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Abstract. The inhomogeneous incompressible Navier-Stokes equations with fractional Lapla-
cian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness
of global strong solutions with vacuum are established for large initial data. The exponential decay-
in-time of the strong solution is also obtained, which is different from the homogeneous case. The
initial density may have vacuum and even compact support.
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1. Introduction. In this paper, we are concerned with the Cauchy problem of
the following fractional inhomogeneous incompressible Navier-Stokes equations:

Op + div(pu) =0, x €R™ t >0,
O(pu) + div(pu @ u) + p(=A)*u+ Vp =0,

1.1
V-u=0, (L)

p(x,O) ZPO(x)v U(CL'70) ZUO(:C)v

where p = p(z,t) denotes the density, v = u(x,t) = (u1(z,t),us(x,t), - -, up(z,t))
denotes the fluid velocity, p(x,t) is the scalar pressure, and p > 0 is the viscosity that
is assumed to be one for simplicity; po(z) and ug(x) are the prescribed initial data for
the density and velocity with V - ug = 0. The fractional Laplacian operator (—A)%
with a > 0 is defined via the Fourier transform as

(ZA) () = ¢ Fle),

where f is the Fourier transform of f. The fractional problems arise from many
applications in fractional quantum mechanics [27], probability [4, 6], overdriven det-
onations in gases [10], anomalous diffusion in semiconductor growth [39], physics and
chemistry [32], optimization and finance [11], and so on.

There have been a lot of studies on the fractional Laplace-type problems recently.
When o = 1, the system (1.1) becomes the classical inhomogeneous incompressible
Navier-Stokes equations, describing fluids inhomogeneous in density. Typical exam-
ples of such fluids include the mixture of incompressible and non-reactant flows, flows
with complex structure (e.g. blood flows or rivers), fluids containing a melted sub-
stance, etc. We refer to [30] for the detailed derivation of this system. Because of
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its physical importance, complexity, rich phenomena and mathematical challenges,
there is a notablly large literature on the mathematical studies on the well-posedness
of solutions to the classical inhomogeneous incompressible Navier-Stokes equations.
For example, when the initial density is strictly positive, Kazhikov [25] proved that
the system has at least one global weak solution in the energy space, the local
(global if n = 2) existence and uniqueness of strong solutions were first obtained
in [3, 26], and similar results were established recently in a series of works such as
[1, 2, 7, 13, 14, 33, 34, 15, 16]. For the initial data with vacuum, there is a possible
degeneracy near vacuum and hence the problem becomes much more complicated.
The global weak solution with a finite energy was constructed first in Simon [36] and
then by Lions [30] with the density-dependent viscosity. The global existence of two-
dimensional strong solutions with general initial data was established in [21, 17, 31, 36]
for the inhomogeneous Navier-Stokes equations with vacuum. The three-dimensional
local strong solution was obtained in [9] under a compatibility condition, and the
global strong small solution was proved in [12], as well as [22, 41, 20] for the case of
density-dependent viscosity. For three or higher spatial dimensions, the existence of
global strong solutions with general initial data is a well-known open problem. One
difficulty is that the Laplacian dissipation is insufficient to control the nonlinearity
when applying the standard techniques to establish global a priori bounds. Hence it
is natural to explore the problem via replacing the Laplacian operator by the frac-
tional Laplacian operators as in (1.1), motivated by the applications aforementioned,
in order to obtain the global strong solution for the general initial data, which is the
aim of this paper.

When the density p is a constant, the system (1.1) becomes the classical fractional
homogeneous incompressible Navier-Stokes equations, which admit a unique global
smooth solution as long as o > % + 4. This result dates back to J. Lions’s book [29]
in 1969, which is even true for some logarithmic corrections (see [37, 5] for details).
These results were extended to the inhomogeneous system (1.1) in [18] for a > £ + 2
and in [19] for the corresponding logarithmic case. It should be noted that both [18]
and [19] require the initial density py bounded away from zero, i.e., the flow has no
vacuum. The goal of this paper is to relax this restriction. More precisely, we shall
establish the global existence of strong solutions with vacuum to the system (1.1).
Moreover, we shall also obtain the exponential decay-in-time of the strong solution.
We recall that (p,u) is called a weak solution to the system (1.1) if it satisfies (1.1)
in the sense of distributions, and a strong solution if the system (1.1) holds almost
everywhere.

In this paper, we shall adopt the convention that C denotes a generic constant
depending only on the initial data. For simplicity, we will frequently use the notation
A= (=A)2. For 1 < r < oo and integer k > 0, we use the following notations for
the standard homogeneous and inhomogeneous Sobolev spaces:

L' = Lr(Rn)v W = {g€ LllOC(Rn) : HgHW’CT = ||Vk9||LT < oo}, Whi=L"n kav

i ={os ol = [ lePIROPd <o), me = r2ne

Now we state our main result of this paper as follows.

THEOREM 1.1. For the system (1.1) with o = 4+ + 2 and n > 3, if the initial
data (po, uo) satisfies the following conditions:

0 < po € L7t3(R") N L®(R"), Vpy € L746 (R™) N L2(R™), (1.2)



INHOMOGENEOUS NAVIER-STOKES EQUATIONS 59

Voug=0, ugeHzY5(R™), /pouo € L*(R"), (1.3)

then it has a unique global strong solution (p,u) such that, for any given T > 0 and
forany0<7<T,
0<peL=(0,T; L+ (R") N L®(R")), Vpe L=(0,T; L7 (R") N L*(R”
we L=(0,T; H2H 5 (R™) N L2(0,T; H'" 5 (RY)), /pdu € L=(r,T; L*(R"
VPOwu € L (7, T; L*(R™)), Oy € L*(r,T; H2H5 (R™) N L= (r, T; H2 H (R),

4n 4n

A Eu e L¥(r, T L7=2 (RY),  p € L=(7, Ty HY(R™)) N L (r, T; W22 (R™)).

);
)

)

Moreover, there exists some positive constant vy depending only on ||p0||L% such
that, for allt > 1,

A (@) 3. + VAo 2 + NS u@ 2, s+ IATT T Ou(0) 2

2
||L2mL

1 An SCB_M&,

t 2
P2,

where C' depends only on lpoll, 2z, > llpollz, IV pollz2, [Iv/Pouoll L2 and 1Az g 2.

ntz

REMARK 1.1. For the exponential decay-in-time property of Theorem 1.1, the
estimate of the density:

@I, 28, < llpoll, 20 (1.4)

L n+2 L n+t2

plays a crucial role. This estimate (1.4) does not hold for the homogeneous case (with
constant density) in the whole space. In fact, only algebraic decay rate has been
obtained for the homogeneous case in literature, e.g., [2, 8, 23, 24, 38, 35].

REMARK 1.2. As a consequence of the proof of Theorem 1.1, the corresponding
conclusions of the global existence and exponential decay of strong solutions are also
valid for the system (1.1) with at least 3 + 2 < a < %. We also remark that our
arguments can be adopted to other similar systems with the same dissipations.

REMARK 1.3. Under the assumption that the initial velocity is suitably small,
the exponential decay-in-time of the strong solutions was obtained in [20] for the
Cauchy problem of the three-dimensional classical inhomogeneous incompressible
Navier-Stokes equations (i.e., the system (1.1) with o = 1) with density-dependent
viscosity and vacuum, which of course is valid for the constant viscosity case. We re-
mark that Theorem 1.1 is proved without any smallness on the initial data. Moreover,
the initial density is allowed to have vacuum. We also point out that the regularity
assumption on the initial density Vpg € L#+5 is used only to guarantee the unique-
ness of the solution. As a matter of fact, it is not clear whether we can adopt the
arguments used in [17, page 1373-page 1378] to remove the regularity assumption

Vpo € L##s for the system (1.1) with a = £ + 2 and n > 3.

REMARK 1.4. Finally, compared with the previous works [9, 12, 21, 22, 41], the
following corresponding compatibility condition on the initial data is dropped from
Theorem 1.1:

(—A)z g + Vpy = NIZYE (1.5)
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with (po, g) € H'(R™) x L?(R"™). However, without the compatibility condition, the
price that we need to pay is that the parameter 7 in Theorem 1.1 must be positive
and can not be replaced by the initial time 7 = 0.

We now outline the main idea and make some comments on the proof of this
theorem. The local existence of strong solutions to the system (1.1) can be derived
easily following [9, 28] (see Lemma 2.1). In order to prove global existence we need to
establish global a priori estimates on strong solutions of the system (1.1) in suitable
higher-order norms. Since the density has no positive lower bound and the velocity
has no smallness or compatibility conditions, the proof of Theorem 1.1 is much more
involved compared with the related works in literature. Therefore, new ideas are
needed to overcome these difficulties as explained below. First, taking the advantage
of the estimate (1.4) on the density, we have the following key observation:

i 1, n 1, n
IWeullz < IIVell | ap, l[ull an, < Cllpllz%HA?“ullm < COfAT |,

Ln+z2 n—2

which implies that ||\/pu(t)||7. decays with the rate of e~7* for some v > 0 depending

only on || pOHL 20, (see Lemma 2.2 for details). With the help of this key exponential

decay-in-time rate, we can show that ||A%"’%u(t)|\2L2 decays at the same rate as e~7*
(see Lemma 2.3 for details). The next step is to derive the bound of ||\/pdyu(t)|3-.
However, it prevents us to achieve this goal due to the absence of the compatibility
condition (1.5) for the initial velocity. To overcome this difficulty, we first derive the
following crucial time-weighted estimate (see (2.25)):

t
t||/pOru(t)||32 +/ AT o u(r) |2 dr < C, Vit >0, (1.6)
0

where the positive constant C' is independent of the initial data of \/pd;u. In fact,
the time-weighted estimate is crucial in dropping the compatibility condition on the
initial data (see [20, 28, 31, 34] for example). As a result, (1.6) allows us to derive
the desired exponential decay-in-time rate (see (2.26)):

t
O |ly/pout)|f3 + / TN RO u(r) |2 dr < €, Ve L.

