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Low-dimensional and computationally less-expensive reduced-order models (ROMs) have been widely used to
capture the dominant behaviors of high-4dimensional systems. An ROM can be obtained, using the well-known
proper orthogonal decomposition (POD), by projecting the full-order model to a subspace spanned by modal basis
modes that are learned from experimental, simulated, or observational data, i.e., training data. However, the optimal
basis can change with the parameter settings. When an ROM, constructed using the POD basis obtained from training
data, is applied to new parameter settings, the model often lacks robustness against the change of parameters in
design, control, and other real-time operation problems. This paper proposes to use regression trees on Grassmann
manifold to learn the mapping between parameters and POD bases that span the low-dimensional subspaces onto
which full-order models are projected. Motivated by the observation that a subspace spanned by a POD basis can be
viewed as a point in the Grassmann manifold, we propose to grow a tree by repeatedly splitting the tree node to
maximize the Riemannian distance between the two subspaces spanned by the predicted POD bases on the left and
right daughter nodes. Five numerical examples are presented to comprehensively demonstrate the performance of the
proposed method, and compare the proposed tree-based method to the existing interpolation method for POD basis
and the use of global POD basis. The results show that the proposed tree-based method is capable of establishing the
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mapping between parameters and POD bases, and thus adapt ROMs for new parameters.
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Nomenclature

specific heat capacity in Example IV
snapshot data matrix obtained under
parameter setting A

error based on Frobenius norm

relative error

error based on L., norm

Grassmann manifold

convection coefficient in Example IV
thermal conductivity in Example IV

split value at a tree node

number of tree leaves

number of parameter conditions under
which training data are generated

Goldak heat source in Example IV

heat fluxes on Neumann boundary in
Example IV

left and right daughter nodes

spatial domain

subspace spanned by &

Stiefel manifold

temperature in Example IV

mapping from the parameter space P € R?
to the compact Stiefel manifold
displacement in Example III

solution of the full-order system given the
parameter A

soliton’s amplitude in Example 1T
boundaries

positive parameter representing the thermal
diffusivity of the medium in Example I
Riemannian distance
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0; = Jordan’s principal angle
A = set of parameters
; = vector representing the ith parameter

settings

B=(uy, ) = parameters in Example III

v = speed at which the soliton travels in
Example II

E(t, x) = temperature distribution in time and on a
unit interval [0, 1] in Example I

g = instance solitons in optical fiber pulse
propagation in Example II

p = material density in Example IV

o = singular value

L0 = matrix basis

®,, = locally global proper orthogonal decompo-
sition base associated with the left and right
daughter nodes

(i)m = locally global proper orthogonal decompo-
sition basis constructed using data from
tree leaf m

D, = matrix basis with orthogonal column
vectors

Q = parameter set

1. Introduction

HE complex dynamics of many engineering, physical, and

biological systems are often described by partial differential
equations (PDESs). Because solving these potentially high-dimensional
PDEs can be computationally expensive, low-dimensional reduced-
order models (ROMs) have been widely utilized to capture the
dominant behaviors of the original systems. This idea is primarily
motivated and justified by the ubiquitous observation in engineering
and science that there often exist low-dimensional patterns embedded
in high-dimensional systems.

An ROM can be obtained by projecting the full-order model to a
subspace spanned by chosen modal basis modes. For example, based
on experimental or simulated data generated from full-order models
under predetermined parameter settings, the proper orthogonal decom-
position (POD) can be used to generate the optimal basis modes in an
L, sense. However, the optimal bases can change with parameter
settings. When an ROM, constructed based on the POD basis obtained
from training data, is applied to new parameter settings, the ROM often
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lacks of robustness against the change of parameters. Indeed, the lack
of robustness against the change of parameters limits the application of
ROMs to design, control, and other real-time operations problems that
typically involve parameter changes. In this paper, we propose to use
regression trees to learn the mapping between parameters and POD
bases that span the low-dimensional subspaces onto which full-order
models are projected. Once the mapping has been learned, the tree-
based model can automatically yield the reduced-order basis and thus
adapt ROMs for new parameters.

A. Motivating Examples

In this paper, five examples are presented to comprehensively
investigate the performance of the proposed approach (see Sec. III).
In this section, only one of the five examples is described in detail so
as to demonstrate the needs for adapting ROMs with respect to
parameter changes.

Airborne collisions between aircraft and unmanned aerial vehicle
(UAV) has been identified as an emerging threat to aviation safety by
the Federal Aviation Administration [1,2]. To understand the colli-
sion severity under different collision parameters, high-fidelity finite
element analysis (FEA) is used to simulate the collision processes. In
this example, we consider the aircraft nose metal skin deformation
process due to UAV collisions at different impact attitudes (i.e., pitch,
yaw, and roll degree). UAV’s attitudes often cause different aircraft
surface skin deformation because the flight attitudes determine the
components that firstly hit the aircraft. FEA is performed under 35
different combinations of pitch, yaw, and roll degrees, and each
parameter is chosen from an interval [-45°, 45°]. The length of each
simulation time step is set to 0.02 ms, and the impact velocity is fixed
to 151 m - s~! along the impact direction. In the aircraft nose finite
element model, structural parts are modeled with 691,221 shell
elements and the average size of mesh is 14 mm. In the UAV finite
element model, 5044 solid and 8900 shell elements are incorporated
because some UAV parts like motors and battery cannot be modeled
by shell elements.

Using the snapshot data generated from FEA, an ROM can be
constructed for each collision condition [3]. Figure 1 shows the top
five POD modes for four selected collision conditions at the aircraft
nose [condition 1: pitch (0°), yaw (—3°), roll (33°); condition 6: pitch
(29°), yaw (44°), roll (—13°); condition 16: pitch (—10°), yaw (—13°),
roll (—15°); condition 22: pitch (—45°), yaw (37°), roll (—12°)]. We
see the following:

1) The POD bases can be different under different collision param-
eters. Hence, if an ROM is constructed using the POD basis obtained
from the training data, such a model becomes less robust and accurate
when it is applied to other collision parameters. This is the main
motivation behind interpolating POD bases so as to adapt ROMs for
different parameter settings [3,4].

