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Abstract. The inhomogeneous incompressible Navier-Stokes equations with fractional Lapla-
cian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness
of global strong solutions with vacuum are established for large initial data. The exponential decay-
in-time of the strong solution is also obtained, which is different from the homogeneous case. The
initial density may have vacuum and even compact support.
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1. Introduction. In this paper, we are concerned with the Cauchy problem of
the following fractional inhomogeneous incompressible Navier-Stokes equations:





∂tρ+ div(ρu) = 0, x ∈ Rn, t > 0,

∂t(ρu) + div(ρu⊗ u) + µ(−∆)αu+∇p = 0,

∇ · u = 0,

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x),

(1.1)

where ρ = ρ(x, t) denotes the density, u = u(x, t) = (u1(x, t), u2(x, t), · · ·, un(x, t))
denotes the fluid velocity, p(x, t) is the scalar pressure, and µ > 0 is the viscosity that
is assumed to be one for simplicity; ρ0(x) and u0(x) are the prescribed initial data for
the density and velocity with ∇ · u0 = 0. The fractional Laplacian operator (−∆)α

with α > 0 is defined via the Fourier transform as

̂(−∆)αf(ξ) = |ξ|2α f̂(ξ),

where f̂ is the Fourier transform of f . The fractional problems arise from many
applications in fractional quantum mechanics [27], probability [4, 6], overdriven det-
onations in gases [10], anomalous diffusion in semiconductor growth [39], physics and
chemistry [32], optimization and finance [11], and so on.

There have been a lot of studies on the fractional Laplace-type problems recently.
When α = 1, the system (1.1) becomes the classical inhomogeneous incompressible
Navier-Stokes equations, describing fluids inhomogeneous in density. Typical exam-
ples of such fluids include the mixture of incompressible and non-reactant flows, flows
with complex structure (e.g. blood flows or rivers), fluids containing a melted sub-
stance, etc. We refer to [30] for the detailed derivation of this system. Because of
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its physical importance, complexity, rich phenomena and mathematical challenges,
there is a notablly large literature on the mathematical studies on the well-posedness
of solutions to the classical inhomogeneous incompressible Navier-Stokes equations.
For example, when the initial density is strictly positive, Kazhikov [25] proved that
the system has at least one global weak solution in the energy space, the local
(global if n = 2) existence and uniqueness of strong solutions were first obtained
in [3, 26], and similar results were established recently in a series of works such as
[1, 2, 7, 13, 14, 33, 34, 15, 16]. For the initial data with vacuum, there is a possible
degeneracy near vacuum and hence the problem becomes much more complicated.
The global weak solution with a finite energy was constructed first in Simon [36] and
then by Lions [30] with the density-dependent viscosity. The global existence of two-
dimensional strong solutions with general initial data was established in [21, 17, 31, 36]
for the inhomogeneous Navier-Stokes equations with vacuum. The three-dimensional
local strong solution was obtained in [9] under a compatibility condition, and the
global strong small solution was proved in [12], as well as [22, 41, 20] for the case of
density-dependent viscosity. For three or higher spatial dimensions, the existence of
global strong solutions with general initial data is a well-known open problem. One
difficulty is that the Laplacian dissipation is insufficient to control the nonlinearity
when applying the standard techniques to establish global a priori bounds. Hence it
is natural to explore the problem via replacing the Laplacian operator by the frac-
tional Laplacian operators as in (1.1), motivated by the applications aforementioned,
in order to obtain the global strong solution for the general initial data, which is the
aim of this paper.

When the density ρ is a constant, the system (1.1) becomes the classical fractional
homogeneous incompressible Navier-Stokes equations, which admit a unique global
smooth solution as long as α ≥ 1

2 + n
4 . This result dates back to J. Lions’s book [29]

in 1969, which is even true for some logarithmic corrections (see [37, 5] for details).
These results were extended to the inhomogeneous system (1.1) in [18] for α ≥ 1

2 +
n
4

and in [19] for the corresponding logarithmic case. It should be noted that both [18]
and [19] require the initial density ρ0 bounded away from zero, i.e., the flow has no
vacuum. The goal of this paper is to relax this restriction. More precisely, we shall
establish the global existence of strong solutions with vacuum to the system (1.1).
Moreover, we shall also obtain the exponential decay-in-time of the strong solution.
We recall that (ρ, u) is called a weak solution to the system (1.1) if it satisfies (1.1)
in the sense of distributions, and a strong solution if the system (1.1) holds almost
everywhere.

In this paper, we shall adopt the convention that C denotes a generic constant
depending only on the initial data. For simplicity, we will frequently use the notation
Λ := (−∆)

1
2 . For 1 ≤ r ≤ ∞ and integer k ≥ 0, we use the following notations for

the standard homogeneous and inhomogeneous Sobolev spaces:

L
r = L

r(Rn), Ẇ
k,r = {g ∈ L

1
loc(R

n) : ‖g‖Ẇk,r := ‖∇k
g‖Lr < ∞}, W

k,r := L
r ∩ Ẇ

k,r
,

Ḣs =

{
g : ‖g‖2

Ḣs =

∫

Rn

|ξ|2s|f̂(ξ)|2 dξ < ∞
}
, Hs := L2 ∩ Ḣs.

Now we state our main result of this paper as follows.

Theorem 1.1. For the system (1.1) with α = 1
2 + n

4 and n ≥ 3, if the initial
data (ρ0, u0) satisfies the following conditions:

0 ≤ ρ0 ∈ L
2n

n+2 (Rn) ∩ L∞(Rn), ∇ρ0 ∈ L
4n

n+6 (Rn) ∩ L2(Rn), (1.2)



INHOMOGENEOUS NAVIER-STOKES EQUATIONS 59

∇ · u0 = 0, u0 ∈ Ḣ
1
2+

n
4 (Rn),

√
ρ0u0 ∈ L2(Rn), (1.3)

then it has a unique global strong solution (ρ, u) such that, for any given T > 0 and
for any 0 < τ < T ,

0 ≤ ρ ∈ L∞(0, T ;L
2n

n+2 (Rn) ∩ L∞(Rn)), ∇ρ ∈ L∞(0, T ;L
4n

n+6 (Rn) ∩ L2(Rn)),

u ∈ L∞(0, T ; Ḣ
1
2+

n
4 (Rn)) ∩ L2(0, T ; Ḣ1+n

2 (Rn)),
√
ρ∂tu ∈ L∞(τ, T ;L2(Rn)),

√
ρ∂ttu ∈ L2(τ, T ;L2(Rn)), ∂tu ∈ L2(τ, T ; Ḣ

1
2+

n
4 (Rn)) ∩ L∞(τ, T ; Ḣ

1
2+

n
4 (Rn)),

Λ1+n
2 u ∈ L∞(τ, T ;L

4n
n−2 (Rn)), p ∈ L∞(τ, T ;H1(Rn)) ∩ L∞(τ, T ;W 1, 4n

n−2 (Rn)).

Moreover, there exists some positive constant γ depending only on ‖ρ0‖
L

2n
n+2

such

that, for all t ≥ 1,

‖Λ 1
2+

n
4 u(t)‖2L2 + ‖√ρ∂tu(t)‖2L2 + ‖Λ1+n

2 u(t)‖2
L2∩L

4n
n−2

+ ‖Λ 1
2+

n
4 ∂tu(t)‖2L2

+ ‖p(t)‖2
H1∩W

1, 4n
n−2

≤ C̃e−γt,

where C̃ depends only on ‖ρ0‖
L

2n
n+2

, ‖ρ0‖L∞ , ‖∇ρ0‖L2 , ‖√ρ0u0‖L2 and ‖Λ 1
2+

n
4 u0‖L2 .

Remark 1.1. For the exponential decay-in-time property of Theorem 1.1, the
estimate of the density:

‖ρ(t)‖
L

2n
n+2

≤ ‖ρ0‖
L

2n
n+2

(1.4)

plays a crucial role. This estimate (1.4) does not hold for the homogeneous case (with
constant density) in the whole space. In fact, only algebraic decay rate has been
obtained for the homogeneous case in literature, e.g., [2, 8, 23, 24, 38, 35].

Remark 1.2. As a consequence of the proof of Theorem 1.1, the corresponding
conclusions of the global existence and exponential decay of strong solutions are also
valid for the system (1.1) with at least 1

2 + n
4 < α < n

2 . We also remark that our
arguments can be adopted to other similar systems with the same dissipations.

Remark 1.3. Under the assumption that the initial velocity is suitably small,
the exponential decay-in-time of the strong solutions was obtained in [20] for the
Cauchy problem of the three-dimensional classical inhomogeneous incompressible
Navier-Stokes equations (i.e., the system (1.1) with α = 1) with density-dependent
viscosity and vacuum, which of course is valid for the constant viscosity case. We re-
mark that Theorem 1.1 is proved without any smallness on the initial data. Moreover,
the initial density is allowed to have vacuum. We also point out that the regularity

assumption on the initial density ∇ρ0 ∈ L
4n

n+6 is used only to guarantee the unique-
ness of the solution. As a matter of fact, it is not clear whether we can adopt the
arguments used in [17, page 1373–page 1378] to remove the regularity assumption

∇ρ0 ∈ L
4n

n+6 for the system (1.1) with α = 1
2 + n

4 and n ≥ 3.

Remark 1.4. Finally, compared with the previous works [9, 12, 21, 22, 41], the
following corresponding compatibility condition on the initial data is dropped from
Theorem 1.1:

(−∆)
1
2+

n
4 u0 +∇p0 =

√
ρ0g, (1.5)
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with (p0, g) ∈ H1(Rn) × L2(Rn). However, without the compatibility condition, the
price that we need to pay is that the parameter τ in Theorem 1.1 must be positive
and can not be replaced by the initial time τ = 0.

We now outline the main idea and make some comments on the proof of this
theorem. The local existence of strong solutions to the system (1.1) can be derived
easily following [9, 28] (see Lemma 2.1). In order to prove global existence we need to
establish global a priori estimates on strong solutions of the system (1.1) in suitable
higher-order norms. Since the density has no positive lower bound and the velocity
has no smallness or compatibility conditions, the proof of Theorem 1.1 is much more
involved compared with the related works in literature. Therefore, new ideas are
needed to overcome these difficulties as explained below. First, taking the advantage
of the estimate (1.4) on the density, we have the following key observation:

‖√ρu‖L2 ≤ ‖√ρ‖
L

4n
n+2

‖u‖
L

4n
n−2

≤ C‖ρ‖
1
2

L
2n

n+2
‖Λ 1

2+
n
4 u‖L2 ≤ C‖Λ 1

2+
n
4 u‖L2 ,

which implies that ‖√ρu(t)‖2L2 decays with the rate of e−γt for some γ > 0 depending
only on ‖ρ0‖

L
2n

n+2
(see Lemma 2.2 for details). With the help of this key exponential

decay-in-time rate, we can show that ‖Λ 1
2+

n
4 u(t)‖2L2 decays at the same rate as e−γt

(see Lemma 2.3 for details). The next step is to derive the bound of ‖√ρ∂tu(t)‖2L2 .
However, it prevents us to achieve this goal due to the absence of the compatibility
condition (1.5) for the initial velocity. To overcome this difficulty, we first derive the
following crucial time-weighted estimate (see (2.25)):

t‖√ρ∂tu(t)‖2L2 +

∫ t

0

τ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C, ∀ t ≥ 0, (1.6)

where the positive constant C is independent of the initial data of
√
ρ∂tu. In fact,

the time-weighted estimate is crucial in dropping the compatibility condition on the
initial data (see [20, 28, 31, 34] for example). As a result, (1.6) allows us to derive
the desired exponential decay-in-time rate (see (2.26)):

eγt‖√ρ∂tu(t)‖2L2 +

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C, ∀ t ≥ 1.

As a matter of fact, all these exponential decay-in-time rates and the time-weighted
estimate (1.6) play an important role in obtaining the desired uniform-in-time bound

of
∫ t

0
‖∇u(τ)‖L∞ dτ (see (2.34) for details). Next, by means of these a priori estimates,

we can establish the time independent estimates on the gradient of the density. This
further allows us to derive the time-weighted estimate (see (2.43)):

t2‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

0

τ2‖√ρ∂ττu(τ)‖2L2 dτ ≤ C, ∀ t ≥ 0. (1.7)

Note that, thanks to the weighted factor t2, the constant C in the above estimate is
independent of the initial data of Λ

1
2+

n
4 ∂tu. With (1.7) in hand, we then can conclude

the exponential decay-in-time rate (see (2.44)):

eγt‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C, ∀ t ≥ 1.
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Therefore, the higher regularity of the velocity and the pressure follow directly. The
uniqueness is quite subtle as we only have the estimate

∫ t

0
τ‖Λ 1

2+
n
4 ∂τu(τ)‖2L2 dτ ≤ C

rather than
∫ t

0
‖Λ 1

2+
n
4 ∂τu(τ)‖2L2 dτ ≤ C. This means that the uniqueness can not be

proved by the standard Gronwall’s inequality, instead we use a new Gronwall type
inequality in [28]. With all these a priori estimates obtained, we can finally establish
the global existence and uniqueness as well as the exponential decay of global strong
solution to the system (1.1) in Theorem 1.1.

As a byproduct, using the similar arguments of the proof for Theorem 1.1, we can
also obtain the exponential decay of strong solutions to the two-dimensional Navier-
Stokes equations with damping. We remark that without damping, only algebraic
decay rate was obtained in [31].

The rest of the paper is organized as follows. In Section 2 we carry out the proof
of Theorem 1.1. In the appendix, we present the byproduct on the exponential decay
for the two-dimensional Navier-Stokes equations with damping and a sketch of the
proof.

