrete prior on A integrated out; the cross-validation averaging is an unbiased approach to selecting K. After select-
ing K, we refit BayesTME on the entire data using the chosen K and the 2 with average cross-validation log-likelihood closest to the
overall average.

For selecting the correct number of cell types, we constructed 4 semi-synthetic ST data with the same tissue template but different
number of cell types (K* = 3,4, 6, 8). For each semi-synthetic data, we ran cross-validation with the number of cell types from 2 to 15
and picked the one with maximum likelihood as our predicted cell type number. The predicted cell type number matches the ground
truth K* in all trials. Such Observation suggests, with cross-validation, BayesTME is able to select the optimal number of cell types
from the ST data without scRNA-seq reference.

Figure S3B shows the average cross-validation log-likelihood for each of the four simulations. Each simulation used a different true
number of cell types and BayesTME correctly identified the true number for each simulation. As the number of cell types increased,
variance in the held-out likelihood also increased. Thus, if the number selected is beyond =10 cell types, we recommend increasing
the number of folds m to compensate.
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Selecting marker genes

We define a gene as a marker of a particular cell type if its expression in that cell type is significantly higher than in any other cell type.
BayesTME uses posterior uncertainty to select statistically significant marker genes with control of the Bayesian false discovery rate
(FDR).** To calculate the local FDR we use the T posterior samples,

g = /TZ H1 [(pkg > (pk, ] (Equation 6)
t=1k+#k

yielding the posterior probability that gene g is a marker for cell type k. We sort the w values in descending order and solve a step-
down optimization problem,

maximize q (Equation 7)
q
subject to
i —we)
q <

The set of w values selected controls the Bayesian FDR at the « level. BayesTME can alternatively control the Bayesian Type | error
rate at the « level by only selecting marker genes satisfying wyg > 1 — . We then rank the selected marker gene candidates by w and
¢ jointly, where

_ Prg — Max {ak/g}k’¢k
'Skg - — K
max {‘/’k/g}k/ =1

, (Equation 8)

is the normalized expression score in [— 1, 1] measuring the expression level of gene g in cell type k compared with all the other cell
types, and g, is the posterior mean of T posterior samples. By default, we set the FDR threshold to 5%; our results report an inter-
pretable subset of the top 20 genes for each inferred cell type.

Community detection

To segment the tissue into cellular communities, BayesTME clusters the fused spatial probabilities W. First, the neighbor graph is
augmented with the nearest 10 neighbors to adjust for spatially-disconnected spots due to tissue tears in sectioning. The posterior
samples are flattened into a single vector for each spot. Spots are then clustered using agglomerative clustering with Ward linkage, as
implemented in scikit-learn. The number of clusters g is chosen over a grid of ge (1, ..., 50) to minimize the sum of the AIC*® and
BIC“® scores. Community distributions are calculated as the average of all posterior probabilities of all spots assigned to the com-
munity. When comparing community segmentation in benchmarks, we applied BayesTME ’s clustering algorithm on DestVI and
stDeconvolve, as they do not provide segmentation routines.

Spatial transcriptional program model

The deconvolution model in Equation 4 assumes gene expression is stationary within a given cell type. However, we expect that vari-
ation in a small number of important genes should be spatially dependent. BayesTME captures this spatial variation by replacing the
Poisson likelihood in Equation 4 with a more complex negative binomial one,

Rigx ~ NegBinom (ﬁkdik(pkg, (W,E, )vkg + ckg>>

hyg ~ Cat(6y)
0 ~ Dirichlet(10,1,1,...,1)
o ~ N(0,1) (Equation 9)
Vig ~ Horseshoe +
Wf(o) =0

(A“)w,((”)o)) _~ Horseshoe +,
J

where ¢ is the logistic function and A" = AT A is the first-order graph trend filtering matrix, equivalent to the graph Laplacian. The
rate in Equation 9 is equivalent to that in the simpler model in Equation 4. In both cases, the expected read count scales additively with
the number of cells, a crucial property that reflects the intuition that a spot with twice as many cells should yield twice as many reads.

Gene expression within a cell type varies spatially through the success probability (the second term) in the negative binomial likeli-
hood. The offset term ¢,y corresponds to the spatially-invariant expression term that controls the dlsperS|on rate in the counts. Each
gene g in each cell type k belongs to one of H clusters. Each cluster defines a different spatial pattern wk , which we refer to as spatial
transcriptional programs. The first program w( is the null program corresponding to spatially-invariant expression. All subsequent
programs are latent and inferred through posterior inference. BayesTME places a heavy prior on genes coming from the null, such
that it takes substantial evidence to conclude that a gene is spatially varying within a cell type; this prior is necessary as otherwise the
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model is only weakly identifiable. Genes participating in the non-null spatial programs do so by placing a weight v,y on the spatial
pattern. This weight shrinks, magnifies, or can even invert the pattern, allowing the clustering of negatively correlated genes into
the same spatial transcriptional program. BayesTME places a sparsity-inducing prior on vy in order to encourage only strongly
participating genes to be assigned to non-null programs.

Spatial transcriptional program inference

Posterior inference via Gibbs sampling is possible with the STP BayesTME model. However, the fast HMM updates for the cell counts
are no longer available, making the inference algorithm substantially slower. For computational efficiency, we instead take a two-
stage approach. First, we fit the deconvolution model in Equation 4, collecting T posterior samples of each latent variable. Then
we fix (8, d, tl))(t) foreachsamplet = 1,...,T. For each fixed sample, we run a Gibbs sampler for the non-fixed variables in Equation 9;
we use 99 burn-in iterations and take the 100™ iteration as the sample for the ™ iteration of the full model parameters. We motivate
this approach mathematically by the identity that if Y ~ Pois(r) and X ~ NegBinom(r,p), then E[Y] = E[X|p = 0.5]. Since we put
sparsity priors on vxy and a standard normal prior on ¢y, all of our priors peaked at p = 0.5. Thus, a priori, we expect the posterior
mean under the full joint inference model to be nearly the same as the two-stage model; in practice, we find the two approaches pro-
duce similar results.

Selecting significant spatial transcriptional programs

Spatial transcription programs in BayesTME correspond to spatial patterns in w,((h) in cell type k, and the members of a spatial pro-
gram are the genes g for which hyg is significantly non-null. Spatial programs are only considered active in spots i where dj > 0 with
high probability. Specifically, for a given « significance level, we select spots and genes for the spatial program s in cell type k as

follows,
;
S¥"(a) = {vkg: (1/721 {hg =s}> >1 - a}
t=1

;
S (a) = {wﬁ.) : (1/T 1[d,.<;>>o]) >1 - oz}.
t=1

If either SI"° () or SP°**(«) is empty, we filter out the entire program. We also filter programs where the Pearson correlation be-
tween w,((h) and di is more than 0.5 and Moran’s / spatial autocorrelation less than 0.9; these programs capture technical noise and
overdispersion rather than meaningful spatial signal. In practice, we find H = 10 to be a sufficient number of potential spatial pro-
grams per cell type. BayesTME sets the spatial transcriptional program significant threshold to « = 0.95.

(Equation 10)

ADDITIONAL RESOURCES

Tutorial and documentation of BayesTME: https://bayestme.readthedocs.io
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