As a matter of fact, all these exponential decay-in-time rates and the time-weighted
estimate (1.6) play an important role in obtaining the desired uniform-in-time bound

of fot IVu(T)|| Lo d7 (see (2.34) for details). Next, by means of these a priori estimates,
we can establish the time independent estimates on the gradient of the density. This
further allows us to derive the time-weighted estimate (see (2.43)):

t
A2 du(t)]2. +/ 72| /pOrru(T) |32 dT < C, Yt >0. (1.7)
0

Note that, thanks to the weighted factor ¢2, the constant C' in the above estimate is
independent of the initial data of A2+ % d,u. With (1.7) in hand, we then can conclude
the exponential decay-in-time rate (see (2.44)):

t
AR Dpu(t)2a + / /PO ru(r) |2 dr < . V> L.
1
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Therefore, the higher regularity of the velocity and the pressure follow directly. The
1 n
uniqueness is quite subtle as we only have the estimate fot T[[A2 T 50 u(r)|3. dr < C

rather than fot |Az+E d-u(7)||3, dr < C. This means that the uniqueness can not be
proved by the standard Gronwall’s inequality, instead we use a new Gronwall type
inequality in [28]. With all these a priori estimates obtained, we can finally establish
the global existence and uniqueness as well as the exponential decay of global strong
solution to the system (1.1) in Theorem 1.1.

As a byproduct, using the similar arguments of the proof for Theorem 1.1, we can
also obtain the exponential decay of strong solutions to the two-dimensional Navier-
Stokes equations with damping. We remark that without damping, only algebraic
decay rate was obtained in [31].

The rest of the paper is organized as follows. In Section 2 we carry out the proof
of Theorem 1.1. In the appendix, we present the byproduct on the exponential decay
for the two-dimensional Navier-Stokes equations with damping and a sketch of the
proof.

2. The Proof of Theorem 1.1. This section is devoted to the proof of Theorem
1.1. We shall prove Theorem 1.1 in several steps. In the first step, we state the
local existence and uniqueness of strong solutions. The main part of the proof will
focus on establishing a priori estimates for strong solutions. In the second step, we
make use of the estimate on the density to derive the exponential decay-in-time:
e’ \/pu(t)||2. < C for some vy > 0, which also allows us to further establish the same
exponential decay-in-time: ||Az+%u(t)|2, < C. In the third step, with the aid
of the exponential decay estimates obtained above, we continue to derive the time-
weighted estimates and the exponential decay of ||\/pdyu(t)||2, as well as some other
quantities. With the above estimates at hand, the fourth step is devoted to obtaining
the uniform-in-time bound of fot IVu(T)||Le~ d7 and thus establishing the estimate of
the gradient of p. In the fifth step, we establish the time-weighted estimates and the
exponential decay of |\A%+%8tu(t)\|%2 and some other quantities. Finally, combining
all the above estimates, we prove Theorem 1.1. Now we present the details step by
step.

2.1. Local well-posedness. Inspired by the works of [9, 28], one may construct
the local existence and uniqueness of strong solutions.

LEMMA 2.1 (Local strong solution). Under the conditions of Theorem 1.1, there
exists a small time T* and a unique strong solution (p, u) defined on the time period
[0, T*] to the system (1.1) with o = % + % and n > 2 such that, for any 0 <7 <T*,

2n 4n

0<pe L>0,T% Ln+=(R") N L®(R")), Vpe L=(0,T*; L+ (R™) N L*(R")),
p e L=(0,T* H'(R™), we L®(0,TH 1(R") N L0, T H" % (RY)),
VPO € L (1, T"; L2(R”)), Ou € L2(T, T H%Jf%(R")).

Proof. The proof can be performed via the Galerkin approximate approach.
Firstly, assume that (po, ug) satisfies (1.2)-(1.3). We construct (p§, ud) satisfying
in addition to (1.2)-(1.3) and

0<d< pg < ¢ for some positive constant o,
pd — po in L%(R"), Vp — Vpo in L%(R") as 6 — 0,

ug — ug in H%Jr%(R"), \/pgug — /poug in L*(R™) as d — 0.
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Since p) > 6 > 0 is strictly positive, by means of the classical theory of the ordinary
differential equations and a fixed point theorem (see [9, 36]), one may construct a
sequence of approximate solutions (p?, u’) over the interval (0, T?) for some T° > 0.

Moreover, we derive

d

T X))+ C1Y(t) < C2X7(t)

for some o > 1, where X (¢) and Y (¢) are given by

X(&) =@l

2n
Lnt2 Lo

+ V() AR Eu(t)|[F2 + ¢l VpOeu ()17,

n+6 ﬂL2

Y () = A2 u(t) |72 + | ATT T dpu(t) 7.

Therefore, it yields that there exists a positive small time 7™ independent of § such
that the solution (p°, u?) satisfy all the estimates of Lemmas 2.2-2.6 over the interval
(0, T*]. In particular, we have

s 5 lin g
[V p°Oru ||2L2(0,T*;]R") + llp ||2L2(0,T*;H1(]R")) +[[AzTTu ||2Loo(o,T*;L2(JRn))
+[IAF 00320 gy < Co, (2.1)

where Cp is an absolute constant independent of ¢. By (2.25), it follows for any

t € [0,77] that

tV/pP 0yl (t)||2.2 +/ AT E 00 ()| 20 dr < Co. (2.2)

Thanks to (2.2), we may conclude for any v € (0, %) and for any T € [0,7*]

§
|| HH’Y 0,T; H% %(Rn)) < CO(W’T) (23)

As a matter of fact, (2.3) can be deduced as follows

o
[’

HY(0,T;H2+ % (Rn))

T
= HL2(0 T;HEHE (RR))

T—h 14n 600112
A2 tEud(t+h) — A2t t)||%2
+/ / H — ( ) Ol dtdh
0

hl+2y

= |lu’|?
L2(O T; b has (R™))

T—h t+h “3r3 AT 10,48 (7) dr |2

h1+2’y

<l ‘5H2
- LQ(OTHz 4(R"))

+/ /Th R g [P AT 9,00 (7)]|2, dr i

h1+2'y

< [lu’)?
L2(0,T; b Ras (R™))

T—h t+h 1y
4n T
/ 7-||A2 10, wd ||L2 dT/ / ST dtdh
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T—h *+h —Ldr
< Cpy+ Co/ / ST dtdh

T
Inh TWT — (T — h)In(T — h
:Co+00/ndh+00/ n?= (T -hn(T=h),
0 0

h2’y h1+2’y
S CO <7a T) 5

where in the last line we used 0 < v < % Thanks to the above estimates, by the
Cantor diagonal argument, there is a subsequence of (p?, u?) still denoted by (p°, u’)
and a pair (p, u), such that for any T € [0,7*] and for any ¢, € (0, 7]

S VORn L0(0, T AV (R™) 1 L (to, T HIHE (R™));
wb = in L2(0, Ty HY5 (R™)) N L2 (to, T; H'F 3 (R™) N W3 772 (R™):;
o’ — dyu  in L*(0,T; H=t T (R™));

P8 VRS i 10(0, T, L (R™) 1 WS (R7));

2(n+2)

Oyp’ — 9yp in L w2 (0,T; L% (R™)).

Moreover, the above estimates and the standard compact embedding imply that,
up to subsequence, u® — u in LIOC(O,T*;H%+%(R”)) for some u that, in addition,
satisfies (2.1), (2.2) and (2.3). For the density, we have p° — p in L>°(0,7*;R") and
0 < p < p. All those estimates are more than enough to justify that (p,u) is a weak
solution to (1.1), precisely,

t t
< p(t)u(t), x(t) > — < pouo, xo > —/ < pu,0rx > dr —/ <pu®u,Vyx > dr
0 0
t
+/ < Artiy ATty > dr =0; (2.4)
0

for all smooth compactly supported divergence-free vector function y € C*°([0,T*) x
R™). Moreover, the continuity equation is fulfilled in a distributional meaning

Op +div(pu) =0 in S'(0,T%;R"). (2.5)

Therefore, by (2.12) and (2.35) as well as the Aubin-Lions compactness lemma, we
have

2
p° — p in C(0,T*; LP(R™)) for any % <p < 0. (2.6)
n

As a result, (p,u) satisfies (2.1) and (2.2). Furthermore, combining (2.1), (2.5) and
(2.4) yields that the momentum equation is fulfilled in the following strong sense

O(pu) + div(pu @ u) + (—A)%*‘%u +Vp=0 in L*0,T*;R")

for some pressure function Vp € L%(0,T*;R") satisfying (2.1). Next, we will show
the time continuity of the solution (p,u), namely,

p € C([0,T7]; LY(R")), (2.7)
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pu € C([0,T*]; L*(R™)). (2.8)

Due to 9;p° = —ud - Vp?, one has

t
) ) _ )
16°6) = 681l 2y = H/ 0, 4%(r) dr

*Vp(r )dT

/ o Vo), 2,

< / WOl any [V6° ()], s, i

Lnt2

2n
+2

<c/ A |96 ()], e,

Lnt6

< Co(t

where in the last line we have used (2.16) and (2.35). By the Holder inequality, one
has

1— —2n_ 2n
16°8) ~ il < P (®) — RN 170) — AL < Gl

y (2.6), we thus get for any € > 0

Ip(t) = pollLa < llp(t) = p° (B)llze + 127 () — PdllLe + Ilp§ — pollLa
< Sy oyt 4 S
> 3 0 37

which implies that for ¢ sufficiently small

llp(t) = pollLe <e.

