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ABSTRACT
This article investigates a physics-informed statistical approach capable of (i) learning nonlinear system
dynamics by using data generated from a nonlinear system as well as the underlying governing physics,
and (ii) predicting system dynamics with reasonable accuracy and a computational speed much faster than
numerical methods. The proposed approach obtains the reduced-order model from the full-order governing
equations. A function-to-function regression, based on multivariate Functional Principal Component Anal-
ysis, establishes the mapping between external forcing and system dynamics, while a multivariate Gaussian
Process is used to capture the relationship between parameters and external forcing. In the application, the
proposed approach is applied to predict aircraft nose skin deformation after Unmanned Aerial Vehicle (UAV)
collisions at different impact attitudes (i.e., pitch, yaw and roll degrees). We show that the proposed physics-
informed statistical model can achieve a 12% out-of-sample mean relative error, and is more than 103 times
faster than Finite Element Analysis (FEA). Computer code and sample data are available on GitHub.
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1. Introduction

Nonlinear dynamical systems are widely found in scientific and
engineering applications. A nonlinear system is often described
by Partial Differential Equations (PDE), but solving a high-
dimensional nonlinear PDE can be computationally expensive
using numerical methods such as the Finite Element Analysis
(FEA). An important question thus arises: given experimental
or observational data generated from a nonlinear system under
certain parameter settings, can a statistical model be constructed
to learn and predict system dynamics under new parameter
settings? Such a statistical approach needs to be interpretable
following governing physics, reasonably accurate, significantly
faster than direct numerical solutions, and systematically quan-
tify the uncertainty associated with the predicted system dynam-
ics. This is the main goal of this article.

1.1. Motivating Application and Objectives

The rapid growth of Unmanned Aerial Vehicle (UAV) within the
National Airspace System has been identified as an emerging
threat to manned aircraft by the Federal Aviation Administra-
tion (FAA) with more than 1.8M registered drones (Olivares
2017; FAA 2020). To ensure aviation safety of commercial flights,
airborne aircraft-UAV collisions need be understood, assessed
and mitigated during aircraft design and by new aviation reg-
ulations (FAA 2014; Joslin 2015; Olivares et al. 2017). It is pre-
scribed in the Code of Federal Regulations 25.631 (bird strike)

that an aircraft must continue safe flight and landing after impact
with an 8-pound bird at the design cruising speed (CFR 2012).
Considering the harder materials used for UAV, UAV-strike
can cause potentially severer damage than bird-strike, posing a
greater threat to the safe operation of commercial aircraft.

For aviation administration to design new UAV regulations
and make new recommendations for airborne hazard severity
thresholds to aircraft/UAV manufacturers, the current practice
involves developing high-fidelity computer models, for example,
Finite Element Analysis (FEA), to simulate collision processes
under various impact conditions; for example, collisions at dif-
ferent impact attitudes (i.e., pitch degree, yaw degree and roll
degree). Figure 1 shows the FEA-simulated deformation process
of aircraft nose structure due to UAV collisions. In this figure,
the UAV leaves permanent deformation on the aircraft nose
structure. In our FEA experiment, it takes approximately 28
hr to generate such a collision process that lasts for only 8
milliseconds. Considering a potentially large number of colli-
sion scenarios and high computational cost, FEA can only be
performed for a limited number of scenarios. Moreover, FEA-
based approach requires repeatedly performing simulation runs
to identify severe collision scenarios, and a massive amount of
simulation data generated from this time-consuming process are
not fully used and eventually discarded.

Motivated by the application above, this article investigates
a physics-informed statistical learning approach capable of (i)
learning nonlinear system dynamics by using the fundamental
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Figure 1. A motivating application—aircraft nose surface deformation due to the collision with a UAV (this nonlinear collision process lasts for only 8 milliseconds and is
simulated by FEA that consumes 28 hr in our experiment).

physics laws and data generated from computer models at a
limited number of experimental conditions, and (ii) predicting
aircraft surface deformation for new collision scenarios (out-of-
sample predictions) in a computationally eficient manner sig-
nificantly faster than directly solving governing equations using
numerical methods. The proposed statistical approach provides
a viable complement to existing engineering practice for mod-
eling nonlinear dynamical systems represented by aircraft-UAV
collision, accelerating the penetration of statistics into domain-
knowledge-intensive engineering applications.

1.2. Literature Review

Physics-informed statistical learning has received much atten-
tion from the communities of statistics, engineering and
applied mathematics. In the literature of statistics, for example,
Lindgren and Rue (2011) established the explicit link between
Gaussian Markov random fields and advection-diffusion
processes described by stochastic Partial Differential Equations
(sPDE). Sigrist, Kunsch, and Stahel (2015) proposed a Gaussian
spatial-temporal process by solving an sPDE with spatially
and temporally invariant advection-diffusion, and Liu, Yeo,
and Lu (2021) extended the framework for spatially varying
advection-diffusion. A summary of statistical spatio-temporal
modeling with sPDE is provided in Cressie and Wikle (2011)
and Krainski et al. (2019). In particular, statistical surrogate
models play a critical role in physics-informed statistical
modeling (Asher et al. 2015; Gramacy 2020). Surrogate models
are typically constructed following two strategies: projection-
based and data-driven-based. For projection-based approaches,
Mak et al. (2018) proposed the statistical model of large eddy
simulations for design evaluation and physics extraction using
the idea of Proper Orthogonal Decomposition (POD). For data-
driven-based approaches, Gaussian Processes (GP) have been
extensively used for constructing statistical surrogate models
(Hung, Joseph, and Melkote 2015; Gu and Berger 2016; Deng
et al. 2017; Gul et al. 2018; Kyzyurova, Berger, and Wolpert 2018;
Zhang, Cole, and Gramacy 2021a; Sauer, Gramacy, and Higdon

2021; Zhang, Mak, and Dunson 2021b; Chen, Kang, and Lin
2021a; Chen and Tuo 2022).

Advances in physics-informed machine learning are also
rapidly emerging. The goals often involve data-driven discovery
of governing physics, or state/parameter/operator inference
which are physically meaningful. Some recent results include
(i) the Hidden Physics Model for learning PDE from noisy mea-
surement data (Raissi and Karniadakis 2018; Raissi, Perdikaris,
and Karniadakis 2017, 2018). Such an approach is related to
statistical GP models and leverages the underlying physics
by assigning GP priors to the latent solutions of nonlinear
PDE. (ii) Physics-Informed Neural Networks (PINN)—another
milestone of supervised learning that integrates laws of physics
given by nonlinear PDE (Raissi, Perdikaris, and Karniadakis
2019). PINN involves simultaneously training two neural
networks that respectively perform data-driven learning and
discovery of physics in the form of PDE, and has been quickly
adopted to generate a variety of new physics-informed machine
learning approaches, such as the deep hidden physics models
(Raissi 2018), and stochastic/fractional/Levy process/nonlocal
PINNS (Chen, Duan, and Karniadakis 2019; D’Elia 2019;
Pang, Lu, and Karniadakis 2019). Recently, Wang et al. (2021)
proposed a physics-informed Neural Process Aided Ordinary
Differential Equation (NP-ODE) model to capture the input-
output uncertainties of FEA simulations. (iii) Low-dimension
projection-based models for large-scale nonlinear dynamical
systems (Qian et al. 2019; Swischuk et al. 2019a). High-
dimensional physical processes or data are projected onto the
leading principal components through POD to preserve system
physics. Then, machine learning methods are employed to
learn the mapping between physical parameters and the POD
expansion coeficients.

