Taylor & Francis
Taylor & Francis Group

Technometrics

Technometrics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/utch20

Inverse Models for Estimating the Initial Condition
of Spatio-Temporal Advection-Diffusion Processes

Xiao Liu & Kyongmin Yeo

To cite this article: Xiao Liu & Kyongmin Yeo (2023) Inverse Models for Estimating the Initial
Condition of Spatio-Temporal Advection-Diffusion Processes, Technometrics, 65:3, 432-445,
DOI: 10.1080/00401706.2023.2181222

To link to this article: https://doi.org/10.1080/00401706.2023.2181222

A
h View supplementary material &'

@ Published online: 15 Mar 2023.

N
CJ/ Submit your article to this journal &'

Illl Article views: 156

A
& View related articles (&'

@ View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=utch20


https://www.tandfonline.com/loi/utch20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00401706.2023.2181222
https://doi.org/10.1080/00401706.2023.2181222
https://www.tandfonline.com/doi/suppl/10.1080/00401706.2023.2181222
https://www.tandfonline.com/action/authorSubmission?journalCode=utch20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00401706.2023.2181222
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2023.2181222&domain=pdf&date_stamp=15 Mar 2023
https://www.tandfonline.com/action/journalInformation?journalCode=utch20

TECHNOMETRICS
2023, VOL. 65, NO. 3, 432-445
https://doi.org/10.1080/00401706.2023.2181222

W) Check for updates

Inverse Models for Estimating the Initial Condition of Spatio-Temporal

Advection-Diffusion Processes

Xiao Liu® and Kyongmin Yeo®

aDepartment of Industrial Engineering, University of Arkansas, Fayetteville, AR; ®IBM T. J. Watson Research Center, Yorktown Heights, NY

ABSTRACT

Inverse problems involve making inference about unknown parameters of a physical process using obser-
vational data. This article investigates an important class of inverse problems—the estimation of the initial
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condition of a spatio-temporal advection-diffusion process using spatially sparse data streams. Three spatial

sampling schemes are considered, including irregular, nonuniform and shifted uniform sampling. The
irregular sampling scheme is the general scenario, while computationally eficient solutions are available in
the spectral domain for nonuniform and shifted uniform sampling. For each sampling scheme, the inverse
problem is formulated as a regularized convex optimization problem that minimizes the distance between
forward model outputs and observations. The optimization problem is solved by the Alternating Direction
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Method of Multipliers algorithm, which also handles the situation when a linear inequality constraint (e.g.,
non-negativity) is imposed on the model output. Numerical examples are presented, code is made available
on GitHub, and discussions are provided to generate some useful insights of the proposed inverse modeling

approaches.

1. Introduction
1.1. Motivating Examples

Inverse problems involve making inference about unknown
parameters of a physical process using observational data, and
are widely found in scientific and engineering applications. For
example, in urban air quality and environmental monitoring,
inverse problems aim at quickly pinpointing the sources of
instantaneous emissions of gaseous pollutants that cause pub-
lic health concerns (Eckhardt et al. 2008; Martinez-Camara et
al. 2014; Hwang et al. 2019), or detecting fugitive emissions due
to accidental releases from industrial operations (Hosseini and
Stockie 2016; Klein et al. 2016). In healthcare applica-tions,
inverse models have been employed to obtain heart-surface
potentials from body-surface measurements, known as the
inverse ECG problem (Yao and Yang 2021). In Seismology,
inverse problems aim at getting information about the structure
of the forces acting in the earthquake’s focus from seismic waves
at Earth’s surface (Apostol 2019). Inverse modeling has also
found its applications in detecting the impact location of the
missing Malaysian Airlines MH370, using the drift of marine
debris (Miron et al. 2019) or acoustic-gravity waves (Kadri
2019).

This article investigates an important class of statistical
inverse problems—the estimation of the initial condition of
a spatio-temporal advection-diffusion process using spatially
sparse data streams. Consider the detection of accidental
releases of fugitive emissions from industrial operations (Hos-
seini and Stockie 2016). Figure 1 shows a 2 x 2 km? spatial

area that includes a large lead-zinc smelter located in Trail,
British Columbia, Canada. The four large red circles indicate the

potential emission sources of Zinc Sulphate (ZnSO4), while the
small blue circles indicate the locations of nine receptors (i.e.,
sensors) deployed to detect accidental ZnSOg4 leak. The trans-
port of ZnSO4 is governed by an advection-diffusion equation
in the form of a Partial Differential Equation (PDE). In case of
accidental ZnSO4 releases, sensor monitoring data are used to
estimate probable emission locations. This inverse problem
requires a statistical model that (i) establish the explicit and
interpretable link between observations, emission sources, and
process parameters (e.g., wind, diffusivity and decay) by inte-
grating the underlying advection-diffusion physics, (ii) incorpo-

rate sensing data streams to estimate the initial condition when
ZnSOy is released, and (iii) handle data arising from different
sensor network layouts, such as irregular, uniform, nonuniform,

nested, etc.

1.2. Statistical Inverse Models and Literature Review

An inverse model typically involves formulating an optimization
problem that minimizes the distance between forward model
output and observations (Constantinescu et al. 2019). Con-
sider a physical process governed by an equation F(¢,2) = 0
with & and 2 respectively being the state and parameter
(unknown). Because the state of the process ¢ must depend
on the parameter 2 following the governing equation, we may
define a mapping from 2 to ¢, thatis, F(2) = ¢, known as
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Figure 1. A spatial area that contains four potential ZnSO , emission sources (big
red circles) and nine receptors for ground-level measurements (small blue circles).

the parameter-to-observable map. Once the observations ¥ of
the process are available, an inverse problem can be conceptually
formulated as 7 = argmin,L(F(2),Y) where L is some pre-
defined loss function. For example, Hwang et al. (2019) pro-
posed a Bayesian inverse model to estimate the two-dimensional
source functions by exploiting the adjoint advection-diffusion
operator. The authors used the finite difference method to solve
both the forward and backward physics models, and constructed
the likelihood function for the emission rate given observa-
tions. Oates et al. (2019) proposed an inverse model to estimate
time-dependent parameters in an electrical potential model
for industrial hydrocyclone equipment. Bayesian methods were
employed to incorporate statistical models for the errors in the
numerical solution of the physical equation. Yeo et al. (2019)
proposed a spectral method for source detection of advection-
diffusion processes. The authors used the Gaussian radial basis
functions to approximate a smooth emission function over
space, and the spectral coeficients are modeled by generalized
polynomial chaos.