This yields that p continuous at the original time and satisfies the initial condition
pli—o = po, which further leads to (2.7). To show (2.8), we first notice that Az % d,u’
is bounded in L?([tg, T*] x R™) for any ty € (0,7%] due to (2.2). According to (2.16),
we know that A2 %40 is bounded in L>°([0, 7*]; L2(R™)). Thus, one can conclude by
means of Ascoli theorem that, up to extraction, u® — u in C([to, T*]; L9(R™)) for any
q < ;%5 and for any ty > 0, which along with (2.6) further yields

pu € C([to, T*]; LA(R™)). (2.9)

Consequently, it remains to verify the continuity of pu at the original time. To this
end, we first show that

t
1% (t) — pfus| an, = H / 0, (p"u®)(7) dr
t
(0, )(7) + (o) (rdr||
0 L3n+2

t t
S/0 H(aﬁoéu&)(T)HLsﬁiz dTJr/O ||(p68"'u6)(7-)||L3i12 dr

4n
L3n+2
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t
g/o | - V)@, dr
t
+ [ ooy
t
< [ 1P Ol a1, 12 e, dr

/Hp W o, | V0-0) ()52 dr
< Colt t+co/ (VPP 0,u0)(7) | 2 dr

< Colt)t + Cot (/ (V30 o) ar

< Co(t)t + Cot?,

in dr

L3n+2

1
2

where we have used (2.16) and (2.35) again. Using the Holder inequality yields

1(°u®)(8) = pousllzz < Cll(p°u’)(t) — poUoH2

1
") (@) = ool

1
2

< (Co(t)t + Cot5>
We therefore derive

1(pw)(t) — pouollzz < [[(pu)(t) — (ou) (B)]| 2= + | (6" (8) — pusd| 2
+llpdud — pouol| 2

< ll(pu)(8) = (o u®))lz= + (Colt)t + Cot? )

+lpug — pouol| L2 (2.10)

Nl=

Keeping in mind (2.9) and (2.8), we deduce for any ¢ € (0,7*] that
tim inf || () () — (%) ()2 = 0. (2.11)
0—0

Combining (2.10), (2.11) and the fact \/pJul — /pouo in L*(R™) as § — 0, one has
for any t € (0,77

Nl=

| pu)(t) = pouo |2 <Timinf [[(pu)(t) = ("u") (D)= + (Co(t)t + Cot?)

+lim inf [|pug — pouo | 2
6—0

= (Co(t)t + Cot%> :

As a result, this implies that pu continuous at the original time and satisfies the initial
condition pult—g = poug. This concludes the proof of the existence part of Theorem
1.1. Finally, the proof of the uniqueness of (p, u) can be performed as the part of
Proof of Theorem 1.1 (see the end of this section). This finishes the proof of Lemma
2.1. 0
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2.2. Exponential decay of ||\/pu(t)||2. and ||A%+%u(t)\|%2. We begin with
the basic energy estimates.

LEMMA 2.2. Under the assumptions of Theorem 1.1, the solution (p,u) of the
system (1.1) admits the following bound for any t > 0,

n < n .

IO, 2, < lpoll 2, (212)
t

SVpult)lEs + [ TN R u) s dr < VAol (2.13)
0

Proof. First, the non-negativeness of p is a direct consequence of the maximum
principle and pg > 0. We multiply the equation (1.1); by |p|P~2p, integrate it over
R™ and use V - u = 0 to conclude

d
—|lp(t =0.
L ot0) 1
We then obtain ||p(t)||zr < ||pollLe. Letting p — oo yields ||p(t)||z= < ||pollLe=-

In order to show (2.13), we multiply equation (1.1)s by u, use the equation (1.1);
and integrate the resulting equation over R™ to show

1d 1. n
5@%/@@)”%2 +][AzF 2. = 0. (2.14)

Now it is easy to check that there exists some constant C, = Cy(n) such that

Ivaullze < IVAl, 4,

n—2

1 i.n
ull an < Cullpll? o A2 Fu 1o
L L nt2
1 1
< Cullpoll? 2o [IAZH 50|z, (2.15)
L nt2

where and henceforth the following embedding inequality will be used frequently:
lullzs < Cla,n)|AZ " 7ullz, 2 < q < cc.

Thus, we conclude from (2.14) that

d l4n
V@Il + A Veu®)lZ + A2 7z =0,

where
B 1
= Tl

n+2

~

Integrating in time yields (2.13). This completes the proof of Lemma 2.2. O

Based on the estimate (2.13), we now derive the same exponential decay estimate
for [|AF+Hu(t) 2.

LEMMA 2.3. Under the assumptions of Theorem 1.1, the solution (p,u) of the
system (1.1) admits the following bound for any t > 0,

t
AT u(t)]|2 +/0 T(IAFEu(r)||Zs + lVpdru(r)||72) dr < C1, (2.16)
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where Cy depends only on ||p0||L on, ol lv/PotollLz and A2+ 5 ugl| 2.

n+2

Proof. First, multiplying the equation (1.1)2 by du, using V-u = 0 and integrat-
ing by parts, we obtain
1d iz 2 2
=S AR )| + VPOl = — | pu-Vu-duda.
2dt R™
With the aid of the Gagliardo-Nirenberg inequality, one gets

- / pu-Vu- dude < Ju- Vull 2|/l 1= I1y/porull 2

1
< CllpollEoe llull, samy 1Vl o lIv/pOrul| L2

n—2 n+2

l,n
< ClIAZF 5 ul| | V/poeul 2

1 n n
< SIVPull gz + CIAS Fulfa| A Fuflf,. (2.17)
We therefore conclude that
d 1, n 1, n 1, n
aHAZ“U(t)II%z + VpdrullF: < ClIAZH T ul|72 A2 5| Z..
This implies
d

1 n n
Z (AT u(t)[52) + €| Vpdhul T2 < v A Fu(t)]7

+ CeM | AT g2, | A a2,

Integrating in time and using (2.13) yield
. t
AR u(t)[20 + / /A0 u(r) |22 dr
0
t
< AR Fugla + / ST AF E u(r) |20 dr
0
t
+C/ OTAFEu(r) 2| A ()| 2 dr
0
t
SO C/ ETIAFu(r) |2 | AR ()| 2 dr.
0
We thus get
. t
Il A R N RO T A
0
t
<C+ c/ AT u(r)|| 2, | AT u(r) |2, dr. (2.18)
0

Let us recall the classical Gronwall inequality: assume that ¢(¢), g(t), a(t) be non-
negative functions over [0, 7] and satisfy

o(t) < 6(0) + / a(r)g(r) dr + / o(r) dr
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or

S0(t) < alt)olt) + (),

then, it holds for any ¢ € [0, T that
() < elo e a4 (0) + /O t g(s)els 2 g,
By virtue of the above Gronwall inequality and (2.13), one deduces from (2.18) that
AT u(t)]|2. < Crexp [/Ot IAZ 5 u(r)||22 dr| < Ch, (2.19)
which along with (2.18) also implies

t
/ ||/ u(7) |22 dr < G (2.20)
0

Now let us recall the generalized Stokes equations

—A): iy 4+ Vp = —pdu — pu - Vu,
{( ) p=—pdu—p (221)

V-u=0,
then we have
Vp = (—=A)"'VV - (pdsu + pu - Vu). (2.22)
Thus, it follows from (2.21) and (2.22) that
[AY 2|2 < Cllpdeullz2 + Cllpu - Vul| 2

< CllVoll=lIvedrulle + Cllpll sl Vull e
< CllVporul Lz + C||u||L an_ ||Vl

n—2

Ln%fz
< C|l/poyul| > + ClIAZT T w2 (2.23)

This allows us to show
t

t t
/ 67T||A1+%u(7)||2L2 dTS/ M|/ pOru(T) |32 dT+/ e'yT||A%+%u(T)||%2 dr
0 0 0

where we have used (2.13), (2.19) and (2.20). We thus complete the proof of the
lemma by combining (2.19), (2.20) and (2.24). O

2.3. Time-weighted estimates and exponential decay of ||\/pd,u(t)|3.
and other quantities. The following lemma is crucial to derive the higher order
estimates of the solutions.