2. The Proof of Theorem 1.1. This section is devoted to the proof of Theorem
1.1. We shall prove Theorem 1.1 in several steps. In the first step, we state the
local existence and uniqueness of strong solutions. The main part of the proof will
focus on establishing a priori estimates for strong solutions. In the second step, we
make use of the estimate on the density to derive the exponential decay-in-time:
eγt‖√ρu(t)‖2L2 ≤ C for some γ > 0, which also allows us to further establish the same

exponential decay-in-time: eγt‖Λ 1
2+

n
4 u(t)‖2L2 ≤ C. In the third step, with the aid

of the exponential decay estimates obtained above, we continue to derive the time-
weighted estimates and the exponential decay of ‖√ρ∂tu(t)‖2L2 as well as some other
quantities. With the above estimates at hand, the fourth step is devoted to obtaining
the uniform-in-time bound of

∫ t

0
‖∇u(τ)‖L∞ dτ and thus establishing the estimate of

the gradient of ρ. In the fifth step, we establish the time-weighted estimates and the
exponential decay of ‖Λ 1

2+
n
4 ∂tu(t)‖2L2 and some other quantities. Finally, combining

all the above estimates, we prove Theorem 1.1. Now we present the details step by
step.

2.1. Local well-posedness. Inspired by the works of [9, 28], one may construct
the local existence and uniqueness of strong solutions.

Lemma 2.1 (Local strong solution). Under the conditions of Theorem 1.1, there
exists a small time T ∗ and a unique strong solution (ρ, u) defined on the time period
[0, T ∗] to the system (1.1) with α = 1

2 + n
4 and n ≥ 2 such that, for any 0 < τ < T ∗,

0 ≤ ρ ∈ L∞(0, T ∗;L
2n

n+2 (Rn) ∩ L∞(Rn)), ∇ρ ∈ L∞(0, T ∗;L
4n

n+6 (Rn) ∩ L2(Rn)),

p ∈ L∞(0, T ∗;H1(Rn)), u ∈ L∞(0, T ∗; Ḣ
1
2+

n
4 (Rn)) ∩ L2(0, T ∗; Ḣ1+n

2 (Rn)),
√
ρ∂tu ∈ L∞(τ, T ∗;L2(Rn)), ∂tu ∈ L2(τ, T ∗; Ḣ

1
2+

n
4 (Rn)).

Proof. The proof can be performed via the Galerkin approximate approach.
Firstly, assume that (ρ0, u0) satisfies (1.2)-(1.3). We construct (ρδ0, u

δ
0) satisfying

in addition to (1.2)-(1.3) and

0 < δ ≤ ρδ0 ≤ ̺ for some positive constant ̺,

ρδ0 → ρ0 in L
2n

n+2 (Rn), ∇ρδ0 → ∇ρ0 in L
4n

n+6 (Rn) as δ → 0,

uδ
0 → u0 in Ḣ

1
2+

n
4 (Rn),

√
ρδ0u

δ
0 → √

ρ0u0 in L2(Rn) as δ → 0.
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Since ρδ0 ≥ δ > 0 is strictly positive, by means of the classical theory of the ordinary
differential equations and a fixed point theorem (see [9, 36]), one may construct a
sequence of approximate solutions (ρδ, uδ) over the interval (0, T δ) for some T δ > 0.
Moreover, we derive

d

dt
X(t) + C1Y (t) ≤ C2X

σ(t)

for some σ > 1, where X(t) and Y (t) are given by

X(t) = ‖ρ(t)‖
L

2n
n+2 ∩L∞

+ ‖∇ρ(t)‖
L

4n
n+6 ∩L2

+ ‖Λ 1
2+

n
4 u(t)‖2L2 + t‖√ρ∂tu(t)‖2L2 ,

Y (t) = ‖Λ1+n
2 u(t)‖2L2 + t‖Λ 1

2+
n
4 ∂tu(t)‖2L2 .

Therefore, it yields that there exists a positive small time T ∗ independent of δ such
that the solution (ρδ, uδ) satisfy all the estimates of Lemmas 2.2-2.6 over the interval
(0, T ∗]. In particular, we have

‖
√
ρδ∂tu

δ‖2L2(0,T∗;Rn) + ‖pδ‖2L2(0,T∗;H1(Rn)) + ‖Λ 1
2+

n
4 uδ‖2L∞(0,T∗;L2(Rn))

+ ‖Λ1+n
2 uδ‖2L2(0,T∗;Rn) ≤ C0, (2.1)

where C0 is an absolute constant independent of t. By (2.25), it follows for any
t ∈ [0, T ∗] that

t‖
√
ρδ∂tu

δ(t)‖2L2 +

∫ t

0

τ‖Λ 1
2+

n
4 ∂τu

δ(τ)‖2L2 dτ ≤ C0. (2.2)

Thanks to (2.2), we may conclude for any γ ∈ (0, 1
2 ) and for any T ∈ [0, T ∗]

‖uδ‖
Hγ(0,T ;Ḣ

1
2
+n

4 (Rn))
≤ C0(γ, T ). (2.3)

As a matter of fact, (2.3) can be deduced as follows

‖uδ‖2
Hγ(0,T ;Ḣ

1
2
+n

4 (Rn))
= ‖uδ‖2

L2(0,T ;Ḣ
1
2
+n

4 (Rn))

+

∫ T

0

∫ T−h

0

‖Λ 1
2+

n
4 uδ(t+ h)− Λ

1
2+

n
4 uδ(t)‖2L2

h1+2γ
dtdh

= ‖uδ‖2
L2(0,T ;Ḣ

1
2
+n

4 (Rn))

+

∫ T

0

∫ T−h

0

‖
∫ t+h

t
τ−

1
2 τ

1
2Λ

1
2+

n
4 ∂τu

δ(τ) dτ‖2L2

h1+2γ
dtdh

≤ ‖uδ‖2
L2(0,T ;Ḣ

1
2
+n

4 (Rn))

+

∫ T

0

∫ T−h

0

∫ t+h

t
τ−1 dτ

∫ t+h

t
τ‖Λ 1

2+
n
4 ∂τu

δ(τ)‖2L2 dτ

h1+2γ
dtdh

≤ ‖uδ‖2
L2(0,T ;Ḣ

1
2
+n

4 (Rn))

+

∫ T

0

τ‖Λ 1
2+

n
4 ∂τu

δ(τ)‖2L2 dτ

∫ T

0

∫ T−h

0

∫ t+h

t
τ−1 dτ

h1+2γ
dtdh
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≤ C0 + C0

∫ T

0

∫ T−h

0

∫ t+h

t
τ−1 dτ

h1+2γ
dtdh

= C0 + C0

∫ T

0

lnh

h2γ
dh+ C0

∫ T

0

T lnT − (T − h) ln(T − h)

h1+2γ
dh

≤ C0(γ, T ),

where in the last line we used 0 < γ < 1
2 . Thanks to the above estimates, by the

Cantor diagonal argument, there is a subsequence of (ρδ, uδ) still denoted by (ρδ, uδ)
and a pair (ρ, u), such that for any T ∈ [0, T ∗] and for any t0 ∈ (0, T ]

uδ weak⋆
⇀ u in L∞(0, T ; Ḣ

1
2+

n
4 (Rn)) ∩ L∞(t0, T ; Ḣ

1+n
2 (Rn));

uδ ⇀ u in L2(0, T ; Ḣ1+n
2 (Rn)) ∩ L2(t0, T ; Ḣ

1+n
2 (Rn) ∩ Ẇ 1+n

2 , 4n
n−2 (Rn));

∂tu
δ ⇀ ∂tu in L2(0, T ; Ḣ

1
2+

n
4 (Rn));

ρδ
weak⋆
⇀ ρ in L∞(0, T ;L

2n
n+2 (Rn) ∩ Ẇ 1, 4n

4+6 (Rn));

∂tρ
δ ⇀ ∂tρ in L

2(n+2)
n−2 (0, T ;L

4n
4+6 (Rn)).

Moreover, the above estimates and the standard compact embedding imply that,
up to subsequence, uδ → u in L2

loc(0, T
∗; Ḣ

1
2+

n
4 (Rn)) for some u that, in addition,

satisfies (2.1), (2.2) and (2.3). For the density, we have ρδ ⇀ ρ in L∞(0, T ∗;Rn) and
0 ≤ ρ ≤ ̺. All those estimates are more than enough to justify that (ρ, u) is a weak
solution to (1.1), precisely,

< ρ(t)u(t), χ(t) > − < ρ0u0, χ0 > −
∫ t

0

< ρu, ∂τχ > dτ −
∫ t

0

< ρu⊗ u,∇χ > dτ

+

∫ t

0

< Λ
1
2+

n
4 u,Λ

1
2+

n
4 χ > dτ = 0; (2.4)

for all smooth compactly supported divergence-free vector function χ ∈ C∞([0, T ∗)×
Rn). Moreover, the continuity equation is fulfilled in a distributional meaning

∂tρ+ div(ρu) = 0 in S ′(0, T ∗;Rn). (2.5)

Therefore, by (2.12) and (2.35) as well as the Aubin-Lions compactness lemma, we
have

ρδ → ρ in C(0, T ∗;Lp(Rn)) for any
2n

n+ 2
≤ p < ∞. (2.6)

As a result, (ρ, u) satisfies (2.1) and (2.2). Furthermore, combining (2.1), (2.5) and
(2.4) yields that the momentum equation is fulfilled in the following strong sense

∂t(ρu) + div(ρu⊗ u) + (−∆)
1
2+

n
4 u+∇p = 0 in L2(0, T ∗;Rn)

for some pressure function ∇p ∈ L2(0, T ∗;Rn) satisfying (2.1). Next, we will show
the time continuity of the solution (ρ, u), namely,

ρ ∈ C([0, T ∗];Lq(Rn)),
2n

n+ 2
≤ q < ∞, (2.7)
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ρu ∈ C([0, T ∗];L2(Rn)). (2.8)

Due to ∂tρ
δ = −uδ · ∇ρδ, one has

‖ρδ(t)− ρδ0‖
L

2n
n+2

=

∥∥∥∥
∫ t

0

∂τρ
δ(τ) dτ

∥∥∥∥
L

2n
n+2

=

∥∥∥∥
∫ t

0

uδ · ∇ρδ(τ) dτ

∥∥∥∥
L

2n
n+2

≤
∫ t

0

∥∥uδ · ∇ρδ(τ)
∥∥
L

2n
n+2

dτ

≤
∫ t

0

‖uδ(τ)‖
L

4n
n−2

‖∇ρδ(τ)‖
L

4n
n+6

dτ

≤ C

∫ t

0

‖Λ 1
2+

n
4 uδ(τ)‖L2‖∇ρδ(τ)‖

L
4n

n+6
dτ

≤ C0(t)t,

where in the last line we have used (2.16) and (2.35). By the Hölder inequality, one
has

‖ρδ(t)− ρδ0‖Lq ≤ C‖ρδ(t)− ρδ0‖
2n

(n+2)q

L
2n

n+2
‖ρδ(t)− ρδ0‖

1− 2n
(n+2)q

L∞ ≤ C0(t)t
2n

(n+2)q .

By (2.6), we thus get for any ǫ > 0

‖ρ(t)− ρ0‖Lq ≤ ‖ρ(t)− ρδ(t)‖Lq + ‖ρδ(t)− ρδ0‖Lq + ‖ρδ0 − ρ0‖Lq

≤ ǫ

3
+ C0(t)t

2n
(n+2)q +

ǫ

3
,

which implies that for t sufficiently small

‖ρ(t)− ρ0‖Lq ≤ ǫ.

This yields that ρ continuous at the original time and satisfies the initial condition
ρ|t=0 = ρ0, which further leads to (2.7). To show (2.8), we first notice that Λ

1
2+

n
4 ∂tu

δ

is bounded in L2([t0, T
∗]×Rn) for any t0 ∈ (0, T ∗] due to (2.2). According to (2.16),

we know that Λ
1
2+

n
4 uδ is bounded in L∞([0, T ∗];L2(Rn)). Thus, one can conclude by

means of Ascoli theorem that, up to extraction, uδ → u in C([t0, T
∗];Lq(Rn)) for any

q < 4n
n−2 and for any t0 > 0, which along with (2.6) further yields

ρu ∈ C([t0, T
∗];L2(Rn)). (2.9)

Consequently, it remains to verify the continuity of ρu at the original time. To this
end, we first show that

‖(ρδuδ)(t)− ρδ0u
δ
0‖

L
4n

3n+2
=

∥∥∥∥
∫ t

0

∂τ (ρ
δuδ)(τ) dτ

∥∥∥∥
L

4n
3n+2

=

∥∥∥∥
∫ t

0

(∂τρ
δuδ)(τ) + (ρδ∂τu

δ)(τ) dτ

∥∥∥∥
L

4n
3n+2

≤
∫ t

0

∥∥(∂τρδuδ)(τ)
∥∥
L

4n
3n+2

dτ +

∫ t

0

∥∥(ρδ∂τuδ)(τ)
∥∥
L

4n
3n+2

dτ



INHOMOGENEOUS NAVIER-STOKES EQUATIONS 65

≤
∫ t

0

∥∥(uδ · ∇ρδuδ)(τ)
∥∥
L

4n
3n+2

dτ

+

∫ t

0

∥∥∥(
√
ρδ
√
ρδ∂τu

δ)(τ)
∥∥∥
L

4n
3n+2

dτ

≤
∫ t

0

‖∇ρδ(τ)‖
L

4n
n+6

‖uδ(τ)‖2
L

4n
n−2

dτ

+

∫ t

0

‖ρδ(τ)‖
1
2

L
2n

n+2
‖(
√

ρδ∂τu
δ)(τ)‖L2 dτ

≤ C0(t)t+ C0

∫ t

0

‖(
√
ρδ∂τu

δ)(τ)‖L2 dτ

≤ C0(t)t+ C0t
1
2

(∫ t

0

‖(
√
ρδ∂τu

δ)(τ)‖2L2 dτ

) 1
2

≤ C0(t)t+ C0t
1
2 ,

where we have used (2.16) and (2.35) again. Using the Hölder inequality yields

‖(ρδuδ)(t)− ρδ0u
δ
0‖L2 ≤ C‖(ρδuδ)(t)− ρδ0u

δ
0‖

1
2

L
4n

3n+2
‖(ρδuδ)(t)− ρδ0u

δ
0‖

1
2

L
4n

n−2

≤
(
C0(t)t+ C0t

1
2

) 1
2

.