2) The global POD basis, which is constructed by combining all
snapshot data from all parameter settings, may not be reliable for
individual parameters.

3) For certain parameter settings, it is also noted that their corre-
sponding POD bases do appear to be similar. For example, the first and
second columns of Fig. 1 correspond to collision conditions 1 and 6.

These observations raise an important question: Is it possible to use
statistical learning method to partition the parameter space into a
number of subregions, and then construct the “locally global” POD
basis for each subregion over the parameter space? In Sec. III,
we present five examples to demonstrate the possibility of this
idea, including the heat equation, Schrodinger’s equation, Thomas
Young’s double slit experiment, temperature field for electron beam
melting (EBM) additive manufacturing processes, and aircraft-UAV
collision processes. As we can see in that section, the answer to the
question above is not always straightforward. But when it is possible
to learn such a mapping from parameters to POD bases, we are able to
better adapt ROMs as parameters change.

B. Literature Review and the Proposed Research

To adapt ROMs for parameter change, different approaches have
been proposed in the literature, such as the use of global POD,

interpolation of POD basis, machine learning approaches (e.g.,
Gaussian process), and the construction of a library POD bases.

The global POD approach constructs one universal POD basis and
apply the universal POD basis to construct ROMs under all parameter
settings [3,5,6]. Hence, for the global POD to work well, itis necessary
to generate data from a relatively large number of parameter settings
from the parameter space. Generating such a large dataset from multi-
ple parameter settings can be expensive (e.g., consider solving a finite
element problem or a fluid dynamics problem numerically). In addi-
tion, the global POD is no longer optimal for individual parameters and
may become inaccurate for certain parameter settings as illustrated by
Fig. 1. However, it is also worth noting that the use of global POD
works well in one of our five examples in Sec. III when the mapping
between parameters and POD bases can hardly be learned using other
alternative approaches.

The interpolation approach directly interpolates the POD basis for
a new parameter setting [3,4,7-10]. One popular approach is to
interpolate the POD basis via Grassmann manifolds [4]. Based on
this approach, the subspace spanned by a POD basis is viewed as a
point in the Grassmann manifold [11]. Then, these subspaces are
mapped to a flat tangent space, and the interpolation is performed on
the flat tangent space. After that, the interpolated value on the tangent
space is mapped back to the Grassmann manifold, which yields the
interpolated POD basis. This approach effectively maintains the
orthogonality property of the reduced-order basis, and its stability
has also been investigated [9]. The computational advantage of this
approach enables near real-time adaptation of ROM.

Constructing a library of physics-based ROM is another approach
for adapting ROMs. For example, on-demand CFD-based aeroelastic
predictions may rely on the precomputation of a database of reduced-
order bases and models for discrete flight parameters [12]. For
adapting digital twins models under changing operating conditions,
classification trees are used to classify the sensor data and then select
the appropriate physics-based reduced models from the model library
[13]. Building a library of ROM itself could be time-consuming and
may not always be feasible for certain applications. In recent years,
we have also seen some work using machine learning approaches to
predict the subspace onto which the full-order model is projected. For
example, a Bayesian nonparametric Gaussian process subspace
(GPS) regression model has been proposed for subspace prediction
[14]. With multivariate Gaussian distributions on the Euclidean
space, the method hinges on the induced joint probability model on
the Grassmann manifold, which enables the prediction of POD basis.
The interpolation method has been further extended by utilizing the
unsupervised clustering approach to cluster data into different clus-
ters within which solutions are sufficiently similarly such that they
can be interpolated on the Grassmannian [15].

The idea presented in this paper resides between directly interpolat-
ing POD basis and constructing global POD basis. The paper proposes
abinary regression tree to optimally partition the parameter spaceinto a
number of subregions, and construct the locally global POD bases for
each subregion. Recall that, a subspace spanned by a POD basis can be
viewed as a point in the Grassmann manifold, which enables us to
leverage the Riemannian distance between two subspaces (i.e., points)
[9]. In our regression tree, the points contained in a tree node are
precisely the subspaces spanned by POD bases. Given any tree node
split parameter and split value, it is possible to partition the subspaces
in a tree node into the left and right daughter nodes. For each daughter
node, we compute the global POD only using the data within that
daughter node (we call it the locally global POD) and the correspond-
ing subspace spanned by the locally global POD basis. This allows us
to compute the sum of the Riemannian distances, within a daughter
node, between the individual subspaces contained in the node and the
subspace spanned by the locally global POD basis on that node. Hence,
the optimal tree node splitting parameter and split value can be found
by minimizing the sum of the Riemannian distances on the two
daughter nodes. Repeating this tree node splitting procedure gives rise
to the well-known greedy algorithm that has been widely used to grow
binary regression trees [16].

Note that such a divide-and-conquer idea above can be traced back
to the Voronoi tessellations, which have been used as a clustering
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Fig. 1 POD modes on aircraft nose skin obtained from the FEA snapshot data for four selected collision conditions.

technique to systematically extract best POD basis [17]. A hierarchi-
cal splitting of the parameter domains has been proposed based
on proximity to judiciously chosen parameter anchor points within
each subdomain [18]. This idea, in a nutshell, is similar to the use of
regression trees to partition the feature space, and construct POD
basis for each subfeature space. In contrast, when growing the re-
gression tree on Grassmann manifold, the partition of feature space
and construction of POD bases for subfeature spaces become a single
integrated step driven by minimizing a predetermined loss function

(in this paper, the total Riemannian distances between the subspaces
spanned by POD bases on tree leaves). The simplicity and excellent
interpretability of regression trees embed transparency, fast compu-
tation, and easy implementation into the proposed method. To our
best knowledge, regression trees on Grassmann manifold for adapt-
ing ROM have not been developed in the literature.

