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Modeling Users’ Curiosity in Recommender Systems
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Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore
the research community has advocated some "beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity
with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing
in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity
to experience those "beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than
conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed
a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level
to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, called Comfort
Zone. We then proposed a recommender system framework that considers both user preference and their Comfort Zone
where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages
human’s Comfort Zone for stimuli to promote engagement with the system. A series of evaluation experiments have been
conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity
stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared
to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further
helps the recommender model achieve smaller (better) inter-user similarity.

CCS Concepts: « Information systems — Recommender systems.
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1 INTRODUCTION

Today’s recommender systems have been criticized for having the problem of "information filter bubble" [49] or
"echo chamber" [2] by offering people close matches with what they have seen already, but not exposing them
to a broader range of information. To burst the information bubble and break the echo chamber, the research
community has called for some "beyond accuracy" objectives such as novelty, diversity, unexpectedness, and
serendipity. Among these "beyond accuracy” objectives, we propose to add one: curiosity, meaning a response
to a stimulus [4]. Curiosity represents a strong desire to know or learn something, and is central in human
information seeking [31]. We believe it should be an important objective for recommender systems to promote
users’ engagement to continue using the system. However, curiosity receives little attention in recommender
systems research.

In this paper, we regard each recommended item as a stimulus to a user. We define curiosity as a user’s
response likelihood to a recommended item. Therefore, the curiosity distribution for that user is his/her response
probability distribution estimated over his/her historical items. We built a curiosity distribution curve for each
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user. The curve was then incorporated into a state-of-the-art deep learning recommendation model to re-rank or
re-prioritize items that were highly likely to stimulate the user’s curiosity.

The curiosity distribution curve was inspired by the early German psychologist Wilhelm Wundt, who proposed
the Wundt curve in the 1800s [66] that describes the relationship between the amount of stimulus and the pleasant
feeling. According to the Wundt curve, as in Figure 1, too little stimulus will not be exciting whereas too much
will cause anxiety. This creates a stimulus "sweet spot” where the pleasant feeling is near its peak. This "sweet
spot" is highly personal. In this study, we proposed an approach to quantify it as a Comfort Zone.

Pleasantness —™

Stimulus intensity ——=

~«— Unpleasantness

Fig. 1. lllustration of the Wundt curve [66]

Specifically, we developed a computational approach to quantify the stimulus level of each recommendation
to a user, and the desired stimulus range as the Comfort Zone. Then we used an item’s stimulus level distance
to the Comfort Zone as a criterion to re-rank the items predicted by a deep learning recommender model. The
re-ranking algorithm promotes the items that have sufficient stimulus amount to be exciting but not too much to
be intimidating. The evaluation experiments have demonstrated that our recommender framework has a balanced
consideration between recommendation accuracy and user response likelihood.

This study’s contributions are four-fold: 1) we are the first to quantify the region of the Comfort Zone to reflect
the original idea of the Wundt curve in 1874 [66]; 2) we proposed to use surprise as the stimulus, and developed
an approach to quantify a personalized surprise level of an item to a user; 3) we innovatively incorporated
the curiosity_component into five deep learning recommender models using a re-ranking approach; and 4)
we proposed a new evaluation metric: Discounted Cumulative Curiousness (DCC), to better evaluate our new
recommender framework’s ranking quality in terms of its potential to inspire curiosity.

We conducted extensive experiments on three widely-used real world datasets for recommender systems:
the Amazon Books [36], the Yelp Restaurants [20], and the Million Song Dataset [5]. All these datasets are
information-rich because of their large number of items and abundant users’ rating history. Also, book reading
behavior, restaurant selections, and music preferences of users are highly driven by personal curiosity and
personal taste.
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2 RELATED WORK

This research brings together three lines of relevant research: beyond-accuracy recommender systems, modeling
curiosity in intelligent systems, and modeling surprise in artificial intelligence (AI).

2.1 Beyond-Accuracy Recommender Systems

With the wide application of deep learning methods, tremendous success has been achieved in recommender
systems to recommend "accurate" matches to users’ preferences (e.g., [13, 25, 26]). However, these recommender
systems overly focus on users’ past preferences and excessively pursue the recommendation accuracy. They tend
to ignore the users’ ever-changing, novel, diverse, and serendipitous needs. Therefore, in recent years, researchers
in recommender systems have advocated "beyond-accuracy” recommendations. Some recent representative works
will be introduced.

Novelty is usually defined in two ways in recommender systems. One is newly listed items and the other is the
existing unpopular items that people tend to miss. For newly listed items, Mohamed et al. [41] recommended
new music products to users with the intent of making the recommendation more attractive. Similarly, Deldjoo
et al. [8] recommended new movies which could increase the novelty of the recommendations and help reach the
goal of business-centric recommendations. Mazumdar et al. [35] recommended newly added Points of Interests
(POIs) to users in travel recommendations. For the existing unpopular items, Zhang et al. [67] believed there was
an embedded tendency in humans to explore novelty which is extremely outstanding in dining behavior. They
recommended some rarely visited restaurants that were likely to be missed.

Diversity as an objective has been introduced in recommender systems to promote different and diverse kinds
of items for users. Some researchers regarded diversity as the dissimilarity between recommended items and
users’ historical records. For example, Cui et al. [7] optimized the recommendation diversity by maximizing
the sum of the pairwise correlations and the sum of pairwise dissimilarity between recommended items and
the users’ historical items. Speaking of dissimilarity, there are many well-established metrics such as cosine
similarity, Euclidean distance, etc. There are also some new works on similarity measurement, such as reachable
distance function for KNN classification [70] and KNN classification with one-step computation [69]. Other than
dissimilarity, Li et al. [29] defined diversity as both user side and item side elasticity. User elasticity is the ability
of a user to accept items different from their past behaviors. Item elasticity is the item’s characteristics that could
be liked by many people. They considered diversity using both a user specific and item specific way. Sun et al.
[58] regarded diversity as the added uncertainty on top of a user’s regular visit. They intentionally added noises
to the user-item interaction graph and generated diversified item representations.

Serendipity is gaining much attention these years as one of the "beyond accuracy” objectives. Two recent
comprehensive survey papers on serendipity recommendations are [1, 11]. Although currently there is no
consensus on the definition of serendipity, most of the researchers believe the core element of serendipity is
unexpectedness. Li etal. [27] defined unexpectedness as distance to a user’s typical visit. They incorporated
unexpectedness into their deep learning recommendation model to provide serendipitous recommendations to
users. Zhang et al. [68] calculated unexpectedness from the aspects of both category difference and the latent
representation difference between candidate items and users’ profiles. Some other researchers calculated the
unexpectedness through co-occurrence. For example, Niu et al. [43, 45] proposed a method to model the users’
expectation on news as the expected likelihood of a particular bag of co-occurring topics. A lower likelihood
compared to the expected likelihood is regarded as unexpectedness. It is noteworthy that some researchers describe
unexpectedness using the term ’surprise’. We believe the two terms are equivalent and interchangeable. In addition
to unexpectedness, serendipity may also have overlaps with novelty and diversity. To provide serendipitous items,
extensive research has been conducted by integrating these objectives into various recommendation algorithms,
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especially deep learning models in recent years. We refer the readers to two recent survey papers on serendipity
recommendations: Ziarani et al. [73] and Kotkov et al. [24].