We therefore derive

‖(ρu)(t)− ρ0u0‖L2 ≤ ‖(ρu)(t)− (ρδuδ)(t)‖L2 + ‖(ρδuδ)(t)− ρδ0u
δ
0‖L2

+‖ρδ0uδ
0 − ρ0u0‖L2

≤ ‖(ρu)(t)− (ρδuδ)(t)‖L2 +
(
C0(t)t+ C0t

1
2

) 1
2

+‖ρδ0uδ
0 − ρ0u0‖L2 . (2.10)

Keeping in mind (2.9) and (2.8), we deduce for any t ∈ (0, T ∗] that

lim inf
δ→0

‖(ρu)(t)− (ρδuδ)(t)‖L2 = 0. (2.11)

Combining (2.10), (2.11) and the fact
√

ρδ0u
δ
0 → √

ρ0u0 in L2(Rn) as δ → 0, one has
for any t ∈ (0, T ∗]

‖(ρu)(t)− ρ0u0‖L2 ≤ lim inf
δ→0

‖(ρu)(t)− (ρδuδ)(t)‖L2 +
(
C0(t)t+ C0t

1
2

) 1
2

+ lim inf
δ→0

‖ρδ0uδ
0 − ρ0u0‖L2

=
(
C0(t)t+ C0t

1
2

) 1
2

.

As a result, this implies that ρu continuous at the original time and satisfies the initial
condition ρu|t=0 = ρ0u0. This concludes the proof of the existence part of Theorem
1.1. Finally, the proof of the uniqueness of (ρ, u) can be performed as the part of
Proof of Theorem 1.1 (see the end of this section). This finishes the proof of Lemma
2.1.
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2.2. Exponential decay of ‖√ρu(t)‖2L2 and ‖Λ 1
2+

n
4 u(t)‖2L2 . We begin with

the basic energy estimates.

Lemma 2.2. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the
system (1.1) admits the following bound for any t ≥ 0,

‖ρ(t)‖
L

2n
n+2 ∩L∞

≤ ‖ρ0‖
L

2n
n+2 ∩L∞

, (2.12)

eγt‖√ρu(t)‖2L2 +

∫ t

0

eγτ‖Λ 1
2+

n
4 u(τ)‖2L2 dτ ≤ ‖√ρ0u0‖2L2 . (2.13)

Proof. First, the non-negativeness of ρ is a direct consequence of the maximum
principle and ρ0 ≥ 0. We multiply the equation (1.1)1 by |ρ|p−2ρ, integrate it over
Rn and use ∇ · u = 0 to conclude

d

dt
‖ρ(t)‖Lp = 0.

We then obtain ‖ρ(t)‖Lp ≤ ‖ρ0‖Lp . Letting p → ∞ yields ‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ .

In order to show (2.13), we multiply equation (1.1)2 by u, use the equation (1.1)1
and integrate the resulting equation over Rn to show

1

2

d

dt
‖√ρu(t)‖2L2 + ‖Λ 1

2+
n
4 u‖2L2 = 0. (2.14)

Now it is easy to check that there exists some constant C⋆ = C⋆(n) such that

‖√ρu‖L2 ≤ ‖√ρ‖
L

4n
n+2

‖u‖
L

4n
n−2

≤ C⋆‖ρ‖
1
2

L
2n

n+2
‖Λ 1

2+
n
4 u‖L2

≤ C⋆‖ρ0‖
1
2

L
2n

n+2
‖Λ 1

2+
n
4 u‖L2 , (2.15)

where and henceforth the following embedding inequality will be used frequently:

‖u‖Lq ≤ C(q, n)‖Λn
2 −n

q u‖L2 , 2 ≤ q < ∞.

Thus, we conclude from (2.14) that

d

dt
‖√ρu(t)‖2L2 + γ‖√ρu(t)‖2L2 + ‖Λ 1

2+
n
4 u‖2L2 = 0,

where

γ =
1

C2
⋆‖ρ0‖

L
2n

n+2

.

Integrating in time yields (2.13). This completes the proof of Lemma 2.2.

Based on the estimate (2.13), we now derive the same exponential decay estimate

for ‖Λ 1
2+

n
4 u(t)‖2L2 .

Lemma 2.3. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the
system (1.1) admits the following bound for any t ≥ 0,

eγt‖Λ 1
2+

n
4 u(t)‖2L2 +

∫ t

0

eγτ (‖Λ1+n
2 u(τ)‖2L2 + ‖√ρ∂τu(τ)‖2L2) dτ ≤ C̃1, (2.16)
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where C̃1 depends only on ‖ρ0‖
L

2n
n+2

, ‖ρ0‖L∞ , ‖√ρ0u0‖L2 and ‖Λ 1
2+

n
4 u0‖L2 .

Proof. First, multiplying the equation (1.1)2 by ∂tu, using ∇·u = 0 and integrat-
ing by parts, we obtain

1

2

d

dt
‖Λ 1

2+
n
4 u(t)‖2L2 + ‖√ρ∂tu‖2L2 = −

∫

Rn

ρu · ∇u · ∂tu dx.

With the aid of the Gagliardo-Nirenberg inequality, one gets

−
∫

Rn

ρu · ∇u · ∂tu dx ≤ ‖u · ∇u‖L2‖√ρ‖L∞‖√ρ∂tu‖L2

≤ C‖ρ0‖
1
2

L∞‖u‖
L

4n
n−2

‖∇u‖
L

4n
n+2

‖√ρ∂tu‖L2

≤ C‖Λ 1
2+

n
4 u‖2L2‖√ρ∂tu‖L2

≤ 1

2
‖√ρ∂tu‖2L2 + C‖Λ 1

2+
n
4 u‖2L2‖Λ

1
2+

n
4 u‖2L2 . (2.17)

We therefore conclude that

d

dt
‖Λ 1

2+
n
4 u(t)‖2L2 + ‖√ρ∂tu‖2L2 ≤ C‖Λ 1

2+
n
4 u‖2L2‖Λ

1
2+

n
4 u‖2L2 .

This implies

d

dt
(eγt‖Λ 1

2+
n
4 u(t)‖2L2) + eγt‖√ρ∂tu‖2L2 ≤ γeγt‖Λ 1

2+
n
4 u(t)‖2L2

+ Ceγt‖Λ 1
2+

n
4 u‖2L2‖Λ

1
2+

n
4 u‖2L2 .

Integrating in time and using (2.13) yield

eγt‖Λ 1
2+

n
4 u(t)‖2L2 +

∫ t

0

eγτ‖√ρ∂τu(τ)‖2L2 dτ

≤ ‖Λ 1
2+

n
4 u0‖2L2 + γ

∫ t

0

eγτ‖Λ 1
2+

n
4 u(τ)‖2L2 dτ

+C

∫ t

0

eγτ‖Λ 1
2+

n
4 u(τ)‖2L2‖Λ

1
2+

n
4 u(τ)‖2L2 dτ

≤ C̃ + C

∫ t

0

eγτ‖Λ 1
2+

n
4 u(τ)‖2L2‖Λ

1
2+

n
4 u(τ)‖2L2 dτ.

We thus get

eγt‖Λ 1
2+

n
4 u(t)‖2L2 +

∫ t

0

eγτ‖√ρ∂τu(τ)‖2L2 dτ

≤ C̃ + C

∫ t

0

eγτ‖Λ 1
2+

n
4 u(τ)‖2L2‖Λ

1
2+

n
4 u(τ)‖2L2 dτ. (2.18)

Let us recall the classical Gronwall inequality: assume that φ(t), g(t), α(t) be non-
negative functions over [0, T ] and satisfy

φ(t) ≤ φ(0) +

∫ t

0

α(τ)φ(τ) dτ +

∫ t

0

g(τ) dτ
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or

d

dt
φ(t) ≤ α(t)φ(t) + g(t),

then, it holds for any t ∈ [0, T ] that

φ(t) ≤ e
∫

t

0
α(τ) dτφ(0) +

∫ t

0

g(s)e
∫

t

s
α(τ) dτ ds.

By virtue of the above Gronwall inequality and (2.13), one deduces from (2.18) that

eγt‖Λ 1
2+

n
4 u(t)‖2L2 ≤ C̃1 exp

[∫ t

0

‖Λ 1
2+

n
4 u(τ)‖2L2 dτ

]
≤ C̃1, (2.19)

which along with (2.18) also implies

∫ t

0

eγτ‖√ρ∂τu(τ)‖2L2 dτ ≤ C̃1. (2.20)

Now let us recall the generalized Stokes equations
{

(−∆)
1
2+

n
4 u+∇p = −ρ∂tu− ρu · ∇u,

∇ · u = 0,
(2.21)

then we have

∇p = (−∆)−1∇∇ · (ρ∂tu+ ρu · ∇u). (2.22)

Thus, it follows from (2.21) and (2.22) that

‖Λ1+n
2 u‖L2 ≤ C‖ρ∂tu‖L2 + C‖ρu · ∇u‖L2

≤ C‖√ρ‖L∞‖√ρ∂tu‖L2 + C‖ρ‖L∞‖u · ∇u‖L2

≤ C‖√ρ∂tu‖L2 + C‖u‖
L

4n
n−2

‖∇u‖
L

4n
n+2

≤ C‖√ρ∂tu‖L2 + C‖Λ 1
2+

n
4 u‖2L2 . (2.23)

This allows us to show
∫ t

0

eγτ‖Λ1+n
2 u(τ)‖2L2 dτ ≤

∫ t

0

eγτ‖√ρ∂τu(τ)‖2L2 dτ +

∫ t

0

eγτ‖Λ 1
2+

n
4 u(τ)‖4L2 dτ

≤ C̃1, (2.24)

where we have used (2.13), (2.19) and (2.20). We thus complete the proof of the
lemma by combining (2.19), (2.20) and (2.24).

2.3. Time-weighted estimates and exponential decay of ‖√ρ∂tu(t)‖2L2

and other quantities. The following lemma is crucial to derive the higher order
estimates of the solutions.

Lemma 2.4. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the
system (1.1) admits the following bound for any t ≥ 0,

t‖Λ1+n
2 u(t)‖2L2 + t‖p(t)‖2H1 + t‖√ρ∂tu(t)‖2L2

+

∫ t

0

τ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C̃1. (2.25)
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Moreover, for any t ≥ 1, the following estimates hold true

eγt‖√ρ∂tu(t)‖2L2 +

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C̃1, (2.26)

eγt‖Λ1+n
2 u(t)‖2L2 +

∫ t

1

eγτ‖Λ1+n
2 u(τ)‖2L2 dτ ≤ C̃1, (2.27)

eγt‖p(t)‖2H1 ≤ C̃1, (2.28)

where C̃1 depends only on ‖ρ0‖
L

2n
n+2

, ‖ρ0‖L∞ , ‖√ρ0u0‖L2 and ‖Λ 1
2+

n
4 u0‖L2 .

Proof. First, applying the time derivative ∂t to the equation (1.1)2 gives

ρ∂ttu+ ρu · ∇∂tu+ (−∆)
1
2+

n
4 ∂tu+∇∂tp = −∂tρ∂tu− ∂t(ρu) · ∇u. (2.29)

Multiplying (2.29) by ∂tu and using the equation (1.1)1, we derive that

1

2

d

dt
‖√ρ∂tu(t)‖2L2 + ‖Λ 1

2+
n
4 ∂tu‖2L2

= −
∫

Rn

∂tρ∂tu · ∂tu dx−
∫

Rn

∂t(ρu) · ∇u · ∂tu dx

= −2

∫

Rn

ρu · ∇∂tu · ∂tu dx−
∫

Rn

ρ∂tu · ∇u · ∂tu dx−
∫

Rn

ρu · ∇(u · ∇u · ∂tu) dx

:= N1 +N2 +N3. (2.30)

By means of the embedding inequalities, one shows

N1 ≤ C‖√ρ‖L∞‖√ρ∂tu‖L2‖∇∂tu‖
L

4n
n+2

‖u‖
L

4n
n−2

≤ C‖√ρ∂tu‖L2‖Λ 1
2+

n
4 ∂tu‖L2‖Λ 1

2+
n
4 u‖L2

≤ 1

8
‖Λ 1

2+
n
4 ∂tu‖2L2 + C‖Λ 1

2+
n
4 u‖2L2‖√ρ∂tu‖2L2

and

N2 ≤ C‖√ρ‖L∞‖√ρ∂tu‖L2‖∇u‖
L

4n
n+2

‖∂tu‖
L

4n
n−2

≤ C‖√ρ∂tu‖L2‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2

≤ 1

8
‖Λ 1

2+
n
4 ∂tu‖2L2 + C‖Λ 1

2+
n
4 u‖2L2‖√ρ∂tu‖2L2 .
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For the term N3, it can be bounded by

N3 ≤
∣∣∣∣
∫

Rn

ρu · ∇u · ∇u · ∂tu dx
∣∣∣∣+

∣∣∣∣
∫

Rn

ρu · u · ∇2u · ∂tu dx
∣∣∣∣

+

∣∣∣∣
∫

Rn

ρu · u · ∇u · ∇∂tu dx

∣∣∣∣
≤ C‖ρ‖L∞‖u‖

L
4n

n−2
‖∇u‖2

L
4n

n+2
‖∂tu‖

L
4n

n−2
+ C‖√ρ‖L∞‖√ρ∂tu‖L2‖∇2u‖Ln‖u‖2

L
4n

n−2

+C‖ρ‖L∞‖u‖2
L

4n
n−2

‖∇u‖
L

4n
n+2

‖∇∂tu‖
L

4n
n+2

≤ C‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 u‖2L2‖Λ

1
2+

n
4 ∂tu‖L2 + C‖√ρ∂tu‖L2‖Λ1+n

2 u‖L2‖Λ 1
2+

n
4 u‖2L2

+C‖Λ 1
2+

n
4 u‖2L2‖Λ

1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2

≤ C‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 u‖2L2‖Λ

1
2+

n
4 ∂tu‖L2 + C‖√ρ∂tu‖2L2‖Λ

1
2+

n
4 u‖2L2

+C‖√ρ∂tu‖L2‖Λ 1
2+

n
4 u‖4L2 + C‖Λ 1

2+
n
4 u‖2L2‖Λ

1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2

≤ 1

8
‖Λ 1

2+
n
4 ∂tu‖2L2 + C‖Λ 1

2+
n
4 u‖6L2 + C‖Λ 1

2+
n
4 u‖2L2‖√ρ∂tu‖2L2 ,

where we have used the following fact due to (2.23)

‖Λ1+n
2 u‖L2 ≤ C‖√ρ∂tu‖L2 + C‖Λ 1

2+
n
4 u‖2L2 . (2.31)

Substituting the above estimates into (2.30) yields

d

dt
‖√ρ∂tu(t)‖2L2 + ‖Λ 1

2+
n
4 ∂tu‖2L2

≤ C‖Λ 1
2+

n
4 u‖2L2‖√ρ∂tu‖2L2 + C‖Λ 1

2+
n
4 u‖6L2 , (2.32)

which implies

d

dt
(t‖√ρ∂tu(t)‖2L2) + t‖Λ 1

2+
n
4 ∂tu(t)‖2L2

≤ C‖Λ 1
2+

n
4 u‖2L2(t‖√ρ∂tu‖2L2) + ‖√ρ∂tu(t)‖2L2 + Ct‖Λ 1

2+
n
4 u‖6L2 .