In Sec. I, we present the technical details of how a regression tree
for adapting ROM can be grown. In Sec. III, numerical examples are
presented to demonstrate the potential advantages of the proposed
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approach and compare the performance of different approaches.
Section IV concludes the paper.

II. Regression Tree for Adapting ROM
A. Problem

Parametric model reduction is used to generate computationally
faster ROMs that approximate the original systems. This usually
starts with generating data from the full-order system by numerically
solving the governing PDE at a small set of parameter settings, A =
A1 Ay, ---, Ay} for N € N*. Here, 4, = A", 2%, ... 29) e P,
where P € R is the d-dimensional parameter space. For instance, in
the example described in Sec. I.A, FEA is used to simulate the aircraft
nose surface deformation at N = 35 collision conditions, and A;
contains the pitch, yaw, and roll degrees under each collision con-
dition i.

Given the parameter A, the solution of the full-order system is often
a space-time field:

(t,5) €[0, T] XS = x(t,5;4) €))

where S is the spatial domain, 7 > 0, and x(¢,s;4) is the solu-
tion of the full-order system given the parameter A. For exam-
ple, x(z,s;4) can be the surface deformation at location s and
time ¢ under the collision condition A. Let x(¢;4) = (x(z,5;;4),
x(t,85;A), ---,x(t,5,;4))7 be the solutions x(z,s;A) at discrete
locations s, §,, - - -, s, and at time ¢ given the parameter A; then,

D) = [x(11;4), x(12;4), -+, X(1,,54)] 2

is called the snapshot matrix (i.e., data) produced by numerically
solving the full-order physics at a parameter setting A.

In many engineering and scientific applications, the dimension n
of the vector x(#; 4) can be extremely high, and it is computationally
impossible to solve the full-order physics model for all potential
parameter settings. Hence, the projection-based model reduction
seeks for an r-dimensional vector (r < n) such that x(t;1)~
D, x.(t;4), where @, = (¢, P2, -+, ¢,) € R™ is the matrix basis
with orthogonal column vectors. Here, the basis matrix ® belongs to
the compact Stiefel manifold S7 (r, n), which is a set of all n X r
matrices of rank r.

The optimal matrix basis ®, for parameter 4 is found by

@, = argming | D(4) — ®O' D)7 3

where || - || is the Frobenius norm on the vector space of matrices.
The solution of this minimization problem is well-known according
to the Eckart—Young theorem and is obtained by the singular value
decomposition (SVD) of the snapshot matrix D(4) [3,5,6]:

A high-dimensional ||
full-order system

|
Parameter setting N —— Snapshot matrix

D) = UV, U=[u . uy, - ,u,l )
and ®; = [uy,u,, ---,u,].

Hence, it is clearly seen that the POD basis @, is only locally
optimal for parameter A and may lack robustness over parameter
changes; i.e., it could be unreliable to apply the POD basis, obtained
from a limited set of parameters (training set), to new parameter
settings (testing set) in the parameter space, leading to the following
problem statement.

Problem statement: Given {(4;, <I>,11)}§V= |» Where @, is the POD
basis constructed for parameter setting A; € A, the problem is con-
cerned with learning a mapping 7 : P — S7 (r, n) from the param-
eter space P € R to the compact Stiefel manifold. If such a mapping
7T can be constructed, it is possible to predict the POD basis @, for a
new parameter setting A* ¢ A (without numerically solving the
computationally expensive full-order physics model at 1*).

The problem statement is illustrated in Fig. 2.

B. Regression Tree on Grassmann Manifold

Binary regression trees are used to establish the mapping between
Aand @,. Let P be the parameter space of A. Suppose aregression tree
divides the parameter space IP into M regions, R, R,, ---, Ry, the
predicted basis ®* for a new parameter A* & A is given by

M
O = f(a*) = Z D, [cr,) (%)
m=1

where <i>m is the locally global POD basis constructed using data only
from region m, and Iy y = 1ifA* € R,, otherwise I y = 0.
In particular, let

D, =[DA)I; e,y D) per,ys - DAn)Ig,er,)]  (6)
be the snapshot matrix from region m, and (i),,, is obtained from the
SVD of D,,; see Eq. (4).

Like how regression and classification trees are typically grown,
we proceed with the greedy algorithm. At each tree node, we find the
optimal splitting variable j and split point / that define the left and
right daughter nodes:

RLG.D =0 <1y Rg(G.D =@ > ()
where 1V is the Jjth parameter in A. Note that, j = 1,2, -- -, d, where
d is the dimension of the vector A and / is a real value. Both j and / are
the decision variables to be determined when splitting a tree node.

By performing SVD of the snapshot data that fall into the left
daughter node [see Eq. (4)], we compute the locally global POD base
@, associated with the left daughter node. Using the same approach,

—p> POD basis 1 —}»> Reduced-order model 1
1

1
r* Parameter setting 2 —I> Snapshot matrix —I> POD basis 2 —> Reduced-order model 2

I I
| H !
I : !
I I
I I
— POD basis N — Reduced-order model N

L___I___I

A

New parameter setting

A statistical model that
———> establishes the mapping between —
Parameters and POD bases setting

ROM for the

New (predicted) —» new parameter

POD basis

Fig. 2 Learning the mapping between parameters and POD bases for predicting POD bases at new parameter settings.
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we obtain the locally global POD base (i>R associated with the right
daughter node. Then, the optimal splitting variable j and split point /
are found by minimizing

min; ¢ Y 6@, D)+ Y (@, D)y (B
A9eRr, () 2 eRg (i)

where /151) is the jth element in 4;, and 6(®, ®’) is some distance
measure between the two POD bases @ and ®’.