Note that, the physics model F is typically solved by convert-
ing the PDE to a large system of Ordinary Differential Equations
(ODE) given a finite difference discretization of the physical
domain. When the dimension of the discretization is high, it is
often computationally expensive to obtain the forward model
output by directly solving the governing equation F. Statistical
surrogate modeling is thus used to construct the parameter-to-
observable map F (Gul et al. 2018; Mak et al. 2018; Qian et al.
2019). For example, Gaussian Processes (GP) have been exten-
sively investigated for constructing statistical surrogate models
(Hung, Joseph, and Melkote 2015; Deng et al. 2017; Gramacy
2020; Zhang, Cole, and Gramacy 2021; Sauer, Gramacy, and
Higdon 2021). For advection-diffusion processes, in particular,
Sigrist, Kunsch, and Stahel (2015) obtained a GP by solving a
PDE with an advection-diffusion operator that does not vary
in space and time, and Liu, Yeo, and Lu (2022) extended this
approach by considering spatially varying advection-diffusion.
In recent years, physics-informed machine learning is rapidly
emerging for data-driven discovery of governing physics and
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state/parameter/operator inference which are physically mean-
ingful. For example, Raissi, Perdikaris, and Karniadakis (2019)
proposed a deep learning framework for solving both forward
and inverse problems for nonlinear partial differential equa-
tions. Chen, Kang, and Lin (2021) proposed an active learning
approach to estimate the unknown differential equations. An
adaptive design criterion combining the D-optimality and the
maximin space-filling criterion is used to reduce the experimen-
tal data size, where the D-optimality accounts for the unknown
solution of the differential equations and its derivatives.

1.3. Problem Statement, Contributions and Overview

In this article, we investigate a statistical inverse model that aims
to estimate the initial condition (over the entire spatial domain)
of an advection-diffusion process from spatially sparse sensor
measurements. The problem can be formally stated as follows:

Problem Statement. Let (%, s) be an advection-diffusion process
monitored at M spatial locations for L discrete time periods,
this article is concerned with an inverse problem that estimates
&(0,s) over the entire spatial domain using spatially sparse sen-
sor data streams.

In particular, three important spatial sampling schemes (i.e.,
network layout) are considered: irregular, nonuniform, and
shifted uniform sampling. Note that, (i) the irregular sam-
pling (Figure 2(a)) is the general scenario that includes the
nonuniform, shifted uniform, and uniform sampling as its spe-
cial cases; (ii) the two special cases, that is, nonuniform and
shifted uniform sampling (Figure 2(b) and (c)), are also inves-
tigated because computationally eficient solutions are available
in the spectral domain for the two special schemes. In prac-
tice, nonuniform sampling is often used to minimize acqui-
sition time, sensor installation cost and power consumption,
and is particularly useful for monitoring low-activity signals
(Venkataramani and Bresler 2001; Beyrouthy, Fesquet, and Rol-
land 2015). Shifted uniform sampling (also known as the nested
array or difference co-array) involves two nested uniform sens-
ing networks, and significantly increases the degrees of freedom
of linear arrays. By nesting two or more uniform linear arrays,
shifted uniform sampling can provide O(M?) degrees of free-
dom using only M physical sensors, and thus mitigate the issue
of spectral aliasing in spectral analysis (Pal and Vaidyanathan
2010; Qin and Amin 2021).

Contributions of this article are summarized as follows: (i)
This article proposes the first inverse model based on a for-
ward spatio-temporal model for advection-diffusion processes
proposed in Liu, Yeo, and Lu (2022). This forward model,
which provides the parameters-to-observables map F for our
inverse model, decomposes a physical spatio-temporal process
by the linear combination of spatial bases and a multivariate
random process of spectral coeficients. The temporal dynamics
of spectral coeficients is determined by the advection-diffusion
equation so as to integrate the governing physics into statistical
models; see Section 2.1. In this article, following the idea of spec-
trum decomposition, the estimation of £(0,s) over the entire
spatial domain can be performed by estimating the spectral
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(a) irregular grid

(b) non-uniform grid

(c) two shifted uniform grids
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Figure 2. lllustrations of the three spatial sampling schemes considered in this article: (a) irregular grid, (b) nonuniform grid, and (c) shifted uniform grids (nested).

coeficients at time zero that determine &(0, s). (ii) Because esti-
mating the spectral coeficients at time zero requires suficient
observations over space and time given a sensor network lay-
out, Section 2.2 performs theoretical investigations and obtains
suficient and necessary conditions for the spectral coeficients
at time zero to be uniquely estimated. When such conditions
are not met, spectral coeficients cannot be uniquely determined
and this is known as spectral aliasing in signal processing. (iii)
In Section 2.3, we further argue that it is not always possible
to uniquely estimate all spectral coeficients at time zero. The
sensor network layout and the number of observations in space
and time are often subject to practical constraints. Hence, we
often require the spectral coeficients to be estimated under the
scenarios where neither the suficient nor necessary conditions
are met. It is also noted that, the spectral coeficients may rapidly
decay at high-frequency modes if £(0, s) is smooth. To cope with
this issue, Section 2.3 presents a regularized inverse problem
that estimates the spectral coeficients at time zero given any
irregular sensor network layout. The regularization induces both
the sparsity in spectral coeflicients and the smoothness of neigh-
boring spectral coeficients. Section 3 presents the special results
when data are obtained from nonuniform and shifted uniform
sampling, under which computationally eficient solutions are
available in the spectral domain. (iv) Finally, Section 4 develops
the Alternating Direction Method of Multipliers (ADMM) algo-
rithm for eficiently solving the proposed regularized inverse
problem. We then extend the proposed inverse model and the
ADMM algorithm to handle nonnegativity constraint on £(0, s),
thatis, £(0,s) 2 0. Section 5 provides comprehensive numerical
investigations. Sensitivity analysis is performed to demonstrate
the robustness of the proposed method.

2. Inverse Modeling under General Irregular
Sampling

2.1. Preliminaries

Consider a physical spatio-temporal advection-diffusion pro-
cess £(t,s) given by a PDE:

Aé(t,s) = p(t,s), sES, 2 0

M

where S is the spatial domain, ¢ (¢, s) is the source term, and the
advection-diffusion operator A is given by A&(¢,s) = &(t,5) +
e70é(t,s) - O - [DOE(t,s)] + CE(t,s) with v,ED, ¢, O and O-
respectively being the velocity field, diffusion tensor, decay,
gradient and divergence operator. The PDE (1) serves as the
governing equation behind an extremely large class of physical
phenomena where particles and energy are transferred inside a
system.