LEMMA 2.4. Under the assumptions of Theorem 1.1, the solution (p,u) of the
system (1.1) admits the following bound for any t > 0,

AT E w2 + tlp(0) 17 + tlv/poru(t) |72

t
+/ THA%+%67U(T)”%2 dr < (4. (2.25)
0
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Moreover, for any t > 1, the following estimates hold true

¢
VROl + [ O7IAF o u(nldr < G, (2.26)
1
¢
! IAT Eu(t)||7 +/ A Eu(7)|2. dr < 1, (2.27)
1
lp(®)3: < Ci, (2.28)
where Cy depends only on ||p0||anﬁ2, llpollzee, llv/Potollrz and A2+ % ugl| 2.

Proof. First, applying the time derivative 9; to the equation (1.1)y gives
PO+ pu - Vou+ (—A) 25 d,u + Vop = —0,pdyu — Oy (pu) - V. (2.29)

Multiplying (2.29) by d;u and using the equation (1.1);, we derive that

1d 1, n
iallx/ﬁf)tU(t)lliz + AT Opul|7

= — Oy pOyu - Oyu dx — O(pu) - Vu - dyu dx

]R’!L R‘IL
= —2/ pu-V@tu-atudm—/ patu~Vu-3tudm—/ pu - V(u-Vu- o) dr
= N1 +N2+N3 (230)

By means of the embedding inequalities, one shows

Ny < ClIVal i I/pdeull 2 [F0yull s, ], s,

1, n 1, n
< Cllv/pOrull 2 A= 5 dpul[ 2 | A2 5 ul| 2

1 1, n 1, n
< Az olze + CIAZ S ulZ2 ]| posulZe

and

N < Clv/alle~ Iv/o0uull 2 [Vull | sp, 100ul | an,

1, n 1, n
< Clly/porull = A= 5 | p2]| A2 75 Byul| 2

1 1, n l.n
< glAF T owle + CIA Sl g2 | Vpoiul7a.
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For the term Nj, it can be bounded by

N3 < +

/ pu - Vu - Vu - Qyudr

/ pu - u - Vu - Oyudr

+

/ pu - u - Vu - Voude

2
< Cllpllzee lull o IVall? s,

Ouull | s, + Cllv/pllzelv/pOrul L2 ]| V*ul

Vul | s, VOl o,

Ln ’LL||2 4an
L

n—2

+Cllpllpellul? o

n—2

< CIA> T Fu ol | AF 5 |25 A2 F B L2 + Cly/pOhu]| o AT B ]| 2 | A2 F )3
+C AT F w3, AR |2 A2 Dy e

< CIAF Fu ol AZH )| 2, AR R Qa2 + Cly/pOhul| 22 | AFH Hul|2,
+C|ly/pOhul 2 A2 Ful| T + CIAZH Fulf3a | AT F u g2 | A2+ 5 yu) 2

< GIAFFE Qs + CIAR S ul B + CIAR Fulfa | VpOuull 7,

where we have used the following fact due to (2.23)
I 2l 2 < Olly/pdhull 2 + ClIAZ  Ful 7. (2.31)
Substituting the above estimates into (2.30) yields
d 1n
IVPou®|7z + A% 5 0|72
< AR FulZa vpduullzs + ClIAR FullZ,, (2:32)
which implies
d 1in
7 (VD0u()[22) + H|A*HE dpu(t) 7
< ClIAT FullZa (4] VpOrullZe) + V/pOu(t) 72 + CHIAT Ful| 7.
From (2.13) and (2.16), and by the Gronwall inequality, one has
t
Aot + [ At o) dr < G (233
0
Moreover, we deduce from (2.32) that

d 1, n
S (€ IVPOu(®)72) + AT Qpu(t)] 72

< CIAF Fullfa (M| Vpouullze) + e VPO |72 + Ce A Ful ..
Integrating it in time and making use of (2.16) as well as (2.33) lead to

t
| /Pohu(t)2 + / TN O u(r) |25 dr
1
. t N t
<G40 / A () 277 |0 u(r) [22) dr + / 7 |ly/B0u(r) 2 dr
1 1
t
e / (@[ AT E u(m)|22)[AF Fu(r) L dr
1

t
<G +C/ 1A= 5 u(r) |22 (€77 [l /pdrul(T)|72) dr.
1
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By the same argument adopted in dealing with (2.19) and (2.20), we thus deduce
¢ - N
7|/ pOu(t)||3 2 +/ T|AZTEDu(T)|2. dT < C.
1
By means of (2.31), (2.26) and (2.16), we have
n t n
e |AT Bl +/ T B u(r)|[2 dr
1

t

< C(Iponli + 1A Fullle) + [ @ (ponur)I + A (o)) ar
1

= Ce|Vpdrul[f + Ce (1 [AF Hul12)®

t
+ [ (IR + e (T IAE ) A () ) dr

<G+ [ A ar
< (.
We thus obtain (2.27). It follows from (2.22) that
1Vpllz2 < Cllpdull 2 + Cllpu - Va2 < Clly/pdyull 2 + ClIAR a3,
where we have used the estimates in (2.17). Similarly, we obtain
Ipllz < CIA~ (pdyullz)llze + CIA~ (pu - )|z
< Cllpl, s, + Cllpu- Va2,

< CllpllLellv/poeul L2 + Cllpllnl|u - Vul| L2
< Cllv/poll o Iv/pdeul £z + Cllpoll e llu - Vul| 2
< O|lv/pdeul 2 + C||AZ+ a2,

As before, we therefore obtain for all t > 1,
Ml < C | Vpdpullza + CeMIAT  ul| s < Ch.

This completes the proof of Lemma 2.4. O

2.4. Uniform in time bound of fot IVu(7)||L dm and gradient of p. The
following estimates will be used to show the uniqueness of solutions and the exponen-
tial decay of other quantities.

LEMMA 2.5. Under the assumptions of Theorem 1.1, the solution (p,u) of the
system (1.1) admits the following bounds for any t > 0,

t
/ IVu(r)||1~ dr < Ci, (2.34)

0
IVp@), sz, < Gl Vo0l s (2.35)

IVp(t)]l L2 < C1[[Vpolle, (2.36)
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where a depends only on ||po|| 2o, |pollLe, llv/PotollLz and |\A%+%uo||Lz,

Lnt2

REMARK 2.1. We remark that the bound (2.35) will be used to show the
uniqueness, while the bound (2.36) will be used to derive the exponential decay of
[AYF2 du(t)||?. and other quantities.

Proof. First, it is easy to check that for any 2 < p < ==

27
2n(P2 2) Qn(pz 2)
| pOvullLr < CHp&tu”L2 D7 poy u|| Do
2n(p 2—2 2n(p 2—2) 2n(p 2_2) 2n(p2_2)
< CIVAIL= " Iy/poral 2 ™ Noll (7 el "
Zn(p-3) 2n(p—2)
< CH[@{LLHLQ ("+2)P ||A2 4815'“4” (n+2)p
< Cllvpdrullzs + ClIAH 02, (2.37)
2n(p—2) 2n(p—2)

low - Vullr < C|lpu - Vu”L2 Gan | pu - VUH e

2n(p—2) 2n( 72)
<Cllu- VuHL2 G llw - VuH ("“)p

2n(p—2) 2n(p—2)

n 21— n n n
< Ak ) (HA%“uIILQIIA”WIlm) e
< C|AFH )2, + O A Bu2s, (2.38)
where we have used the following fact
- Vel o, < Clld o[Vl s,

—_4_ n n
<C(IIA”ZuHE“IIA”WHle (AR | T A E ) )

< [ AF ] AT B . (2.39)

Combining the estimates (2.13), (2.16), (2.26) and (2.27) allows us to show that, for
any 2 <p < - An_ 5 and for any ¢ > 0,

/0 (oBr(m) 1o + llow - V()| 1) dr

2n(p—2)

t 1-2ne=2) 1,.n n n
<C (||\/537u||L2 A E Ol 5T 4 | R u(r) |3 + AT Bu(r)|32) dr

2n(p—2) n 2n(p—2)
=¢ / T E|V/pOull) T (AR R Opu 2) T ) dr
e / e F (F | pOru(r) s + T AP T 0 u(r) | 12) dr
1

t
+C’/ 6_77(677\\A%+%u(7)||%2 +6W||A1+%u(7)H%2)dT
0
1 1 1 1, n 2n(p—2) ~ t
SC’/ 772 (72| A2 Q| p2) PR )dT+C/ e "Tdr
0 0
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n(p—2)

n(p—2) 1—
1 (n+2)p 1 (n+2)p
~ lym 2 (n+2)p
<C+C TIIAZT 50 |72 dr T AnFe) dr
0 0

<C. (2.40)

Using (2.22) and applying the LP-estimate to (2.21) yield
IAY 2l 1o < Cllpdeul| e + Cllpu - VLo,

which leads to

(n+2)p (n+2)p

HVuHLx<CHqu mHAH—" | T

<CHA2+4UH 2%‘“\1_’_& ||%

< CHA2+2u||L2 + C||A1+5UHLP
< C|[A2 5 w12 + C||pdyul| e + C|lpu - V|| Lo (2.41)

Thanks to (2.13), (2.40) and (2.41), we immediately obtain
t
| 1vul dr <. (2.42)
0
Since p satisfies O¢p + u - Vp = 0, direct computations yield

d d
— — 2 < oo 2
19t L 9p(0) 12 < [Vull 1900

an < ||Vl Lo [Vo(t)|]

L n+6

Ln+6

The Gronwall inequality and (2.42) ensure that

Lnt6 — n+6

Vo), a2, < IVp0ll, e, exp [/ IVulo dr | < Culpol, g,

t
19p(0)]122 < V0022 exp [ / ()] e d{ < GV p0ll e

We thus complete the proof of Lemma 2.5. O

REMARK 2.2. We remark that the estimates of the previous subsections would
suffice to get already a satisfactory global well-posedness result with exponential decay.
Here, thanks to the above obtained estimates, we want to show more regularities of
the solution.