Riemannian distance. The choice of the distance measure (-, -)
becomes critical. Note that, the distance between any two POD bases
cannot be measured in a linear space (e.g., we cannot directly
compute the Frobenius distance between the two basis matrices).
This is because each POD basis matrix @; € R™" spans an r-
dimensional vector subspace Sg onto which the original state vector
x(t;A) is projected. Hence, one natural way to define the distance
measure &(-, -) is to consider the Riemannian distance between the
two vector subspaces, S and Sg ', respectively, spanned by POD
bases @ and @'.

Note that the matrix @ belongs to the compact Stiefel manifold
ST (r, n), which is a set of all n X r matrices of rank r, and the r-
dimensional vector subspace S¢ can be viewed as a point that
belongs to the Grassmann manifold G(r, n),

G(r.n) = {Sp CR".dim(Sg) = r} (C)]

which is a collection of all r-dimensional subspaces of R". This
enables us to properly define the Riemannian distance between the
two subspaces Sg and S/ spanned by @ and ®’, and use such a
distance as 6(-, -):

r 172 r 1/2
SRiemamnian (@ ') = (Z arccos(a%)) = (Z 912) (10)
izl

i=1

where 6; = arccos(o,_;;1) is the Jordan’s principal angle between ®
and @', and 0 < 6, <--- < o are the singular values of ®®’ [9].

The idea is sketched in Fig. 3. Given any POD basis matrices
® and @’ (i.e., two points in the Stiefel manifold), we use the
Riemannian distance between the two vector spaces S¢ and Sg
(i.e., two points in the Grassmann manifold) as a proper distance
measure between @ and ®’. Note that, because a POD basis matrix
spans a vector space onto which the full-order physics is projected,
it is not meaningful to directly compute the difference between two
POD basis matrices.

Computational considerations. The discussions above explain how
a regression tree can be grown on the Grassmann manifold, but it is
noted that growing such a tree can be computationally intensive. This is
because solving the optimization problem (8) requires repeatedly
performing SVD for candidate splitting variables and split points.

Stiefel manifold (where
the POD basis
matrices belong)

Grassmann manifold
(where the vector
spaces spanned by
POD basis belong)

v \
v
Sp—— ——
@ So'
Riemannian
distance
Fig.3 Riemannian distance between two vector spaces Sg and Sg as a
distance measure between @ and ®’'.

Fortunately, if the snapshot data do have a low-rank structure, then
the randomized SVD (rSVD) can be adopted at a fraction of the cost of
conventional SVD [19].

In particular, let D be the snapshot data matrix at a tree node, and
we randomly sample the column space of D using a random project
matrix P with r’ columns:

D' = DP (11)

Here, r’ is much smaller than the number of columns in D, and D’
approximates the column space of D. Then, the low-rank QR decom-
position of D’ = QR provides an orthonormal basis for D. It is
possible to project D to the low-dimensional space spanned by Q,
D = Q*D (where -* is the complex conjugate transpose), and per-
form the SVD on a much smaller matrix D

D =UzX;V (12)

*~
D

Because D is obtained by multiplying a matrix Q* to D from the left,
it is well-known that X5 = Xp, V5 = V), and the left singular
vector Up of D is given by

Up =0U; 13)

III. Numerical Examples

In this section, we present a comprehensive numerical investiga-
tion on the performance of the proposed approach. Five examples
are considered, including the heat equation, Schrodinger’s equation,
Thomas Young’s double slit experiment, temperature field for EBM
additive manufacturing, and aircraft nose deformation due to UAV
collisions. Comparison studies are also performed to compare the
performance of different approaches.

A. Example I: Heat Equation

In Example I, we start with a simple 1D heat equation:

& =7, &0,x) =sin(zx), x€[0,1], 120  (14)

where £(t, x) is the temperature distribution in time on a unit interval
[0, 1], and ¥ is the (positive) thermal diffusivity of the medium. The
boundary conditions aresettoé = latx = land & = Oatx = 0. We
solve the heat Eq. (14) for € [0,5] at 100 different values of
y € Q, =1{0.001,0.002, ---,0.099,0.1}. For any given y, a number
of 501 snapshots are obtained and denoted by D(y). Figure 4 shows
the temperature distribution in time and space for y = 0.001,
y = 0.05, and y = 0.1. We see that the solution of the heat equation
depends on the thermal diffusivity parameter y.

In our experiment, we train the tree using the data from 21 values of
y from the training set

Q‘y“““ = {0.001, 0.006, 0.011,0.016, 0.021, 0.026, 0.031,
0.036,0.041, 0.046, 0.051, 0.056, 0.061, 0.066, 0.071,
0.076,0.081, 0.086, 0.091, 0.096, 0.1} (15)

and the tree is then used to predict the POD bases for the remaining 79
parameter settings for y from the testing set QI = Q, \ Qirin,
Finally, three types of errors are computed, including the Frobenius
norm, L, norm, and relative error:

Frobeniusnorm: ef = | D(y) — é)y(i)yTD(y) . foryeQp

Lynorm: e® = |D(y) —®,® D(y)||,, fory € Qe

relativeerror: ¢! = [D(y)||7' - €f, for y € Qi (16)

where fi)y is the predicted POD basis for y € Q).
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Fig. 4 Solutions of a 1D heat equation for different thermal diffusivity parameters.
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We first illustrate how a tree can be grown following Egs. (5-8). In
this example, there is only one parameter, i.e., d = 1. Hence, at the
first tree node splitting, the goal is to find the optimal split value / that
splits the root node into two daughter nodes. This is achieved by
minimizing the loss function (8). For example, if the split value is
chosen to be [/ = 0.05, then the data generated under the first 10
parameters in Qﬁ{“i“ go to the left daughter node, while the remaining
data go to the right daughter node. Then, using the snapshot data on
each daughter node, the POD bases on daughter nodes can be
computed and the loss function (8) is evaluated for / = 0.05. As an
illustrative example, Fig. 5 shows the value of the loss function for
different values of /. It is possible to see that the optimal value of / is
near 0.04. In this case, the left daughter node contains the data
generated under the first four parameters, while the remaining data
go to the right daughter node. The same approach can be repeated to
further splitting the daughter nodes until the stopping criteria are
met. In the Appendix (Fig. A1), we provide some illustrative exam-
ples on how the constructed regression trees look like for the five
numerical examples.