In this article, the process &(%,s) can only be observed by
spatially distributed sensors at discrete times. Hence, the inverse
problem is concerned with estimating the initial condition
¢(0,s) over the entire spatial domain. Following Liu, Yeo, and
Lu (2022), £(0,s) is assumed to be spanned by a f inite number
of orthogonal spatial Fourier basis functions,

X
¢(0,s) =

k@K

nK)fi(s) @

where k = (k1,k2)T B K is the wavenumber, fi(s) = €27k is
the Fourier basis function, # (k) is the coeficient that determines
the weight of each Fourier mode, and

%

N, N N
K = o)k = - —+ 1, -—+2,... —
(k1,k2)" sk 5 TS , 3/,2,
N N- Ny
kp= - 24 1,-—242,..., -2 3)
2 2 2

Note that, the equality in (2) holds when the initial con-
dition is band-limited with the high-frequency parts of its
Fourier expansion decaying rapidly to exactly zero. Based on
(2), it has been shown that the process ¢(z,s) remains in S for

> 0 and also admits a spectral representation: £(¢,s) =

wak (L K)fk(s), where a(t, k) is the Fourier coeficient evolv-
ing over time, and a(0,k) = #5(k) (Sigrist, Kunsch, and Stahel
2015; Liu, Yeo, and Lu 2022).

Next, consider a sensor network with M sensors at spa-
tial locations si,s2,...,8m. Let a column vector ¥(1) =
(Y(1,51),Y(ls2),...,Y(1,s0m))7 contain the observations aris-
ing from the advection-diffusion process (1) at time / (I =
1,2,...,L),and leta M'xL matrix Y be a collection of the obser-
vations from the L time periods: ¥ = [Y(1),Y(2),...,Y(L)].



Then, a spatio-temporal model based on the PDE (1) is proposed
in Liu, Yeo, and Lu (2022):

Y= FEG+ V @)

Here,

* Fis an M x N matrix of the Fourier basis functions
(N = Nix M), F = (fy;. Sy -fry) Where f =
(e2mslhi g12nsThi  o2msfki)T and g is the imaginary unit.

* E = diag(a(0,k)) = diag(n) is a NxN matrix of the spectral
coeficients at time 0, and # is a vector that contains 7 (k) for
allkB K.

* Gisa N x L matrix, G = (g(1),g(2),...,g(L), which
captures the temporal evolution of the elements in E. Here,
g@) = (ai(D),...,gen())T is a column vector where gj(l) =
e?(=V1 [ is the sampling interval in time, and y; =
-kT Dk, C—lgkjforj—l2 V.

.yt (), v2),...,v(L)) is a M x L matrix that captures
the measurement error, and v(J) is multivariate Gaussian,
Num(0,6y),forl= 1,2,...,L.

Readers may refer to Sigrist, Kunsch, and Stahel (2015) and
Liu, Yeo, and Lu (2022) for details of (4). The model (4) is based
on the classical solution of nonlinear dynamical systems using
the spectral theory and eigenfunction expansions, and serves
as the foundation based on which the inverse models are to be
established in this article.

2.2. The Inverse Problem and Its Basic Properties

In an inverse modeling problem considered in this article, ¥ is
the sensor observation, both F and G are pre-computed, and the
goal is to estimate the coeficient vector # that determines the
initial condition &(0, s). Note that, the spectral coeficients 7 may
not be uniquely determined given insuficient observations over
space and time and particular sensor network layouts (known
as spectral aliasing). Proposition 1 first establishes necessary
conditions for all components in # to be uniquely estimated.

Proposition 1. Given the observations of the process (1) from M
sensors and for L discrete time periods, all spectral coeficients
in 77 can be uniquely estimated from the model (4) if at least one
of the following two conditions is met:

Condition A: given the velocity € and diffusivity D, there exist
no kj, and kj, (kj,,kj, @ K andj; = j2) such that

T
B (kj, - )
Condition B: There exist at least two sampling locations s and
& such that neither of the following conditions holds:

ki)= 0 and KkiDkj = k]Dkj,.

2kj, (s - $°) @ z(°dY,
2kj (s - )@z,

2kjy (s - )@ z(°9Y
2kjy (s = @z,

(6a)
(6b)

All proofs are presented in the supplemental materials. As
shown by this proposition, whether all spectral coeficients in #
can be uniquely estimated depends on key physical parameters
of the underlying process, such as the velocity b and diffusivity
D as one might naturally expect.
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Next, we investigate the suficient condition for all compo-
nents in # to be uniquely estimated. In general, the suficient
condition requires either suficiently large spatial observations
(i.e., large M), or suficiently large temporal observations (i.e.,
large L), or both. This is intuitively true and detailed discussions
are presented as follows.

(When the spatial observations are large.) If M > N, the left

inverse of F exists. Let FL_1 be the lef t inverse ofF, (4) can be
rewritten as [le Y17 = GTET+ [F;1 V17, Hence, let G7; be the
jth column of G7,j = 1,2,...,N, we have

vee([F;'¥17) = diag({G,TJ}jY= Un+ vee(IF;'P17)  (7)
where vec(*) denotes matrix vectorization, and diag({G” }_;)
is a block diagonal matrix with the column vector GTJ being
its jth block. The exponential structure of g;; in G guarantees
that the LN x N matrix diag({G? }’V 1/ 1s full column rank, and
all elements in # can be uniquely determlned. Note that, when
M > N, the sampling frequency in space exceeds the Nyquist
frequency—the largest bandwidth that can be sampled without
aliasing.

(When the temporal observations are large.) A large value of L
corresponds to another scenario where the temporal samples are
abundant. By examining the expression of y ;in(4), itis possible
to find j and © (j = j°) such that y; = yp. In other words, it is
possible that G is row rank deficient with identical rows.

Let{1,2,....,N} % 9 = {91,9,,...
where 9; (i = 1,2,...,N)isasetsuchthaty; = yo forj,° B 9;.
In other words, the mapping M defines a partition of G where

each partition contains identical rows, and the row rank of G is
given by V.

, 95} be a mapping

Proposition 2. 1f the number of temporal samples L is greater
than the (row) rank of G, that is, L > N, the suficient condition
for all components in # to be uniquely determined is

rank(F;) = 9], @i=1,... ,N ®)
where Fi = {finj}m=1,.. M,z9; is a M x |9,| matrix, and |9;|

represents the cardmahty oftheset 9; fori= 1,...,N.

2.3. ARegularized Inverse Problem

Propositions 1 and 2 establish suficient and necessary condi-
tions for all components in # to be uniqued determined from
spatially distributed sensor data streams. Despite the theoretical
values rooted in the two propositions, real applications may not
always require all components in # to be uniquely estimated. For
example, the numbers of spatial/temporal samples as well as the
locations where sensors can be deployed are always subject to
practical constraints. Hence, we often require # to be estimated
under the scenarios where neither suficient nor necessary con-
dition is met.