From (2.13) and (2.16), and by the Gronwall inequality, one has

t‖√ρ∂tu(t)‖2L2 +

∫ t

0

τ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C̃1. (2.33)

Moreover, we deduce from (2.32) that

d

dt
(eγt‖√ρ∂tu(t)‖2L2) + eγt‖Λ 1

2+
n
4 ∂tu(t)‖2L2

≤ C‖Λ 1
2+

n
4 u‖2L2(eγt‖√ρ∂tu‖2L2) + γeγt‖√ρ∂tu(t)‖2L2 + Ceγt‖Λ 1

2+
n
4 u‖6L2 .

Integrating it in time and making use of (2.16) as well as (2.33) lead to

eγt‖√ρ∂tu(t)‖2L2 +

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ

≤ C̃1 + C

∫ t

1

‖Λ 1
2+

n
4 u(τ)‖2L2(eγτ‖√ρ∂τu(τ)‖2L2) dτ + γ

∫ t

1

eγτ‖√ρ∂τu(τ)‖2L2 dτ

+C

∫ t

1

(eγτ‖Λ 1
2+

n
4 u(τ)‖2L2)‖Λ

1
2+

n
4 u(τ)‖4L2 dτ

≤ C̃1 + C

∫ t

1

‖Λ 1
2+

n
4 u(τ)‖2L2(eγτ‖√ρ∂τu(τ)‖2L2) dτ.
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By the same argument adopted in dealing with (2.19) and (2.20), we thus deduce

eγt‖√ρ∂tu(t)‖2L2 +

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C̃1.

By means of (2.31), (2.26) and (2.16), we have

eγt‖Λ1+n
2 u‖2L2 +

∫ t

1

eγτ‖Λ1+n
2 u(τ)‖2L2 dτ

≤ Ceγt(‖√ρ∂tu‖2L2 + ‖Λ 1
2+

n
4 u‖4L2) +

∫ t

1

eγτ (‖√ρ∂τu(τ)‖2L2 + ‖Λ 1
2+

n
4 u(τ)‖4L2) dτ

= Ceγt‖√ρ∂tu‖2L2 + Ce−γt(eγt‖Λ 1
2+

n
4 u‖2L2)2

+

∫ t

1

(
eγτ‖√ρ∂τu(τ)‖2L2 + e−γτ (eγτ‖Λ 1

2+
n
4 u(τ)‖2L2)(eγτ‖Λ

1
2+

n
4 u(τ)‖2L2)

)
dτ

≤ C̃1 + C̃1

∫ t

1

eγτ‖Λ 1
2+

n
4 u(τ)‖2L2 dτ

≤ C̃1.

We thus obtain (2.27). It follows from (2.22) that

‖∇p‖L2 ≤ C‖ρ∂tu‖L2 + C‖ρu · ∇u‖L2 ≤ C‖√ρ∂tu‖L2 + C‖Λ 1
2+

n
4 u‖2L2 ,

where we have used the estimates in (2.17). Similarly, we obtain

‖p‖L2 ≤ C‖Λ−1(ρ∂tu‖L2)‖L2 + C‖Λ−1(ρu · ∇u)‖L2

≤ C‖ρ∂tu‖
L

2n
n+2

+ C‖ρu · ∇u‖
L

2n
n+2

≤ C‖√ρ‖Ln‖√ρ∂tu‖L2 + C‖ρ‖Ln‖u · ∇u‖L2

≤ C‖√ρ0‖Ln‖√ρ∂tu‖L2 + C‖ρ0‖Ln‖u · ∇u‖L2

≤ C‖√ρ∂tu‖L2 + C‖Λ 1
2+

n
4 u‖2L2 .

As before, we therefore obtain for all t ≥ 1,

eγt‖p‖2H1 ≤ Ceγt‖√ρ∂tu‖2L2 + Ceγt‖Λ 1
2+

n
4 u‖4L2 ≤ C̃1.

This completes the proof of Lemma 2.4.

2.4. Uniform in time bound of
∫ t

0
‖∇u(τ)‖L∞ dτ and gradient of ρ. The

following estimates will be used to show the uniqueness of solutions and the exponen-
tial decay of other quantities.

Lemma 2.5. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the
system (1.1) admits the following bounds for any t ≥ 0,

∫ t

0

‖∇u(τ)‖L∞ dτ ≤ C̃1, (2.34)

‖∇ρ(t)‖
L

4n
n+6

≤ C̃1‖∇ρ0‖
L

4n
n+6

, (2.35)

‖∇ρ(t)‖L2 ≤ C̃1‖∇ρ0‖L2 , (2.36)
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where C̃1 depends only on ‖ρ0‖
L

2n
n+2

, ‖ρ0‖L∞ , ‖√ρ0u0‖L2 and ‖Λ 1
2+

n
4 u0‖L2 .

Remark 2.1. We remark that the bound (2.35) will be used to show the
uniqueness, while the bound (2.36) will be used to derive the exponential decay of
‖Λ1+n

2 ∂tu(t)‖2L2 and other quantities.

Proof. First, it is easy to check that for any 2 < p < 4n
n−2 ,

‖ρ∂tu‖Lp ≤ C‖ρ∂tu‖
1−

2n(p−2)
(n+2)p

L2 ‖ρ∂tu‖
2n(p−2)
(n+2)p

L
4n

n−2

≤ C‖√ρ‖1−
2n(p−2)
(n+2)p

L∞ ‖√ρ∂tu‖
1−

2n(p−2)
(n+2)p

L2 ‖ρ‖
2n(p−2)
(n+2)p

L∞ ‖∂tu‖
2n(p−2)
(n+2)p

L
4n

n−2

≤ C‖√ρ∂tu‖
1−

2n(p−2)
(n+2)p

L2 ‖Λ 1
2+

n
4 ∂tu‖

2n(p−2)
(n+2)p

L2

≤ C‖√ρ∂tu‖L2 + C‖Λ 1
2+

n
4 ∂tu‖L2 , (2.37)

‖ρu · ∇u‖Lp ≤ C‖ρu · ∇u‖1−
2n(p−2)
(n+2)p

L2 ‖ρu · ∇u‖
2n(p−2)
(n+2)p

L
4n

n−2

≤ C‖u · ∇u‖1−
2n(p−2)
(n+2)p

L2 ‖u · ∇u‖
2n(p−2)
(n+2)p

L
4n

n−2

≤ C‖Λ 1
2+

n
4 u‖2(1−

2n(p−2)
(n+2)p )

L2

(
‖Λ 1

2+
n
4 u‖L2‖Λ1+n

2 u‖L2

) 2n(p−2)
(n+2)p

≤ C‖Λ 1
2+

n
4 u‖2L2 + C‖Λ1+n

2 u‖2L2 , (2.38)

where we have used the following fact

‖u · ∇u‖
L

4n
n−2

≤ C‖u‖L∞‖∇u‖
L

4n
n−2

≤ C(‖Λ 1
2+

n
4 u‖

4
n+2

L2 ‖Λ1+n
2 u‖1−

4
n+2

L2 )(‖Λ 1
2+

n
4 u‖1−

4
n+2

L2 ‖Λ1+n
2 u‖

4
n+2

L2 )

≤ ‖Λ 1
2+

n
4 u‖L2‖Λ1+n

2 u‖L2 . (2.39)

Combining the estimates (2.13), (2.16), (2.26) and (2.27) allows us to show that, for
any 2 < p < 4n

n−2 and for any t ≥ 0,

∫ t

0

(‖ρ∂tu(τ)‖Lp + ‖ρu · ∇u(τ)‖Lp) dτ

≤ C

∫ t

0

(‖√ρ∂τu‖
1−

2n(p−2)
(n+2)p

L2 ‖Λ 1
2+

n
4 ∂τu‖

2n(p−2)
(n+2)p

L2 + ‖Λ 1
2+

n
4 u(τ)‖2L2 + ‖Λ1+n

2 u(τ)‖2L2) dτ

= C

∫ 1

0

τ−
1
2 (τ

1
2 ‖√ρ∂τu‖L2)1−

2n(p−2)
(n+2)p (τ

1
2 ‖Λ 1

2+
n
4 ∂τu‖L2)

2n(p−2)
(n+2)p ) dτ

+C

∫ t

1

e−
γτ
2 (e

γτ
2 ‖√ρ∂τu(τ)‖L2 + e

γτ
2 ‖Λ 1

2+
n
4 ∂τu(τ)‖L2) dτ

+C

∫ t

0

e−γτ (eγτ‖Λ 1
2+

n
4 u(τ)‖2L2 + eγτ‖Λ1+n

2 u(τ)‖2L2) dτ

≤ C

∫ 1

0

τ−
1
2 (τ

1
2 ‖Λ 1

2+
n
4 ∂τu‖L2)

2n(p−2)
(n+2)p ) dτ + C̃

∫ t

0

e−γτ dτ
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≤ C̃ + C

(∫ 1

0

τ‖Λ 1
2+

n
4 ∂τu‖2L2 dτ

)n(p−2)
(n+2)p

(∫ 1

0

τ
−

(n+2)p
4(n+p) dτ

)1−
n(p−2)
(n+2)p

≤ C̃. (2.40)

Using (2.22) and applying the Lp-estimate to (2.21) yield

‖Λ1+n
2 u‖Lp ≤ C‖ρ∂tu‖Lp + C‖ρu · ∇u‖Lp ,

which leads to

‖∇u‖L∞ ≤ C‖∇u‖1−
(n+2)p

(3n+2)p−4n

L
4n

n+2
‖Λ1+n

2 u‖
(n+2)p

(3n+2)p−4n

Lp

≤ C‖Λ 1
2+

n
4 u‖1−

(n+2)p
(3n+2)p−4n

L2 ‖Λ1+n
2 u‖

(n+2)p
(3n+2)p−4n

Lp

≤ C‖Λ 1
2+

n
4 u‖L2 + C‖Λ1+n

2 u‖Lp

≤ C‖Λ 1
2+

n
4 u‖L2 + C‖ρ∂tu‖Lp + C‖ρu · ∇u‖Lp . (2.41)

Thanks to (2.13), (2.40) and (2.41), we immediately obtain

∫ t

0

‖∇u(τ)‖L∞ dτ ≤ C̃1. (2.42)

Since ρ satisfies ∂tρ+ u · ∇ρ = 0, direct computations yield

d

dt
‖∇ρ(t)‖

L
4n

n+6
≤ ‖∇u‖L∞‖∇ρ(t)‖

L
4n

n+6
,

d

dt
‖∇ρ(t)‖L2 ≤ ‖∇u‖L∞‖∇ρ(t)‖L2 ,

The Gronwall inequality and (2.42) ensure that

‖∇ρ(t)‖
L

4n
n+6

≤ ‖∇ρ0‖
L

4n
n+6

exp

[∫ t

0

‖∇u(τ)‖L∞ dτ

]
≤ C̃1‖∇ρ0‖

L
4n

n+6
,

‖∇ρ(t)‖L2 ≤ ‖∇ρ0‖L2 exp

[∫ t

0

‖∇u(τ)‖L∞ dτ

]
≤ C̃1‖∇ρ0‖L2 .

We thus complete the proof of Lemma 2.5.

Remark 2.2. We remark that the estimates of the previous subsections would
suffice to get already a satisfactory global well-posedness result with exponential decay.
Here, thanks to the above obtained estimates, we want to show more regularities of
the solution.

2.5. Time-weighted estimates and exponential decay of ‖Λ 1
2+

n
4 ∂tu(t)‖2L2 .

Lemma 2.6. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the system
(1.1) admits the following bound for any t ≥ 0,

t2‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

0

τ2‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃. (2.43)

Moreover, for any t ≥ 1, we have

eγt‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃, (2.44)
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where C̃ depends only on ‖ρ0‖
L

2n
n+2

, ‖ρ0‖L∞ , ‖∇ρ0‖L2 , ‖√ρ0u0‖L2 and ‖Λ 1
2+

n
4 u0‖L2 .