Although these "beyond accuracy" objectives may have overlaps in definitions and computations, they are
widely believed to contribute to providing a richer set of information resources for the users. For these "beyond
accuracy" objectives, we believe one is missing: curiosity, which is believed to play an essential role in the
information seeking process. However, curiosity has been under-studied compared to other "beyond accuracy”
goals.

2.2 Modeling Curiosity in Intelligent Systems

In the classic study by Berlyne in Psychology in 1966[4], curiosity has been described as both a trait and a state.
The trait of curiosity refers to a personality possessed by different individuals as different desire levels to learn
new things, while the state of curiosity means a status that the person is in that drives him/her to respond to a
stimulus. The latter definition, the state definition, has been modeled in many studies in computational systems
and artificial intelligence such as studies [38, 42, 46, 51]. In this study, however, we modeled both of them in
our probabilistic curiosity curve where the entire curve represents a trait and a particular point in the curve
represents a state.

In the field of Artificial Intelligence (AI) and Robotics, various computational models have been developed to
simulate and stimulate curiosity. According to Wu et al. [65], most of these computational approaches model the
curiosity arousal process as a two-step process: identify one or several stimulus variables and appraise the stimulus
level; then based on the stimulus level, evaluate the curiosity level. In the the first step, some models used a single
variable to determine the stimulation value. For example, Saunders and Gero [51] developed a computational
model of curiosity for intelligent design agents, focusing on the appraisal of novelty, as in the PCM study [71].
Novelty is common for evaluating the curiosity arousal. Other models combined several stimulus variables to
determine the stimulus level. For example, in Wu et al. [65], they used curiosity in a virtual companion to detect
potentially interesting learning objects for users and help them avoid the feeling of being lost. They considered
four stimulus variables: novelty, uncertainty, conflict, and complexity, and proposed a measure for each of them.
For example, they measured uncertainty by counting the number of uncertain elements; they defined conflict as
the incompatibility degree between the human learner’s understanding and the expert knowledge embedded
in the virtual world; and they interpreted complexity as how difficult a topic is to a student. Other studies
like Macedo and Cardoso [32, 34] proposed a model of curiosity for intelligent agents to simulate human-like
exploratory behavior. They introduced novelty, surprise, and uncertainty into their computational model of
curiosity.

As the second stepin the two-step process of modeling curiosity, the level of curiosity is evaluated through a
mapping from the stimulus value to the curiosity value. Some models assumed a linear relationship between the
stimulus level and curiosity such as [65]. Other models simply used the stimulus value as the curiosity value
such as [33, 48, 53]. Still other models followed the principle of "sweet spot” by explicitly simulating the Wundt
curve, which represents a nonlinear mapping from stimuli to curiosity such as models in [37, 51]. These models
avoided too small and too big stimuli in their stimulus selection approaches.

These previous studies have marked milestones for developing curiosity models in intelligent systems. They
have inspired our motivation to find different stimulus factors other than novelty in recommender systems; they
also inspired us to use the non-linear mapping from stimuli to curiosity to better approximate the Wundt curve.

2.3 Computational Models of Surprise in Artificial Intelligence
Surprise, as a potential stimulus variable, has received substantial attention in Al research these years. Studies

of computational creativity find that unexpected discovery leads to reflective thinking of the current problem,
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which in turn leads to further unexpected discoveries [59]. According to Grace et al. [14], this reflective behavior
suggests that surprise is one possible trigger for curiosity.

There are three interpretations for surprise in the literature of computational curiosity. The first one interprets
surprise as the difference between an expectation and the real outcome. The well-known Bayesian surprise model
proposed by Itti and Baldi [21] belongs to this type. Prediction error also matches well with this type and has
been utilized in many curiosity models to measure the level of surprise, such as the studies in [3, 52, 54, 60].
The second interpretation describes surprise as the change of knowledge. Storck et al. [56] modeled this type
of surprise using the information gain before and after an observation. The third one is using improbability of
existence of an item or an event, as proposed by Macedo and Cardoso [33]. Using improbability as surprise, a
series of studies by Grace and Maher [15-17] have developed a personalized curiosity engine called PQE that
recommends surprising and interesting recipes to users to encourage their curiosity and help diversify their diet.
Their surprise model was based on how unlikely the ingredients co-exist in a recipe. A series of studies led by
Niu [9, 12, 44, 45, 47] adopted several Information Theory metrics such as entropy and mutual information to
calculate how surprising a news article is to its reader.

These previous studies informed this study of the basic idea of using low likelihood or rare occurrence to
measure surprise. Built on but different from these existing studies, this study further takes into consideration
a person’s previous experience into surprise calculation because the same item is believed to carry different
amounts of surprise to different users.

3 THE FRAMEWORK ARCHITECTURE

Our proposed recommender framework consists of three main components, as shown in Figure 2. The Preference
Model, the Curiosity Model, and the Recommendation Generator. The Preference Model, like any state-of-the-art
recommendation models, captures the users’ interests to recommend preferred items. The Curiosity Model
constructs the curiosity distribution curve for each user. The Recommendation Generator uses the knowledge
from both the Preference Model and the Curiosity Model re-ranks items based on a balance between preference
and curiosity, and recommends to the user. We will introduce each component in the following subsections. The
important mathematical notations used in our proposed framework are listed in Table 1.

—_——— ¥ —_—_—_- — —— — — — i
/ estimatingthe |  estimatingthe | approximating the \ ( locating the ItemC
{ objective surprise | personalized surprise |~ Wundt curve \ | Comfort Zone

— | : _ : [ - : re-ranking ItemA
{ | - | ] | Item B

| | final list
\—___L_____|_____/ L________

Curiosity Model Recommendation l
Generator
Preference Model users

Fig. 2. The framework of the proposed recommender system

3.1 Preference Model

The Preference Model makes use of a user’s previous ratings as the user profile and then adopts the state-of-the-art
deep learning recommender techniques to identify a set of items that are most preferable to the user. Deep
learning techniques typically have higher recommendation accuracy compared to the other techniques due to
their strong ability in representation learning and matching function learning from data. Having this Preference
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Table 1. Mathematical Notations

Symbol Description

i an item in the recommendation list

S an item-level surprise score

Pzi,i a personalized surprise score of the item i for the user u at the moment ¢

F! ¥ the frequency (count of times) of the user u has accessed the items related
to the item i before the moment ¢

SI fl’i the stimulus intensity of the item i for the user u at the moment ¢

LB, the lower bound of the user u’s Comfort Zone

UBy, the upper bound of the user u’s Comfort Zone

A a forgetting rate

Model as a separate component enables us to experiment with different off-the-shelf deep learning algorithms
without affecting other components of the framework. This facilitates the later experimentation, evaluation, and
rapid deployment.