We ﬁrst rewrite (4) and define ¥.x ®V and kBN (0,6)

as follo . . . .
Y(l); Fdiag{g,()}¥), ) v(l)
- ® Bp+ @ B )
{(L) Fdlag({gJ(L)}Nl) J_"g) )
X (PI)
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and consider a regularized inverse problem:

1
Problem P-I: min E(ﬁ =X PV Telg - x ®Uy)
+ R(n). (10)

Here, the choice of the regularization R(7) is motivated by
two considerations: (i) For smooth or band-limited initial con-
dition (see (2)), the high-frequency modes decay rapidly, that
is, the energy is concentrated in the low-frequency region. This
motivates us to impose an L1 -regularization to # (i.e., the sparsity
of #7). (i) For smooth initial conditions, it is expected that the
components in 7 gradually decay (not necessarily monotone).
This motivates us to impose some level of smoothness among the
adjacent components in 7 corresponding to adjacent frequencies
to prevent sudden spikes of the estimated special coeficients.
In particular, an L>-regularization is imposed on the difference
between the connected components of # in both directions
(horizontal and vertical) such that

kJink3 = (n(ki),n(k;))*,
ijek®

kJonk3 = (n(k), n(k;))*
ijBKY)

(11)

where J; and J, are the matrix difference operators in the hori-
zontal and vertical directions, and the set K and K"/ consist of
all frequencies k B K which are connected in the horizontal and
vertical directions, that is, K(*) = {ki ks kjy - kip = 1,1 < j}
and K™ = {ki,kj;kio - kip = 1,i < j}. Note that, (11)
modifies the idea of Fussed Lasso (Tibshirani et al. 2005). The

difference is that, Fussed Lasso involves an Li-regularization
to the differences among the coeficients that leads to a sparse
and piecewise constant solution, while it is appropriate for us to
consider an L;-regularization such that the components in 7
can smoothly change between the high-frequency and low-
frequency regions.

Finally, the regularization R(#) in (10) is given by

R(n) = At knky + A2 kJnks (12)
where J = (JT,JZT T'is a 2D difference operator, and 11 and 12,
respectively control the sparsity in # and the smoothness among
the adjacent components in #. The inverse problem (10) can
be solved by the Alternating Direction Method of Multipliers
(ADMM) (Zou and Hastie 2005; Ramdas and Tibshirani 2016).
Details of the ADMM algorithm for our problems are provided
in Section 4.

3. Two Special Cases

In this section, we further investigate two special sampling
schemes, that is, nonuniform sampling and shifted uniform
sampling as discussed in Section 2.3, and show that computa-
tionally eficient solutions are possible in the spectral domain
under the two special schemes.

3.1. Nonuniform Sampling

Consider a rectangular mesh system given by a tensor product of
two one-dimensional collocation sets, M = M| B M;, where
M1 = {mym = 0,1,....,M - 1}yand M2 = {mymy =

0,1,...,M> - 1} are the sets of collocation points. Here, M is a
mesh system consisting of the candidate locations where sensors

can potentially be deployed. Let M1 B M7 and M, B M7, a
nonuniform sampling grid is given by a mesh system M = M

M2 where |M1| = Mi, |Mi| = M, and |- | represents the
cardinality of a set. Let y(I,m) represent the observation at
time / and from locationm B M. Then, the nonuniform discrete
Fourier transform of type II (NUDFT-II) of y(I, m) is

1 X
Blg)= —

y(,m)e ™ 4 forgmaQ, (13)
lMI mB@AM
n
where Q = (q1,92)7;q1 = —MTl+ 1’_Mz_l+ 2,...,1‘%,

0
=%y My 2

Replacing y(I,m) in (13) by its discrete Fourier transform
over the domain K, we have

1 X ( X )
[a(l,k)+ S(Z,k)] 6127rmTk e—tZﬂmTq
K

q2

Bd.q) =

|M| m k@R
X X £ ) ) T ) ) r

= a(l,q+ (iM1,jM2)") + e(l,q+ (iM1,jM2)")
iBlg iBlg

)

where ¢ is due to the observation error, and the sets /4 and J 4
are respectively given by
% %
lg = i;—]%+ 1< (q1+ iMy) < ]%,iz
% N N % (15)
Jg = j;—72+ 1< (q2+ jMs) < 72,]'2
Here, the first line of (14) is obtained by directly inserting the
Fourier transform of y(1, m) into (18). The second line of (14) is
obtained by invoking the well-known orthogonal properties of
Fourier bases, that is,[zF;c(gé k) + e(k)] e2eml(k-q) = 1 only
when k = q + (iMi,jM>)T where i @ 14 and j B Jg;
otherwise LB [a, k) + e(l,k)] et2em! (k-q) = (. Hence,
given a mesh system M (i.e., the spatial locations where data
are collected), (14) implies that (7, q) is given by the sum of
multiple Fourier coeficients a (1, q + (iM1,jM2)T) where i B /4
andj @ Jg4. In other words, it is not possible to uniquely estimate
a(l,q+ (iMy,jM2)T) foralli @14 andj@J 4 from B(1,q). This is
known as spectral aliasing.
To reveal the spectral aliasing structure clearly, we introduce

asetKy
a

g1+ iMi,ky= g+ jM2iB1g,j B,
(16)
that consists of all wavenumbers in K corresponding to
q @ Q. Obviously, the Fourier coeficients corresponding to
wavenumbers in K4 are all confounded, and cannot be uniquely
determined unless the number of temporal observations L is
suficient (see Proposition 2). Consider a simple illustrative
example where N = N» = 4and M1 = M = 2,and
define four sets: K o)r = {0,007, 0,27, 2,07, (2,2)73,

© T
Kg =  (ki,ko)" sk =



Koyr = {0,D7,0,-D7, 2, )7, 2,-)7}, Kqgr =
{1,007, -1,007,1,2)T,(-1,2)T}  and Kyt =
(L), -1,-D7, -1, )7, (1,-1)T} such that each set
consists of the wavenumbers in K whose corresponding Fourier
coeficients are confounded Wh§n the number oﬁ, temporal
samples is insuficient. Note that, ™ K, = K and Ky * K4 = 0
for g = ¢ thatis, K4 are mutually exclusive and exhaustive.

Substituting the temporal dynamics of « in (4) into (14), we
obtain

Ba.q) = 17 diag(n,)g, (1) +17e4(1), I=1,2,...,L, (17)

where 1 is a column vector of ones, g, (1), £4(]) and n, are
respectively, the column vectors obtained from g (1), ¢(/) and »
by keeping only the components corresponding to k @ K.