Proof. Multiplying (2.29) by ∂ttu and integrating by parts imply that

1

2

d

dt
‖Λ 1

2+
n
4 ∂tu(t)‖2L2 + ‖√ρ∂ttu‖2L2

= −
∫

Rn

∂tρ∂tu · ∂ttu dx−
∫

Rn

∂t(ρu) · ∇u · ∂ttu dx−
∫

Rn

ρu · ∇∂tu · ∂ttu dx

= −
∫

Rn

∂tρ∂tu · ∂ttu dx−
∫

Rn

∂tρu · ∇u · ∂ttu dx−
∫

Rn

ρ∂tu · ∇u · ∂ttu dx

−
∫

Rn

ρu · ∇∂tu · ∂ttu dx

:= H1 +H2 +H3 +H4. (2.45)

We first bound H3 and H4 as

|H3|+ |H4| ≤ C‖√ρ‖L∞‖√ρ∂ttu‖L2(‖∂tu‖
L

4n
n−2

‖∇u‖
L

4n
n+2

+ ‖u‖
L

4n
n−2

‖∂t∇u‖
L

4n
n+2

)

≤ C‖√ρ0‖L∞‖√ρ∂ttu‖L2‖Λ 1
2+

n
4 ∂tu‖L2‖Λ 1

2+
n
4 u‖L2

≤ 1

2
‖√ρ∂ttu‖2L2 + C‖Λ 1

2+
n
4 u‖2L2‖Λ

1
2+

n
4 ∂tu‖2L2 .

We rewrite H1 as follows

H1 = −1

2

∫

Rn

∂tρ∂t|∂tu|2 dx

= −1

2

d

dt

∫

Rn

∂tρ|∂tu|2 dx+
1

2

∫

Rn

∂ttρ|∂tu|2 dx

= −1

2

d

dt

∫

Rn

∂tρ|∂tu|2 dx− 1

2

∫

Rn

∂tdiv(ρu)|∂tu|2 dx

= −1

2

d

dt

∫

Rn

∂tρ|∂tu|2 dx+

∫

Rn

∂t(ρui)∂tu · ∂t∂iu dx

= −1

2

d

dt

∫

Rn

∂tρ|∂tu|2 dx+

∫

Rn

∂tρui∂tu · ∂t∂iu dx

+

∫

Rn

ρ∂tui∂tu · ∂t∂iu dx. (2.46)

By the Hölder inequality and the embedding inequality, we have
∫

Rn

ρ∂tui∂tu · ∂t∂iu dx ≤ C‖√ρ‖L∞‖√ρ∂tu‖L2‖∂tu‖
L

4n
n−2

‖∂t∇u‖
L

4n
n+2

≤ C‖√ρ∂tu‖L2‖Λ 1
2+

n
4 ∂tu‖2L2 .

Similarly, using ∂tρ = −u · ∇ρ gives
∫

Rn

∂tρui∂tu · ∂t∂iu dx ≤ C‖u · ∇ρ‖L2‖u‖L∞‖∂tu‖
L

4n
n−2

‖∂t∇u‖
L

4n
n+2

≤ C‖∇ρ‖L2‖u‖2L∞‖Λ 1
2+

n
4 ∂tu‖2L2

≤ C‖∇ρ0‖L2‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 ‖Λ 1
2+

n
4 ∂tu‖2L2

≤ C‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 ‖Λ 1
2+

n
4 ∂tu‖2L2 ,
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where and henceforth the following interpolation inequality will be used frequently:

‖u‖L∞ ≤ C(n)‖Λ 1
2+

n
4 u‖

4
n+2

L2 ‖Λ1+n
2 u‖

n−2
n+2

L2 , n ≥ 3.

We obtain that

H1 ≤ −1

2

d

dt

∫

Rn

∂tρ|∂tu|2 dx+ C(‖√ρ∂tu‖L2 + ‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 )

× ‖Λ 1
2+

n
4 ∂tu‖2L2 .

Thanks to ∂tρ = −div(ρu), one obtains

H2 = − d

dt

∫

Rn

∂tρu · ∇u · ∂tu dx+

∫

Rn

∂ttρu · ∇u · ∂tu dx+

∫

Rn

∂tρ∂t(u · ∇u) · ∂tu dx

= − d

dt

∫

Rn

∂tρu · ∇u · ∂tu dx+

∫

Rn

∂t(ρui)∂i(u · ∇u) · ∂tu dx

+

∫

Rn

∂t(ρui)u · ∇u · ∂t∂iu dx+

∫

Rn

∂tρ∂t(u · ∇u) · ∂tu dx

= − d

dt

∫

Rn

∂tρu · ∇u · ∂tu dx+

∫

Rn

ρ∂tui[∂i(u · ∇u) · ∂tu+ u · ∇u · ∂t∂iu] dx

+

∫

Rn

∂tρ[uiu · ∇u · ∂t∂iu+ ui∂i(u · ∇u) · ∂tu] dx+

∫

Rn

∂tρ∂t(u · ∇u) · ∂tu dx

= − d

dt

∫

Rn

∂tρu · ∇u · ∂tu dx+H21 +H22 +H23. (2.47)

It follows from the Hölder inequality and the interpolation inequalities that

H21 ≤ C‖ρ‖L∞‖∂tu‖
L

4n
n−2

‖∇u∇u‖
L

2n
n+2

‖∂tu‖
L

4n
n−2

+ C‖√ρ‖L∞‖∂tu‖
L

4n
n−2

‖√ρu‖L2‖∇2u‖Ln‖∂tu‖
L

4n
n−2

+ C‖ρ‖L∞‖∂tu‖
L

4n
n−2

‖u‖
L

4n
n−2

‖∇u‖
L

4n
n+2

‖∇∂tu‖
L

4n
n+2

≤ C(‖√ρu‖L2‖Λ1+n
2 u‖L2 + ‖Λ 1

2+
n
4 u‖2L2)‖Λ

1
2+

n
4 ∂tu‖2L2 ,

H22 ≤ C‖∂tρ‖L2‖u‖2L∞‖∇u‖
L

4n
n−2

‖∇∂tu‖
L

4n
n+2

+C‖∂tρ‖L2‖u‖L∞(‖∇u∇u‖
L

4n
n+2

+ ‖u∇2
u‖

L
4n

n+2
)‖∂tu‖

L
4n

n−2

≤ C‖u · ∇ρ‖L2‖u‖2L∞‖Λ 3
2
+n

4 u‖L2‖Λ
1
2
+n

4 ∂tu‖L2

+C‖u · ∇ρ‖L2‖u‖L∞‖∇u‖2
L

8n
n+2

‖Λ 1
2
+n

4 ∂tu‖L2

≤ C‖∇ρ‖L2‖u‖3L∞‖Λ 3
2
+n

4 u‖L2‖Λ
1
2
+n

4 ∂tu‖L2

+C‖∇ρ‖L2‖u‖2L∞‖∇u‖2
L

8n
n+2

‖Λ 1
2
+n

4 ∂tu‖L2

≤ C‖∇ρ0‖L2(‖Λ
1
2
+n

4 u‖
12

n+2

L2 ‖Λ1+n
2 u‖

3(n−2)
n+2

L2 )(‖Λ 1
2
+n

4 u‖
n−2
n+2

L2 ‖Λ1+n
2 u‖

4
n+2

L2 )‖Λ 1
2
+n

4 ∂tu‖L2

+C‖∇ρ0‖L2(‖Λ
1
2
+n

4 u‖
8

n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 )(‖Λ 1
2
+n

4 u‖L2‖Λ1+n
2 u‖L2)‖Λ

1
2
+n

4 ∂tu‖L2

≤ C‖Λ 1
2
+n

4 u‖
n+10
n+2

L2 ‖Λ1+n
2 u‖

3n−2
n+2

L2 ‖Λ 1
2
+n

4 ∂tu‖L2 .
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Similarly, we have

H23 ≤ C‖∂tρ‖L2‖∂tu‖
L

4n
n−2

‖∇u‖Ln‖∂tu‖
L

4n
n−2

+ C‖∂tρ‖L2‖u‖L∞‖∇∂tu‖
L

4n
n+2

‖∂tu‖
L

4n
n−2

≤ C‖u · ∇ρ‖L2(‖∇u‖Ln + ‖u‖L∞)‖Λ 1
2+

n
4 ∂tu‖2L2

≤ C‖∇ρ‖L2(‖∇u‖2Ln + ‖u‖2L∞)‖Λ 1
2+

n
4 ∂tu‖2L2

≤ C‖∇ρ0‖L2(‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 )‖Λ 1
2+

n
4 ∂tu‖2L2

≤ C‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 ‖Λ 1
2+

n
4 ∂tu‖2L2 .

Therefore, H2 admits the following bound

H2 ≤ − d

dt

∫

Rn

∂tρu · ∇u · ∂tu dx+ C(‖√ρu‖L2‖Λ1+n
2 u‖L2 + ‖Λ 1

2+
n
4 u‖2L2

+ ‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 )‖Λ 1
2+

n
4 ∂tu‖2L2

+ C‖Λ 1
2+

n
4 u‖

n+10
n+2

L2 ‖Λ1+n
2 u‖

3n−2
n+2

L2 ‖Λ 1
2+

n
4 ∂tu‖L2 .

We finally get by collecting all the above estimates

d

dt

(
‖Λ 1

2+
n
4 ∂tu(t)‖2L2 + φ(t)

)
+ ‖√ρ∂ttu‖2L2

≤ A(t)‖Λ 1
2+

n
4 ∂tu‖L2 +B(t)‖Λ 1

2+
n
4 ∂tu‖2L2 , (2.48)

where

φ(t) := −1

2

∫

Rn

∂tρ|∂tu|2 dx−
∫

Rn

∂tρu · ∇u · ∂tu dx,

A(t) := C‖Λ 1
2+

n
4 u(t)‖

n+10
n+2

L2 ‖Λ1+n
2 u(t)‖

3n−2
n+2

L2 ,

B(t) := C(‖√ρu(t)‖L2‖Λ1+n
2 u(t)‖L2 + ‖Λ 1

2+
n
4 u(t)‖2L2

+ ‖Λ 1
2+

n
4 u(t)‖

8
n+2

L2 ‖Λ1+n
2 u(t)‖

2(n−2)
n+2

L2 + ‖√ρ∂tu‖L2).

Hence, in view of ∂tρ = −div(ρu) = −u ·∇ρ and the Hölder inequality along with the
embedding inequality, we deduce

|φ(t)| =
∣∣∣∣
1

2

∫

Rn

div(ρu)|∂tu|2 dx−
∫

Rn

∂tρu · ∇u · ∂tu dx
∣∣∣∣

=

∣∣∣∣−
∫

Rn

ρui∂tu · ∂t∂iu dx−
∫

Rn

∂tρu · ∇u · ∂tu dx
∣∣∣∣

≤ C‖√ρ‖L∞‖√ρ∂tu‖L2‖u‖
L

4n
n−2

‖∇∂tu‖
L

4n
n+2

+ C‖∂tρ‖L2‖u‖L∞‖∇u‖
L

4n
n+2

‖∂tu‖
L

4n
n−2

≤ C‖√ρ0‖L∞‖√ρ∂tu‖L2‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2

+ C‖∇ρ‖L2‖u‖2L∞‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2
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≤ C‖√ρ0‖L∞‖√ρ∂tu‖L2‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2

+ C‖∇ρ0‖L2(‖Λ 1
2+

n
4 u‖

8
n+2

L2 ‖Λ1+n
2 u‖

2(n−2)
n+2

L2 )‖Λ 1
2+

n
4 u‖L2‖Λ 1

2+
n
4 ∂tu‖L2

≤ 1

2
‖Λ 1

2+
n
4 ∂tu‖2L2 + C‖√ρ∂tu‖2L2‖Λ

1
2+

n
4 u‖2L2

+ C‖Λ 1
2+

n
4 u‖

2n+20
n+2

L2 ‖Λ1+n
2 u‖

4(n−2)
n+2

L2 . (2.49)

We first get from (2.48) that

d

dt

(
t2‖Λ 1

2+
n
4 ∂tu(t)‖2L2 + t2φ(t)

)
+ t2‖√ρ∂ttu‖2L2

≤ 2t‖Λ 1
2+

n
4 ∂tu(t)‖2L2 + 2tφ(t) + t2A(t)‖Λ 1

2+
n
4 ∂tu‖L2 +B(t)t2‖Λ 1

2+
n
4 ∂tu‖2L2 . (2.50)

By (2.13), (2.16) and (2.25), we conclude

∫ t

0

τ2A(τ)‖Λ 1
2+

n
4 ∂τu(τ)‖L2 dτ

≤ C

(∫ t

0

τ3A2(τ) dτ

) 1
2
(∫ t

0

τ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ

) 1
2

≤ C

(∫ t

0

τ3‖Λ 1
2+

n
4 u(τ)‖

2(n+10)
n+2

L2 ‖Λ1+n
2 u(τ)‖

2(3n−2)
n+2

L2 dτ

) 1
2

= C

(∫ t

0

τ
8

n+2 e−
(n+10)γτ

n+2 (eγτ‖Λ 1
2+

n
4 u(τ)‖2L2)

n+10
n+2 (τ‖Λ1+n

2 u(τ)‖2L2)
3n−2
n+2 dτ

) 1
2

≤ C

(∫ t

0

τ
8

n+2 e−
(n+10)γτ

n+2 dτ

) 1
2

≤ C̃, (2.51)

where and in what follows, we use the following facts: for any σ1 ≥ 0, σ2 > 0,

∫ ∞

0

ησ1e−σ2η dη < ∞ and τσ1e−σ2τ < ∞, ∀ τ ≥ 0.