2.5. Time-weighted estimates and exponential decay of ||[A2 % d,u(t) 2.
LEMMA 2.6. Under the assumptions of Theorem 1.1, the solution (p,u) of the system
(1.1) admits the following bound for any t > 0,

t
2| A2 T4 0pu(t)]2, +/ 72|/ PpOrru(T) |32 dT < C. (2.43)
0

Moreover, for anyt > 1, we have

t
AT Dpu(t)] 72 +/ "IlVpOrru(r)||72 dr < C, (2.44)
1
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where C depends only on |[pol . zp, . lpollz=, [V pol sz llv/Pouol L= and A% % ugl| 2.

L n+2

Proof. Multlplymg (2.29) by dyu and integrating by parts imply that

DA B u(t) |2 + [ly/POwuls

2 dt
= — Oy pOyu - Oygu dx — Or(pu) - Vu - Opudx — / pu - VOogu - Oy dx
R" R™ n
= — O pOsu - Oypu dx — Oipu - Vu - Opu dr — / poyu - Vu - Oy dx
R" R™ n
— / pu - Vouu - Opu dx
= H1—|—H2—|—H3+H4. (245)

We first bound Hs and Hy as

[Hs| + [Ha| < CllVpl[re< llv/pOsul L2 ([|0pull | an VUl an, + |lull | _an [|0:Vul| | s2)
< Cllv/pollLIv/porul L2 | A2 48tUHL2HA2+ZUHL2
1 1,n 1yn
< 3 IVPBwullie + CIAR S ul 3 [AF* 2 Dyu ..
We rewrite Hy as follows
1
H1 = —= 8tp8t|8tu|2dx
2 Jan
— 75%/ 6‘tp|8tu|2d:c+ / attp|8tu|2 dx
= 2dt/ dip|Oyul? x—f/ Opdiv(pu)|Opu|? dx
= th/ Op|Oyul|? dx + at(pui)atu-ataiudx
= th/ 6‘tp|5tu|2d:c+ atpuic')tu~8t8¢udx
+/ pOyu; Opu - OOy de. (2.46)
By the Holder inequality and the embedding inequality, we have
/ p@tuiatu . 8t81u dx S CH\/EHL"C H\/ﬁatuHLz Hc’?tuH n‘mz ||8tVu||Ln+2

1 n
< Cll\/porull 2| A ¥ Dy

Similarly, using 0;p = —u - Vp gives

Orpu;Opu - Ord;udr < Cllu - V| p2||ull Lo \|8tu||L% [10:

Rn
l.n

< ClIVplleellul o A2 Opull -

2(n—2)
57 AT Ol 2

< Ol Vpoll 2 A2+ Ful 7 IIA”W\

< OlAx* iy

7L+2HA1+£ ||L2+2 HA2+Z&5UHL2’
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where and henceforth the following interpolation inequality will be used frequently:
[ul| e < C(n )IIA’-’“UIIZ“ IIAHWH"“ n>3.

We obtain that

1d 1.m n 02
< L[ ol da Ol poml e+ ANl AT ) 57
]Rn
x |[AZTE Qpul| ..
Thanks to dip = —div(pu), one obtains
d
Hy = 7 Ogpu - Vu - Opu dx + Oppu - Vu - Qgudx + OpOi(u - Vu) - dpudx
R'Vl R'Vl Rn
d
= —— Opu - Vu - Qyu dx + O(pui)0i(u - Vu) - Qpude
dt Jpn o

+ O(pui)u - Vu - 0y0;udx + Orp0i(u - Vu) - Qpu dx
R’!L R’!L
d
=0 Orpu - Vu - Qpudr + / pOru;[0;(u - Vu) - Opu + u - Vu - 8;0;u] dx
R’n

n

+ Opluiu - Vu - 8i0;u + u;0;(u - Vu) - Qpu) dx + Orp0;(u - Vu) - Qpude
Rn R
d

=-% Opu - Vu - Oyudr + Hoy + Hag + Has. (2.47)
Rn

It follows from the Holder inequality and the interpolation inequalities that

Hat < Cllpll <00l o, |70l 00l e,

+ Cllvpll=llowull, an, lvpull2]IV?
+ Cllpllzee|sull | o [lull | an [Vl an [[VOru H

Ln—2 Ln+2

< C(H\/EUIILZ‘IIAHEUHLZ + ||A2+Zu||L2)||A2+2atu”L?v

Has < CHatp||L2”u”2L°°||VuHLn4j'2 VOl s,

+Ol0epl 2 lull e (IVuVall _an, +HuV ull | _ap )10l _an,

34n
< Cllu- wnpuuuiw||A2+‘iu|\L2\|A2*4 atuuLz
1, n
+Clu - Vpll g2 lull oo [Vull® sa_ [|AZT% dpul| 2
Ln+t2

34 n l14n
< C||Vpllp2llullze A2 Tull 12 [AZF 5 Opul 2
+C|IVpl| 2 [l Loe V] Lo 1A Dy 2

2) i,n

< C|[Vpoll 2 (IA2FE ull 75 nf A2 u||Ln+2 )(|Az+E ull /5 o AT 2 | n+2)”A§+Zatu”L2
T T lyn 142 lyn

+C|Vpoll 2 (1A Tl AT 2l 2 (AR T w2 AT 2 ul[2)[A2 T4 Opu| 2

n+10 —2
< O 57 AT R AR Gy o
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Similarly, we have

Hys < Clowpl 20l o,
+ Cl0rpllzz = VOl

n+2
< Cllu-Vpll([[Vullpn + IIUIILw)IIA2+43tUII2L2
< OVl (IVullZn + ullf) |AZF% gpulZ,

2(n—2)

< OV poll = (1A} Ful| 7 A Eu] 57 ) |AF* 2 a2

S It 2(n=2) 3
< AR R ul F7 A a5 AT 0u)2.

Therefore, Ho admits the following bound

d n n
Hy < == | Opu-Vu-duude+ C(|[V/pull 2 l|AFul| 2 + 1A 0|7
Rn
2(
+ IIA2+4UIIZ“HA”ZUIIL"” AT D72

+C||Az+2uu e A2y L’;Tum%atuum.

We finally get by collecting all the above estimates
d 1, n
= (145213 + 6(1)) + I1V/60ul 2
A®)|A2T5 Ol 2 + B()| A2 Oyl 7, (2.48)

where

1
o(t) == —5/ Op|Osul|* do — Opu - Vu - Opu de,
]R'n.

R

3n—2
nt2
L2 7

A(t) = CIIAM R ()| 27 1AM Fu(t)

B(t) == C(IV/put)ll 2| 2u(t) | 2 + AT Fu(t)])7
1 n 5 2(n 22
FIAF R u@ 2 A F a5 + [[yp0ul2).

Hence, in view of 0¢p = —div(pu) = —u- Vp and the Holder inequality along with the
embedding inequality, we deduce

1
lp(t)| = ‘2 / div(pu)|0sul|* do — / Opu - Vu - Opudx
R® R™

= ‘— / pu; O - OpOjudx — Ogpu - Vu - Qgudx
n R’n

< Cloll=lIVpdeul 2 lull | an,
+ Cllowpll e lull < 1 Vull | o,

< C|lvpol| = H\/ﬁatuanHAmu||Lz\|Az+4atuuLz
+ OVl llulf < A2+ Ful| g2 | A2 Dpu| 2
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1. n 1. n
< Cllv/poll L= H\/ﬁc?tulle\lAmuIILz\IA2+48tu\\L2
+CIIVpoHLz(HAZ*ZuII"“||A1+5u||L"“ AR E | 2 A2 Opul| 2
< §||Af+¢8tu||%z + Clly/poul 3| A2 ul|?
4(n—2)
L;“ . (2.49)

1 n 2n+20 n
+ Ol AT ]| 27 (|A |

We first get from (2.48) that

d 1, n
= (PIAF o) [3 + 20()) +12]1/puul 32

< 2UAZTEQu(t)||2s + 2tp(t) + 2A)|AZTEByul| 2 + B AZTEOul2,. (2.50)

By (2.13), (2.16) and (2.25), we conclude

t
/ 2A(T) | A2 R 0pu(r) | 2 dr

3 t 3
3A2 ) (/ TA%+ZaTu(T)||§2dT)
0

n+1 2(83n—2) 2
c( SIAS @) A () dT)

[N

t K —
O ([ reie SHE @A ) (1AM o)) ¥ ar )
0

(n+10)y7 z ~
c (/ TRtEeT nz dT) <C, (2.51)
0

IN

where and in what follows, we use the following facts: for any o7 > 0, 0o > 0,
o0
/ n°te”%?"dn < oo and 77%e 7?7 < oo, VT >0.
0