In Section 2, we f irst provide a high-level overview of the
proposed statistical modeling framework. Section 3 presents
how the proposed framework is applied to learn and predict
aircraft metal skin deformation processes governed by nonlin-
ear structural dynamics equations. Section 4 presents compre-
hensive numerical investigations, comparison, validation and
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discussions on the proposed approach for aircraft-UAV collision
severity assessment. Section 5 concludes the article and high-
lights some future research directions.

2. An Overview of the Proposed Framework

We consider a generic form of governing equations that char-
acterize a wide spectrum of dynamical systems or processes,
such as advection-diffusion, heat transfer, Navier-Stokes, Smolu-
chowski, Nernst-Planck, conservation laws, equation of motion,
etc. Let Ä  � Rd  and [0, T], respectively be the physical and time
domains, and let s(x, t) =  (s1(x, t), . . . , sd (x, t))T denote the ds-
dimensional vector state field where sj : Ä  ×  [0, T] →  S j  � R
(Qian et al. 2019). Then, a dynamical system can be defined by
a PDE:

∂s(x, t) 
+  g(s(x, t)) =  f (t), (1)

where g(s, t) =  (g1(s, t), . . . , gds(s, t))T is a nonlinear function
that maps the state field to its time derivative, and f (t) =
(f1(t), . . . , fds (t))

T is a time-dependent function that does not
depend on the state of the system, for example, external forcing.

Consider a finite difference discretization of the spatial
domain, {xi � Ä}N , and let s(t) � RNdx be the state vector that
collects the ds state variables from the N discretized locations,
the PDE (1) leads to a system of Ndx ordinary differential
equations:

s(t) +  g(s(t), t; p) =  f(t; p), (2)

where g and f , respectively, discretize g and f . Note that, we
include the parameter vector p into (2) so as to make the depen-
dence between system dynamics and parameters explicit. Also
note that, because g is nonlinear and the state vector s(t) often
has a high dimension, high-fidelity numerical solutions of the
PDE (2) can be expensive to obtain.

Problem Statement. The statistical model proposed in this
article is focused on data arising from governing equations in
the form of (2). Given either experimental, simulation or
observational data generated from (2) under a set of parameter
settings from the set P  =  {p1, p2, . . . , pNp}, we are interested in
constructing a statistical model that captures the system
dynamics while maintaining the interpretability of the statistical
model based on (2). Using the statistical model constructed, one
is able to eficiently and accurately predict the system dynamics
(i.e., the evolution of system state vectors over time) under new
parameter settings p �/  P .

To achieve the objective above, this article proposes a physics-
informed statistical learning framework sketched in Figure 2.
The framework consists of three connected steps.

(Step 1) Generating training data from the governing equa-
tion such as (2). In the numerical example presented in Section 4,
the aircraft-UAV collision processes are simulated by FEA at
selected impact conditions (i.e., a set of parameter settings).

(Step 2) Building the Reduced-Order Model (ROM) using the
training data generated from Step 1. Very of ten, the dimension of
the full-order physics is too high to be directly used to construct
statistical models, and a ROM is thus needed to provide a low-
rank representation of the full-order physics. In this article, we

obtain a nonlinear ROM by projecting the full-order governing
equation to a low-dimensional space spanned by POD bases
obtained from the training data generated in Step 1. Let V be
the matrix basis, the ROM takes the following form:

sr(t) +  VTg(Vsr(t), t; p) =  VTf(t; p), (3)

where sr(t) =  VTs(t) is the low-dimensional reduced-order
state of the system.

(Step 3) Constructing the statistical model that captures the
relationship between parameters and the dynamics of system
states. The proposed framework addresses two challenges. The
first challenge is that the ROM (3) contains a nonlinear compo-
nent VTg(Vsr(t), t; p) that cannot be further reduced, meaning
that the nonlinear term cannot be evaluated without solving the
original high-dimensional model. The existence of the nonlinear
component in the ROM motivates us to consider a function-
to-function regression that directly learns the mapping between
the external force, VTf in (3), and the reduced-order states
of the system, sr . This is achieved by multivariate Functional
Principal Component Analysis (mFPCA) that projects both the
reduced-order state and external force into low-dimensional
spaces spanned by orthonormal eigenbases. Then, the map-
ping between the coeficients within the two low-dimensional
spaces can be established by regression. The second challenge
is to establish the relationship between parameters and external
force (which is needed for prediction). The proposed frame-
work addresses this challenging by a multivariate Gaussian Pro-
cess Regression (mGPR) model that captures the relationship
between parameters and external force, completing the con-
struction of the statistical model.

Once the statistical model has been established, one is able
to predict the system dynamics at new parameter settings (e.g.,
the prediction of aircraft surface deformation processes at new
collision conditions not included in the training data). In partic-
ular, the mGPR model first predicts the external force for a given
parameter setting, and the mFPCA then predicts the system
state dynamics given the predicted external force. Uncertainty
propagation can also be well quantified during this two-stage
statistical prediction procedure.

3. Statistical Modeling of Aircraft-UAV Collision
Processes

This section focuses on the physics-informed statistical mod-
eling of aircraft-UAV collision processes using data generated
from FEA, and presents how the model can in turn be used to
predict the collision processes under new impact conditions.

3.1. The Nonlinear Structural Dynamics behind
Aircraft-UAV Collisions

Airborne collisions present significant challenges in solid
mechanics, including geometrical nonlinearity (e.g., deforma-
tion and rotation) and material nonlinearity (e.g., plasticity).
Motivated by the conservation in mass, momentum and energy,
the equation of motion governing the nonlinear structural
dynamics behind aircraft-UAV collision is given by Wu and
Gu (2012)

ρui(t) −  div(σi(t)) =  fi(t) in Ä , (4)
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Figure 2. An overview of the proposed physics-informed statistical learning framework for learning and prediction of nonlinear dynamical systems.

where ρ is the mass density, ui, σi and fi are the displacement,
stress and force along direction i (i =  1, 2, 3), div(·) and Ä
represent divergence and the space domain, and ui(0), ui(0) and
¨ i(0) are the initial conditions. Note that, the stress σi(t) is a
vector with three components, {σij}j=1,2,3, respectively along the
jth direction. Hence, the divergence of σi(t), that is, div(σi(t)),
contains the derivatives along the three directions (Wu and Gu
2012). The boundary conditions are given by ui(t) =  Ui(t) on
0u and σi ·n =  gi(t) on 0s, where Ui(t) and gi(t) are respectively
the prescribed displacement and traction on boundaries 0u and
0s , and n is the outward normal vector.

Let vi be a test function that satisfies the homogeneous dis-
placement boundary conditions (i.e., the prescribed vi =  0 on
0u). By multiplying vi to (4) and the boundary conditions, and
then respectively integrating the products in the space domain
Ä  and on 0s , we obtain Ä  (ρui −  div(σi)) vidxÄ +  0  (σi ·
n)vidx0 =  Ä  fividxÄ + 0  gividx0 . Following the Gauss-Green
formula, that is, (σi · n)vidx0 = div(σi)vidxÄ + σi ·
OvidxÄ , we have                         

Z                      Z
(ρuivi +  σi · Ovi) dxÄ = fividxÄ + gividx0 . (5)

Ä                                                           Ä                           0s

The differential governing (5) can be numerically solved
by the Finite Element Method (FEM). In particular, the FEM
generates the mesh grid, and computes the displacement at each
mesh entities known as “elements”; see Figure 3. Let N be the
total number of nodes (depending on the number of elements of
the discretized structure), the displacement along direction i at
a given spatial location x and time t is interpolated by ui(x, t) =

n=1 u
n(t)8n(x), where un(t) is the computed displacement

at the nth node and 8n(x) is the interpolation kernel function
over the spatial domain. Similarly, the test function vi can be
expressed by vi(x, t) = N vn(t)8n(x). Substituting the
ui(x, t) and vi(x, t) into (5), and for any m � {1, 2, . . . , N} and
any direction i � {1, 2, 3}, we have

N

Mm,n ¨ i(x, t) +  fm,i =  fm,i , (6)
n=1

where Mm,n =  
R

Ä ρ8n(x)8m(x)dxÄ , fm,i =  
R

Ä σi ·O8m(x)dxÄ

and fm,i =  Ä  fi8m(x)dxÄ +  0s 
gi8m(x)dx0 .