3.2 Curiosity Model

The Curiosity Model, a core component of the proposed recommender framework, uses a user’s access history to
construct the user’s curiosity distribution curve.

3.2.1 Preliminaries. A model that serves as the preliminaries to this study is the Probabilistic Curiosity Model
(PCM) developed by Zhao et al. [71]. In PCM, each recommended item presents a stimulus to the user. PCM adopts
a probabilistic approach to quantify the Wundt curve. It views a user’s selected or responded stimulus level or
stimulus intensity (SI) as a random variable, and curiosity as the probability distribution of the random variable.
In this way, a user’s stimulus selection (response) process can be interpreted as drawing a sample (stimulus)
from her/his curiosity distribution. Figure 3 illustrates a user’s selection of stimulus under the guidance of the
user’s curiosity distribution. For this user, SIs around the values near 0.6 is the level at which the curiosity will be
maximally aroused and therefore will be selected with a maximal probability. The user may also select other SIs,
but the chance is smaller. Here PCM takes both an internal and external view of curiosity. The internal view
considers curiosity as an internal factor of the person guiding the selection of items, whereas the external view is
the distribution of response probability that could be observed.

Item; Sli=02, Curiosity=0.01 “%,

Probabilistic Curiosity Model ~_ aé/y/;
c - "or
\S Sl, = iosity = Pr T~
g ‘ Item, 2= 0.4, Curiosity 0.15‘1%?%%/ ~
E o4 Hi . 1"""—7; —
a . ltem, Sk=06,Curiosity=0.50 9" fkely "y
2
g k p‘—obab\y >
5 Item, SI,=0.8, Curiosity=0.25 \ R "y
o 05 I ) o 10 \?‘0‘03‘(/”/ —

Stimulus Intensity (S1) Item; s, =1.0, Curiosity=0.01-"

Fig. 3. lllustration of the Probabilistic Curiosity Model (PCM) by [71]
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Our study fundamentally advances the Probabilistic Curiosity Model (PCM) developed by Zhao et al. [71], due
to our deeper understanding the Wundt curve [66], which leads to a non-linear range of desired item stimulus,
and a different optimization function in a recommender system. The PCM study [71] calls the stimulus level
where the maximum curiosity is aroused as Anxiety Turning Point (ATP), as in the left figure of Figure 4. It
then defines a restriction function to make sure the recommended items’ stimulus levels do not exceed this
Anxiety Turning Point. We believe that is an oversimplified understanding of the relationship between stimuli
and curiosity. We instead propose there is a Comfort Zone in stimulus intensity where the user curiosity levels
are all relatively high. We believe this Comfort Zone better reflects the original idea of "sweet spot" in the Wundt
curve [66]. We desire any stimulus level that not only falls within this Comfort Zone but also in the upper range,
as demonstrated in the right figure in Figure 4. Developmental psychology has long supported the notion of the
acquisition of new knowledge being dependent on past exposure to be sufficiently similar knowledge. Vygotsky
conceived of the "Zone of Proximal Development": the region of adjacent knowledge beyond but approachable by
the learner given their current knowledge [62]. We believe the seeking of stimuli and experiences in this upper
range of Comfort Zone is known as curiosity, and as curiosity leads to new knowledge, the Comfort Zone expands
ever outward, leading to renewed curiosity about newly adjacent knowledge. This iterative development cycle
is the grounding of our hypothesis for desired stimulus range rather than an Anxiety Turning Point in PCM
developed by Zhao et al. [71].

? Anxiety Turning Point T Comfort Zone
E | = I
3 I g 1 [}
g | S 1
= ! = 1 1

! 1 1

! 1 |

1 [

Stimtlus intensity —»— ! T IStim us intensity —=—

g 2
£ desired stimulus é desired stimulus
§ rangein Zhaoet al. 2 range in this study
& [40] Z
= =

Fig. 4. Comparison: desired stimulus range in Zhao et al. [71] (left figure) and this study (right figure)

In addition, the PCM study [71] used novelty as stimulus for curiosity. We instead propose to use surprise,
which, compared to novelty, is more complex and richer in meaning. Surprise is believed to have elements of
novelty [50]. In addition, surprise also represents how strongly a stimulus violates an expectation [45]. Therefore,
it is more widely believed to be a trigger of curiosity [21]. Since PCM study [71] was published six years ago,
it used a traditional collaborative filtering approach as a base. With the recent huge success of deep learning
techniques, we would like to experiment our ideas on curiosity models on top of the state-of-the-art deep learning
models to investigate the trade-offs between the model accuracy and the curiosity-inspiring potential.

3.2.2  Quantifying the stimulus intensity (S): computational measure of personalized surprise. The stimulus
intensity (SI) could be defined by a number of factors that are extracted from some measurable properties of
a stimulus. We propose to use the level of surprise as the curiosity stimulus, since surprise captures all the
elements of stimulus factors identified by Berlyne [4], such as novelty [50], conflict with expectation [16], hard to
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explain [10], etc. Surprise has been widely believed as a stimulus to the desire to know or learn, which is defined
as curiosity [21].

To quantify surprise, this study proposes a two-step calculation: 1) built an objective surprise measure based
on the society’s collective knowledge; and 2) a personalization factor was incorporated to discount the objective
surprise to reflect the personalized level of surprise. The first step was adopted from our previous study [45] with
the proven validity. The second step is the new contribution in this paper due to our renewed understanding that
surprise is subjective and related to the expectations of the observer. The same observation may carry different
amount of surprise for different observers, or even for the same observer at different times. Therefore, we will
add a personalization factor on top of the result of the first step.