Noticing the following estimate

∫ t

0

‖√ρ∂tu(τ)‖L2 dτ =

∫ t

0

e−γ τ
2 eγ

τ
2 ‖√ρ∂tu(τ)‖L2 dτ

≤
(∫ t

0

e−γτ

) 1
2
(∫ t

0

eγτ‖√ρ∂tu(τ)‖2L2 dτ

) 1
2

≤ C̃ (2.52)

and using the argument in dealing with (2.51), we show that

∫ t

0

B(τ) dτ ≤ C̃. (2.53)
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According to (2.13), (2.16) and (2.25) again, one deduces from (2.49) that
∫ t

0

τφ(τ) dτ

≤ 1

2

∫ t

0

τ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ + C

∫ t

0

τ‖√ρ∂τu(τ)‖2L2‖Λ
1
2+

n
4 u(τ)‖2L2 dτ

+C

∫ t

0

τ‖Λ 1
2+

n
4 u(τ)‖

2n+20
n+2

L2 ‖Λ1+n
2 u(τ)‖

4(n−2)
n+2

L2 dτ

≤ C̃ + C

∫ t

0

τe−
(n+10)γτ

n+2 (eγτ‖Λ 1
2+

n
4 u(τ)‖2L2)

n+10
n+2 ‖Λ1+n

2 u(τ)‖
4(n−2)
n+2

L2 dτ

≤ C̃ + C

∫ t

0

τe−
(n+10)γτ

n+2 ‖Λ1+n
2 u(τ)‖

4(n−2)
n+2

L2 dτ

≤ C̃ + Cχ{n≥6}

∫ t

0

τ
8

n+2 e−
(n+10)γτ

n+2 (τ‖Λ1+n
2 u(τ)‖2L2)

n−6
n+2 ‖Λ1+n

2 u(τ)‖2L2 dτ

+Cχ{3≤n<6}

(∫ t

0

τ
n+2
6−n e−

(n+10)γτ

6−n dτ

) 6−n
n+2

(∫ t

0

‖Λ1+n
2 u(τ)‖2L2 dτ

) 2(n−2)
n+2

≤ C̃ + Cχ{n≥6}

∫ t

0

‖Λ1+n
2 u(τ)‖2L2 dτ

+Cχ{3≤n<6}

(∫ t

0

‖Λ1+n
2 u(τ)‖2L2 dτ

) 2(n−2)
n+2

≤ C̃. (2.54)

We get by integrating (2.50) in time and using (2.51) as well as (2.54)

t2‖Λ 1
2+

n
4 ∂tu(t)‖2L2 + t2φ(t) +

∫ t

0

τ2‖√ρ∂ττu(τ)‖2L2 dτ

≤ C̃ +

∫ t

0

B(τ)τ2‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ. (2.55)

Direct computations also yield

t2 |φ(t)| ≤ 1

2
t2‖Λ 1

2+
n
4 ∂tu‖2L2 + Ct2‖√ρ∂tu‖2L2‖Λ

1
2+

n
4 u‖2L2

+ Ct2‖Λ 1
2+

n
4 u‖

2n+20
n+2

L2 ‖Λ1+n
2 u‖

4(n−2)
n+2

L2

=
1

2
t2‖Λ 1

2+
n
4 ∂tu‖2L2 + Cte−γt(t‖√ρ∂tu‖2L2)(eγt‖Λ

1
2+

n
4 u‖2L2)

+ Ct
8

n+2 e−
(n+10)γt

n+2 (eγt‖Λ 1
2+

n
4 u‖2L2)

n+10
n+2 (t‖Λ1+n

2 u‖2L2)
2(n−2)
n+2

≤ 1

2
t2‖Λ 1

2+
n
4 ∂tu‖2L2 + C̃. (2.56)

Inserting (2.56) into (2.55) implies

t2‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

0

τ2‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃ +

∫ t

0

B(τ)τ2‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ.

This along with the Gronwall inequality and (2.53) yields

t2‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

0

τ2‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃,
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which is (2.43). With the help of (2.43), we are in the position to derive the exponential

decay of ‖Λ 1
2+

n
4 ∂tu(t)‖L2 . To this end, we multiply (2.48) by eγt to obtain

d

dt

(
eγt‖Λ 1

2+
n
4 ∂tu(t)‖2L2 + eγtφ(t)

)
+ eγt‖√ρ∂ttu‖2L2

≤ γeγt‖Λ 1
2+

n
4 ∂tu(t)‖2L2 + γeγtφ(t) +A(t)eγt‖Λ 1

2+
n
4 ∂tu‖L2

+B(t)eγt‖Λ 1
2+

n
4 ∂tu‖2L2 . (2.57)

Now integrating (2.57) on the time interval [1, t] yields

eγt‖Λ 1
2+

n
4 ∂tu(t)‖2L2 + eγtφ(t) +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ

≤ C̃ + γ

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ + γ

∫ t

1

eγτφ(τ) dτ

+

∫ t

1

A(τ)eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖L2 dτ +

∫ t

1

B(τ)eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ

≤ C̃ + 2γ

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ + γ

∫ t

1

eγτφ(τ) dτ

+C

∫ t

1

A2(τ)eγτ dτ +

∫ t

1

B(τ)eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ. (2.58)

According to the estimates (2.16), (2.26) and (2.27), it follows from (2.49) that

eγt |φ(t)| ≤ 1

2
eγt‖Λ 1

2+
n
4 ∂tu(t)‖2L2 + C̃, (2.59)

γ

∫ t

1

eγτφ(τ) dτ ≤ C̃. (2.60)

Appealing to the estimates (2.16), (2.26) and (2.27) again, we can also show

γ

∫ t

1

eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ ≤ C̃, (2.61)

C

∫ t

1

A2(τ)eγτ dτ = C

∫ t

1

(eγτ‖Λ 1
2+

n
4 u(τ)‖2L2)

n+10
n+2 (eγτ‖Λ1+n

2 u(τ)‖2L2)
3n−2
n+2 e−3γτ dτ

≤ C

∫ t

1

e−3γτ dτ ≤ C̃. (2.62)

Inserting the above estimates (2.59)-(2.62) into (2.58) yields

eγt‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ

≤ C̃ +

∫ t

1

B(τ)eγτ‖Λ 1
2+

n
4 ∂τu(τ)‖2L2 dτ.

Similarly, it follows from the estimates (2.16), (2.26) and (2.27) that

∫ t

1

B(τ) dτ ≤ C̃.
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As a result, we have by the Gronwall inequality

eγt‖Λ 1
2+

n
4 ∂tu(t)‖2L2 +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃.

Consequently, we complete the proof of Lemma 2.6.

With the estimates of Lemma 2.6 at hand, we can obtain the following estimate.

Lemma 2.7. Under the assumptions of Theorem 1.1, the solution (ρ, u) of the
system (1.1) admits the following bound for any t ≥ 1,

eγt‖Λ1+n
2 u(t)‖2

L
4n

n−2
+ eγt‖p(t)‖2

W
1, 4n

n−2
≤ C̃,

where C̃ depends only on ‖ρ0‖
L

2n
n+2

, ‖ρ0‖L∞ , ‖∇ρ0‖L2 , ‖√ρ0u0‖L2 and ‖Λ 1
2+

n
4 u0‖L2 .

Proof. Thanks to (2.21) and (2.22), we get

‖Λ1+n
2 u‖

L
4n

n−2
+ ‖∇p‖

L
4n

n−2
≤ C‖ρ∂tu‖

L
4n

n−2
+ C‖ρu · ∇u‖

L
4n

n−2

≤ C‖ρ‖L∞‖∂tu‖
L

4n
n−2

+ C‖ρ‖L∞‖u∇u‖
L

4n
n−2

≤ C‖Λ 1
2+

n
4 ∂tu‖L2 + C‖Λ 1

2+
n
4 u‖L2‖Λ1+n

2 u‖L2 ,

where we have used (2.39) in the last line. Recalling the estimates obtained in the
previous lemmas, we see that for any t ≥ 1,

eγt‖Λ1+n
2 u(t)‖2

L
4n

n−2
+ eγt‖∇p(t)‖2

L
4n

n−2
≤ C̃.

Similar argument also implies

‖p‖
L

4n
n−2

≤ C‖Λ−1(ρ∂tu‖L2)‖
L

4n
n−2

+ C‖Λ−1(ρu · ∇u)‖
L

4n
n−2

≤ C‖ρ∂tu‖
L

4n
n+2

+ C‖ρu · ∇u‖
L

4n
n+2

≤ C‖ρ∂tu‖
4

n+2

L2 ‖ρ∂tu‖
n−2
n+2

L
4n

n−2
+ C‖ρ‖L∞‖u‖L∞‖∇u‖

L
4n

n+2

≤ C(‖√ρ∂tu‖L2 + ‖ρ∂tu‖
L

4n
n−2

+ ‖Λ 1
2+

n
4 u‖

4
n+2

L2 ‖Λ1+n
2 u‖

n−2
n+2

L2 ‖Λ 1
2+

n
4 u‖L2)

≤ C(‖√ρ∂tu‖L2 + ‖Λ 1
2+

n
4 ∂tu‖L2 + ‖Λ 1

2+
n
4 u‖

n+6
n+2

L2 ‖Λ1+n
2 u‖

n−2
n+2

L2 ).

Consequently, it gives that for any t ≥ 1,

eγt‖p(t)‖2
L

4n
n−2

≤ C̃.

Moreover, we also deduce that for any t ≤ 1,

t2‖Λ1+n
2 u(t)‖2

L
4n

n−2
+ t2‖p(t)‖2

W
1, 4n

n−2
≤ C̃.

Hence, we obtain the desired estimates and thus complete the proof of the lemma.
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2.6. The proof of Theorem 1.1. We need the following Gronwall type in-
equality which will be used to guarantee the uniqueness of strong solutions (see [28,
Lemma 2.5]).

Lemma 2.8. Let X1(t), X2(t), Y (t), β(t) and γ(t) be non-negative functions. In
addition, β(t) and tγ(t) are two integrable functions over [0, T ]. Let X1(t) and X2(t)
be absolutely continuous over [0, T ] and satisfy





d
dt
X1(t) ≤ AY

1
2 (t),

d
dt
X2(t) + Y (t) ≤ β(t)X2(t) + γ(t)X2

1 (t)

X1(0) = 0,

where A is a positive constant. Then, the following estimates hold

X1(t) ≤ AX
1
2
2 (0)t

1
2 e

1
2

∫
t

0
(β(s)+A2sγ(s)) ds,

X2(t) +

∫ t

0

Y (s) ds ≤ X2(0)e
∫

t

0
(β(s)+A2sγ(s)) ds.

In particular, if X2(0) = 0, we have

X1(t) = X2(t) = Y (t) ≡ 0.

We continue to prove our theorem. According to Lemma 2.1, there exists a T ∗ > 0
such that the system (1.1) has a unique local strong solution (ρ, u) on the time period
[0, T ∗]. We may follow the standard argument to show that this local solution can be
extended to a global one. To this end, we set

T̃ = sup{T : (ρ, u) is a strong solution on [0, T ]}.

Now we claim that

T̃ = ∞.

Otherwise, if T̃ < ∞, it follows from the estimates of the above Lemmas 2.2-2.7 that

(ρ, u)(x, T̃ ) = lim
t→T̃

(ρ, u)(x, t)

satisfies the initial conditions (1.2) and (1.3) at time t = T̃ . Thus, taking (ρ, u)(x, T̃ )

as the initial data, Lemma 2.1 allows us to extend the local strong solutions beyond T̃ .
This contradicts the assumption of T̃ above. The proof of the existence of the global
solution is completed. Furthermore the decay properties of the solution are implied
in the proof of the above Lemmas 2.2-2.7. Thus it remains to show the uniqueness.
To this end, we make use of the following two momentum conservation equations

ρ∂tu+ ρu · ∇u+ (−∆)
1
2+

n
4 u+∇p = 0, ρ̃∂tũ+ ρ̃ũ · ∇ũ+ (−∆)

1
2+

n
4 ũ+∇p̃ = 0,

to obtain

ρ∂t(u− ũ) + ρu · ∇(u− ũ) + (−∆)
1
2+

n
4 (u− ũ) +∇(p− p̃)

= −(ρ− ρ̃)(∂tũ+ ũ · ∇ũ)− ρ(u− ũ) · ∇ũ.



82 D. WANG AND Z. YE

Now we deduce by multiplying the above identity by u− ũ and integrating it over Rn,

1

2

d

dt
‖√ρ(u− ũ)(t)‖2L2 + ‖Λ 1

2+
n
4 (u− ũ)‖2L2 = J1 + J2,

where

J1 := −
∫

Rn

(ρ− ρ̃)(∂tũ+ ũ · ∇ũ) · (u− ũ) dx,

J2 := −
∫

Rn

ρ(u− ũ) · ∇ũ · (u− ũ) dx.

The term J2 can be bounded by

J2 ≤ C‖∇ũ‖L∞‖√ρ(u− ũ)‖2L2 .

For the term J1, we have by (2.39),

J1 ≤ C‖ρ− ρ̃‖
L

2n
n+2

(‖∂tũ‖
L

4n
n−2

+ ‖ũ · ∇ũ‖
L

4n
n−2

)‖u− ũ‖
L

4n
n−2

≤ C‖ρ− ρ̃‖
L

2n
n+2

(‖Λ 1
2+

n
4 ∂tũ‖L2 + ‖Λ 1

2+
n
4 ũ‖L2‖Λ1+n

2 ũ‖L2)‖Λ 1
2+

n
4 (u− ũ)‖L2

≤ 1

2
‖Λ 1

2+
n
4 (u− ũ)‖2L2 + C(‖Λ 1

2+
n
4 ∂tũ‖2L2 + ‖Λ 1

2+
n
4 ũ‖2L2‖Λ1+n

2 ũ‖2L2)‖ρ− ρ̃‖2
L

2n
n+2

.

We therefore obtain

d

dt
‖√ρ(u− ũ)(t)‖2L2 + ‖Λ 1

2+
n
4 (u− ũ)‖2L2

≤ C(‖Λ 1
2+

n
4 ∂tũ‖2L2 + ‖Λ 1

2+
n
4 ũ‖2L2‖Λ1+n

2 ũ‖2L2)‖ρ− ρ̃‖2
L

2n
n+2

+C‖∇ũ‖L∞‖√ρ(u− ũ)‖2L2 .