Figure 3. An example of the Finite Element mesh grid.

Let u(t) be a 3N ×  1 vector that collects the displacement
along all three directions at spatial location x1, x2, . . . , xN ,

u(t) =  (u1(x1, t), u2(x1, t), u3(x1, t),

. . . , u1(xN , t), u2(xN , t), u3(xN , t))T , (7)

we obtain the dynamical system that captures the temporal
dynamics of u(t):

Mu(t) +  fint(u(t), u(t), t) =  fext(t), (8)

where M � R3N ×3N is the mass matrix,
�

M1,1 M1,2 · · · M1,N 
� �

1
�

M =  �     .            .          . .         . � �       1 �

MN,1 MN,2 · · ·     MN,N

and fint � R3N ×1 and fext � R3N ×1 are respectively the internal
and external forces:

fint =  (f int(x1, t), f int(x1, t), f int(x1, t),

. . . , f int(xN , t), f int(xN , t), f int(xN , t))T ,

fext =  (f ext(x1, t), f ext(x1, t), f ext(x1, t),

. . . , f ext(xN , t), f ext(xN , t), f ext(xN , t))T ,

where f int(x, t) and f ext(x, t) are the internal and external force
components at location x and time t along direction i for
i =  1, 2, 3.
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Figure 4. (a) Aircraft (nose)-UAV collision and the coordinate system for UAV’s flight attitude (pitch, yaw, and roll degrees). The length of each simulation time step is 0.02
millisecond, and the impact velocity is set to 151 m · s−1 along the impact direction; (b) The fixed boundary condition of the aircraft nose in our FEA experiment.

Note that, the surface displacement process governed by (8)
depends on the impact conditions. To make this parameteri-
zation explicit, let p be a set of parameters characterizing the
impact condition, we rewrite (8) such that it falls into the generic
form of (2):

Mu(t; p) +  fint(u(t), u(t), t; p) =  fext(t; p). (9)

3.2. Projection-Based Reduced-Order Model using Data
from FEA

At any collision condition characterized by parameter p, we
obtain the displacement vector u(t; p) and the force vector
fext(t; p) at time t for all N spatial locations along all three
directions using FEA. Let P  =  {p1, p2, . . . , pNp} be a set of
collision parameters (based on which the FEA is performed),
and let T =  {t1, t2, . . . , tNt } be a set of simulation time steps, we
obtain the surface displacement snapshot data from FEA:

Figure 5. A total number of 35 impact conditions generated by space-filling design
from the design space of UAV’s flight attitudes (pitch, yaw, and roll). The triangle
indicates the impact condition which is used to demonstrate the proposed approach
in Section 4.2.1.

Du =  (u(t1; p1), u(t2; p1), . . . , u(tNt ; p1),

. . . , u(t1; pNp), u(t2; pNp), . . . , u(tNt ; pNp)),

as well as the external force snapshot data:

D f  =  (fext(t1; p1), . . . , fext(tNt ; p1),

(10)      the full -order governing physics (9) often has a high dimension,
we reduce the dimension of the full-order model (9) by project-
ing the high-dimensional vector u(t; p) to a low-dimensional
space with a dimension K ¿  3N as follows:

. . . , fext(t1; pNp), . . . , fext(tNt ; pNp)). (11) u(t; p) ≈  Vq(t; p), (12)

Here, Du and D f  are 3N ×  NtNp matrices. The force vector
fext(t; p) is the calculated nodal forces on the aircraft structure
parts. Because the high-fidelity FEA only provides the joint
forces (the superposition of contact forces and the reaction
forces by surrounding rivets), we treat these nodal forces as the
boundary force manifold; see Appendix A.

In addition, FEA also returns the mass matrix M (needed in
the statistical model). Because the computation of the inverse of
the mass matrix is extremely time-consuming at each FEA sim-
ulation step, we adopt the Jacobi iterative method that replaces
the mass matrix M with a diagonal matrix M whose ith entry on
the diagonal line is given by Mii = j=1 Mij, i =  1, 2, . . . , 3N
(Larson and Bengzon 2013).

Next, the two snapshot matrices, Du and Df , and the mass
matrix M are used to obtain the reduced-order model. Because

where V =  [v1|v2| · · · |vK] � R3N ×K contains the orthogonal
POD bases, and q(t; p) � RK is a vector of the reduced-order
states. In the example presented in Section 4, the dimension of
q(t; p) is chosen as 30, while the dimension of u(t; p) is 40, 086.
The POD bases are found by the Singular Value Decomposition

(SVD) of the transformed snapshot D  =  M 2 Du :

D  =  U6ZT , (13)

where U � R3N ×Nt Np and Z � RNt Np ×Nt Np are both orthog-
onal matrices (UTU =  I3N and ZTZ =  IN N ), and 6  =
diag{σ1, σ2, . . . , σN N } contains the singular values σ1 ≥  σ2 ≥
· · · ≥  σNtNp     ≥  0 (Swischuk et al. 2019b). Closely related to
the Karhunen-Loève expansion in stochastic process modeling,
POD was introduced for turbulent flows by Lumley (1967) and
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where di is the ith column of D  and Y K  =  {Q � R3Nh ×K :
QTQ =  IK}. The dimension K can be chosen by controlling the

least squares error ( K     σ 2)(
NtNp σ 2)−1 ≥  1 −  ² 2 for some

pre-specified ²e � [0, 1] (Guo and Hesthaven 2018).

Finally, let V =  M− 1  
U� and substitute the projection

(12) into the full-order governing (9), we obtain the nonlinear
reduced-order model (note that, VTMV =  I � RK ×K ):

q(t; p) +  VTfint(Vq(t), Vq(t); t, p) =  VTfext(t; p). (15)

Figure 6. Deformation (in mm) of the aircraft nose metal skin for the 35 collision
conditions at time step 400 (i.e., 0.02 ×  400 =  8 milliseconds after collisions), and
different UAV impact attitudes cause different deformation on the nose metal skin
with different severity levels.

Figure 7. The change of singular values (top) and relative cumulative energy (bot-
tom) against the number of POD modes used for constructing the reduced-order
model.

has been successfully used to compute the reduced bases in
different application domains (Cressie and Wikle 2011; Benner
and Willcox 2015; Mak et al. 2018; Qian et al. 2019).