Noticing the following estimate

¢ t
| W) ssdr = [ 505 | (o)) dr
0 0

<(/ ) (/ o) 2 d) <G @»)

and using the argument in dealing with (2.51), we show that

/tB(T) dr < C. (2.53)
0
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According to (2.13), (2.16) and (2.25) again, one deduces from (2.49) that

/Ot To(T) dT

1/t 1.n t L
<5 [ IR dr +C [ oA ) AR R ulr)| e dr

t 4(
e / A ()| AT A R ()5 dr

(nt10)yr n-2)

t
<G4 C [ re SHE A () ) FE A ()| S ar
0

IN

t
~ (n )
c+o/ rem e AV Eu(r )|\L"+2 dr
0

(n+10)yT

t
<C+ CX{nZG}/ Ttz (vl A B u(r)[32) R A E u(r) |3 d
0

2(n—2)

t nt2
pi2 _(opionr
O gsencs) (/ . ) (/ JA™ Fu(r) ||L2df)
0

t
< G+ Cx sy / A Fu(r)|2s dr
0

2(n—2)
n+2

t
+CX{3<n<6} (/ A Zu(r)]|7. dT>
0

<G (2.54)
We get by integrating (2.50) in time and using (2.51) as well as (2.54)

t
2[AZ 2 9u(t) |72 + (1) +/ 72|ly/pOrru(7) ||z dr
0

t
< c+/ B(r)r2 A+ Oru(r) |2 dr. (2.55)
0
Direct computations also yield

1 n n
£216(0)] < S IAT 5 0pullTz + OF |y /popullza A Ful
4(n—2)

+Ct2||A2+ZUIIL"“ AT S ] 27

= SPIAFE T + Cte el Aol (AR )

2(n—2)

(AT Eul)

Otz mer (AR Ey|2,) T ey

< %t2||A%+%6tu||2L2 +C. (2.56)
Inserting (2.56) into (2.55) implies
IATHE u(t) 32 + / 0 u(r) [ dr <+ / Br)rAR 0 u(r) | dr.
This along with the Gronwall inequality and (2.53) yields

t
AR Bu(t)|2 + / 72| B0r ()2 dr < C,
0
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which is (2.43). With the help of (2.43), we are in the position to derive the exponential
decay of ||[A2+5dyu(t)||r2. To this end, we multiply (2.48) by e to obtain
d
= (M IAFE Q]I + 7' 0(1)) + |/ pdheul -
<A ARTE () [F + e (1) + A [AT Dyl a
+B(t)e | AT dyulf2,. (2.57)

Now integrating (2.57) on the time interval [1, ¢] yields
t
AT Qu(t) |72 + 7 (1) +/ 7 |IV/pOrru(7)| 2 dr
1

t ¢
<C+ ’y/ eWHA%Jr%@Tu(T)HQB dr + ’y/ e o(r) dr
1 1

t t
+ A(T)@WTHA%+%8Tu(T)HL2 dr —|—/ B(T)@"’THA%+%&FU(T)||%2 dr
1 1

t t
<C+ 27/ 67T||A%+%8Tu(7')||2L2 dr + 7/ e o(r)dr
1 1

+C /lt A%(T)e T dr + /1t B(T)e"T||[A2TE 0, u(T)|| 2, dr. (2.58)
According to the estimates (2.16), (2.26) and (2.27), it follows from (2.49) that
O 16(0)| < 3¢ IAE RO +C, (259
¢ ~
’7/1 e’ o(r)dr < C. (2.60)

Appealing to the estimates (2.16), (2.26) and (2.27) again, we can also show

t
7/ AR 0, u(r)|2 dr < C, (2.61)
1

n+10

t t .
C/ A¥(r)emdr = C / (@[ ATF Eu(r))22) 55 (| A E u(r)|22) 7R e 3T dr
1 1

< C/lt e dr < C. (2.62)
Inserting the above estimates (2.59)-(2.62) into (2.58) yields
AT EDu(t)]|7 + /j 7 |I/pOrru(7)|Z dr
<C+ /j B(r)e | A2 0 u(r)||3s dr.
Similarly, it follows from the estimates (2.16), (2.26) and (2.27) that

/ltB(T)dTgé.
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As a result, we have by the Gronwall inequality
1 n ¢ ~
AR DL + [ IV dr < C.
1

Consequently, we complete the proof of Lemma 2.6. O

With the estimates of Lemma 2.6 at hand, we can obtain the following estimate.

LEMMA 2.7. Under the assumptions of Theorem 1.1, the solution (p,u) of the
system (1.1) admits the following bound for any t > 1,

w <C,

n—2

vyt 2
RO,

AT B u(t))? :
. ,

where C depends only on. ||pol|  2n_, lpollz=, IV pollr2 [|v/Pouol L2 and [[A2+ 5 ugl| .

L nt2

Proof. Thanks to (2.21) and (2.22), we get

I Bl s, + 95l as, < Clloduul, s, +Cllpu- Yl _ss,

n—2

< Cllpllz=llOpull  an, + Cllpllze[[uVul| | an,

< O|AF % Bul| 2 + O AT ]| 2 | AT B | 2,

where we have used (2.39) in the last line. Recalling the estimates obtained in the
previous lemmas, we see that for any ¢t > 1,

wm <C.

AT Eu@)? an, + VD]

2
n—2 L

Similar argument also implies

Il e, < CIA™ (pru]2)
< C||p8tU||L47n + Cllpu - Vu||Ln47J:L2

n+2

| oy + CIAT (pu V)| s,

n—2
iz C||p||Loo ||uHLoo HV’LLHL an

Ln-2 ntz

_4
< Cllpdeul| ;2 || pOru

1, n 4 n n-2 1,4 n
< C(llvpouullzz + llpdvull  an, + [|AZ " Sul| 727 AT 5wl 737 A2 H S| 2)
1.n 1,n  2E8 n 222
< O(IV/pdhullzz + AP pul| 2 + AT ul 22 AT 2] 1),

Consequently, it gives that for any ¢t > 1,

(1) a, < C.

n—2

Moreover, we also deduce that for any ¢ < 1,

in <C.

2
e, <

EIATEu@®)]? ) +£p(t)

Hence, we obtain the desired estimates and thus complete the proof of the lemma. O
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2.6. The proof of Theorem 1.1. We need the following Gronwall type in-
equality which will be used to guarantee the uniqueness of strong solutions (see [28,
Lemma 2.5]).

LEMMA 2.8. Let X1(t), X2(t), Y(t), B(t) and v(t) be non-negative functions. In
addition, B(t) and ty(t) are two integrable functions over [0, T]. Let X1(t) and X2(t)
be absolutely continuous over [0, T| and satisfy

LX1(t) < AYE (1),
FXo(t) + Y (t) < B Xa(t) +v(8) X7 (1)
X1(0) =0,

where A is a positive constant. Then, the following estimates hold

X1 (t) < AXE (0)t3ed JoB@+A%sx() ds.

t
Xa(t) +/ Y (s)ds < Xp(0)elo (B +A%57(s) ds
0

In particular, if X2(0) = 0, we have

X1(t)=Xa(t)=Y(t) =0.

We continue to prove our theorem. According to Lemma 2.1, there exists a T > 0
such that the system (1.1) has a unique local strong solution (p, ) on the time period
[0, T*]. We may follow the standard argument to show that this local solution can be
extended to a global one. To this end, we set

T =sup{T : (p,u) is a strong solution on [0, T]}.
Now we claim that
T = .
Otherwise, if T < 00, it follows from the estimates of the above Lemmas 2.2-2.7 that

(P, u) (377 f) = lim (p, u) (z,t)
t—T

satisfies the initial conditions (1.2) and (1.3) at time ¢ = T.. Thus, taking (p, u)(z, T)
as the initial data, Lemma 2.1 allows us to extend the local strong solutions beyond T.
This contradicts the assumption of 7' above. The proof of the existence of the global
solution is completed. Furthermore the decay properties of the solution are implied
in the proof of the above Lemmas 2.2-2.7. Thus it remains to show the uniqueness.

To this end, we make use of the following two momentum conservation equations
PO+ pu-Vu+ (A2 w4+ Vp =0, po+pi-Vi+ (—A)2T55+ Vp=0,
to obtain

pOy(u— W) + pu - V(u— ) + (—A)* "% (u— ) + V(p - p)
= —(p—p) (O +u-Va)— p(u— 1) - Va.
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Now we deduce by multiplying the above identity by u — u and integrating it over R™,

A — @O + AT = D)3 = i+,

where

Jp = f/n’(p—,ﬁ’)(atﬂ+ﬂ~Vﬂ)~(ufﬂ)dz,

Jy = —/ plu—1u)-Vu- (u—1u)de.
The term J; can be bounded by
Jo < OVl = ||v/p(u — @) 72
For the term Jy, we have by (2.39),

J1 <

o, (1000l any 4 (|- V]| an )|w =l an)
~ 1. n 1. n ~
<Cllp— PHLn% (1A2 5 0yl 2 + A% 34 o] | A2 U||L2)||A"‘+4 (u—a)|

]- 14 n ~ 1l n ~ l.n o n . ~
= §||A2+4 (u—w)|72 + CIAZ T8l 72 + AT Ta|| T |A 3 a)Z2)]p — P||if$2
We therefore obtain
d
s Ivelu—u)(t 3>+ [AZHE (u— )3
< C(|AFTT 072 + AT HT 7L A5 T 72)

+C Vil L [l /p(u — )] |7

Using the following two density equations
Op+u-Vp=0, Op+u-Vp=0,
we deduce
dhlp—p) +u-V(p—p) = —(u—7)- V.