Combining f(1, ¢) from all L sampling times, it follows from
(17) that

]

sy i diag(g,1)"
. 2]

. B-& By,
1. 17 diag(g, (L
Lﬂ({ztl)} | 2 1 lagﬁq( ))}
By B I
.
1 e @)
+ B : (18)
1T
| . 154¥,
B, W,

Where,[)’q isaLx] column vector, By = diag{1 TYisaLx (Lxdy)
block diagonal matrix with dg = |Ky|, and Gyisa (L x dy) x d4
matrix. Hence, for any ¢ & Q, we obtain from (17) a linear model

By = ByGyng+ ByWy,  ByWyBN(0,6%d, D). (19)

Note that, several factors determine if the components in
g can be uniquely determined from the linear model (19),
including the sensor network layout M, the number of temporal
samples L, as well as the parameters of the underlying physical
process. The following proposition establishes the conditions for
the components in 7, to be uniquely estimated.

Proposition 3. For kj  kj, @ Kq andji1 = jo,if (i) L 2 d4, and
(i1) at least one of the conditions, vT(kle— kj,) = 0andk; Dk;,
-T'k; Dkj, = 0, does not hold, then, B;Gy is full column

rank, and allzspectral coeficientsinz, canbe uniquely estimated
from (19).

Although the Proposition 3 suggests that it is possible to
estimate 7, from a system of linear models for all ¢ Q,

directly solving these individual linear models is rarely appro-
priate for the following reason: the matrix B; G, can be easily ill-
conditioned or computationally singular when both ET(k_/1 -kj,)
and k7 Dk;, - k] Dk;, are close to zero. In other words, some
columhs in ByG,’can be near identical. Hence, we combine the
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linear models (19) for all ¢, ¢, . .
B B

- q|q| and obtain

n

.4 LIRS 4
2 BEBE @

J_ﬂ fay {zM} J_nT'zQ' }

al Az 4

B‘I] qu
+ : (20)
B‘I|a|{

v -1

w
7 91l }

where YE© " is a (JQl x L) x 1 column vector, X ™1V is a
(lQ] x L) x |K| matrix, 7 isa |K| x 1 column vector, vV ®-IV
N(0,61) and 61V = o2 diag({dy IN2).

Similar to Problem P-I (10), we again obtain a regularized
inverse problem as follows:

1 -1
Problem P-II: min E(YE(P Y ®ID) T (6 P-1D) )=

(P-11) -
(E 7= x T+ R(),
where R(77) is defined in (12).

@n

3.2. Shifted Uniform Sampling

Shifted uniform sensor arrays or platforms consists of two nested
rectangular mesh systems (Figure 2(c)), M) and M%), which
are respectively defined by the tensor product of two one-
dimensional collocation sets:

mV = (ﬂ;ml =0,1,....,.M1-1)
Mi

B¢ my=0,1,...,Mr- 1) 22)
M,
M = (L simi= 01, M- 1
(M1 mi=0,1,..., M- 1)
B¢ syma=0,1,... M- 1)  (23)

M,
where 0 < 91 < M;'and0 < 0y < M;', andd = (51,02)7 is
the spatial shift between the two sensor platforms. Let yV (7, m)
represent the observation at time / and location m from MV
where m = %l,%)T. Forany ¢ = (q1,92)7 B Q, the Fourier
coeficient at 8V (1, ¢) based on the observations from the first
mesh system M (1) at time / is

X
1) 1.q) = (1) I, m e—th’mTq
(X)) M—IMJ(( ) )
X X
- 1 [a( k) + e(l, k)] ethmrk e—z27rmTq
MM ok
X X ¢

a
a(l,q+ (iM,jM)T) + e(l,q+ (iM1,jM2)T)

iBly iBlg
(24)
where the sets /4 and J 4 are defined in (15).
Because the second mesh system M(?/ is obtained from the
first mesh system M(2) given a shift 6 in space, the Fourier
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coeficient, ¥ (1,q), obtained from the data collected from
M) | can be immediately obtained:

X ©
p¥(.q) = a(l,q+ (iMy,jM)")

iBly Uy

a
ro(lq+ (iMi,jM)T) &2 NI

(25)

where the last term ¢/27%" (@+(M1/M2)7) is due to the spatial shift
from MV to M(% .
Hence, for ¢ @ Q, one may define a set
a

© a
(ki k)iki = qi+ iMiky = g+ jMo,iBllg, jBg

Kq=
(26)
and for k @ K4, we have
M 1T u_ 1 por 1l
BYVq " _ , 1
sod " bp, daE0)e 0% e @D
for | = 1,2,...,L. Here, 1 and bsq =

{er2m0" (M1 M)y jmy are column vectors of length dy
= |lg B J4l, and g (1), gqq(l), and 7, are respectively the
column vectors obtained from g(l), ¢(I) and 5 by keeping
only the components corresponding to k & K,. Similar to the
discussions in Section 3.1, K4 consists of all wavenumbers in K
corresponding to ¢ which are aliased and cannot be uniquely
determined unless the number of temporal observations L is
suficiently large. Combining V(1 q) and @ (1,q) from all
sampling times, we have

201, B BB (1,¢)B
’ %bgq diag(gqa))
5
g 8= B . By
ﬁga,q) B 11 dioge )
L, bT | 4
LR z___ "} Gy
ﬂgp»m) Bsy
|
B, B %)
" g B
17 eq(L)
| —{z _

where ﬁf’ln) isa 2L x 1 column vector, Bs, = diag{(l,b,;,q)T }
isa2L x (L x dq) block diagonal matrix withdy = [Ky|,and Gy is
a(Lx dg)x dgmatrix. For any ¢ @ Q, we have

BEW = B;yGyng + BsygWy 29)
where Bs ,Gq is a 2L x dg matrix. Because 0 < 61 < M -1 apd
0 <6 < M! " the elements in b;s, are identical, which
immediately makes 2L > dj the suficient condition for Bs ,Gy

to be full column rank, that is,
1 ol ]

1 N1—1+1' Ny -1
M, M,

d

L> 4>
2

+ 1

(30)

0|

As discussed in Section 3.1, directly solving the individ-
ual linear models in (29) is not an appropriate choice for ill-
conditioned problems. Hence, combining the linear models (29)
forallq;,q5,. .. +q|q|» We have

ﬂql Bf)‘,'ll qu Mg,

Op: Bp-ly 5% 6
'Bf'za'_} | (z Bﬁ,q|o|Gq|a| }J_n?'zal_}
YE(P—HI) X (P-1I) n

Bé,‘ll W‘Il
B 31)

B;s 174
| s‘lla{Z 9lal }

v (P-1I)

where YE T is a ]Q| x L) x 1 column vector, X ®Wisa
2]Q| x L) x |K| matrix, 5 is a |K| x 1 column vector, V P-I1U
N(0,610), 61V = 52diag({s}'?!)) and_§; = diag(d,
L |1bsg | |21)forii2= ,2,...,1Q|.