Following the Eckart–Young–Mirsky theorem, the reduced-
order bases consist of the first L left singular vectors of D ,
denoted by U�, and minimizes the projection error of the snap-
shots D  onto all possible K-dimensional orthogonal bases in
R3N , that is, the best approximation of the column space of D
among all K-dimensional subspace with K ≤  rank(D):

NtNp NtNp NtNp

kdi −  U�(U�)T ˜ ik2 =  min kdi −  QQT ˜ ik2 = σ 2,
i=1 K i=1                                       i=K +1

(14)

3.3. Statistical Learning based on the Reduced-Order
Model

As discussed in Section 2, the reduced-order model (15) is
nonlinear and cannot be explicitly computed without solving
the original expensive FEA. This is because the evaluation of
fint requires computing the original high-dimensional state u(t)
using FEA (i.e., the computation scales with the original dimen-
sion 3N rather than K). In some cases when fint does have a spe-
cial structure, it is possible to perform further reduction of fint.
For example, the nonlinear Burgers’ equation can be linearized
by the Cole-Hopf transformation, and Euler equations can be
transformed into a quadratic structure which is fully preserved
by the reduced-order model (Qian et al. 2019). In (15), however,
fint does not fall into that category and can only be evaluated by
expensive FEA.

Hence, one seemingly straightforward way is to treat fint as
a black box and use statistical learning approaches to learn the
mapping fint, so as to avoid the expensive FEA. This is known as
the hyper-reduction and often involves evaluating fint at a subset
of the original state vector u(t) and computing all state variables
in u(t) through interpolation. However, hyper-reduction does
not work well in our application. To elaborate, in (15), both the
reduced-order state q(t; p), its derivatives q(t; p) and q(t; p), and
the external force VTfext(t; p) can be obtained from FEA. Hence,
the outputs of fint(Vq(t), Vq(t); t, p) at each time step t can be
calculated, enabling the statistical learning that approximates the
function fint which takes q(t; p) and q(t; p) as its inputs (e.g.,
neural networks, multivariate tree-based methods, etc.). Once
the input-output mapping of fint is learned, the (discretized)
temporal evolution of the reduced-order state q(t) can be iter-
atively computed as follows:

q(t), q(t) 
fi→xt q(t +  1) →  q(t +  1) →  q(t +  1) →  · · · (16)

Here, the initial conditions are q(0) =  q(0) =  0, fint is learned
using the hyper-reduction approach described above, fext is
determined by the impact conditions, and the central difference
method can be used to compute q(t) from q(t) and q(t).

However, our investigation shows that the approach (16) is
unlikely to perform well. The main reason lies in the non-
linearity of the function fint. The errors associated with the
predicted q(t) and q(t), at each time step, are quickly accumu-
lated and magnified (the errors are inevitable and are mainly
from the statistical modeling/approximation of fint). As a result,
the predicted trajectory of q(t), af ter a few iterations in 1(6),
quickly deviates from its actual path obtained from FEA even
if we are able to quantify the uncertainty associated with the
output of the statistical model. It is also worth noting that, the
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Figure 8. Prominent total displacement captured by the first 10 POD modes (the left column shows modes #1, 3, 5, 7, 9; and the right column shows modes #2, 4, 6, 8, 10).

approach outlined in (16) works well when fint is linear. To
provide more insights, we present additional results on a classical
example—the Thomas Young’s double slit experiment—where
the governing equation is a linear ODE; see Appendix B in the
supplementary material.

Mapping between External Force and Reduced-Order States. The
chaotic nature of this nonlinear problem motivates us to directly
establish the mapping between the reduced-order state q(t) and
the (cumulative) external force F(t) ≡ t     s VTfext(u; p)duds.
For any k =  1, . . . , K, let the kth component of q(t), qk(t), be
a random function of time in L2(T ). In our application, qk(t)
is square integrable and has a continuous mean function qk(t).
Hence, the reduced-order state q(t) =  (q1(t), q2(t), . . . , qK(t))

is a vector in the K-dimensional vectors space of functions in
L2(T ). Let qZ(t) =  q(t) −  q(t), and we represent qZ(t) using
the multivariate Functional Principal Component Anal-ysis
(mFPCA) approach:

L

qZ(t) ≈ ξqφq(t) ≡  (ψq(t))Tξq, (17)
l=1

where ξq =  (ξq, . . . , ξq)T , ψq(t) =  (φq(t), . . . ,φq(t))T , φq(t)
is an orthonormal eigenbasis such that hφq(t),φq(t)i =  δlr

with δlr being the Kronecker delta, and ξ l =  hqZ(t),φl (t)i =
q (t)φ (t)dt. The FPCA is based on the Karhunen-Loève

decomposition of qZ(t).
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Figure 9. Profiles of the POD scores of displacement and cumulative external force obtained for the 34 collision conditions.

Similarly, let FZ(t) =  F(t) − F(t), the mFPCA representation
of FZ(t) is given by

FZ(t) ≈  
X  

ξFφF (t) ≡  (ψF(t))TξF, (18)
m=1

where ψF(t) =  (φF(t), . . . ,φF (t))T and ξF =  (ξF, . . . , ξF )T .
Hence, for given bases ψq(t) and ψF(t), the reduced-order

state q(t) and the external force F(t) are completely determined
by a set of coeficients ξq and ξF. To establish the mapping
from ξF to ξq (i.e., from “force” to “deformation”), we consider
a model:

(ξq)T =  (ξF)TB +  ²T , (19)

where ²  =  (²1, . . . , ²L)T is a zero-mean noise with covariance
6 ²  and B =  {bml}m=1,...,M,l=1,...,L is a M ×  L matrix. The matrix
B in (19) can be estimated from the data generated by FEA from
all Np impact conditions. In particular, we explicitly let ξq(pi) be
the coeficient obtained from q(t; pi) under the impact condition
pi for i =  1, 2, . . . , Np, and let ξ (pi) be the coeficient obtained
from F(t; pi) under the impact condition pi. Then, it follows
from (19) that:

ξq =  ξFB +  E, (20)

where ξq =  (ξq(p1), ξq(p2), . . . , ξq(pNp))T , ξF =  (ξF(p1),

ξF(p2), . . . , ξF(pNp))T , and E =  (²(p1), . . . , ²(pNp ))T with
²(pi) being a zero-mean column vector with covariance 6  for
i =  1, 2, . . . , Np. Note that,

• There are two reasons why we model the relationship
between cumulative force and deformation: (i) from the law of
motion, instantaneous force corresponds to acceleration while
cumulative force is associated with deformation; (ii) from the
statistical learning and computation perspectives, cumulative
force prof iles are much smoother than that of instantaneous
force and thus easier to be captured by a smaller number of
mFPCA bases. In Appendix C of the supplementary materi-
als, we show that the instantaneous force profiles require more
mFPCA bases, increasing the dimension of the problem and
computational time.

• It is important to see that the estimation of B does not
depend on L and M, but on Np and M. Note that, ξF is an Np ×M
matrix (20). If Np ≥  M, ξF has a full column rank of M, and the
left inverse of ξF, that is, ((ξF)Tξ F)−1(ξ F)T , always exists such
that B is uniquely determined by B =  ((ξF)TξF)−1(ξF)Tξ q. If
Np < M, the system is under-determined. In our numerical
example, we have Np =  35 impact conditions and M is chosen
to be 12, which satisfies the condition Np ≥  M.