Using the following two density equations

∂tρ+ u · ∇ρ = 0, ∂tρ̃+ ũ · ∇ρ̃ = 0,

we deduce

∂t(ρ− ρ̃) + u · ∇(ρ− ρ̃) = −(u− ũ) · ∇ρ̃.

It implies that

n+ 2

2n

d

dt
‖(ρ− ρ̃)(t)‖

2n
n+2

L
2n

n+2
≤ C‖ρ− ρ̃‖

2n
n+2−1

L
2n

n+2
‖(u− ũ) · ∇ρ̃‖

L
2n

n+2

≤ C‖ρ− ρ̃‖
2n

n+2−1

L
2n

n+2
‖u− ũ‖

L
4n

n−2
‖∇ρ̃‖

L
4n

n+6

≤ C‖ρ− ρ̃‖
2n

n+2−1

L
2n

n+2
‖Λ 1

2+
n
4 (u− ũ)‖L2‖∇ρ̃‖

L
4n

n+6
.

We may conclude

d

dt
‖(ρ− ρ̃)(t)‖

L
2n

n+2
≤ C‖Λ 1

2+
n
4 (u− ũ)‖L2‖∇ρ̃‖

L
4n

n+6
.
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Now let us denote

X1(t) := ‖(ρ− ρ̃)(t)‖
L

2n
n+2

, X2(t) := ‖√ρ(u− ũ)(t)‖2L2 , Y (t) := ‖Λ 1
2
+n

4 (u− ũ)(t)‖2L2 ,

β(t) := C‖∇ũ(t)‖L∞ , γ(t) := C(‖Λ 1
2+

n
4 ∂tũ(t)‖2L2 + ‖Λ 1

2+
n
4 ũ(t)‖2L2‖Λ1+n

2 ũ(t)‖2L2),

which satisfy





d
dt
X1(t) ≤ AY

1
2 (t),

d
dt
X2(t) + Y (t) ≤ β(t)X2(t) + γ(t)X2

1 (t),

X1(0) = 0.

Recalling (2.16), (2.26), (2.34) and (2.35), we know that

∫ t

0

β(τ) dτ ≤ C0(t),

∫ t

0

τγ(τ) dτ ≤ C0(t).

Due to u(x, 0) = ũ(x, 0), we have X2(0) = 0. Making use of the Gronwall type
inequality in Lemma 2.8, we immediately have the uniqueness, namely,

u(x, t) = ũ(x, t), ρ(x, t) = ρ̃(x, t).

This completes the proof of Theorem 1.1.

Appendix A. The Case of Dimension n = 2. As a byproduct of the approach
in the proof of Theorem 1.1, we also obtain the exponential decay-in-time of the
strong solution in dimension n = 2 provided that a damping term u is added in the
momentum equation. More precisely, we have the following result.

Theorem A.1. Consider the following system





∂tρ+ div(ρu) = 0, x ∈ R2, t > 0,
∂t(ρu) + div(ρu⊗ u)−∆u+ u+∇p = 0,
∇ · u = 0,
ρ(x, 0) = ρ0(x), u(x, 0) = u0(x).

(A.1)

Assume that the initial data (ρ0, u0) satisfies the following conditions:

0 ≤ ρ0 ∈ L1(R2) ∩ L∞(R2), ∇ρ0 ∈ Lq(R2), q > 2,

∇ · u0 = 0, u0 ∈ H1(R2),
√
ρ0u0 ∈ L2(R2).

Then the system (A.1) has a unique global strong solution (ρ, u) satisfying, for any
given T > 0 and for any 0 < τ < T ,

0 ≤ ρ ∈ L∞(0, T ;L1(R2) ∩ L∞(R2)), ∇ρ ∈ L∞(0, T ;Lq(R2),

u ∈ L∞(0, T ;H1(R2)) ∩ L2(0, T ;H2(R2)) ∩ L∞(τ, T ; Ẇ 2,m(R2)),

√
ρ∂tu ∈ L∞(τ, T ;L2(R2)), ∂tu ∈ L2(τ, T ;H1(R2)) ∩ L∞(τ, T ;H1(R2)),
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∇p ∈ L∞(τ, T ;L2(R2) ∩ Lm(R2)),

for any m ∈ (2, ∞). Moreover, there exists some positive constant γ depending only
on ‖ρ0‖L1 and ‖ρ0‖L∞ such that, for all t ≥ 1,

‖√ρ∂tu(t)‖2L2 + ‖u(t)‖2H2 + ‖∆u(t)‖2Lm + ‖∂tu(t)‖2H1 + ‖∇p(t)‖2L2∩Lm ≤ C̃e−γt,

where C̃ depends only on ‖ρ0‖L1 , ‖ρ0‖L∞ , ‖∇ρ0‖Lq , ‖√ρ0u0‖L2 and ‖u0‖H1 .

Remark A.1. When the damping term u is absent from the system (A.1), it
seems difficult to obtain the exponential decay of the strong solution as in Theorem
A.1. The key obstacle is that the classical Sobolev embedding inequality is critical
in dimension n = 2. However, if the initial density decays not too slowly at infinity,
then it is proved in [31] that the corresponding system admits a unique global strong
solution. Moreover, the following large-time decay rates were obtained: ‖∇u(t)‖L2 +

‖∇2u(t)‖L2 + ‖∇p(t)‖L2 ≤ C̃t−1.

Remark A.2. It should be mentioned that once we have the following key
estimate (see (A.20))

∫ t

0

‖∇u(τ)‖L∞ dτ ≤ C̃1,

we are able to reformulate (A.1) in Lagrangian coordinates without requiring the
additional regularity on the initial density, namely, ∇ρ0 ∈ Lq(R2) for q > 2. For
more details, we refer to [17, page 1373–page 1378]. In this sense, the condition
∇ρ0 ∈ Lq(R2) for q > 2 can be dropped and we still obtain the corresponding global
existence, uniqueness as well as exponential decay-in-time results as stated in Theorem
A.1.

As the proof of Theorem A.1 can be carried out as that of Theorem 1.1 with some
suitable modifications, we only give a sketch of the proof in this appendix. First, the
basic energy estimates read as follows.

Lemma A.1. Under the assumptions of Theorem A.1, the solution (ρ, u) of the
system (A.1) admits the following bound for any t ≥ 0,

‖ρ(t)‖L1∩L∞ ≤ ‖ρ0‖L1∩L∞ ,

eγt‖√ρu(t)‖2L2 +

∫ t

0

eγτ‖u(τ)‖2H1 dτ ≤ ‖√ρ0u0‖2L2 . (A.2)

Proof. The first part of the estimate (A.2) and the non-negativeness of ρ can be
deduced as in Lemma 2.2. To show the second part of (A.2), we multiply equation
(A.1)2 by u and integrate the resulting equation over R2 to get

1

2

d

dt
‖√ρu(t)‖2L2 + ‖u‖2H1 = 0.

Fixing r ∈ (1, ∞), we see that

‖√ρu‖L2 ≤ C‖√ρ‖L2r‖u‖
L

2r
r−1

≤ C‖ρ0‖
1
2

L1∩L∞
‖u‖H1 ≤ C‖u‖H1 ,
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which is crucial for the exponential decay estimate, but different from (2.15). It follows
that

d

dt
‖√ρu(t)‖2L2 + γ‖√ρu(t)‖2L2 + ‖u‖2H1 = 0.

By the Gronwall inequality, one can prove

eγt‖√ρu(t)‖2L2 +

∫ t

0

eγτ‖u(τ)‖2H1 dτ ≤ ‖√ρ0u0‖2L2 .

This completes the proof of Lemma A.1.

Lemma A.2. Under the assumptions of Theorem A.1, the solution (ρ, u) of the
system (A.1) admits the following bound for any t ≥ 0,

eγt‖u(t)‖2H1 +

∫ t

0

eγτ (‖u(τ)‖2H2 + ‖√ρ∂τu(τ)‖2L2 + ‖√ρu̇(τ)‖2L2) dτ ≤ C̃1, (A.3)

where u̇ := ∂tu+ u · ∇u is the material derivatives of the velocity u, and C̃1 depends
only on ‖ρ0‖L1 , ‖ρ0‖L∞ , ‖√ρ0u0‖L2 and ‖u0‖H1 .

Proof. We first rewrite the equation (A.1)2 as

ρu̇ = ∆u− u−∇p. (A.4)

Multiplying the equation (A.4) by u̇ and integrating it over R2 lead to

‖√ρu̇‖2L2 =

∫

R2

u̇ ·∆u dx−
∫

R2

u̇ · u dx−
∫

R2

u̇ · ∇p dx. (A.5)

On the one hand, one has
∫

R2

u̇ ·∆u dx =

∫

R2

∂tu ·∆u dx+

∫

R2

(u · ∇u) ·∆u dx = −1

2

d

dt
‖∇u(t)‖2L2 ,

where we have used the following fact due to ∇ · u = 0 (see [40, (3.3)] for details):
∫

R2

(u · ∇u) ·∆u dx = 0.

On the other hand, we have

−
∫

R2

u̇ · u dx = −
∫

R2

∂tu · u dx−
∫

R2

(u · ∇u) · u dx = −1

2

d

dt
‖u(t)‖2L2 .

Due to [31, (3.8)], the last term in (A.5) can be bounded by

−
∫

R2

u̇ · ∇p dx =

∫

R2

∂jui∂iujp dx ≤ C‖p‖BMO‖∂ju · ∇uj‖H1

≤ C‖∇p‖L2‖∇u‖2L2 . (A.6)

We rewrite (A.4) as the Stokes system

{
−∆u+ u+∇p = −ρu̇,

∇ · u = 0.
(A.7)



86 D. WANG AND Z. YE

Then, it gives

∇p = (−∆)−1∇∇ · (ρu̇), (A.8)

which yields

‖∇p‖L2 ≤ C‖ρu̇‖L2 ≤ C‖√ρu̇‖L2 . (A.9)

Combining all the above estimates implies that

d

dt
‖u(t)‖2H1 + ‖√ρu̇‖2L2 ≤ C‖u(t)‖4H1 .

This allows us to show

d

dt
(eγt‖u(t)‖2H1) + eγt‖√ρu̇(t)‖2L2 ≤ γeγt‖u(t)‖2H1 + C‖u(t)‖2H1(eγt‖u(t)‖2H1).

By the estimate (A.2) and the Gronwall inequality, we get

eγt‖u(t)‖2H1 +

∫ t

0

eγτ‖√ρu̇(τ)‖2L2 dτ ≤ C̃1.

It follows from the regularity properties of Stokes system (A.7) that

∫ t

0

eγτ‖u(τ)‖2H2 dτ ≤
∫ t

0

eγτ‖ρu̇(τ)‖2L2 dτ ≤
∫ t

0

eγτ‖√ρu̇(τ)‖2L2 dτ ≤ C̃1.

We can also verify, by (A.2) for ρ and Hs(R2) →֒ L∞(R2) with s > 1 for u,

∫ t

0

eγτ‖√ρ∂τu(τ)‖2L2 dτ ≤
∫ t

0

eγτ (‖√ρu̇‖L2 + ‖√ρu · ∇u‖L2) dτ

≤ C

∫ t

0

eγτ (‖√ρu̇‖L2 + ‖√ρ‖L∞‖u‖L∞‖∇u‖L2) dτ

≤ C

∫ t

0

eγτ (‖√ρu̇‖L2 + ‖u‖2H2) dτ ≤ C̃1. (A.10)

We thus complete the proof of the lemma.

Lemma A.3. Under the assumptions of Theorem A.1, the solution (ρ, u) of the
system (A.1) admits the following bound for any t ≥ 0,

t‖∇p(t)‖2L2 + t‖√ρu̇(t)‖2L2 +

∫ t

0

τ‖u̇(τ)‖2H1 dτ ≤ C̃1, (A.11)

moreover, for any t0 > 0 and any t ≥ t0, the following holds true

eγt‖√ρu̇(t)‖2L2 + eγt‖√ρ∂tu(t)‖2L2 + eγt‖u(t)‖2H2 + eγt‖∇p(t)‖2L2

+

∫ t

t0

eγτ‖u̇(τ)‖2H1 dτ

∫ t

t0

eγτ‖∂tu(τ)‖2H1 dτ ≤ eγt0

t0
C̃1 := Ct0 , (A.12)

where C̃1 depends only on ‖ρ0‖L1 , ‖ρ0‖L∞ , ‖√ρ0u0‖L2 and ‖u0‖H1 .
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Proof. According to the proof of [31, Lemma 3.3], we have

d

dt

(
‖√ρu̇(t)‖2L2 + ϕ(t)

)
+ ‖u̇(t)‖2H1 ≤ C(‖∇u‖4L4 + ‖p‖4L4),

where ϕ(t) := −
∫
R2 p∂jui∂iuj dx. The following estimate is an easy consequence of

(A.6) and (A.9)

|ϕ(t)| ≤ C‖√ρu̇‖L2‖∇u‖2L2 ≤ 1

2
‖√ρu̇‖2L2 + C‖∇u‖4L2 . (A.13)

According to (A.7) and (A.8), we have

u = −(I−∆)−1
(
ρu̇+ (−∆)−1∇∇ · (ρu̇)

)
, (A.14)

where I is an identity operator. Therefore, one concludes

‖∇u‖4L4 + ‖p‖4L4 ≤ C(‖∆u‖4
L

4
3
+ ‖∇p‖4

L
4
3
) ≤ C‖ρu̇‖4

L
4
3
≤ C‖ρ‖2L2‖√ρu̇‖4L2 ,

which along with (A.14) gives

d

dt

(
‖√ρu̇(t)‖2L2 + ϕ(t)

)
+ ‖u̇(t)‖2H1 ≤ C‖√ρu̇‖4L2 , (A.15)

which then implies

d

dt

(
t‖√ρu̇(t)‖2L2 + tϕ(t)

)
+ t‖u̇(t)‖2H1 ≤ ‖√ρu̇(t)‖2L2 + Ct‖√ρu̇‖4L2 . (A.16)

By (A.13) and the Gronwall inequality, one has

t‖√ρu̇(t)‖2L2 +

∫ t

0

τ‖u̇(τ)‖2H1 dτ ≤ C̃1. (A.17)

Multiplying (A.15) by eγt yields

d

dt

(
eγt‖√ρu̇(t)‖2L2 + eγtϕ(t)

)
+ eγt‖u̇(t)‖2H1 ≤ γeγt‖√ρu̇(t)‖2L2 + γeγtϕ(t)

+ Ceγt‖√ρu̇‖4L2 . (A.18)

We thus have by integrating (A.18) in time and using (A.3), (A.13) as well as (A.17),

e
γt‖√ρu̇(t)‖2L2 +

∫ t

t0

e
γτ‖u̇(τ)‖2H1 dτ

≤ Ct0 + e
γt|ϕ(t)|+ γ

∫ t

t0

e
γτ‖√ρu̇(τ)‖2L2 dτ + γ

∫ t

t0

e
γτ
ϕ(τ) dτ +

∫ t

t0

e
γτ‖√ρu̇(τ)‖4L2 dτ

≤ Ct0 +
1

2
e
γt‖√ρu̇(t)‖2L2 + C

∫ t

t0

‖√ρu̇(τ)‖2L2(e
γτ‖√ρu̇(τ)‖2L2) dτ.