Similar to Problem P-II (21), we obtain a regularized inverse
problem:

1 -111 _
Problem P-III: minz (YE(P ) x (P-ID) T (5 (P-1ID) -1

ET X Wy s R (3)

where R(7) is defined in (12).

Remarks. Problem P-I estimates the special coeficients 7 by
minimizing the squared distance between forward model out-
puts and observations in the space-time domain, while Problems
P-1I and P-III estimate the spectral coeficients # by minimizing
the squared distance between the spectral coeficients of forward
model outputs and that of observations in the spectral domain.
For this reason, when we convert the optimal solution obtained
by P-II and P-III from the spectral domain back to the space-
time domain through the inverse Fourier transform, the solution
is no longer optimal in the least squares sense (i.e., the squared
distance between forward model outputs and observations is not
minimized in the space-time domain). This is due to the fact
that the least squares estimator is not invariant under transfor-
mation. If computational cost is not the primary concern, we
recommend one to solve the inverse problem in the space-time
domain using Problem P-I (10).

4. Solving the Problems P-I, P-Il, and P-lll using ADMM

This section provides the algorithm required to solve the inverse
problems P-1, P-II and P-III (throughout this section, the super-
scripts, -P-L Pl and P11 are dropped without causing ambi-
guity). Note that, the dimension of # in these three inverse
problems is given by |K| = Ni x N>. Hence, even for moderate
size of N1 and NV, the dimension of # can be large. The Alter-
nating Direction Method of Multipliers (ADMM) for large-scale
optimization problems becomes a sensible choice.

We first convert an unconstrained problem of the general
form

min, 3(F - X )6 (=X m+ROY  GI)



to a constrained problem:

min,,, f()+ R(y), (34)

st.y=yw
where /() = +(E - X n)T67' (€ - X n).Forp > 0, the
scaled form of the augmented Lagrangian is written as

p p
S+ Rw)+ k= y+ uk; + zkuké 35)

Then, the ADMM solves the constrained problem (34) by
repeating the following iterations (Zou and Hastie 2005; Ramdas
and Tibshirani 2016):

. N )
n@ = argmin f(n)+ 017 -y 4 (-0, (36a)
w@ = argman,R(z//)+ —° @ — y+ ul- U“ (36b)
u() = u@V 4 50—y ’) (36¢)

fori = 1,2,.... The iterations satisfy: residual convergence (i.e.,
n@ -y @ > 0asi > o), objective convergence (i.e., /(7)) +
Riy@) > + R? where f? and R? are the primal optimal
values), and dual convergence (i.e., u” > u? where u? is the
dual solution). Algorithm 1 summarizes the ADMM algorithm
developed for solving (33). In the supplemental materials, we
provide technical details of how each step in Algorithm 1 is
obtained.

Remarks. Although Problems P-1, P-II, and P-III can be solved
by the ADMM algorithm, it is noted that Problem P-I is formu-
lated in the space-time domain, while Problems P-II and P-III

are constructed in the spectral domain. As a result, the design
matrix X PV in (9) is a dense matrix, while the design matrices
X ®Wand x ®Min (20)and (31) are sparse (block diagonal),
making the computation of X 761X , X 767! and 6~ X

faster in the ADMM algorithm. In addition, Problems P-II and
P-III enable one to truncate the high-frequency components
because each block of X , in both (20) and (31), corresponds to a
frequency level. This further helps to reduce the computational
time and details are provided in the supplemental materials.

In many applications, a nonnegativity constraint can be
added to the output of the inverse model (e.g., the detected
emissions or initial conditions need to be nonnegative). When a
nonnegativity constraint is added, the inverse modeling problem
(33) becomes:

min, %(\E - X T6™ Y€ - X )+ R(y), st.X n= 0.
(37
In the supplemental materials, we show that the constrained
problem (37) can be eficiently solved by modifying the ADMM
algorithm described in Section 4, which expands the applicabil-
ity of the proposed model for a wider range of problems.

5. Numerical Examples

This section presents two numerical examples to illustrate the
application of the proposed inverse models and generate some
useful insights of the approach.
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Algorithm 1: ADMM for solving the Inverse Problems
Data: ¥ X ,¥,1,,1,
7@, w @ u®, p>0,0 > 0//nitialize
i< 1

(the outer loop)

while convergence criterion is not met do
, i ¢

n € XT67Ix + o1

X T671E + pay@V 4 yli-V)

(o}

(the inner loop)

1/7(0) //init'a ization for the inner
Loop/ € 1

while convergence criterion is not met do

. , )
N(I) 60"' Q))I 1(77(1)"' u(l_1)+

< 2 e
2
wﬁ(f V- oyl
09 < $3,005" ’ v(f-l))
0 iU+ 5 - pl)
PR

w® < 57 u® & 0 4 - 0

Li< i+ 1

5.1. Examplel

We first simulate an advection-diffusion process from the PDE
(1) on a 40 x 40 rectangular grid. The parameters of the
advection-diffusion operator A are chosen as: p = (0.5 x
1072,0.5 x 1072)7, D = diag{0.25 x 1073} and ¢ = 0. The
initial condition contains three spatlyilly sparse instantaneous
sources glven by 8(t,s) = o(t- 0) ;. ¢j(s). Here, ;(s) =

300,50 = (04,027, s =

(0.2, 04)T andsﬁ) = (05,057,

Figure 3 (left panel) shows the initial condition, velocity
field (indicated by arrows), and the locations of 64 randomly
distributed sensors (indicated by small crosses). Figure 3 also
highlights the locations of three selected sensors, “A”, “B”, and “C”,
and the measurements over time are shown in the right panel
of this figure. The measurement errors are iid samples from a
Normal distribution with mean zero and standard deviation two.
The strength of the signal from sensor “A” first increases when
the process (primarily from source 1) quickly reaches location
‘A’ After that, the signal decreases as the process propagates
away and diffuses. Sensor “B” gradually picks up the signal (first
from source 3, and then, from the other two sources), while
sensor “C” slowly picks up relatively weak signal because this
sensor is far from all three sources. The goal is to estimate the
initial condition in the absence of the “complete picture” of the
spatio-temporal process over the entire spatial domain.