• The model (19) is in fact equivalent to a popular function-
to-function regression:

½Z ¾T

qZ(t) = (FZ(s))Tβ(s, t)ds +  ζ (t), (21)

where the bivariate coef icient functionβ(s, t) and noise ζ (t) are
respectively represented by β(s, t) = M,L bmlφF(s)(φq(t))T

and ζ (t) = l=1 ²lφ
q(t). Note that, Chen et al. (2021b) pro-

posed a novel function-on-function kriging model, and the key
novelty is to use the spectral-distance (SpeD) to capture the
correlation among input profiles. In our article, the multivariate
function-to-function regression is used to capture the relation-
ship between impact force and system states in the spectral
domain. Under each collision condition, the input profiles con-
sist of the temporal evolution of multiple (reduced-order) force
coordinates in the space spanned by orthogonal POD bases, and
these profiles are thus independent of each other. Also note that,
in Striegel et al. (2022), input and output profiles are represented
by the coordinates in the low-dimensional space spanned by
POD bases, and the relationship between these coordinates are
established through a linear regression model. In this article,
we also represent the input force and system states by the coor-
dinates in the low-dimensional space spanned by POD bases,
but the coordinates of the force and system state evolve over
time. Hence, functional PCA is required so that the time-varying
coordinates of force and system states are represented by their
PCA scores which do not change over time.

When making prediction of the reduced-order states q(t) at a
new collision condition, one needs to first predict ξF determined
by that collision condition. Hence, a model is needed to capture
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Figure 10. The actual (from FEA) and the predicted (from our statistical model) deformation at three selected nodes along the X , Y, are Z directions.

the relationship between ξF and the impact condition p. Let

{(pi, ξF(pi))}
Np , pi � Rp  and ξF(pi) � RM , we consider a

multivariate Gaussian Process Regression (mGPR):

g � MG P (0, k0 , 3), ξF(pi) =  g(pi), (22)

where 3  is a semidefinite diagonal covariance matrix, k0     =
k(pi, pj) +  δijσ 2 with δij and σ 2 being the Kronecker delta and

the variance of the additive Gaussian noise. Here, we use Expo-
nential kernel for k(pi, pj), that is, k(pi, pj) =  σ 2exp(−(pi −
pj) A (pi−pj)/2), where A is a diagonal matrix with unknown
entries and the variance σ 2 is an unknown scalar.

Based on the mGPR model, [g(p1)T , g(p2)T , . . . , g(pN )T]T

� MN (0 , K � 3 )  with K being a Np ×  Np column covari-
ance matrix whose (i, j)th element is given by k (pi, pj). At a
new collision condition p�, it follows from the well-established



ξ
F

6
F ˆF

ˆ

ˆ ˆ ˆq q F ˆ
�

ˆ F ˆ

Np M M Np p

2

¡

ˆ
�

q �¯ ˆ ¯
L

ξ
q

l

ˆ ˆ ˆ q
1 1L L

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

10 X. LIU ET AL.

Figure 11. (a) Predicted deformation field along the X direction; (b) Predicted deformation field along the Y direction (top: predicted; middle: actual; bottom: standard
deviation).

results that

ˆ� =  (K0(p�, p))T(K0(p, p))−1(ξF(p1), ξF(p2), . . . , ξF(pNp))T ,

ˆ � =  cov(ξ�) =  (K0(p�, p�) −  (K0(p�, p))T(K0(p, p))−1

K0(p�, p)) � 3 , (23)

and we can obtain ξ� from (19), (ξ�)
T =  (ξ�)TB and 6

q  
=

BT6�B+6² . The hyper-parameters in K0 and 3 can be obtained
by minimizing the (negative) log-likelihood

L({ξ F(pi)}i=1; K0 , 3) =  
N

2 
ln(2π) +  

2 
ln|K0| +  

2 
ln|3|

+  
1

tr (K0)−1(ξF(p1), . . . , ξF(pNp))

3−1(ξ F(p1), . . . , ξ F(pNp ))T ¢
.

(24)

Once ξ
q 

has been obtained, it follows from the mFPCA (17) that

ˆ�(t) =  q(t) +  qZ(t) =  q(t) +  
X  

ˆ�,lφ
q(t),

l=1

cov(q(t), q(t0)) =  (φq(t), . . . ,φq(t))6�(φ
q(t0), . . . ,φq(t0))T .

(25)

Finally, based on the POD (12), the predicted original high-
dimensional state vector, that is, the surface deformation u�(t),
is obtained:

u�(t) =  Vq�(t), cov(u(t), u(t0)) =  Vcov(q(t), q(t0))VT .
(26)

Equations (23)�(26) not only map the collision parameter p�
to the surface deformation u�(t), but also show how uncertainty
propagates through each stage of this highly interpretable pro-
cess, that is, from condition parameters, to external force, and to
deformation.

4. Numerical Experiments, Results and Discussions

This section provides numerical investigations and discussions
about the proposed physics-informed statistical learning for
aircraft-UAV collision severity assessment.

4.1. FEA Set-Up, Experimental Design and Data
Generation

FEA Set-Up. Essential details of the FEA simulations are first
provided. We use FEA to generate the training and testing data
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Figure 12. (a) Predicted deformation field along the Z direction; (b) Predicted total deformation field (top: predicted; middle: actual; bottom: standard deviation).

Figure 13. The proposed statistical approach is approximately 17 times faster FEA simulations, and more than 103 times faster than FEA for prediction when no repeated
model training is needed, justifying the great potential of physics-informed statistical learning for engineering/scientific problems residing in domain-knowledge-intensive
environments.

so that the statistical model can be established and validated
(through cross-validation).

As shown in Figure 4(a), we consider the aircraft nose metal
skin deformation process due to UAV collisions at different
impact attitudes (i.e., pitch degree, yaw degree and roll degree).
The length of each simulation time step is 1t =  0.02 millisecond
in our FEA, and the impact velocity is f ixed to 151 m· s−1 along
the impact direction as shown in Figure 4.

In our experiment, the 3D FEA model is pre-processed in the
CATIA and HyperMesh environments to extract the geometry
information (Lu et al. 2020, 2021). The extracted geometries are
used as the inputs to the simulation platform, PAM-CRASH,

which generates the mesh, constructs the connections (rivets)
between parts, sets boundary conditions, defines material prop-
erties, and prepares other computational settings including con-
tact parameters, length of time steps, integration points, etc. In
particular,

In the aircraft nose finite element model, all structural parts
are modeled with shell elements. The average size of mesh
is 14 mm and the overall number of elements is 691,221. In
particular, 13,033 elements are used for the aircraft nose metal
skin and the dimension of u(t) in (9) is 40,086. Aluminium
alloy 2524, 2024, 7075, 7050, 6061 are defined in the nose model
and Johnson-Cook constitutive model is adopted to describe the
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Figure 14. LOOCV MRE at all impact conditions with 30 POD bases.

elastic-plastic behavior of metal materials. A total number of
8,226 rivets that connect different structural parts is simulated
in PAM-CRASH by the Plink model (Lu et al. 2020, 2021).
The fixed boundary condition of the aircraft nose is shown in
Figure 4(b).

In the UAV finite element model, 5044 solid and 8900 shell
elements are both incorporated because some UAV parts like
motors and battery cannot be modeled by shell elements. Com-
putational material models are chosen to describe the behavior
of different UAV parts; for example, the Li-Po battery cells are
modeled by the type-II crushable foam model.

Experimental Design and Data Generation. In this numerical
investigation, we consider 35 combinations of collision pitch,
yaw and roll degrees for the UAV’s flight attitude. The 35 exper-
imental conditions are generated from the MaxPro space-filling
design (Joseph, Gul, and Ba 2015), and the ranges for the three
attitude degrees are all from −45 ◦  to 45◦ . The design is shown in
Figure 5. Hence, a total number 35 high-fidelity FEA runs are
performed to generate the data (for training and testing pur-
poses). Each FEA run is performed on a computer configured
with 16 GB RAM and Intel Xeon E-2124G CPU @ 3.41 GHz, and
it takes �1680 min to simulate a collision process that lasts for
only 8 milliseconds (strongly demonstrating the need for faster
and interpretable statistical models).