The first step’s approach in our previous study [45] will be briefly introduced here. This approach followed the
definition of surprise as violation of expectation [40]. A low likelihood of the expectation would be a surprise
to the user. Each item was represented as a "bag" of its elements, represented as a set E = {ey, e, ...¢;},1 € L,
where L is the size of the "bag". For example, the book "The Prophet" could be represented as a bag of its topics:
humanities, religion, and love poems. It then measured objective surprise as how unlikely these topics co-occur
in one book. The topic religion tends to co-occur with humanities with a high likelihood, but not as much
co-occurring with love poems. Expectations of co-occurrence likelihood have been implicitly formed by the
society’s collective knowledge, and were computationally constructed using a large collection of such items or
some external knowledge base. A surprise in that sense is: "Seeing the topic religion is surprising given seeing
the topic love poems." Pointwise Mutual Information (PMI) [6] was used to calculate how much more likely than
expected it is that an element e; occurs given the occurrence of another element e;. We call this pairwise surprise
score s, as in Equation 1:

plei,e;)
pleple;)
where p(e;) and p(e;) represent the individual occurrence probabilities of the elements e; and e;, and p(e;, e;)
represents the joint occurrence probability of the two. In this equation, the denominator of the log fraction
represents the expectation of these two elements in the collection, and the numerator represents the actual or
observed likelihood for this particular combination. The ratio between the two is the divergence between the
two, and therefore reflects the amount of surprise.

Since many items have more than two elements, the pairwise surprise s will be calculated for all possible
pairwise combinations, and the highest of those values becomes the overall surprise score, S. This is shown in

s(ei, ej) = —PMI(e;s €) = —log, (1)

Equation 2, where E is the set of all possible pairwise combinations belonging to the item. This approach adopted
the highest instead of the average, based on the idea of Grace et al. [15] that the peak element-level surprise
dominates the item-level surprise.

S = maxgs(e;, ej) (2)

The second step is our contribution in this study by incorporating a personalization factor to the surprise
calculation. Guided again by the study of Berlyne [4] where the stimulus intensity is believed to be influenced
by how often the stimulus has been experienced by a user. The idea is that the more frequently the user has
accessed the item or similar items, the less surprising the item will be to the user. To mimic the impact of past
access frequency on the current feeling, we used an exponential decay function e~*, commonly used to describe
a natural decreasing process at a rate proportional to its current value and with an exponential forgetting rate
[28]. Therefore, the personalization factor is represented as in Equation 3:

P!, = e M (3)
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where A is the forgetting rate and F! , is the frequency that the user u has experienced the items related to the
item i before time ¢. Note that F  is a varlable that is user-dependent, item-dependent, and also time-dependent.
Therefore SI! > the stimulus 1nten51ty of the item i for user u at the moment ¢, is the multiplication of the
personalization factor and the objective surprise of the item, represented as Equation 4:

SI,; =P..S (4)

Although a simplified personalization model that may not capture all the factors impacting the personal feeling

of surprise, this approach reasonably makes use of a user’s past access frequency to approximate a person’s

familiarity level with an area, the most important element in forming an expectation [15]. Surprise just reflects
how strongly an encounter violates such an expectation.

3.2.3 Approximating the Wundt curve. Since we view a stimulus selection process as drawing samples (stimuli)
from a person’s curiosity distribution, it is natural to expect that the person’s curiosity distribution curve follows
the probability density function (PDF) of the SI’ ; values. Specifically in this study, the emplrlcal (observational)
PDF of SI}, ¢ ; is the distribution of a series of SI;, ‘ Values where {i € I,,,t € T, } in a user’s past access history, as
shown in the histogram for a hypothetical user 1n Figure 5. I, is the set of items visited by the user u and T, is
the set of timestamps of those visited items.

0.06
o 0.05
2 N
= Inflection Point
2 .
% 0.03 , Inflection Point
A ' .
3 0.02 : !
~ 1 .
“ ; |
0.01 : !
! |
} A T ol
0.1 LBU 0.5 UBu 0.9
t
SI;,

Fig. 5. Empirical PDF (the histogram) and fitted PDF (the curve)

In order to get a continuous PDF from the observational PDF histogram, we used the f distribution to fit a
curve for the empirical PDF. 8 distribution has been applied to modeling random variables of human behavior
limited to intervals of finite length in a wide variety of disciplines. It is a family of curves controlled by the
parameters a-and f to approximate any probability distribution. The fitted curve, as shown in the curve in Figure
5, serves as our Curiosity Model as in Figure 2, and also the approximation of the Wundt Curve because: first, the
distribution generally follows the "inverted-U" shape, suggesting that probability density captures the degree
of pleasantness implied by the Wundt curve. More importantly, second, we are able to find the two inflection
points on the curve and their corresponding stimulus levels, which can be used as the bounds of the Comfort
Zone, as illustrated in Figure 5. The lower bound and the upper bound are called LB and UB respectively. Third,
the fitted distribution quantifies the Wundt Curve using a probabilistic view, which reflects the natural process
that humans tend to select the pleasant stimuli more frequently. A person may also respond to a less pleasant
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stimulus, but the chance is smaller. Overall speaking, a curious user’s Comfort Zone is more rightward compared
to that of a conservative user.

3.3 Recommendation Generator

We model the recommendation problem as a top-K item ranking problem which selects the top-K items to
recommend considering both user preference and curiosity arousal potential. Specifically, the Recommendation
Generator obtains top N (N > K) items from the Preference Model as a candidate pool. It then re-ranks the
N items and gets the top-K items. The re-ranking favors items in the desired stimulus range as in the right
figure of Figure 4. Within that range, the closer the item is to the upper bound (UB), the higher it gets ranked.
This re-ranking approach reflects the idea that a stimulus that is in the user’s Comfort Zone but a little beyond
his/her typical reach will have a higher likelihood of stimulating curiosity. This way, the Recommender Generator
considers both recommendation accuracy (represented by the Preference Model) and the potential to arouse the
user’s curiosity (represented by the Curiosity Model).

Figure 6 shows the curiosity distributions of two users A and B to represent how the same item has different
surprise amounts to these two users, and also different potentials in inspiring curiosity for the two users. User B
is more curious than User A according to their curiosity distributions and UB,,, > UB,,,. The same item i has
different amounts of surprise for the two users, as it appears in different locations in their curiosity distribution
curves. Let us suppose both users would give a high rating on this item i. However, based on its distances to
UB,, and UB,,, this item i may make the final recommendation list for User B due to its proximity to UB,,, but
probably not for User A.
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Fig. 6. lllustration of two users’ curiosity distributions

4 IMPLEMENTATION OF THE RECOMMENDER FRAMEWORK

In this section, we first described the datasets and then some implementation details for the three components of
our proposed recommender framework.

ACM Trans. Knowl. Discov. Data.



4.1 Datasets

We used 3 widely-used datasets in the recommender research community: Amazon Books !, Yelp Restaurants
2, and Million Song Dataset 3 to implement our recommender framework. Among them, the Amazon Books
dataset is a subset of the original Amazon books dataset [36]. To supplement the original dataset with the book
topic labels, we utilized Amazon Product Advertising API to crawl the main topic labels for each book from
the Amazon website. The Yelp Restaurants dataset is also a subset of the Yelp business dataset [20] with only
restaurant-related records including the ratings and labels. The Million Song Dataset [5] is the original version
that is publicly available. All these 3 datasets were pre-processed. In addition, in order to avoid the data sparsity
problem, we have removed users with fewer than 10 ratings. The basic statistics of the three datasets used in this
study is summarized in Table 2.