Figures 6a and 6b show the error e,}f forally € Q, based onboth the
predicted POD bases by the proposed regression tree and the global
POD basis. In particular, we set the rank of the POD basis to 10 and
consider different minimum number of samples within a tree leaf
(10 and 20, respectively, in Figs. 6a and 6b). In other words, the tree
node splitting process immediately stops if the number of samples on
anode falls below the threshold. It is seen from both Figs. 6a and 6b
that the prediction error of the proposed approach is much lower than
that using the global POD for 71 out of the 79 testing cases (especially
for cases when y > 0.04). In addition, the minimum number of
samples within a tree leaf controls the tree depth and affects the
model generalization capabilities for out-of-sample predictions.

_ b 4
/
o | )/
< »
] /
» /
3 8 |le 0/
d
< \ ,
Al ’
— \\‘ ,‘
4
S - . o
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Fig. 5 Illustration of the loss function evaluated at different split point.

In this example, when the minimum number of samples within a
tree leaf is set to 10 (i.e., a deeper tree), the model has a better
predictive performance for cases when y > 0.7. In fact, as shown in
the Appendix, when the minimum number of samples is set to 10,
the tree has three terminal nodes (i.e., leaves). The first leaf con-
tains the cases when y < 0.04, the second leaf contains the cases
when 0.04 <y < 0.07, and the third leaf contains the cases when
y > 0.7. By comparing Figs. 6a and 6b, we clearly see the benefit of
dividing the space of y into three regions. Figure 6¢ shows the error
e;°, which is the maximum error observed when comparing the
predicted and true snapshot data. We see that using the predicted
POD basis generates better results for all cases, strongly demon-
strating the advantage of the proposed approach. Figure 6d shows
the relative error e}, which presents a similar pattern to that of
Fig. 6b. The small relative errors validate the adequacy of ROM
for this example.

We further compare the proposed method to the existing interpo-
lation method for POD basis via Grassmann manifolds [4]. This
approach requires us to select a reference point in the Grassmann
manifold (i.e., a subspace spanned by the POD basis constructed at
one particular parameter setting from the training dataset), and
performs the interpolation on the flat tangent space associated with
the selected reference point. In this example, because there are 21
values of 1 in the training dataset, each of these 21 values can be used
to establish the reference point. Hence, we perform the POD basis
interpolation for the 79 values of 1 in the testing dataset for 21 times,
and each time a particular value of A in the training dataset is used to
establish the reference point.

Figure 7a firstly shows the stability of interpolation, based on
the stability conditions [9], under the 79 parameter values of 1 for
21 different choices of the reference point (unstable interpolations
are indicated by red crosses). It is immediately seen that the
interpolation is unstable for values of A that lie on the boundaries
of the range of 1 regardless of the choices of reference points
(unstable interpolations are indicated by red “X”). After removing
the unstable interpolation results, Fig. 7b compares the prediction
errors, as measured by the Frobenius norm, for different values of
A between the proposed tree-based method, global POD, and the
interpolation method (note that the y axis is on natural log scale
for visualization purposes as some lines are not visible in the
original scale, and the rank of the POD is set to 10 when compar-
ing different approaches). In particular, for the interpolation
method, because 21 possible reference points can be chosen for
each interpolation, we present the averaged interpolation error
(from the 21 choices of reference points), the best (when the most
appropriate reference point is chosen), and the worst (when the
reference point is poorly chosen) errors. Some useful insights
can be obtained from Fig. 7 on how one may choose different
methods for predicting POD basis: i) the proposed tree-based
method outperforms for most of the values of A, especially for
those lie in the middle and upper ranges of [0, 0.1]; ii) when the
interpolation method is used, the choice of the reference point is
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Fig.7 Comparison between the proposed tree-based method, global POD, and the interpolation method.

B. Example II: Schrodinger’s Equation

In Example II, we consider the nonlinear Schrodinger equa-
tion that models the instance solitons in optical fiber pulse
propagation:

critical. For example, for 0.03 <1 < 0.075, poor choices of the
reference point may lead to extremely unreliable interpolations,
while appropriate choices of the reference point yield accurate
interpolations.
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which has a closed-form solution for a single soliton:

E(t, x) = 1/ 2ay " exp(i(0.5vx — (1 /40 — a)))sech(\/(}(x - vt))
(18)

where v is the speed at which the soliton travels, and « is the
parameter that determines the soliton’s amplitude. The example
presented in [20] considered a fast-moving and a slow-moving
solitons. The first one is initially located at x = 0 and travels at a
speed of v; = 1, while the second is initially located at x = 25 and
travels at a much slower speed of v, = 0.1.

We obtain the solutions of the Schrédinger Eq. (17) for 7 € [0, 40]
and for 46 different values of amplitude a € Q, = {0.05,0.051,
0.052 ---,0.49,0.5} . For any given a, a number of 401 snapshots
are obtained and denoted by D(a). As an illustration, the top row of
Fig. 8 shows the propagation of two solitons in time and space for
amplitudes @ = 0.11, a = 0.31, and o = 0.48. We see that the
solution of the Schrodinger equation depends on the amplitude
parameter .