For the 35 collision conditions, Figure 6 shows the deforma-
tion (in mm) of the aircraft nose metal skin 8 milliseconds after
collisions. It is clearly seen that different UAV impact attitudes
cause different deformation on the aircraft nose metal skin with
different severity levels. The shape, depth and size of the dents on
the aircraft nose metal skin change as the impact attitudes vary,
justifying why collision severity predictions are needed within
the design space of impact conditions.

4.2. Numerical Results

Using the data generated from our FEA experiments, Sec-
tion 4.2.1 demonstrates the application of the proposed
approach at one selected impact condition; Section 4.2.2
performs Leave-One-Out Cross-Validation (LOOCV) using
the data generated from all 35 impact conditions, and provides
further discussions on the proposal approach.

4.2.1. Investigation-I: Aircraft Nose Deformation at a Given
Impact Condition

In Investigation-I, the FEA simulation data from 34 impact
conditions are used to train the statistical model. After that,
the statistical model is used to predict the aircraft nose skin
deformation at the remaining impact condition (indicated by a
triangle in Figure 5), and the predicted result is compared with
the actual deformation simulated from FEA.

The reduced-order modeling (12) requires the rank of POD,
K, to be determined. We perform the SVD of the transformed
snapshot data from 34 impact conditions (see (13)), and Figure 7
shows the fast decay of the (log) singular values in POD modes,
and a low-rank POD truncation can already provide low least-
squares errors. For example, keeping 5, 10, 20, and 30 POD
modes can respectively retain 96.23%, 98.29%, 99.10%, and
99.42% of the total variation in data. The 1st to the 10th POD
bases are shown in Figure 8. Note that, we obtained the POD
bases V =  [v1|v2| · · · |v30] � R3N ×30 where the column vi �
R3N contains the displacements (either positive or negative)
along the X, Y, and Z directions. For a better visualization, we
plot in Figure 8 the total displacement of the N nodes, that is,
squared root of the sum of the squared displacements along all
three directions. We see that the ten POD modes success-fully
capture the prominent deformation patterns, including the major
deformation areas directly impacted by the UAV, and other
major deformation areas (away from the collision center) due to
the propagated stress waves.

Based on the selected POD bases, the reduced-order state
q(t) and external force F(t) in the reduced-order model (15)
are obtained for the 34 collision conditions. At each impact
condition, q(t; p) are F(t) are respectively vectors in the 10-
dimensional vectors space of (time-dependent) functions in
L2(T ). As shown in Figure 9, for each POD basis, there exist 34
time-dependent curves representing the component in q(t) and
F(t) corresponding to the 34 collision conditions. The function-
to-function regression (19) is used to establish the functional
relationship between the profiles of q(t) and F(t). The ranks, L
and M of the mFPCA (17) and (18) are chosen as L =  20 and
M =  12 which explain 97.80% and 97.43% of the variation,
respectively (In Investigation-II, the effects of the chosen ranks,
L and M, are further investigated). Finally, an mGPR model
(22) is constructed to predict the external force F(t) at the 35th
collision condition which is not used for model training.

Figure 10 first shows the (out-of-sample) predicted temporal
trajectories of the nose skin deformation and their 95% con-
fidence band at three selected nodes under the 35th collision
condition. The three nodes are particularly selected such that

• node #1720 and #1799 are respectively located within a
major deformation area where the collision happens in the
earlier (first 2 milliseconds) and later stage (after 2 milliseconds).

• node #1667 is located within a major deformation area
away from the impact center and the deformation is induced by
propagated stress wave.

Both the actual (from FEA) and the predicted (from our
statistical model) deformation at the three nodes along the X,
Y , are Z directions are shown in Figure 10. We see that the
predicted trajectories present the same temporal dynamics as
the FEA outputs, and the 95% confidence bands cover the true
trajectories. It is worth noting that, the predictions appear to be
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Figure 15. (a) LOOCV MRE for the final-moment surface deformation for all 35 conditions: the MRE is below 20% for all 35 impact conditions, and less than 15% for 24 out of
the 35 impact conditions; (b) LOOCV MRE for all 35 conditions with different ranks of mFPCA bases: the MRE is robust against L and M; (c) Boxplots that show the uncertainty
associated with the LOOCV MRE for all 35 conditions, and the line is obtained by directly inserting u into (27).

very accurate at nodes #1799 and #1667, while at node #1720, the
confidence band becomes wider. This observation can be well
explained by the underlying physical collision process. Due to
the configuration of UAV, different flight attitudes determine the
parts of UAV that first hit the aircraft nose structure (e.g., camera,
motor, etc.), creating higher uncertainty of the structural response
at node #1720. At nodes #1799 and #1667, on the other hand, the
deformation is less impacted by the UAV parts that first hit the
aircraft, and smaller uncertainties are thus expected at these two
nodes.

Figures 11–12 show the actual, predicted and standard
deviation of the deformation fields along the X, Y , and Z
directions and the total deformation. The proposed physics-
informed statistical modeling approach successfully generates
accurate out-of-sample predictions of the surface deformation
at a new collision condition (not included in the training
dataset).

It is worth noting that the proposed statistical approach is
significantly faster than FEA simulations (16 GB RAM and

Intel Xeon 3.41 GHz E-2124G CPU). As shown in Figure 13,
for impact condition #35, the high-fidelity FEA simulation
consumes 1680 min, while the proposed statistical approach
only requires 95.53 min. In fact, once the statistical model has
been trained (which consumes 94.15 min), no repeated model
training is required and the time used for predicting the collision
process at a given impact condition only requires 1.38 min in
our experiment. Although parallel computing can accelerate
the computation for both FEA and the statistical approach,
the encouraging result presented above strongly justifies the
significant potential of using physics-informed statistical
models for aircraft-UAV collision assessment (as a viable
complement to high-fidelity compute simulations) and similar
engineering/scientific problems residing in domain-knowledge-
intensive environments. For one example, the statistical model
can be used for guiding sequential experimental design that
determines the experimental conditions for subsequent FEA
simulations, so that the aircraft-UAV collision assessment can
be significantly accelerated.
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4.2.2. Investigation II: Cross-Validation of Model
Performance

Using the data generated from the 35 collision conditions, Leave-
One-Out Cross-Validation (LOOCV) is performed to investi-
gate the performance of the proposed statistical model. We focus
on the deformation 8 milliseconds after the collision (i.e., the
final moment), and use the Mean Relative Error (MRE) as the
performance measure (Mak et al. 2018):

R
Ä |u(x, t; p�) −  u(x, t; p�)|dx

Ä  |u(x, t; p�)|dx

where u(x, t; p�) is the actual deformation at the new condition
p� (from FEA), u(x, t; p�) is the predicted deformation, and Ä
denotes the aircraft nose surface.

Figure 14 first shows the LOOCV MRE for all impact condi-
tions. It is seen from this figure that the MRE of the predicted
surface deformation at the final moment ranges between 10%
and 20%. It is also seen that the MRE generally decreases over
time, which is related to the use of global POD bases. Because
of the relatively smaller deformation at the earlier stage of a
collision, more POD modes (e.g., more than 30) are needed to
capture these smaller scale dynamics. In addition, at the earlier
stage of a collision, the denominator of MRE is so small that a
little discrepancy in the numerator can lead to a large MRE value.