It implies that

n+2d +2 -
n < n+2 _
2o =PI, < Clo— 7172 N —7) - V7, 2,
<Cllp - pl "*5” - A [IVA g
<Cllp -7l "+22n AR (= @)l|22 VP g

L+6

We may conclude

ClIAZ*E (u — @)l 2| V7]

d
%H(p_ﬁ)( )HLnJrQ = Ln+6'
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Now let us denote

X1(t) = ll(p = p)(t)

| s, Xat) = VAt~ DO, Y(0) = AR = D)2,
B(t) == CIVa(t)lle, (1) == CIAFT TR0 72 + 12T a0 7= A2 T(1)]72),
which satisfy

£X1(t) < AY3 (1),

7 X2(t) +Y (1) < B(H)Xa(t) + (D) XE (1),

X1(0) =0.
Recalling (2.16), (2.26), (2.34) and (2.35), we know that

/ B(r)dr < Colt), / y(r) dr < Colt).
0 0

Due to u(z,0) = u(z,0), we have X5(0) = 0. Making use of the Gronwall type
inequality in Lemma 2.8, we immediately have the uniqueness, namely,

u(z,t) = u(x,t), plx,t) =pla,t).

This completes the proof of Theorem 1.1.

Appendix A. The Case of Dimension n = 2. As a byproduct of the approach
in the proof of Theorem 1.1, we also obtain the exponential decay-in-time of the
strong solution in dimension n = 2 provided that a damping term w is added in the
momentum equation. More precisely, we have the following result.

THEOREM A.1. Consider the following system

Op + div(pu) = 0, reR2, t>0,
O(pu) +div(ipu @ u) — Au+u+ Vp =0,
V-u=0,

p(2,0) = pola),  u(,0) = uo ().

(A1)
Assume that the initial data (po, ug) satisfies the following conditions:
0<po € LY(R*)NLP(R?), Vpo € LI(R?), ¢>2
Voug=0, ugeH (R?, /pouo€ L*(R?).

Then the system (A.1) has a unique global strong solution (p,u) satisfying, for any
gwen T >0 and for any 0 <7 < T,

0<pel=0,T; LR NL=([R?)), Vpe L>(0,T; LY(R?),
we L=(0,T; HY(R?)) N L*(0, T; H*(R?)) N L= (1, T; W* ™ (R?)),

VPO € L (1,T; L*(R?)), 0w € L*(1,T; H'(R?*)) N L™=(r, T; H'(R?)),
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Vp € L*>(7,T; L*(R?*) N L™(R?)),

for any m € (2, 00). Moreover, there exists some positive constant v depending only
on ||lpollLr and ||pollLe such that, for allt > 1,

P+ 103 + VPO [F20pn < Ce,

Ivporu() |72 + llu() 72 + | Au(t)]
where C depends only on ||pollzr, llpollze=, [VoollLe, [lv/powollzz and |luol| g -

REMARK A.1. When the damping term w is absent from the system (A.1l), it
seems difficult to obtain the exponential decay of the strong solution as in Theorem
A.1. The key obstacle is that the classical Sobolev embedding inequality is critical
in dimension n = 2. However, if the initial density decays not too slowly at infinity,
then it is proved in [31] that the corresponding system admits a unique global strong
solution. Moreover, the following large-time decay rates were obtained: ||Vu(t)|/z2 +

IV2u(t)] 22 + IVp(t) |22 < Ct

REMARK A.2. It should be mentioned that once we have the following key
estimate (see (A.20))

t —_—~—
/ ||VU(T)HL00 dTSCl,
0

we are able to reformulate (A.1) in Lagrangian coordinates without requiring the
additional regularity on the initial density, namely, Vpo € L9(R?) for ¢ > 2. For
more details, we refer to [17, page 1373-page 1378]. In this sense, the condition
Vpo € L4(R?) for ¢ > 2 can be dropped and we still obtain the corresponding global
existence, uniqueness as well as exponential decay-in-time results as stated in Theorem
Al

As the proof of Theorem A.1 can be carried out as that of Theorem 1.1 with some
suitable modifications, we only give a sketch of the proof in this appendix. First, the
basic energy estimates read as follows.

LEMMA A.1. Under the assumptions of Theorem A.1, the solution (p,u) of the
system (A.1) admits the following bound for any t > 0,

lo@)l[Lrnzee < llpollzrare

t
e v/pu(t)ll +/0 " ||u(r) 3 dr < llv/pouollZ:- (A.2)

Proof. The first part of the estimate (A.2) and the non-negativeness of p can be
deduced as in Lemma 2.2. To show the second part of (A.2), we multiply equation
(A.1)2 by u and integrate the resulting equation over R? to get

1d
5 g IVPe®Ize + el = 0.
Fixing r € (1, 00), we see that

1
IWpullze < CllVplLzrllull, 2= < Cllpoll L pee el < Cllull e,

—1 —
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which is crucial for the exponential decay estimate, but different from (2.15). It follows
that

d
S IVPe®Ize +vlveu®)7z + el = 0.

By the Gronwall inequality, one can prove

t
' [lv/pu(t)ll- +/ 7 lu() I dr < lv/pouoll7-
0

This completes the proof of Lemma A.1. O

LEMMA A.2. Under the assumptions of Theorem A.1, the solution (p,u) of the
system (A.1) admits the following bound for any t > 0,

e |u(t) |7 +/0 7 (Ju(r) Iz + [VpOru(r)| 7= + |Vpilr)|I72) dr < Cr,  (A.3)

where U := Oyu + u - Vu is the material derivatives of the velocity u, and 6‘1 depends
only on ||pollzr, [[pollz=, llv/PouollL> and |luol g

Proof. We first rewrite the equation (A.1)s as
pu=Au—u— Vp. (A.4)

Multiplying the equation (A.4) by @ and integrating it over R? lead to

||\/ﬁu||%2=/ 11~Audx—/ u-udaz—/ 4 - Vpdz. (A.5)
R2 R2 R2
On the one hand, one has

/'[rAudxz 8tu'Audx+/ (u~Vu)'Aud:z::fliHVu(t)H%z,
R2 R2 R2 2dt

where we have used the following fact due to V- u = 0 (see [40, (3.3)] for details):
/ (u-Vu) - Audx = 0.
R2

On the other hand, we have

1d

_/ i ude = — atu.udx_/ (u- V) - ude = — == flu()| 2.
- - - 2 dt

Due to [31, (3.8)], the last term in (A.5) can be bounded by

7/ U - Vpda: = / 8jui8,-ujpdx < C”pHBMO”a]U . VUj”le
R2 R?

< C|IVpl 2| VullZ-. (A.6)
We rewrite (A.4) as the Stokes system

—Au+u+ Vp = —pu,
{ (A7)

V-u=0.
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Then, it gives
Vp = (~A)7'VV - (pu), (A.8)
which yields

VD2 < Cllpillz> < Clly/pil| 2. (A.9)

Combining all the above estimates implies that

d .
@i + lveil: < Clu@®)|:-

This allows us to show

d .
(€ u®lF) + e IVpu®) 72 < ve lu@®7n + Cllu@® 7 (€ lu®)F)-

By the estimate (A.2) and the Gronwall inequality, we get

t
! [lu(t)|[7n +/ 7 ||l/pi(r)|22 dr < Ch.
0

It follows from the regularity properties of Stokes system (A.7) that

t t t .
/ () |[2ge dr < / O o2 dr < / O \l/pilr) |2 dr < G
0 0 0

We can also verify, by (A.2) for p and H*(R?) — L>°(R?) with s > 1 for u,

/ | () |2 dr < [ pitas + 1w Vulia)ar
<0 [ iz + 1l ol [Vul2) dr
<0 [ 7 (ville + ) i < G (A.10)
We thus complete the proof of the lemma. O

LEMMA A.3. Under the assumptions of Theorem A.1, the solution (p,u) of the
system (A.1) admits the following bound for any t > 0,

t
tIVp(t)1 22 +tllv/pu(t)l|2 +/O 7lla(r) |7 dr < i, (A.11)
moreover, for any ty > 0 and any t > to, the following holds true