In our experiment, we train the tree using the data generated from
13 amplitudes

QuEin = £0.05,0.09,0.13,0.17,0.21,0.25, 0.29, 0.33,0.37,
0.41,0.45,0.49,0.5} 19)

Then, the tree is used to predict the POD bases for the remaining 33
amplitudes from the set QI = Q, \ QU" Finally, three types of
errors are computed, including the Frobenius norm, L, norm, and
relative error as defined in Eq. (16).

As anillustration, the bottom row of Fig. 8 shows the reconstructed
solution, (I>a(I); D(a), at three amplitudes a = 0.11, a = 0.31, and
a = 0.48, using the POD basis <i>a predicted by the tree. Figure 9
shows the errors, for all a € Q,, based on both the POD basis
predicted by the proposed trees and the global POD basis. In par-
ticular, we consider different ranks for the POD bases and let the
minimum number of samples in a tree leaf to be 5. It is seen that, when
the rank of the POD basis is 10, the prediction error (in terms of the
Frobenius norm) of the proposed trees is lower than that using the
global POD for 31 out of the 33 testing cases (Fig. 9a). When the rank
of the POD basis is increased to 20, the prediction error of the
proposed trees is lower than that using the global POD for 27 out
of the 33 testing cases (Fig. 9b). We also note that, although increas-
ing the rank of the global POD basis helps to reduce the error, using
the POD bases predicted by the tree still yields much lower error for

alpha=0.11

@© @©
g © g °
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most of the parameter settings. Figure 9c shows consistent observa-
tions when the errors are measured by the L ., norm and the rank of the
POD basis is set to 10. Figure 9d presents the relative error when the
rank of the POD basis is set to 20. Itis seen that the proposed approach
can achieve a much lower relative error than using the global POD
basis for most of the testing cases. In the Appendix, we provide one
example to illustrate how the constructed tree looks like.

Similar to Example I, we further compare the proposed method to
the existing interpolation method for POD basis via Grassmann
manifolds. In this example, because there are 13 values for o in the
training dataset, each of these 13 values can be used to establish the
reference point for interpolation. Hence, we perform the POD basis
interpolation under the 33 parameter values of « in the testing dataset
for 13 times, and each time a particular value of a in the training set is
used to establish the reference point.

Figure 10a firstly shows the stability of interpolation under the 33
parameter values of « for 13 different choices of the reference point,
while Fig. 10b compares the prediction errors (in log scale) under
different values of a between the proposed tree-based method, glo-
bal POD, and the interpolation method (with unstable interpola-
tions being removed). The rank of the POD basis is set to 20 when
comparing different approaches. Similar to Example I, some useful
insights can be obtained: i) the interpolations are unstable for values
of a that are closer to the boundary of the range of a; ii) the stability
of interpolation also depends on the choice of reference points
(in this example, when the reference point is chosen corresponding
toa = 0.05 and a = 0.09, the interpolation is unstable for all target
values of a); iii) when the interpolation method is unstable or close
to unstable for small target values of a, the proposed tree-based
method yields lower error, which suggests the potential hybrid use
of the two methods.

C. Example III: Thomas Young’s Double Slit Experiment

In Example III, we consider the Thomas Young’s double slit
experiment governed by a partial differential equation

uy—Au = f; (20)
with boundary conditions and initial values

u = u(t) on I'p, n-Vu=0onTy

u =0 fort =0, u=0forr=0 21
where u denotes the quantity of displacement. The wave equation
describes wave propagation in a median such as a liquid and a gas. As
shown in Fig. 11, the domain of interest consists of a square with two
smaller rectangular strips added on one side. The Dirichlet boundary

alpha=0.31
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Fig.8 Top: the propagation of two solitons in time and space. Bottom: reconstructed solutions using the predicted POD bases.
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Fig. 10 Comparison between the proposed tree-based method, global POD, and the interpolation method.

condition is imposed on the line segments I'y, = {x:x; = —0.25},
and the Neumann boundary condition is imposed on the rest of the
boundaries. The source is given by f;(xr,) = u; sin(u,xt), where
# = (11, up) contains the parameters of interest.

The finite element method is used to solve Eq. (20) at 36 diffe-

rent combinations of y; and p, from a mesh grid of Q, =

{80, 84, 88,92,96, 100} ® {3.0,3.4,3.8,4.2,4.6,5.0}.

Here,

a

number of 5731 elements and 2968 nodes are defined on the domain.
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For any given g, a number of 401 snapshots are obtained and denoted
by D(p). As an illustration, the top row of Fig. 11 shows the solution
of Eq. (20) atu = (96, 5) attimes 100, 250, and 400. Here, the spatial
domain is standardized on [0, 1]?.

In our experiment, we train the tree using the data generated from
12 randomly selected parameter settings:

Quain — £(80,4.2), (80,3.0), (100,4.2), (92,4.6), (84, 4.6),

(88,3.4), (88,5.0), (96,3.8), (92,3.0), (100, 4.6),

(92,3.8),(96,3.4)} (22)
Then, the tree is used to predict the POD bases for the remaining 24
conditions from the set Q™' = Q, \ Q*". Finally, three types of
errors are computed, including the Frobenius norm, L., norm, and
relative error as defined in Eq. (16).

As an illustration, the bottom row of Fig. 11 shows the recon-
structed solution using the POD basis ®, predicted by the tree at
times 100, 250, and 400 for g = (96, 5). Figure 12 shows the error e,
for all u € Q™ based on both the predicted POD basis by the
proposed trees and the global POD basis. As in previous examples,
we consider different ranks for the POD bases and let the minimum
number of samples in a tree leaf to be 5. It is seen that, when the ranks
of the POD basis chosen to be 5 or 10, the prediction error of the
proposed trees is consistently lower than that using the global POD
for all 24 testing cases (Figs. 12a and 12b). Figure 12c presents the
error measured by the L, norm when the rank of the POD basis is set
to 10, and the performance of the proposed approach outperforms for
majority of the cases. Figure 12d presents the relative error, and the
advantages of the proposed approach is again clearly seen. In the
Appendix, we provide one example to illustrate how the constructed
tree looks like.