Next, we present the LOOCV MRE for the final-moment
surface deformation for all 35 impact conditions in Figure 15(a).
In particular, we investigate the effects of the number of POD
bases on the model performance by ranging the value of K from
5, 10, 20 to 30 (which retain 96.23% to 99.42% of the total
cumulative energy). It is clearly seen that, as long as the number
of POD bases is not less than 10, the MRE is below 20% for all
35 impact conditions, and less than 15% for 24 out of the 35
impact conditions. The average MRE is close to 12%. We also
investigate the effects of the chosen ranks, L and M in (17) and
(18), on the MRE. Figure 15(b) shows the LOOCV MRE for the
final-moment surface deformation for all 35 impact conditions
and for different choices of L and M (the number of POD bases
is fixed to 30 in this figure). We see that the MRE is very robust
against L and M, and the overall MRE remains at 12% for a range
of combinations of L and M.

To quantify the uncertainty of MRE, we randomly sam-
ple from ξq     � N(ξ

q
, 6

q
) for 1000 times. For each sam-

pled ξq, the reduced-order system state q(i)(x, t) and the high-
dimensional system state u(i)(x, t) are computed respectively
using the mFPCA and POD, for i =  1, 2, . . . , 1000. Finally, the
MRE corresponding to each u(i)(x, t) is computed. The boxplot
of MRE, for all 35 impact conditions, is shown in Figure 15(c).
In this figure, we also include the MRE which is computed by
directly inserting uq into (27) (shown by the blue solid line).
Note that, the MRE obtained in this way is not the same as the
mean MRE of the boxplot. It is easy to see that,

−1  

Ã
X  

R
Ä |u(x, t) −  u(i)(x, t)|dx

!

n→∞
i=1 Ä  |u(x, t)|dx

 Ä  |u(x, t) −  u(x, t)|dx

Ä  |u(x, t)|dx

5. Conclusions

This article investigated a physics-informed statistical modeling
approach for nonlinear dynamical systems as represented by
the aircraft-UAV collision. The proposed statistical approach is
motivated by the governing physics and is constructed using
data generated from computer simulations. It has been shown
that the model provides accurate out-of-sample predictions with
its LOOCV MRE ranging between 10% and 20%. The inter-
pretability of the proposed model has been greatly enhanced
by integrating fundamental physics. The uncertainty associated
with the predicted system dynamics has also been systematically
quantified by leveraging the advantages of statistical approaches.
Finally, the proposed model has been shown to be at least 10
times faster than FEA when considering both model training
and prediction and the prediction step is 103 times faster
than that of FEA. Such findings strongly demonstrate the
great potential of using physics-informed statistical model for
engineering applications that traditionally rely on expensive
computer simulations and field experiments. Handling nonlin-
ear dynamics is known to be a challenging task. In this work,
the nonlinear term is bypassed by directly establishing the
mapping from external force and reduced-order state. Ideally, if
the nonlinear term can be explicitly accounted for by combining
statistical learning and nonlinear model reduction techniques,
both the model accuracy and interpretability are expected to
be further enhanced. In addition, the numerical example only
considered the impact attitudes as input parameters. When the
parameter space becomes larger with more parameters, such as
speed, UAV weight, materials, etc., future research is needed
to investigate the performance of the proposed framework.
Computer code and sample data are available on GitHub:
https://github.com/Xinchao1995/Physics-Informed-Statistical-Le
arning-for-Nonlinear-Structural-Dynamics-of-Aircraft-UAV-Col
lisions.

Supplementary Materials

The supplementary materials provide (i) the extraction of mass matrix and
external force from FEA, (ii) additional results for data generated from
Double Slit experiment, and (iii) comparison studies and discussions.

Acknowledgments

We thank the two reviewers, Associate Editor, and Editor for their construc-
tive comments that improved the quality of the article.

Funding

This material is based upon work supported by the National Science Foun-
dation under grant no. 2143695.

References

Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Petters, L. M. (2015), “A
Review of Surrogate Models and Their Application to Groundwater
Modeling,” Water Resources Research, 51, 5957–5973. [2]

Benner, P., Gugercin, S., and Willcox, K. (2015), “A Survey of Projection-
Based Model Reduction Methods for Parametric Dynamical Systems,”
SIAM Review, 57, 483–531. [6]

CFR (2012), “Code of Federal Regulations: 14 CFR 25.631-Bird Strike
Damage,” available at https://www.ecfr.gov/current/title-14/chapter-I/

https://github.com/Xinchao1995/Physics-Informed-Statistical-Learning-for-Nonlinear-Structural-Dynamics-of-Aircraft-UAV-Collisions
https://github.com/Xinchao1995/Physics-Informed-Statistical-Learning-for-Nonlinear-Structural-Dynamics-of-Aircraft-UAV-Collisions
https://github.com/Xinchao1995/Physics-Informed-Statistical-Learning-for-Nonlinear-Structural-Dynamics-of-Aircraft-UAV-Collisions
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25/subpart-D/subject-group-ECFRff93ea3edba9270/section-25.631


TECHNOMETRICS 15

subchapter-C/part-25/subpart-D/subject-group-ECFRff93ea3edba9270/
section-25.631. [1]

Chen, G., and Tuo, R. (2022), “Projection Pursuit Gaussian Process Regres-
sion,” arXiv:2004.00667. [2]

Chen, J. H., Kang, L. L., and Lin, G. (2021a), “Gaussian Process Assisted
Active Learning of Physical Laws,” Technometrics, 63, 329–342. [2]

Chen, J. L., Mak, S., Joseph, R., and Zhang, C. (2021b), “Function-on-
Function Kriging, With Applications to Three-Dimensional Printing of
Aortic Tissues,” Technometrics, 63, 384–395. [8]

Chen, X. L., Duan, J., and Karniadakis, G. E. (2019), “Learning and Meta-
Learning of Stochastic Advection-Diffusion-Reaction Systems from
Sparse Measurements,” arXiv: 1910.09098. [2]

Cressie, N., and Wikle, C. (2011), Statistics for Spatio-Temporal Data, Hobo-
ken, NJ: Wiley. [2,6]

D’Elia, M. (2019), “nPINNs: Physics-Informed Neural Networks,” in Con-
trol and Optimization for Nonlocal Problem, RICAM, Linz, Austria. [2]

Deng, X., Lin, C. D., Liu, K. W., and Rowe, R. K. (2017), “Additive Gaussian
Process for Computer Models with Qualitative and Quantitative Factors,”
Technometrics, 59, 283–292. [2]

FAA (2014), “FAA UAS Accident and Incident Preliminary Reports,” avail-
able at https://www.asias.faa.gov/apex/f?p=100:446:::NO:446::. [1]

(2020), “UAS by the Numbers,” available at https://www.
faa.gov/uas/resources/. [1]

Gramacy, R. B. (2020), Surrogates: Gaussian Process Modeling, Design, and
Optimization for the Applied Sciences, Boca Raton, FL: Chapman &
Hall/CRC. [2]

Gu, M., and Berger, J. O. (2016), “Parallel Partial Gaussian Process Emu-
lation for Computer Models with Massive Output,” Annals of Applied
Statistics, 10, 1317–1347. [2]

Gul, E., Joseph, R., Yan, H., and Melkote, S. N. (2018), “Uncertainty Quan-
tification in Machining Simulations Using In Situ Emulator,” Journal of
Quality Technology, 50, 253–261. [2]

Guo, M., and Hesthaven, J. S. (2018), “Reduced Order Modeling for Non-
linear Structural Analysis Using Gaussian Process Regression,”Computer
Methods in Applied Mechanics and Engineering, 341, 807–826. [6]