Table 2. Statistics of the three datasets used in this study

Amazon | Yelp Million Song
Books Restaurants | Dataset
No. of users 127,627 435,543 1,019,318
No. of items 494,108 39,964 384,546
No. of ratings | 3,668,757 1,745,605 48,373,568

Each record of the datasets was split into a training set M (80%) and a test set T (20%). The training set is used
to train the deep learning based recommendation algorithms and more importantly calculate the personalized
surprise factor for each item. The test set is used to evaluate the performance of our proposed curiosity-based
re-ranking approach.

4.2 Preference Calculation: User Rating Prediction

As mentioned in the Preference Model, we used the state-of-the-art deep learning techniques to identify items
that are preferred by the user. These state-of-the-art algorithms will also serve as baseline algorithms in our
evaluation studies in Section 5. Specifically, we used five recommender algorithms: 1) Variational Autoencoder
with Multinomial Likelihood (Multi-VAE) [30], which is a deep learning model that extends the variational
autoencoders; 2) Adversarial Personalized Ranking using Matrix Factorization (APR-MF) [18], an algorithm
that is developed to maximize the likelihood that the user prefers one item over others; 3) a Personalized
Transformer (SSE-PT) model [64], which is inspired by the Transformers [61] in natural languages processing and
introduces personalization into self-attentive neural network architectures; 4) a Sequential Recommendation with
Bidirectional Encoder Representations from Transformers (BERT4Rec) [57], which is the next-item sequential
recommendation method based on Transformers [61] and a Cloze objective; and 5) a Diffusion Recommendation
Model (DiffRec) [63], which is the most recent generative recommendation model. It learns the representation of
the user interactions in a denoising manner based on Diffusion Models [19, 55].

Each base recommendation algorithm (Multi-VAE, APR-MF, SSE-PT, BERT4Rec, and DiffRec) was implemented
to identify a set of N items as a candidate pool for further re-ranking. N has been set to be 100 in this study, a rea-
sonably large pool of candidate items to search for curiosity-inspiring items without sacrificing recommendation
accuracy too much.

Ihttps://cseweb.ucsd.edu// jmcauley/
2https://www.yelp.com/dataset
3http://millionsongdataset.com/
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4.3 Surprise and Curiosity Calculation

We calculated personalized surprise for each item for each user in the training set via Equation 1 through Equation
4, where e; is a label for an item. A label for a book is its topic, such as historic, politics, biographies, etc. A label
for a restaurant is a tag describing the restaurant’s type and flavor, such as Mexican, pizza, bakeries, Chinese, etc.
A label for a piece of music is its genre, such as classic, pop, rock, etc. In order to measure the personalization
factor Pt ; in Equation 3 for each item and each user at each time point ¢, we need to calculate F, ! ., the frequency
that the user has accessed the items related to the item i before the moment ¢. The related items in this study
were defined as the items that shared a label with the item i and the shared label must be one label of the label
pair that has the highest s for the item i. Therefore, F} i was calculated this way:

Fl . +F]
Ft = u,e; u,e; 5
= o twe ©)
where e; and e; are the label pair with the highest s of the item i as in Equation 2. F} , ‘and F. , are the

number of times that the user u has accessed e; and e, respectively before time ¢. Time t is deﬁned as the access
moment of the item i, which means for each accessed item i, we have only considered the access history before
this item through the timestamps information of the dataset.

As mentioned, the distribution of SI! ; values served as the empirical (observational) curiosity distribution. To
further turn this empirical d1str1but10n to a continuous PDF distribution, we fit the f distribution using Python’s
stats.beta library in the SciPy package. The library took observational frequency distribution as the input, and
output the beta distribution parameters «, f, and the curve’s lower and upper limits. These values were used
later to plot the curiosity distribution curve for each user using Python’s matplotlib plotting package. The LB,,,
and UB,, points were also calculated through the parameters « and S.
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0.25 0.25
@ 0.20 @ 0.20
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Objective surprise Personalized surprise
Fig. 7. The distribution of the objective surprise levels (left figure) and personalized surprise levels (right figure)

We will display the result from the Amazon Books as an example. As the result of surprise calculation, the
distribution of the objective surprise S as in Equation 2 for all the books in the training dataset is presented in
the left figure in Figure 7. The distribution generally follows a normal distribution with the average amount
of objective surprise around 14 or 15. The right figure shows the distribution of the personalized surprise SI;J.,
which has lower bar height and spreads out to the lower end. This distribution suggests the personalization
effect due to the exponential decay function proposed in Equation 3. More interestingly, this ST fm distribution
could serve as an aggregate empirical curiosity distribution for all the users in the training set. Its lower bar
height and spreading toward the lower end mean that users’ tastes were very different, justifying the benefits of
personalization.
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As a follow-up illustration, Table 3 shows three examples of surprising books with high amounts of objective
surprise but different amounts of personalized surprise, SI, ;, for two different users. Apparently, User 2 is more
difficult to surprise because she has more past access experience with similar books.

Table 3. Examples of surprising books that have different personalized surprise amounts for two users

Title Topic Objective | Personalized Surprise
Labels Surprise | User 1 User 2
Uganda Be Kidding Me Uganda; Humor 19.04 17.22 15.59

Generation Rx: How Prescription Drugs Are

Ph ! ; Politi 17.22 16.38 14.10
s Altering American Lives, Minds, and Bodies armacology; Folitics

Cooking with a Serial Killer Recipes Serial Killer; Culinary 16.30 15.50 14.03

To illustrate what empirical curiosity distribution and the fitted curve look like for different users, Figure 8
shows the histograms of the SIs (after normalization) and the fitted curiosity distribution (the blue curves) for
five users in our training dataset. This Figure 8 shows that the users tend to respond to different average levels of
stimulus. User 1 is relatively more conservative compared with User 4 and User 5. In addition, the variances of
the users’ distributions are different. User 1 and User 2 have relatively small variances while User 3 to User 5
have relatively large variances. A small variance means that the curiosity level is stable, suggesting that users’
curiosity tends not to change much with different levels of stimuli, while a large variance shows that the user’s
curiosity may vary greatly. Generally, for each curiosity distribution, there is a Comfort Zone within which the
stimulus has the largest chance to be responded to. The Comfort Zone is different for these five users.