Similar to the previous examples, we further compare the proposed
method to the existing interpolation method for POD basis via Grass-
mann manifolds. In this example, because there are, respectively,
12 and 24 parameter settings in the training and testing datasets, we
perform the POD basis interpolation under the 24 parameter settings
in the testing dataset for 12 times, and each time a particular setting in
the training dataset is used to establish the reference point (the results
show that all interpolations are stable for this example). Figure 13
compares the prediction errors measured by the Frobenius norm (in
log scale) between the proposed tree-based method, global POD, and
the interpolation method (note that the y axis is on natural log scale for
visualization purposes as some lines are not visible in the original
scale, and the rank of the POD basis is set to 10 when comparing
different approaches). In this example, the interpolations turn out to
be insensitive to the choice of reference point; thus the plot no longer

1327

includes the best/worst cases. We see that both the interpolation
method and the proposed method outperform the use of global
POD bases, and the proposed tree-based method yields the lowest
errors for most of the testing cases.

D. Example IV: EBM Additive Manufacturing Process

In Example IV, we consider the heat transfer phenomenon during
the EBM additive manufacturing process of pure tungsten [21]. The
underlying governing equation of the transient heat transfer problem
is given as follows:

pcy 00—1; =V (kVT) + Q(x,1) in Q (23)
with the following initial and boundary conditions:
T(x,0) =T, in Q (24a)
T=Ty on I (24b)
—kVT - n = g, on I’y (24¢)
—kVT -n=n(T,-T) on I’y (244d)

Here, p is the material density, ¢, is the specific heat capacity, T is the
temperature, k is the thermal conductivity, T is the initial temper-
ature distribution, T, is the ambient temperature, Ty is the temper-
ature in Dirichlet boundary I'y, g is the heat fluxes on Neumann
boundary I',, & is the convection coefficient, I'; is the convection
boundary, Q is the space-time domain, »n is the unit vector outward
normal to the boundary, and the absorbed heat flux Q is defined as a
Goldak heat source [22]:

() () (3)
svare () (43F) (5

Q. 1)y = abcfﬂ:ﬁe
3(x; +v-1)? 3x3 3x3
o (F) (5) )
Q(x, l)r = We Cr e a e
Q(x,t)y, whenx; +v-t>0
Ox.1) = { (25)
O(x,1),, whenx; +v-1<0

where the width a, the depth b, the real length c,, and the front
length ¢, are geometric parameters; f, = 2c,/(c, + c) is the heat
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Fig. 11 Top: the solution of Eq. (20) at u = (96, 5) at selected times. Bottom: reconstructed solutions using the predicted POD bases.
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deposited fractional factor in the rear; f = 2¢;/(c, + cy) is the heat

7 ---- global POD ) i deposited fractional factor in the front; P is the parameter representing
- = interpolation ,‘l : energy input rate;v is the scan speed (100 mm - s~); and (x{, X, X3)
m h ; k. N define the initial position of heat source.

We solve this governing Eq. (23) by the finite element method
for 46 energy input rates P at Qp = {5.79,5.8,5.81,...,6.23,
6.24} x 10> W. A total number of 1089 snapshots are obtained for
each P, and Fig. 14 shows the snapshot of the solution at time 1000
for P =5.79 x 10> W. Here, NT11 is the nodal temperature in
kelvin. The length of the meshed model is 8.4 mm and the width is
0.875 mm. The height of the powder part is 0.07 mm, and the height
of the base part is 0.6 mm. Only a half of the Additive Manufacturing
(AM) model is considered in FE model, because the printing area is
located on the middle of the model. The melted area is discretized
with dense mesh, while the surrounding area is meshed with larger
elements.

In our experiment, we train the tree using the data generated from
16 randomly selected parameter settings:

Fig. 14 A snapshot of the transient heat transfer process at time = 1000 at an energy input rate of P = 579 W.
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Quein = (5.79,5.82,5.85,5.88,5.91,5.94, 5.97, 6.00,
6.03,6.06,6.09,6.12,6.15,6.18,6.21,6.24} x 102 (26)

Then, the tree is used to predict the POD bases for the remaining 30
energy input rates from the set Q% = Qp \ QU2in,

Figure 15 compares the errors based on the predicted POD basis by
the proposed trees, the global POD basis, and the existing interpola-
tion method for POD basis via Grassmann manifolds. As in previous
examples, we let the minimum number of samples in a tree leaf to be 5
(Figs. 15aand 15¢) and 10 (Figs. 15b and 15d), and set the rank for the
POD basis to 10. In addition, because there are, respectively, 16 and
30 parameter settings in the training and testing datasets, we perform
the POD basis interpolation for the 30 parameter settings in the
testing dataset for 16 times, and each time a particular setting in the
training dataset is used to establish the reference point (the results
show that all interpolations are stable for this example). Figure 15
clearly shows that the proposed method and the existing interpolation
method have very close performance, and both methods outperform
the use of global POD basis. We also note that the tree depth affects
the performance of the proposed method, as expected for any regres-
sion trees. In this example, a deeper tree is required to accurately
predict the POD basis at new parameter settings. In fact, for this
particular example, there exists an almost linear relationship between
the Euclidean distance (between any pair of energy input rates)
and the Riemannian distance (between any two subspaces on the
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Grassmann manifold), making both the proposed and existing inter-
polation methods effective. In the Appendix, we provide one example
to illustrate how the constructed tree looks like, and more discussions
are provided in the next section.