The first row of Figure 4 shows the snapshots of the process
at times 2, 5, 10, 15, and 20. Solving the Inverse Problem P-I
(10) for irregular sampling grid using Algorithm 1, the second
row of Figure 4 shows the contour plots of the estimated initial
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Figure 3. (Left panel) the initial condition with three instantaneous sources, velocity field (indicated by white arrows), and locations of 64 randomly distributed sensors;
(right panel) noisy sensor measurements over time from three selected sensors, “A’, “B”, and “C".
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Figure 4. (Top row) snapshots of the advection-diffusion process at times 2, 5, 10, 15, and 20; (bottom row) detected spatial sources based on the streaming data from a

network of 64 sensors up to times 2, 5, 10, 15, and 20.

condition using the sensor observations up to times 2, 5, 10,
15, and 20. The thick blue level sets are respectively the 75th,
85th, and 95th percentiles of the output generated by the inverse
model. It is seen that, source 1 is quickly detected at time 2. This
is only because there happens to be a sensor located near source
1. It is seen that source 2 might also has been detected (circled
by a contour line). However, the estimated strength of source 2 is
weaker than that of source 1. Source 3 cannot be detected at all
at time 2 because most of the sensors have not yet picked up any
signal from this source. At time 15, both sources 2 and 3 are
clearly detected as the downstream sensors have picked up the
signal from these two sources.

Expanding the size of the sensor network is expected to
reduce the detection latency. We randomly add another 36
sensors to the existing sensor network (note that, only those
sensors added to the downstream areas of the sources may help
to reduce the detection latency). Figure 5 presents the updated
results: with the additional 36 sensors, all three sources can be
detected using the sensor data up to time 10. Figures 4 and 5 well

demonstrate the dynamic nature of the inverse problem based
on spatially-distributed sensor data streams.

Next, we investigate the Inverse Problems P-II (21) and P-I1I
(32) for nonuniform sampling grid and shifted sampling grids.
Figure 6 shows the output of the Problem P-II based on the
sensor data streams from a nonuniform sampling grid, which
is given by a 10 x 10 mesh system generated from a 40 x 40
uniform mesh system as described in Section 3.1. Similar to
Figure 4, the f irst row ofFigure 6 shows the snapshots of the
process at times 2, 5, 10, 15, and 20, while the second row shows
the contour plots of the estimated initial condition using the
streaming observations up to times 2, 5, 10, 15, and 20. The
thick blue level sets are respectively the 75th, 85th, and 95th
percentiles of the output generated by the inverse model. We
see that, source 2 is almost immediately detected because of
its proximity to nearby sensors. Sources 1 and 3 are detected
later at times 10 and 15 only when sensors in the downstream
areas have picked up the signal originated from these two
sources.
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Figure 5. (Top row) snapshots of the advection-diffusion process at times 2, 5, 10, 15, and 20; (bottom row) detected spatial sources based on the streaming data from a
network of 100 sensors up to times 2, 5, 10, 15, and 20.
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Figure 6. (Top row) snapshots of the simulated advection-diffusion process at times 2, 5, 10, 15, and 20; (bottom row) detected spatial sources based on the streaming data
from a nonuniform sampling grid up to times 2, 5, 10, 15, and 20.
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Figure 7. (Top row) snapshots of the simulated advection-diffusion process at times 5, 10, 20, 30, and 40; (bottom row) detected spatial sources based on the streaming
data from two shifted uniform sampling grids up to times 5, 10, 20, 30, and 40.

Figure 7 shows the dynamic output from the Inverse Problem
P-III based on the sensor data streams from two shifted sampling

grids. The first sampling grid is a 5 x 5 mesh system, while
the second grid is obtained by shif ting the f irst grid by =
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Figure 8. Inverse modeling for a pure diffusion process: (a) concentration of the pollutant 15, 30, and 90 sec after its release; (b) ground measurements by receptors; (c)

contour plots of the output from the inverse model.

(0.04,0.175). The f irst row ofFigure 7 shows the process at
times 5, 10, 20, 30, and 40, while the second row shows the
model output up to times 5, 10, 20, 30, and 40. Similarly, the
solid blue thick level sets are respectively the 75th, 85th, and
95th percentiles of the output generated by the model, while the
dashed thick level sets are the 50th and 60th percentiles of the
output generated by the inverse model. We see that, sources 1
and 2 are quickly detected at time 5 because of their proximity
to nearby sensors. Source 3 is detected later when sensors in the
downstream areas of source 3 have picked up the signal.

Example I generates useful insights on the proposed inverse
models, and successfully reveals the dynamic nature of the
inverse problem using spatially-distributed data streams. A
source can be detected when sensors in the downstream areas
(if there are any) pick up the signal originated from that source.
In the supplemental materials, we compare the bias and Mean-
Squared-Error (MSE) of the estimated initial condition &(0, s)
for different choices of regularizations, including the proposed
regularization, generalized Lasso, Elastic Net, L1 and L> regular-
izations.

5.2. Example i

Example II revisits the motivating example described in Sec-
tion 1.1. This example is concerned with the estimation of
emission locations of accidental ZnSOg4 releases using sensor
monitoring data; see Section 1.1 and Hosseini and Stockie (2016)
for more details.

The release and transport of a single contaminant in the
atmosphere can be well described by an advection-diffusion
equation, c(z,s) + B’ Oc(t,s) - O - [DOc(t,s)] = 8(t,s), where
¢(t,s) is the contamination concentration [mg m~3], ¥ is the
wind vector [ms™'], D is the diffusivity [m* s™'], and 8(z, ) =
ot - 0) le @j(s) is the instantaneous emission source [mg
m™3 s7!]. This equation is a special case of the general form (1)
in Section 2.

e Scenario 1: pure diffusion. We first consider the scenario
where the propagation of ZnSOs, after its release, is driven by a
pure diffusion process (i.e., the case when there is no wind). The
first row of Figure 8 shows the concentration of the pollutant at
times 15, 30, and 90 sec after its release. As shown by this figure,



time: 15s

TECHNOMETRICS

443

o sensor W sensor ) sensor
165~ R LA 15- 4 15- &1
’ ! W, receptor: 1 : receptor: 1 fh receptor: 1
"1"_' / -\ . p‘s_‘ L 4, ‘ J‘,_' ; “J‘. .
£ i - receptor: 2 € . receptor: 2 £ v receptor: 2
=] J o . o —e . o i .
E 10 i e receptor: 3 g receptor: 3 E receptor: 3
c i e == receptor: 4 c - = receptor. 4 c == receptor: 4
2 ] v ] S
% / y see recuptor.: g - receptor: : % recaptor.:
al i <=+ receptor: +=+ receptor: <= receptor:
8 5 8 8
§ fi [ — - receptor. 7 § — - receptor: 7 § — - receptor. 7
\(,' ,‘E";\,\\‘,\ Gl P " receptor: 8 receptor: 8 receptor: 8
W= RV AR,
0- AR il g0t G e receptor: 9 - receptor: 9 - receptor: 9
' ' ' ' ' ' ' ' . ' ' '
0 5 10 15 0 10 20 30 0 25 50 75
time [s] time [s] time [s]
time: 158 time: 30s time: 90s