4.4 Recommendation Generation

As mentioned in Section 3.3, Recommender Generator obtains a top N items from a base recommender algorithm
as a candidate pool, and then re-ranks the N items and gets the top-K items according to the proximity between
the item’s amount of surprise (SI, ;) to that user’s UB,, representing as —dist(SILtl ,UB,). The items that make
the final list of top-K are also subJect to two conditions: SI’ 5 +(LB, + UB,) and SI' ; < UB,,. The experiment
algorithms are represented as MultiVAE+Cur, APR- MF+Cur SSE-PT+Cur, BERT4Rec+Cur and DiffRec+Cur,
meaning a base counterpart plus the curiosity re-ranking.

5 EVALUATION STUDIES

In this section, we proposed and applied three performance metrics to evaluate our recommender framework.
We then presented the evaluation results in terms of the three metrics.

5.1 Evaluation Metrics

We proposed three proposed metrics to evaluate our recommender framework:

5.1.1 Recall. This work adapted the one plus random evaluation method [23] with some modification. It randomly
splits each user’s rated items into a training set M and test set T. An additional probe set P is constructed by

selecting up to 10 highly rated items (e.g., those having a four- or five-star rating on a 1 to 5 scale) from the user’s
test set T. Then, for each user u, predictions will be computed to select the top N (N = 100 in this study) unrated
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items as the candidate pool plus all the p items in P. The set of 100 + p items is ranked according to a baseline
algorithm (MultiVAE, APR-MF,SSE-PT, BERT4Rec, or DiffRec), or an experimental algorithm (MultiVAE+Cur,
APR-MF+Cur, SSE-PT+Cur, BERT4Rec+Cur, or DiffRec+Cur). We examined whether the experimental algorithms
were able to rank the p items higher among the 100 + p items than the baseline algorithms. The underlying
rationale is since all the items in P represent both high ratings (preferences) and high response likelihood
(curiosity), they should be ranked higher compared to most items in the candidate set N.

Specifically, for each user u, whether the items in P are ranked higher is calculated by Recall@K, which is
defined as:

number of items in P ranked in top K

Recall, @K = 6
ecallu@ the total number of items in P ©)

The overall value of Recall@K is the average of Recall, @K for all the users. Recall@K is an important metric
to evaluate whether a recommender algorithm is able to rank higher curiosity inspiring items with higher
response likelihood, while not sacrificing preferences much.

5.1.2  Discounted Cumulative Curiousness (DCC). Inspired by the measure of Discounted Cumulative Gain
(DCG) [22] that considers both relevance and ranking position to measure the ranking quality, we propose a
measure, called Discounted Cumulative Curiousness (DCC), to measure the ranking quality in terms of curiosity-
inspiring potential, represented as:

curiousness score

K
DCC,@K =
@ Z logy(i + 1)

i=1

™)

where DCC, @K is the recommendation result list’s DCC for user u at each position i from the first position up
to the position K. How to measure curiousness is the key problem for applying this measure. Since the ranking is
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generated (predicted) by ordering the candidate items by the horizontal distance between SI 5 ; and UB,, we will
evaluate curiousness using the "ground truth" data: the observed frequency offered by the "vertical” height of a
histogram bar in a user’s curiosity distribution, representing the actual response likelihood of an item with that
stimulus level. We may use this observed frequency as the curiousness score in Equation 7.

The overall value of DCC@K is the average of DCC, @K for all the users. The higher the value of DCC@K,
the more potential the recommender has to arouse users’ curiosity.

5.1.3 Inter-User Similarity (IUS). Since our recommender framework quantifies a stimulus in a personalized way,
we expect that its recommendations are different for different users. To test this expectation, we use inter-user
similarity (IUS) proposed in [72]. The IUS; ; between the user i and j is the proportion of overlap between two
recommendation lists L; and L; for the user i and j.
[Li N L]
IUS; j = ——— 8

LJ |K| ( )
The overall value for IUS for all the users is the average of IUS; ; between all pairs of users. A large value of IUS
means a high similarity between users and therefore less effect of personalization.

5.2 Evaluation Results

We have conducted two sets of evaluation studies for our recommender framework. The purpose of the first set
is to evaluate the effectiveness of incorporating curiosity into the recommender system whereas the second set is
to test the effectiveness of personalization of the surprise levels.

5.2.1 Evaluating the curiosity model. In this set of evaluation, we investigated the effect of different values of
K on the three metrics we proposed: Recall, DCC, and IUS. We compared two sets of algorithms: MultiVAE,
APR-MF, SSE-PT, BERT4Rec, and DiffRec without considering the Curiosity Model, as five baseline algorithms;
and MultiVAE+Cur, APR-MF+Cur, SSE-PT+Cur, BERT4Rec+Cur, and DiffRec+Cur as our experimental algorithms.
Table 4, 5, and 6 show the Recall, DCC, and IUS levels at different K values for each algorithm. In terms of
Recall, all five experimental algorithms outperformed their baseline counterparts at varying K values for all the
three datasets. This confirms our hypothesis that re-ranking the candidate items by the proximity to the upper
range of the user’s Comfort Zone will result in a higher chance of hitting an item with high response likelihood
as well as a high rating. The performance is as expected since as K increases the chance of hitting a good item is
larger. Among the five experimental algorithms, SSE-PT+Cur and BERT4Rec+Cur have the best performances
in the Amazon Books and Yelp Restaurants datasets while Multi-VAE+Cur and DiffRec+Cur are the best in the
Million Song Dataset. In terms of DCC, all the five experimental algorithms have higher DCC values than their
baseline counterpart algorithms, backing up our hypothesis again that re-ranking with the consideration of a
person’s Comfort Zone will generate a list of recommendations with higher potential of arousing curiosity.
Furthermore, the IUS values in Table 6 represent the similarity of inter-user recommendations for the ten
recommender algorithms. A small value of IUS indicates a large effect of the personalization factor, which is
therefore desired. Overall speaking, SSE-PT+Cur, BERT4Rec+Cur, and DiffRec+Cur have outperformed their
baseline counterpart for all of the three datasets. APR-MF+Cur occasionally has slightly larger (worse) IUS in
the Amazon Books dataset, while Multi-VAE+Cur occasionally has higher (worse) IUS in the Yelp Restaurants
and Million Song Dataset. The reason is probably because both APR-MF and Multi-VAE are the state-of-the-
art personalized deep learning approaches. Accommodating the curiosity consideration may hurt their strong
personalization capability. In addition, in the current Amazon Books, Yelp Restaurants, and Million Songs, there
are small sets of popular items which have been accessed by many users. In order to increase the response
likelihood, the experimental algorithms tend to recommend some items from this popular set, which slightly
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Table 4. Model performance on Recall with varying K