E. Example V: Additional Discussions

In the last example, we provide an example with some useful
discussions about when the proposed approach is expected to per-
form well. One key assumption behind the proposed tree-based
method (as well as the existing POD basis interpolation method) is
that similar parameter settings lead to similar POD basis. For two
neighboring parameter settings, the subspaces spanned by the two
POD bases are also expected to be close. However, when this critical
assumption is not valid, it becomes difficult to learn the relationship
between POD bases and parameters, if not impossible at all.

In Example V, we revisit the challenging nonlinear problem that
involves the aircraft nose metal skin deformation process due to
UAV collisions at different impact attitudes (i.e., pitch, yaw, and roll
degree); see Sec. l.A. Note that 35 snapshot datasets are obtained by
FEA from the 35 collision conditions (i.e., combinations of pitch, yaw,
and roll degrees), and 450 snapshots are obtained for each collision
condition. To capture the relationship between collision attitudes
and POD bases, we grow the proposed tree using the snapshot data
from 25 randomly selected collision attitudes. Then, the tree is used
to predict the POD bases for the remaining 10 conditions from
the testing set, and the error is measured by the Frobenius norm,
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L, norm, and relative error as defined in Eq. (16). As in previous
examples, we consider different ranks for the POD bases (5 and 10)
and let the minimum number of samples in a tree leaf to be 10. The
results are shown in Fig. 16. In the Appendix, we provide one
example to illustrate how the constructed tree looks like. In addi-
tion, Fig. 17a shows the comparison between the proposed tree-
based method, global POD, and the interpolation method.

A quick examination of Figs. 16 and 17a suggests that the pro-
posed tree-based method and the interpolation method do not out-
perform the use of global POD in this example. It is important
to understand the reason behind this observation. Recall that the
proposed tree-based method (as well as the existing POD basis
interpolation methods) is based on a key assumption that similar
parameter settings lead to similar POD bases. In other words, under
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similar collision attitudes, the subspaces spanned by the two POD
bases should have a small Riemannian distance on the Grassmann
manifold. To check this assumption, Fig. 17b shows the scatter plot
between the Euclidean distance (between any pair of collision atti-
tudes) and the Riemannian distance (between any two subspaces on
the Grassmann manifold). Note that we do not see a strong relation-
ship between the Euclidean distance and Riemannian distance (in
fact, the correlation coefficient is only —0.023). This observation
suggests that, although the POD bases change as collision attitudes
change, similar collision attitudes do not necessarily lead to similar
POD bases. Under this situation, we naturally do not expect the
proposed statistical learning method or the existing interpolation
method to perform well. For comparison purposes, Fig. 18 shows
the scatter plot between the Euclidean distance and Riemannian
distance for the previous Examples I, II, III, and I'V. The correlation
coefficient for the four examples is, respectively, 0.76, 0.74,0.79, and
0.99. For those examples, we clearly observe much stronger relation-
ships between parameters and POD bases, and this explains why the
proposed method and the existing interpolation approach outperform
the use of global POD basis in the first four examples. In particular,
for the EBM additive manufacturing example (i.e., Example IV), the
correlation between the Euclidean distance of parameters and the
Riemannian distance between subspaces reaches 0.99, which justi-
fies why the interpolation method performs extremely well as shown
in Fig. 15.

Riemannian distance between two subspaces
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IV. Conclusions

This paper demonstrated the possibility and effectiveness of using
statistical learning method (i.e., regression tress on Grassmann mani-
fold) to learn the mapping between parameters and POD bases, and
use the established mapping to predict POD bases for different pa-
rameter settings when constructing ROMs. The simplicity and ex-
cellent interpretability of regression trees embed transparency, fast
computation, and easy implementation into the proposed method.
The proposed tree is grown by repeatedly splitting the tree node to
maximize the Riemannian distance between the two subspaces
spanned by the predicted POD bases on the left and right daughter
nodes. Five numerical examples were presented to demonstrate the
capability of the proposed tree-based method. The comparison study
showed that, when there exists a correlation between the Euclidean
distance (between any pair of parameters) and the Riemannian dis-
tance (between any two subspaces on the Grassmann manifold), the
proposed tree-based method as well as the existing POD basis in-
terpolation method outperform the use of global POD, and thus better
adapt ROMs for new parameters. The comparison study also showed
that neither the proposed tree-based method nor the existing interpo-
lation approach uniformly outperforms each other. Each method out-
performs others under certain situations, suggesting a potential hybrid
use of these methods. Finally, the proposed tree-based method (as well
as the existing POD basis interpolation methods) is based on a key
assumption that similar parameter settings lead to similar POD bases.
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Fig. 18 Scatter plot between the Euclidean distance and the Riemannian distance for Examples I, I, III, and IV.
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In other words, under two similar parameter settings, the subspaces
spanned by the two POD bases should have a small Riemannian
distance on the Grassmann manifold. However, this is not always
the case due to various reasons (e.g., the nonlinearity in the problem).
To overcome this issue, we see a few future research directions: i) to
develop more sophisticated statistical leaning methods to capture
the potentially complicated (say, nonlinear) relationship between
parameters and POD bases; ii) to investigate or create other distance
metrics other than the Riemannian distance; and iii) to perform
coordinate transformation before applying the proposed method.
For example, instead of directly constructing the relationship bet-
ween parameters and POD bases, we learn the relationship bet-
ween some function of the parameters and POD bases. This is a
common strategy in statistical learning but often case dependent.
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Samples
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a) Example I: the heat equation (stopping criterion: if the number
samples in a node is less than 10)

<46
Samples Samples Samples
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¢) Example I1I: the double slit experiment (stopping criterion: if the
number samples in a node is less than 5)
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< -36°
/

Samples
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Computer code is available on GitHub: https://github.com/dnn
code/Trees_for_Adapting_ ROM.

Appendix: Illustration of the Constructed Trees

In this appendix, we provide examples of constructed regression
trees for the five numerical examples.
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Fig. A1 Examples of regression trees constructed in Examples L, I, III, IV, and V.
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