' lVpi()Z: + e lVpdru()IZ: + e u®)l 7 + e Vo)l

t t eYto
+/ 677|‘ﬂ(7')||%_11 dT/ e””@tu(T)Hip dr < t—C’l = Cy,, (A.12)
0

to to

where Cy depends only on ||pollrt, ||pollne, [[v/Powollrz and ||Juo|| -
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Proof. According to the proof of [31, Lemma 3.3], we have
d . .
7 (IvVpa®)Z= + @) + @) 7 < CIVullze + [Ipll74),

where p(t) := — fRZ po;ju;0;uj dx. The following estimate is an easy consequence of
(A.6) and (A.9)

le(t)] < Cllypillzz | VulZ: < %H\/ﬁu||2L2 +C[[Vul| 7. (A.13)
According to (A.7) and (A.8), we have
u=—I—-A)"(pu+ (—A)"'VV - (pi)), (A.14)
where I is an identity operator. Therefore, one concludes
IVullzs + lIpllzs < CUIAull} 4 +1VPI 4) < Clipal] 4 < ClpllLzlv/pillz:,
which along with (A.14) gives
d o2 N -_—
7 IVPa@)IZ2 + ¢(8)) + a7 < Cllv/pil ze, (A.15)
which then implies
% (tlvpu®liz + te(®) + tla@®lzn < IVeu®)z: + Ctllpillzs.  (A.16)
By (A.13) and the Gronwall inequality, one has
¢ —
Upitt)3+ [ il dr < G, (A17)

Multiplying (A.15) by €7t yields

d . . .
7 (e VP72 + €T o(t)) + e la(t)]|Fn < ver|[Vput) |72 + v o(t)
+ Cev||/pil 2. (A.18)
We thus have by integrating (A.18) in time and using (A.3), (A.13) as well as (A.17),
t
Bt |2 + / i) |2 dr
t.
’ t t t
< Cop + M p(t)] + 4 / O |l/Bu(r) 2 dr + / T p(r) dr + / Bz dr
to to to

1 . t . . .
<Gy + 56“||\/ﬁu(t)\|iz + C/ IVpi()l72 (7 IVpi(r)|172) dr.
to

This implies

t t
N Ol / O \fi(r) |2 dr < Cyy + C / VB 227 | Vi) |22) dr.
to

to
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By means of (A.3) again and the Gronwall inequality, one obtains

t
O Bi(t)]2n + / () |2 dr < C.
to

Thanks to (A.9) and (A.14), we get
I Vp)Z: + e lu®)lFe < CellVpu(t)Zs < C,
The following estimate follows immediately from (A.10)

O ll/pdhu(t) 22 < ' Vpilt)[3s + e u(®)]3 < Cio-
Finally, we have

t

t t
/ O Byu(r) |2 dr < / O (i) |2 dr + / (- Vu)(r) |2 dr

to to to
t

t
<C | ea(r) |3 dr + C/ 7 |[u(T)|| 32 dr < Cyy,
to

to
from the estimate
-Vl < Cllulue < Cllulye. (A.19)
Therefore, we complete the proof of the lemma. O

LEMMA A.4. Under the assumptions of Theorem A.1, the solution (p,u) of the
system (A.1) admits the following bounds for any t > 0,

t —_— —
/ IVu(r)l|L= dr < C1 (IVp(t)llze < CillVpol|La, (A.20)
0

where Cy depends only on ||poll:, lpollze=, |v/Pouollrz and |luo| g1

Proof. For any 2 < p < oo, we get [[pil|z» < Cllpl|ze[@]| 1 < Cllil[ g1 Applying
the LP-estimate to (A.7) gives

2;;722 2p2 2p722 . 2p2 2;;722 . ﬁ
IVullpe < Cl|Vull 27 [ Aul 57 < ClIVul| 27 lpall 27 < ClIVall gz [lall g7

According to (A.3), (A.11) and (A.12), we obtain the first estimate of (A.20). The
second estimate of (A.20) is a direct consequence of the first estimate. The proof of
the lemma is completed. O

LEMMA A.5. Under the assumptions of Theorem A.1, the solution (p,u) of the
system (A.1) admits the following bound for any m € (2, c0),

t
o) 7 + e [ Au)[Zm + [ Vp(t) [ Zm +/1 T IlVporru(r)||2 dr < C,

where C depends only on loollzrs Nlpollnes IVpollne, ||lv/pPowollrz and ||uo|| -
Proof. The proof can be performed by modifying that proof of Lemma 2.6. We
first have by (2.45) that

1d

§%||8tu(t)||§{1 + ||\//38ttu||2L2 == H1 + H2 —|— Hg —|— H4.
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The H3 and Hy can be easily bounded by

|Hs| + |Ha| < CllV/pl e~ |Vedul L2 ([0 o[ Vel L4 + IV Orul| L2 |ul[ e )
<CIIfHLooI\\f@ttUIIL2II3tUIIH1HUIIHz

< 16||f3ttUHLz + Cllull32 |0l -

Recalling (2.46), we thus obtain

H,=- th/ Orp|Osul? dx—l—/ O pu;Opu - 0;0; udm+/ POy Opu - Oy Ozu dx

IA

—5%/ OuplOsul® dz + Cllu - V| pallull Lo [Opull 20, 10:Vull 2

+ Cllpllze|0eul 71|10V ul 2

I /\

th/ OeplOrul* dz + C||Vpl pallull 7~ 10pu]l 20 [0:Vull L

+ CHPIILOO 10eull74110¢ Vul| 2

IN

- 5% / 0ep|0pul? dx + Cllul|Fp2 | 0pul| g1 |0 Vul| L2 + C|Opul| 1 (|0 V| 2

< - / DuplOul? dz + Cllully2 | 0vullFr + Cllovul e |0l

5%
In view of (2.47), one has

d
H, = — 8tpu Vu - Opudr + Hap + Hao + Hos.

Now we may deduce that

Hyy < Cllpllz=10vull s (IVull s l|0vull 2o + o< || Aull 2| Opul 4
HllullLe IVullzs [VOrul =)
< Cllpollz=l10vull mrs (ullzz l0cull ar + lullZ 1Bl e + Nlull 211V Ol 2)
< Cllullz 10l 31,

Hay < Cllu- vaLq(Hu”%oo”VUHL% IV 0pul| 2 + ||“HL°°HVUH%4H@UHL%
el Al 2Oyl 2s.)
< clIVpHLq(IIuH%m||Vu||Lq% |V 0sul| 2 + ||u||%oo||Vu||%4H8tu||L%
Jr||u||3L'°<>||AU||L2||8tu||Lq2qu)

< Cllullfy: |1 Ovul e,

Hy < Cllu- Vol pa (1074 Vull | 20, + ul o<Vl 20 [VOsull2)
< ClIVpllallul < 0l 21 Vull | 20, + lulz [ Vull | 20 VO] L2)

< CllullZ 1 0eullz + llullzllocel ).
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One thus deduces

d
Hy <= drpu-Vu-Opu da+C (||ul 2 1 0pull 3 +lull 272 10wl 2 + [l g2 O] o)
R2

Putting all the above estimates together implies that
d
7 (0@ i + ¢®) + lVpduu®)lIz2 < Clloulla 0ulf: + R(E), (A-21)

where

R(t) = C(lu@®)7r 10eu(®) | Fr + w32 10eu(®) e + (@) 321 0cu(t) ]| 1),

o(t) == —1/ Orp|Oyul? dx — / Orpu - Vu - Opude.
2 R2 R2

By the embedding inequality, we also get

lp(t)| = ’ / pu; 0 - 0y0ju dr — Opu - Vu - Qpudx
RQ

R‘Z
< ClVpllz=llvpdrul 2 |lull L=V Oeul L2 + Cllu - Vol al[ull Lo [Vl L4 ]| Oru] s
< Cllull: |l pdrul 2 llOull mr + Cllullz2l|Ovul 11

1
< S10u®5 + Cllulls + lullz: V/p0ul Ze.

This leads to
1
lp(t)] < §||3tU(t)H%n + Cllu() |92 + [[u() |32l v/pOru(t) |72 (A.22)

Now we multiply (A.21) by €7t to obtain

d
= (T ocu@®)Fn + ™ o(t)) + 7 [|/pOerul 7

dt
<A Ot F + e o) + Ce || Opul | Opul e + e R(E).  (A.23)
For any ¢ > 1, by (A.11) and (A.12), there exists o € (3, 1) such that
7 |0gu(a) |3 + €7 (o) = C.

It follows from (A.12) again

t t t _
[ @m0 i+ [ emotmyar+ [ omR(mar <.

2 2 2
Noticing the above estimate, we integrate (A.23) on the time interval [o, t] to show

t
e |0u(t)|Fn + e (1) +/ T IIVpOrru(r) |1 dr

g

t
sC+C / 10:u(m) | 2 (€77 07 u(7)[[3) i (A.24)
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From (A.22) and (A.12), it follows that for any ¢t > 1,
1 ~
e p(t)] < ieﬁnatu(t)nfp +C. (A.25)

Combining (A.24) and (A.25) ensures

t

t
Mo+ [ IRz dr < O4C [0l (€I )

o

The Gronwall inequality and (A.12) allow us to conclude that for any ¢t > o,

t
ol + [ IVl dr <.

o

Since o < 1, we further have for any ¢ > 1,

¢
e Opu(t) |3 —|—/ eWH\/ﬁ@TTU(T)H%Q dr <C. (A.26)
1

By (A.19), (A.8), (A.14) and (A.26), we derive that for any ¢ > 1,

| Au(t)|[Zm + e [VpE)[7m < CeM([[pdeul)lLm + |pu- Vu(t)]|m)?
< C'(|0u®)llar + llu- Vu(t)l|s)?
< G (|07 + llu(®)llze) < C

This finishes the proof of Lemma A.5. O
Therefore, Theorem A.1 follows immediately from Lemmas A.1-A.5.
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