Recall@K
Method (the larger the better)
Recall@10 Recall@20 Recall@30 Recall@40 Recall@50
Multi-VAE 9.33% 16.06% 20.24% 23.80% 26.86%
Multi-VAE+Cur 14.70% 30.92% 43.80% 49.81% 54.89%
Amazon APR-MF 5.56% 11.32% 18.53% 25.49% 33.95%
Books APR-MF+Cur 23.16% 35.04% 45.90% 56.54% 59.29%
SSE-PT 11.88% 30.00% 39.66% 45.71% 46.69%
SSE-PT+Cur 33.27% 44.02% 56.50% 57.59% 59.70%
BERT4Rec 12.26% 38.87% 47.85% 51.99% 53.23%
BERT4Rec+Cur 31.09% 44.32% 54.59% 58.01% 59.29%
DiffRec 10.90% 16.54% 22.57% 27.07% 28.57%
DiffRec+Cur 16.09% 32.33% 45.86% 50.75% 54.13%
Multi-VAE 4.66% 8.14% 11.01% 13.71% 16.21%
Multi-VAE+Cur 15.77% 28.57% 37.73% 42.10% 44.53%
Yelp APR-MF 5.00% 33.92% 41.05% 47.01% 48.60%
Restaurants ~ APR-MF+Cur 20.17% 40.52% 47.72% 50.09% 50.13%
SSE-PT 19.28% 39.03% 48.71% 50.84% 50.84%
SSE-PT+Cur 40.85% 51.60% 51.64% 51.65% 51.65%
BERT4Rec 18.54% 39.28% 47.67% 50.00% 50.06%
BERT4Rec+Cur 46.43% 50.07% 50.16% 50.18% 50.18%
DiffRec 5.30% 8.97% 15.62% 17.83% 22.09%
DiffRec+Cur 18.09% 28.33% 36.99% 43.06% 45.23%
Multi-VAE 7.71% 10.90% 13.34% 15.20% 16.70%
Multi-VAE+Cur 34.58% 41.29% 44.43% 46.48% 46.87%
Million Song APR-MF 11.33% 20.50% 30.27% 36.10% 36.11%
Dataset APR-MF+Cur 27.33% 30.43% 30.46% 40.46% 46.28%
SSE-PT 20.25% 29.38% 30.37% 35.65% 35.83%
SSE-PT+Cur 30.72% 41.38% 44.38% 48.86% 48.94%
BERT4Rec 14.16% 28.37% 36.41% 37.94% 38.08%
BERT4Rec+Cur 31.90% 39.02% 46.38% 47.65% 47.84%
DiffRec 8.67% 17.18% 21.72% 23.67% 23.98%
DiffRec+Cur 37.88% 41.92% 45.51% 48.18% 48.83%

hurts IUS. The result reflects the well-known phenomenon of "the rich get richer" [39] in the dataset we used in
this study.

Regarding the five experimental algorithms, APR-MF+Cur, SSE-PT+Cur, and BERT4Rec+Cur outperformed
MultiVAE+Cur and DiffRec+Cur in terms of IUS on the Amazon Books and Yelp Restaurants datasets, while
MultiVAE+Cur, SSE-PT+Cur, and DiffRec+Cur performed better than APR-MP+Cur and BERT4Rec+Cur in the
Million Song Dataset.

5.2.2 Evaluating personalized surprise vs. objective surprise. To follow up with the phenomenon of "the rich get
richer” in the 3 datasets we used, we want to conduct analysis on the effect of personalization and whether
personalization helped mitigate such a problem. In this study, we have calculated the personalized surprise for
each user based on Equation 4 with the expectation that the same item may contain different amounts of surprise
to different individuals. This second set of evaluation studies is to evaluate whether using personalized surprise to
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Table 5. Model performance on DCC with varying K

DCC@K
Method (the larger the better)
DCC@10 DCC@20 DCC@30 DCC@40 DCC@50
Multi-VAE 1.34 2.17 2.72 3.30 3.84
Multi-VAE+Cur 4.54 6.05 6.47 6.84 7.15
Amazon APR-MF 1.54 2.93 3.75 4.21 4.39
Books APR-MF+Cur 4.54 6.74 8.11 8.17 8.72
SSE-PT 2.03 3.30 4.05 442 4.53
SSE-PT+Cur 3.81 5.29 5.97 6.61 6.61
BERT4Rec 2.57 4.34 4.87 5.09 5.81
BERT4Rec+Cur 3.65 5.44 6.84 7.96 8.50
DiffRec 1.99 2.77 3.35 3.81 4.38
DiffRec+Cur 5.33 6.74 7.08 7.47 7.74
Multi-VAE 1.13 1.76 2.30 2.80 3.30
Multi-VAE+Cur 3.81 4.53 4.76 4.84 4.85
Yelp APR-MF 4.36 453 4.55 4.56 4.56
Restaurants ~ APR-MF+Cur 4.54 6.63 7.83 8.40 8.60
SSE-PT 4.45 6.47 7.64 8.25 8.45
SSE-PT+Cur 4.53 6.92 7.83 8.40 8.72
BERT4Rec 3.54 5.85 6.43 6.67 6.75
BERT4Rec+Cur 5.35 7.46 8.02 8.18 8.20
DiffRec 1.72 2.45 2.93 3.45 3.94
DiffRec+Cur 4.50 5.32 5.62 5.80 5.92
Multi-VAE 1.23 1.63 1.96 2.33 2.63
Multi-VAE+Cur 3.82 4.00 4.09 4.16 4.20
Million Song  APR-MF 4.06 5.12 5.54 5.70 5.75
Dataset APR-MF+Cur 4.14 5.19 5.80 6.10 6.23
SSE-PT 4.36 5.11 5.44 5.55 5.60
SSE-PT+Cur 4.53 5.81 5.94 6.34 6.60
BERT4Rec 3.88 4.26 4.51 4.68 4.76
BERT4Rec+Cur 4.59 5.15 5.53 5.68 5.75
DiffRec 1.92 2.37 2.56 2.92 3.23
DiffRec+Cur 4.36 5.12 5.48 5.62 5.70

estimate stimulus level brings value in finding curiosity-inspiring items as well as inter-user similarity, compared
to if we just use the objective surprise as stimulus level: the same item carries the same amount of stimulus for
everyone.