Figure 9. Inverse modeling for an advection-diffusion process: (a) concentration of the pollutant 15, 30, and 90 sec after its release; (b) ground measurements by receptors;

(c) contour plots of the output from the inverse model.

the pollutant is released from the first source in the north, and
propagates to all directions following a pure diffusion process.
The second row of Figure 8 shows the noisy measurements over
time. The third row of Figure 8 presents the contour plots of the
output generated by the inverse model (10) using the streaming
observations up to 15, 30, and 90 sec. As seen in the first and
second rows of Figure 8, the sensor located to the north of the
source first picks up signal. Hence, at times 15 and 30 sec, the
peaks indicated by the contour plot are somewhere between that
sensor and the actual source. As more data become available
from the other three sensors located near the source (the second
row of Figure 8), the peak moves closer to the actual source at
time 90 and the emission source is successfully identified. Such
observations rationalize the dynamic nature of the proposed
inverse problems based on sensor data streams.

e Scenario 2: advection and diffusion. We now consider a
more common scenario where the propagation of ZnSOg, af ter
its release, is driven by both advection and dif fusion. The pollu-
tant is released from the second source from the top of the spatial
domain, and propagates to the southeast direction due to wind.
The first row of Figure 9 shows the pollutant concentration at

times 15, 30, 90 sec after its release. The second row shows the
noisy ground-level measurements. The third row of presents the

contour plots of the output generated by the inverse model (10)
based on the data up to 15, 30, and 90 sec. As seen in the first
and second rows of Figure 9, the sensor located to the west of
the source first picks up signal. Hence, at times 15 and 30 sec,
the peaks indicated by the contour plot are somewhere between
that sensor and the actual source. As more data become available
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Figure 10. Sensitivity analysis against the misspecification of input velocity vector.
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Figure 11. Sensitivity analysis of the detected sources, at times 15, 30, and 90 sec, for combinations of / ; and / , taken from a mesh grid {5,10,15,...,50}

{5,10,15,...,50}.

from the other sensors located near the source (shown in the
second row of Figure 9), the peak moves closer to the actual
source at time 90, accurately pinpointing the source of emission.

e Sensitivity analysis. The accuracy of the input velocity, that
is, B in the advection-diffusion operator A, significantly affects
the performance of the inverse model. Imagine that, in the sec-
ond scenario above, if the specified wind direction is far from the
true direction, we no longer expect the model to yield accurate
results. Hence, sensitivity analysis is performed to investigate
the robustness of the model against the misspecification of the
input velocity and the tuning parameters in the regularization,
R. Lete = (vi,v)T = (10,-10)7 be the actual wind vector
[ms"l], and let Einput - (Vx + zxzind’ vy + 2\;ind)T be the input
wind vector to the inverse model with random errors, ;Wi“d
N(, |vx|z) and Z;Vi“d N(, [vy|z), that is, the variance of the
error is proportional to the magnitude of the wind vector given a
factor 7.

Consider the second scenario above, Figure 10 shows the
violin plot of the distance (in meters) between the detected
source and the actual source for different values of 7 ranging
from 0.1 to 1. For each value of 7, the experiment is repeated
by 50 times, and a new input wind vector is simulated for each
run. It is seen that, the distance between the detected source and
the actual source remains within the range from 225m to 380m
when 7 < 0.3. In other words, the model performance appears
to be robust when the input wind vector does not significantly
deviate away from the actual wind vector. In the context of this
problem, since the horizontal and vertical components of the
actual wind vector are both 10m s~!, the standard deviation
of the random error associated with input wind vector ranges
from Im to 3m in both the horizontal and vertical directions
when 0.1 < 7 < 0.3. Such a margin of specification error
is reasonable and can be achieved in many applications where
both wind speed and directions are observable (Ding etal. 2021).
When 7 2 0.4, we note that the variance of the detection
error dramatically increases, indicating a rapid performance
deterioration of the inverse model, as expected.

The performance of the model also depends on the choice
of the tuning parameters, 41 and A2, in the regularization R.
Note that, for many forward prediction problems, such as Lasso
regression, Ridge regression, Elastic Net, etc., the tuning param-
eters can be chosen through cross-validation. However, the
idea of cross-validation no longer applies to inverse problems
because the true source is never known and it is impossible
to establish the link between the tuning parameters and detec-
tion accuracy. Hence, it is more meaningful to investigate the
robustness (sensitivity) of the proposed inverse model against

A1 and A;. Figure 11 shows the detected sources, at 15, 30,
and 90 sec, for combinations of 21 and 1> taken from a mesh
grid {5,10,15,...,50} @ {5,10,15,...,50}. The figure shows
that the detect sources are robust enough against the choices of
the tuning parameters parameters. In other words, the true
source can be correctly identified for different combinations of
A1 and A7 chosen from a relatively wide range, which is certainly
desirable in practice.

Finally, it is worth noting that f the initial conditions are
strictly modeled by delta functions (e.g., “point” sources), the
Fourier series of the space-time process does not converge and
the proposed approach may generate an oscillatory solution
known as the Gibbs phenomenon (Gibbs 1898). Hence, the
proposed approach works well if the initial condition is a smooth
function, as seen in the numerical examples above. Even if the
initial conditions consist of point sources, the model seeks a
solution for a little bit later than the time of release when the
point sources become smoother functions due to diffusion.

6. Conclusions

Based on a PDE-based statistical model for spatio-temporal
data, this article proposed an inverse modeling approach for
advection-diffusion processes using data streams generated by
three spatial sampling schemes. The article obtained both nec-
essary and suficient conditions under which the Fourier coef-
ficients of the initial condition of the advection-diffusion pro-
cess can be uniquely estimated. Detailed iteration steps of the
ADMM have been obtained, which solves the inverse problems
in a computational eficient manner. The algorithm has also
been extended for handling a linear inequality constraint on
the model output. Numerical examples have been presented to
demonstrate the robustness of the proposed inverse models
against input model parameters, and reveal the dynamic nature
of the inverse problem based on sensor data streams. Note that,
the article considers data arising from a deterministic PDE. One
critical future direction is to extend the proposed models for
stochastic PDEs, which aim at minimizing the distance between
the forward distribution and that of the observations. Computer
code is available at Attps://github.com/dnncode/inverse-model.

Supplementary Materials

The supplementary materials provide (i) the proof of Propositions 1 and 2,
(ii) derivation of the ADMM Algorithm 1, (iii) ADMM with non-negativity

constraint, (iv) discussions on the computational time of Problems P-I, P-
I, and P-III, and (v) Numerical comparison on different choices of
regularizations.
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