This implies

eγt‖√ρu̇(t)‖2L2 +

∫ t

t0

eγτ‖u̇(τ)‖2H1 dτ ≤ Ct0 + C

∫ t

t0

‖√ρu̇(τ)‖2L2(eγτ‖√ρu̇(τ)‖2L2) dτ.
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By means of (A.3) again and the Gronwall inequality, one obtains

eγt‖√ρu̇(t)‖2L2 +

∫ t

t0

eγτ‖u̇(τ)‖2H1 dτ ≤ Ct0 .

Thanks to (A.9) and (A.14), we get

eγt‖∇p(t)‖2L2 + eγt‖u(t)‖2H2 ≤ Ceγt‖√ρu̇(t)‖2L2 ≤ Ct0 .

The following estimate follows immediately from (A.10)

eγt‖√ρ∂tu(t)‖2L2 ≤ eγt‖√ρu̇(t)‖2L2 + eγt‖u(t)‖2H2 ≤ Ct0 .

Finally, we have

∫ t

t0

eγτ‖∂tu(τ)‖2H1 dτ ≤
∫ t

t0

eγτ‖u̇(τ)‖2H1 dτ +

∫ t

t0

eγτ‖(u · ∇u)(τ)‖2H1 dτ

≤ C

∫ t

t0

eγτ‖u̇(τ)‖2H1 dτ + C

∫ t

t0

eγτ‖u(τ)‖4H2 dτ ≤ Ct0 ,

from the estimate

‖u · ∇u‖H1 ≤ C‖uu‖H2 ≤ C‖u‖2H2 . (A.19)

Therefore, we complete the proof of the lemma.

Lemma A.4. Under the assumptions of Theorem A.1, the solution (ρ, u) of the
system (A.1) admits the following bounds for any t ≥ 0,

∫ t

0

‖∇u(τ)‖L∞ dτ ≤ C̃1, ‖∇ρ(t)‖Lq ≤ C̃1‖∇ρ0‖Lq , (A.20)

where C̃1 depends only on ‖ρ0‖L1 , ‖ρ0‖L∞ , ‖√ρ0u0‖L2 and ‖u0‖H1 .

Proof. For any 2 < p < ∞, we get ‖ρu̇‖Lp ≤ C‖ρ‖L∞‖u̇‖H1 ≤ C‖u̇‖H1 . Applying
the Lp-estimate to (A.7) gives

‖∇u‖L∞ ≤ C‖∇u‖
p−2
2p−2

L2 ‖∆u‖
p

2p−2

Lp ≤ C‖∇u‖
p−2
2p−2

L2 ‖ρu̇‖
p

2p−2

Lp ≤ C‖∇u‖
p−2
2p−2

L2 ‖u̇‖
p

2p−2

H1 .

According to (A.3), (A.11) and (A.12), we obtain the first estimate of (A.20). The
second estimate of (A.20) is a direct consequence of the first estimate. The proof of
the lemma is completed.

Lemma A.5. Under the assumptions of Theorem A.1, the solution (ρ, u) of the
system (A.1) admits the following bound for any m ∈ (2, ∞),

eγt‖∂tu(t)‖2H1 + eγt‖∆u(t)‖2Lm + eγt‖∇p(t)‖2Lm +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃,

where C̃ depends only on ‖ρ0‖L1 , ‖ρ0‖L∞ , ‖∇ρ0‖Lq , ‖√ρ0u0‖L2 and ‖u0‖H1 .

Proof. The proof can be performed by modifying that proof of Lemma 2.6. We
first have by (2.45) that

1

2

d

dt
‖∂tu(t)‖2H1 + ‖√ρ∂ttu‖2L2 = H1 +H2 +H3 +H4.
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The H3 and H4 can be easily bounded by

|H3|+ |H4| ≤ C‖√ρ‖L∞‖√ρ∂ttu‖L2(‖∂tu‖L4‖∇u‖L4 + ‖∇∂tu‖L2‖u‖L∞)

≤ C‖√ρ0‖L∞‖√ρ∂ttu‖L2‖∂tu‖H1‖u‖H2

≤ 1

16
‖√ρ∂ttu‖2L2 + C‖u‖2H2‖∂tu‖2H1 .

Recalling (2.46), we thus obtain

H1 =− 1

2

d

dt

∫

R2

∂tρ|∂tu|2 dx+

∫

R2

∂tρui∂tu · ∂t∂iu dx+

∫

R2

ρ∂tui∂tu · ∂t∂iu dx

≤− 1

2

d

dt

∫

R2

∂tρ|∂tu|2 dx+ C‖u · ∇ρ‖Lq‖u‖L∞‖∂tu‖
L

2q
q−2

‖∂t∇u‖L2

+ C‖ρ‖L∞‖∂tu‖2L4‖∂t∇u‖L2

≤− 1

2

d

dt

∫

R2

∂tρ|∂tu|2 dx+ C‖∇ρ‖Lq‖u‖2L∞‖∂tu‖
L

2q
q−2

‖∂t∇u‖L2

+ C‖ρ‖L∞‖∂tu‖2L4‖∂t∇u‖L2

≤− 1

2

d

dt

∫

R2

∂tρ|∂tu|2 dx+ C‖u‖2H2‖∂tu‖H1‖∂t∇u‖L2 + C‖∂tu‖2H1‖∂t∇u‖L2

≤− 1

2

d

dt

∫

R2

∂tρ|∂tu|2 dx+ C‖u‖2H2‖∂tu‖2H1 + C‖∂tu‖H1‖∂tu‖2H1 .

In view of (2.47), one has

H2 = − d

dt

∫

R2

∂tρu · ∇u · ∂tu dx+H21 +H22 +H23.

Now we may deduce that

H21 ≤ C‖ρ‖L∞‖∂tu‖L4(‖∇u‖2L4‖∂tu‖L4 + ‖u‖L∞‖∆u‖L2‖∂tu‖L4

+‖u‖L∞‖∇u‖L4‖∇∂tu‖L2)

≤ C‖ρ0‖L∞‖∂tu‖H1(‖u‖2H2‖∂tu‖H1 + ‖u‖2H2‖∂tu‖H1 + ‖u‖2H2‖∇∂tu‖L2)

≤ C‖u‖2H2‖∂tu‖2H1 ,

H22 ≤ C‖u · ∇ρ‖Lq (‖u‖2L∞‖∇u‖
L

2q
q−2

‖∇∂tu‖L2 + ‖u‖L∞‖∇u‖2L4‖∂tu‖
L

2q
q−2

+‖u‖2L∞‖∆u‖L2‖∂tu‖
L

2q
q−2

)

≤ C‖∇ρ‖Lq (‖u‖3L∞‖∇u‖
L

2q
q−2

‖∇∂tu‖L2 + ‖u‖2L∞‖∇u‖2L4‖∂tu‖
L

2q
q−2

+‖u‖3L∞‖∆u‖L2‖∂tu‖
L

2q
q−2

)

≤ C‖u‖4H2‖∂tu‖H1 ,

H23 ≤ C‖u · ∇ρ‖Lq (‖∂tu‖2L4‖∇u‖
L

2q
q−2

+ ‖u‖L∞‖∇u‖
L

2q
q−2

‖∇∂tu‖L2)

≤ C‖∇ρ‖Lq (‖u‖L∞‖∂tu‖2L4‖∇u‖
L

2q
q−2

+ ‖u‖2L∞‖∇u‖
L

2q
q−2

‖∇∂tu‖L2)

≤ C(‖u‖2H2‖∂tu‖2H1 + ‖u‖3H2‖∂tu‖H1).
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One thus deduces

H2 ≤ − d

dt

∫

R2

∂tρu ·∇u ·∂tu dx+C(‖u‖2H2‖∂tu‖2H1 +‖u‖4H2‖∂tu‖H1 +‖u‖3H2‖∂tu‖H1).

Putting all the above estimates together implies that

d

dt

(
‖∂tu(t)‖2H1 + φ(t)

)
+ ‖√ρ∂ttu(t)‖2L2 ≤ C‖∂tu‖H1‖∂tu‖2H1 +R(t), (A.21)

where

R(t) := C(‖u(t)‖2H2‖∂tu(t)‖2H1 + ‖u(t)‖4H2‖∂tu(t)‖H1 + ‖u(t)‖3H2‖∂tu(t)‖H1),

φ(t) := −1

2

∫

R2

∂tρ|∂tu|2 dx−
∫

R2

∂tρu · ∇u · ∂tu dx.

By the embedding inequality, we also get

|φ(t)| =
∣∣∣∣−

∫

R2

ρui∂tu · ∂t∂iu dx−
∫

R2

∂tρu · ∇u · ∂tu dx
∣∣∣∣

≤ C‖√ρ‖L∞‖√ρ∂tu‖L2‖u‖L∞‖∇∂tu‖L2 + C‖u · ∇ρ‖Lq‖u‖L∞‖∇u‖L4‖∂tu‖L4

≤ C‖u‖H2‖√ρ∂tu‖L2‖∂tu‖H1 + C‖u‖3H2‖∂tu‖H1

≤ 1

2
‖∂tu(t)‖2H1 + C‖u‖6H2 + ‖u‖2H2‖√ρ∂tu‖2L2 .

This leads to

|φ(t)| ≤ 1

2
‖∂tu(t)‖2H1 + C‖u(t)‖6H2 + ‖u(t)‖2H2‖√ρ∂tu(t)‖2L2 . (A.22)

Now we multiply (A.21) by eγt to obtain

d

dt

(
eγt‖∂tu(t)‖2H1 + eγtφ(t)

)
+ eγt‖√ρ∂ttu‖2L2

≤ γeγt‖∂tu(t)‖2H1 + γeγtφ(t) + Ceγt‖∂tu‖H1‖∂tu‖2H1 + eγtR(t). (A.23)

For any t ≥ 1, by (A.11) and (A.12), there exists σ ∈ ( 12 , 1) such that

eγσ‖∂tu(σ)‖2H1 + eγσφ(σ) := C̃.

It follows from (A.12) again

∫ t

1
2

eγτ‖∂τu(τ)‖2H1 dτ +

∫ t

1
2

eγτφ(τ) dτ +

∫ t

1
2

eγτR(τ) dτ ≤ C̃.

Noticing the above estimate, we integrate (A.23) on the time interval [σ, t] to show

eγt‖∂tu(t)‖2H1 + eγtφ(t) +

∫ t

σ

eγτ‖√ρ∂ττu(τ)‖2L2 dτ

≤ C̃ + C

∫ t

σ

‖∂τu(τ)‖H1(eγτ‖∂τu(τ)‖2H1) dτ. (A.24)
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From (A.22) and (A.12), it follows that for any t ≥ 1
2 ,

eγt |φ(t)| ≤ 1

2
eγt‖∂tu(t)‖2H1 + C̃. (A.25)

Combining (A.24) and (A.25) ensures

eγt‖∂tu(t)‖2H1+

∫ t

σ

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃+C

∫ t

σ

‖∂τu(τ)‖H1(eγτ‖∂τu(τ)‖2H1) dτ.

The Gronwall inequality and (A.12) allow us to conclude that for any t ≥ σ,

eγt‖∂tu(t)‖2H1 +

∫ t

σ

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃.

Since σ ≤ 1, we further have for any t ≥ 1,

eγt‖∂tu(t)‖2H1 +

∫ t

1

eγτ‖√ρ∂ττu(τ)‖2L2 dτ ≤ C̃. (A.26)

By (A.19), (A.8), (A.14) and (A.26), we derive that for any t ≥ 1,

eγt‖∆u(t)‖2Lm + eγt‖∇p(t)‖2Lm ≤ Ceγt(‖ρ∂tu(t)‖Lm + ‖ρu · ∇u(t)‖Lm)2

≤ Ceγt(‖∂tu(t)‖H1 + ‖u · ∇u(t)‖H1)2

≤ Ceγt(‖∂tu(t)‖2H1 + ‖u(t)‖4H2) ≤ C̃.

This finishes the proof of Lemma A.5.

Therefore, Theorem A.1 follows immediately from Lemmas A.1-A.5.
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Boston, MA, 2001, pp. 241–266.
[40] J. Wu, X. Xu, and Z. Ye, Global regularity for several incompressible fluid models with partial

dissipation, J. Math. Fluid Mech., 19 (2017), pp. 423–444.
[41] J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-

dependent viscosity coefficient, J. Differential Equations, 259 (2015), pp. 1722–1742.



94 D. WANG AND Z. YE