We selected one algorithm, SSE-PT+Cur from the previous round of evaluation because of its relatively better
and stable performance in all of the three datasets compared to the other two experimental algorithms. We applied
this algorithm into two settings: using objective surprise as SI 1’f ; or using personalized surprise as Slﬁ,i’ and
compared their performance in these two settings. The results are shown in Table 7, 8, and 9. SSE-PT+Obj denotes
the SSE-PT algorithm using the objective surprise calculation. In terms of Recall, the personalized approach
outperforms the objective approach. This confirmed our hypothesis that personalized surprise better reflects the
stimulus intensity specific to a user and therefore results in a higher chance of hitting a curiosity-inspiring and
relevant items. While in terms of DCC, the personalized approach has lower DCC values, probably because it
diversifies the items, deviating from the popular items by adding a personalization factor. For Table 9, in terms
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Table 6. Model performance on I1US with varying K

[US@10 1US@20 IUS@30 1US@40 IUS@50
Method
(the smaller the better)

Multi-VAE 14.44% 17.23% 22.64% 27.44% 32.67%
Multi-VAE+Cur | 13.08% 16.44% 19.45% 20.40% 22.61%

Amazon APR-MF 4.61% 5.73% 9.85% 12.20% 13.24%
Books APR-MF+Cur 5.80% 6.98% 8.63% 10.09% 11.44%
SSE-PT 4.94% 6.60% 10.05% 12.72% 12.99%

SSE-PT+Cur 3.59% 5.62% 7.22% 8.63% 8.77%

BERT4Rec 5.03% 6.75% 9.04% 11.70% 13.37%
BERT4Rec+Cur 3.69% 5.67% 6.49% 6.89% 7.40%

DiffRec 8.76% 11.27% 15.46% 19.24% 25.07%

DiffRec+Cur 6.95% 8.74% 10.49% 11.89% 12.61%

Multi-VAE 5.43% 9.04% 10.61% 12.38% 18.84%
Multi-VAE+Cur 5.27% 8.65% 11.64% 13.85% 15.14%

Yelp APR-MF 2.47% 14.27% 22.76% 28.18% 33.12%
Restaurants APR-MF+Cur 1.33% 9.19% 12.67% 16.22% 24.17%
SSE-PT 3.12% 5.89% 11.12% 12.72% 13.94%

SSE-PT+Cur 1.93% 4.72% 7.02% 8.56% 9.75%

BERT4Rec 3.11% 4.30% 6.36% 9.40% 11.61%
BERT4Rec+Cur 1.92% 2.80% 4.96% 6.41% 7.73%

DiffRec 5.67% 9.18% 12.38% 15.68% 17.68%

DiffRec+Cur 4.67% 7.58% 9.44% 10.74% 11.78%

Multi-VAE 2.67% 2.99% 5.70% 7.55% 9.25%

Million Multi-VAE+Cur 3.29% 3.49% 5.51% 6.26% 9.18%
Song APR-MF 5.80% 7.26% 9.31% 11.79% 17.05%
Dataset APR-MF+Cur 4.61% 5.75% 7.34% 9.26% 16.01%

SSE-PT 3.62% 4.71% 5.89% 7.53% 9.52%

SSE-PT+Cur 1.61% 2.91% 3.31% 4.44% 4.45%

BERT4Rec 5.95% 7.52% 8.89% 9.37% 10.98%
BERT4Rec+Cur 3.32% 4.88% 5.92% 6.23% 7.19%

DiffRec 3.43% 4.32% 6.26% 8.34% 9.99%

DiffRec+Cur 3.33% 3.88% 5.92% 6.21% 8.89%

of IUS, the personalized approach has constantly achieved a smaller IUS for different values of K, suggesting
the effectiveness of personalization. This observation supports our belief that using personalized surprise has
alleviated the problem of convergence to some popular items.

6 CONCLUSION AND FUTURE WORK

This paper presents a recommender framework that considers both user preference and curiosity arousal potential.
The Curiosity Model is constructed for each individual user to model their unique appetite for stimuli. To quantify
a stimulus, we proposed to use surprise as the stimulus factor and developed a measure for estimating personalized
amount of surprise an item contains. Moreover, we have quantified the Comfort Zone concept in the Wundt
Curve by finding its lower and upper bounds from the fitted curve. We measured the distance between an
item’s stimulus level to a user’s upper bound of the Comfort Zone with the aim of providing a little beyond but
approachable recommendations to inspire user curiosity. Three popular datasets about books, restaurants, and
music, representing a wide range of personal tastes, have been adopted to illustrate our idea. In the evaluation
studies, we have shown that our algorithms are able to rank higher those items with not only high ratings but also
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Table 7. Evaluating personalization on Recall with varying K

Recall@K
Method (the larger the better)
Recall@10 Recall@20 Recall@30 Recall@40 Recall@50
Amazon SSE-PT+Obj 30.15% 44.02% 49.94% 50.64% 50.65%
Books SSE-PT+Cur 33.27% 44.39% 56.50% 57.59% 59.70%
Yelp SSE-PT+Obj 11.15% 39.07% 48.95% 49.82% 49.98%
Restaurants ~ SSE-PT+Cur 40.85% 51.60% 51.64% 51.65% 51.65%
Million Song  SSE-PT+Obj 22.76% 32.24% 38.55% 39.74% 39.74%
Dataset SSE-PT+Cur 30.72% 41.38% 44.38% 48.86% 48.94%

Table 8. Evaluating personalization on DCC with varying K

DCC@K
Method (the larger the better)
DCC@10 DCC@20 DCC@30 DCC@40 DCC@50
Amazon SSE-PT+Obj 4.54 6.71 8.03 8.18 8.79
Books SSE-PT+Cur 3.81 5.29 5.97 6.61 6.61
Yelp SSE-PT+Obj 4.53 7.01 9.06 9.57 9.59
Restaurants ~ SSE-PT+Cur 4.53 6.92 7.83 8.40 8.72
Million Song  SSE-PT+Obj 4.54 7.04 9.16 11.09 12.90
Dataset SSE-PT+Cur 4.53 5.81 5.94 6.34 6.60

Table 9. Evaluating personalization on IUS with varying K

[US@10 IUS@20 IUS@30 IUS@40 IUS@50

Method (the smaller the better)
Amazon SSE-PT+Obj 7.76% 13.66% 16.84% 19.21% 20.43%
Books SSE-PT+Cur | 03.59% 5.62% 7.22% 8.63% 8.77%
Yelp SSE-PT+Obj 1.38% 23.73% 32.60% 37.07% 39.75%

Restaurants:  SSE-PT+Cur | 0.72% 10.82% 20.43% 26.74% 31.73%
Million Song  SSE-PT+Obj 4.80% 5.98% 7.46% 9.33% 15.51%
Dataset SSE-PT+Cur 1.61% 2.91% 3.31% 4.44% 4.45%

high response likelihood to invite consumption. The personalization factor for assessing the stimulus (surprise)
amount helps the recommender achieve smaller inter-user similarity.

For the near future, we plan to extend the framework to generate a sequence of recommendations that are
able to transport users from the borders of their current Comfort Zone to "as-yet-too-alien" items that the system
might persuade them to appreciate. Finally, since our idea relies on the availability of the user access and rating
history with a recommender system, how to apply the framework in a "cold-start" mode without relying much
on user history is also our future research question.
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