Hung, Y., Joseph, R., and Melkote, S. N. (2015), “Analysis of Computer
Experiments with Functional Response,” Technometrics, 57, 35–44. [2]

Joseph, V. R., Gul, E., and Ba, S. (2015), “Maximum Projection Designs for
Computer Experiments,” Biometrika, 102, 371–380. [12]

Joslin, R. (2015), “Synthesis of Unmanned Aircraft Systems Safety Reports,”
Journal of Aviation Technology and Engineering, 5, 2–6. [1]

Krainski, E. T., Gomez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D.,
Simpson, D., Lindgren, F., and Rue, H. (2019), Advanced Spatial Modeling
with Stochastic Partial Differential Equations Using R and INLA, Boca
Raton, FL: Chapman and Hall/CRC. [2]

Kyzyurova, K. N., Berger, J. O., and Wolpert, R. L. (2018), “Coupling Com-
puter Models through Linking Their Statistical Emulators,” SIAM/ASA
Journal on Uncertainty Quantification, 6, 1151–1171. [2]

Larson, M. G., and Bengzon, F. (2013), The Finite Element Method: Theory,
Implementation, and Applications (Vol. 10), Berlin: Springer. [5]

Lindgren, F., and Rue, H. (2011), “An Explicit Link between Gaussian Fields
and Gaussian Markov Random Fields: The Stochastic Partial Differntial
Equation Approach,” Journal of the Royal Statistical Society, Series B, 73,
423–498. [2]

Liu, X., Yeo, K., and Lu, S. (2021), “Statistical Modeling for Spatio-
Temporal Data from Stochastic Convection-Diffusion Processes,”
Journal of the American Statistical Association, 117, 1482–1499.
DOI:10.1080/01621459.2020.1863223 [2]

Lu, X., Liu, X., Li, Y., Zhang, Y., and Zuo, H. (2020), “Simulations of Airborne
Collisions between Drones and an Aircraft Windshield,” Aerospace Sci-
ence and Technology, 98, 105713. [11,12]

Lu, X., Liu, X., Zhang, Y., Li, Y., and Zuo, H. (2021), “Simulation of Airborne
Collision between a Drone and an Aircraft Nose,” Aerospace Science and
Technology, 118, 107078. [11,12]

Lumley, J. L. (1967), “The Structure of Inhomogeneous Turbulent Flows,” in
Atmospheric Turbulence and Radio Wave Propagation, eds. A. M. Yaglom
and V. I. Tartarsky, pp. 166–177. [5]

Mak, S., Sung, C. L., Wang, X., Yeh, S. T., Chang, Y. H., Joseph, R., Yang, V.,
and Wu, C. F. J. (2018), “An Eficient Surrogate Model of Large Eddy
Simulations for Design Evaluation and Physics Extraction,” Journal of the
American Statistical Association, 113, 1443–1456. [2,6,14]

Olivares, G. (2017), “ASSURE UAS Airborne Collision Severity Eval-
uation Final Report,” available at https://www.assureuas.org/projects/
completed/sUASAirborneCollisionReport.php. [1]

Olivares, G., Lacy, T. E., Gomez, L., de los Monteros, J. E., Baldridge, R.
J., Zinzuwadia, C. M., Aldag, T., Kota, K. R., Ricks, T. M., and
Jayakody, N. (2017), “UAS Airborne Collision Severity Evalu-ation:
Executive Summary – Structural Evaluation”," Report num-ber:
ASSURE-AC-01. Available at http://www.assureuas.org/projects/
deliverables/sUASAirborneCollisionReport.php. [1]

Pang, G., Lu, L., and Karniadakis, G. E. (2019), “fpinns: Fractional Physics-
Informed Neural Networks,” SIAM Journal on Scientific Computing, 41,
A2603–A2626. [2]

Qian, E., Karamer, B., Peherstorfer, B., and Willcox, K. (2019), “Lift&Learn:
Physics-Informed Machine Learning for Large-Scale Nonlinear Dynam-
ical Systems,” Oden Institute Report 19-18. [2,3,6]

Raissi, M. (2018), “Deep Hidden Physics Models: Deep Learning of Nonlin-
ear Partial Differential Equations,” Journal of Machine Learning Research,
19, 1–24. [2]

Raissi, M., and Karniadakis, G. E. (2018), “Hidden Physics Models: Machine
Learning of Nonlinear Partial Differential Equations,” Journal of Compu-
tational Physics, 357, 125–141. [2]

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019), “Physics-Informed
Neural Networks: A Deep Learning Framework for Solving Forward and
Inverse Problems Involving Nonlinear Partial Differential Equations,”
Journal of Computational Physics, 378, 686–707. [2]

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017), “Machine Learning
of Linear Differential Equations using Gaussian Processes,” Journal of
Computational Physics, 348, 683–693. [2]

(2018), “Numerical Gaussian Processes for Time-Dependent and
Nonlinear Partial Differential Equations,” SIAM Journal on Scientific
Computing, 40, 172–198. [2]

Sauer, A., Gramacy, R. B., and Higdon, D. (2021), “Active Learning for Deep
Gaussian Process Surrogates,” arXiv:2012.08015. [2]

Sigrist, F., Kunsch, H. R., and Stahel, W. A. (2015), “Stochastic Partial
Differential Equation based Modelling of Large Space-Time Data Sets,”
Journal of the Royal Statistical Society, Series B, 77, 3–33. [2]

Striegel, C., Biehler, J., Wall, W. A., and Kauermann, G. (2022), “A Multi-
fidelity Function-on-Function Model Applied to an Abdominal Aortic
Aneurysm,” Technometrics, 64, 279–290. [8]

Swischuk, R., Kramer, B., Huang, C., and Willcox, K. (2019a), “Learning
Physics-based Reduced-Order Models for a Single-Injector Combustion
Process,” arXiv: 1908.03620. [2]

Swischuk, R., Mainini, L., Peherstorfer, B., and Willcox, K. (2019b),
“Projection-based Model Reduction: Formulations for Physics-based
Machine Learning,” Computers & Fluids, 179, 704–717. [5]

Wang, Y. N., Wang, K. W., Cai, W. J., and Yue, X. W. (2021), “NP-ODE:
Neural Process Aided Ordinary Differential Equations for Uncertainty
Quantification of Finite Element Analysis,” IISE Transactions, 54, 211–
226. [2]

Wu, S. R., and Gu, L. (2012), Introduction to the Explicit Finite Ele-
ment Method for Nonlinear Transient Dynamics, Hoboken, NJ: Wiley.
[3,4]

Zhang, B. Y., Cole, D. A., and Gramacy, R. B. (2021a), “Distance-Distributed
Design for Gaussian Process Surrogates,” arXiv:1812.02794. [2]

Zhang, R. D., Mak, S., and Dunson, D. (2021b), “Gaussian Process Subspace
Regression for Model Reduction,” arXiv:2107.04668. [2]

https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25/subpart-D/subject-group-ECFRff93ea3edba9270/section-25.631
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25/subpart-D/subject-group-ECFRff93ea3edba9270/section-25.631
https://www.asias.faa.gov/apex/f?p=100:446:::NO:446::
https://www.faa.gov/uas/resources/
https://www.faa.gov/uas/resources/
https://www.assureuas.org/projects/completed/sUASAirborneCollisionReport.php
https://www.assureuas.org/projects/completed/sUASAirborneCollisionReport.php
http://www.assureuas.org/projects/deliverables/sUASAirborneCollisionReport.php
http://www.assureuas.org/projects/deliverables/sUASAirborneCollisionReport.php

